xref: /original-bsd/sys/vm/vm_pageout.c (revision 1897046e)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_pageout.c	7.10 (Berkeley) 11/29/92
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	The proverbial page-out daemon.
41  */
42 
43 #include <sys/param.h>
44 
45 #include <vm/vm.h>
46 #include <vm/vm_page.h>
47 #include <vm/vm_pageout.h>
48 
49 int	vm_pages_needed;	/* Event on which pageout daemon sleeps */
50 
51 int	vm_page_free_min_sanity = 40;
52 
53 /*
54  *	vm_pageout_scan does the dirty work for the pageout daemon.
55  */
56 void
57 vm_pageout_scan()
58 {
59 	register vm_page_t	m;
60 	register int		page_shortage;
61 	register int		s;
62 	register int		pages_freed;
63 	int			free;
64 
65 	/*
66 	 *	Only continue when we want more pages to be "free"
67 	 */
68 
69 	s = splimp();
70 	simple_lock(&vm_page_queue_free_lock);
71 	free = cnt.v_free_count;
72 	simple_unlock(&vm_page_queue_free_lock);
73 	splx(s);
74 
75 	if (free < cnt.v_free_target) {
76 		swapout_threads();
77 
78 		/*
79 		 *	Be sure the pmap system is updated so
80 		 *	we can scan the inactive queue.
81 		 */
82 
83 		pmap_update();
84 	}
85 
86 	/*
87 	 *	Acquire the resident page system lock,
88 	 *	as we may be changing what's resident quite a bit.
89 	 */
90 	vm_page_lock_queues();
91 
92 	/*
93 	 *	Start scanning the inactive queue for pages we can free.
94 	 *	We keep scanning until we have enough free pages or
95 	 *	we have scanned through the entire queue.  If we
96 	 *	encounter dirty pages, we start cleaning them.
97 	 */
98 
99 	pages_freed = 0;
100 	m = (vm_page_t) queue_first(&vm_page_queue_inactive);
101 	while (!queue_end(&vm_page_queue_inactive, (queue_entry_t) m)) {
102 		vm_page_t next;
103 		vm_object_t object;
104 		vm_pager_t pager;
105 		int pageout_status;
106 
107 		s = splimp();
108 		simple_lock(&vm_page_queue_free_lock);
109 		free = cnt.v_free_count;
110 		simple_unlock(&vm_page_queue_free_lock);
111 		splx(s);
112 
113 		if (free >= cnt.v_free_target)
114 			break;
115 
116 		/*
117 		 * If the page has been referenced, move it back to the
118 		 * active queue.
119 		 */
120 		if (pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
121 			next = (vm_page_t) queue_next(&m->pageq);
122 			vm_page_activate(m);
123 			cnt.v_reactivated++;
124 			m = next;
125 			continue;
126 		}
127 
128 		/*
129 		 * If the page is clean, free it up.
130 		 */
131 		if (m->flags & PG_CLEAN) {
132 			next = (vm_page_t) queue_next(&m->pageq);
133 			object = m->object;
134 			if (vm_object_lock_try(object)) {
135 				pmap_page_protect(VM_PAGE_TO_PHYS(m),
136 						  VM_PROT_NONE);
137 				vm_page_free(m);
138 				pages_freed++;
139 				vm_object_unlock(object);
140 			}
141 			m = next;
142 			continue;
143 		}
144 
145 		/*
146 		 * If the page is dirty but already being washed, skip it.
147 		 */
148 		if ((m->flags & PG_LAUNDRY) == 0) {
149 			m = (vm_page_t) queue_next(&m->pageq);
150 			continue;
151 		}
152 
153 		/*
154 		 * Otherwise the page is dirty and still in the laundry,
155 		 * so we start the cleaning operation and remove it from
156 		 * the laundry.
157 		 *
158 		 * We set the busy bit to cause potential page faults on
159 		 * this page to block.
160 		 *
161 		 * We also set pageout-in-progress to keep the object from
162 		 * disappearing during pageout.  This guarantees that the
163 		 * page won't move from the inactive queue.  (However, any
164 		 * other page on the inactive queue may move!)
165 		 */
166 		object = m->object;
167 		if (!vm_object_lock_try(object)) {
168 			m = (vm_page_t) queue_next(&m->pageq);
169 			continue;
170 		}
171 		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
172 		m->flags |= PG_BUSY;
173 		cnt.v_pageouts++;
174 
175 		/*
176 		 * Try to collapse the object before making a pager for it.
177 		 * We must unlock the page queues first.
178 		 */
179 		vm_page_unlock_queues();
180 		vm_object_collapse(object);
181 
182 		object->paging_in_progress++;
183 		vm_object_unlock(object);
184 
185 		/*
186 		 * Do a wakeup here in case the following operations block.
187 		 */
188 		thread_wakeup((int) &cnt.v_free_count);
189 
190 		/*
191 		 * If there is no pager for the page, use the default pager.
192 		 * If there is no place to put the page at the moment,
193 		 * leave it in the laundry and hope that there will be
194 		 * paging space later.
195 		 */
196 		if ((pager = object->pager) == NULL) {
197 			pager = vm_pager_allocate(PG_DFLT, (caddr_t)0,
198 						  object->size, VM_PROT_ALL);
199 			if (pager != NULL)
200 				vm_object_setpager(object, pager, 0, FALSE);
201 		}
202 		pageout_status = pager ?
203 			vm_pager_put(pager, m, FALSE) : VM_PAGER_FAIL;
204 		vm_object_lock(object);
205 		vm_page_lock_queues();
206 		next = (vm_page_t) queue_next(&m->pageq);
207 
208 		switch (pageout_status) {
209 		case VM_PAGER_OK:
210 		case VM_PAGER_PEND:
211 			m->flags &= ~PG_LAUNDRY;
212 			break;
213 		case VM_PAGER_BAD:
214 			/*
215 			 * Page outside of range of object.  Right now we
216 			 * essentially lose the changes by pretending it
217 			 * worked.
218 			 *
219 			 * XXX dubious, what should we do?
220 			 */
221 			m->flags &= ~PG_LAUNDRY;
222 			m->flags |= PG_CLEAN;
223 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
224 			break;
225 		case VM_PAGER_FAIL:
226 		case VM_PAGER_ERROR:
227 			/*
228 			 * If page couldn't be paged out, then reactivate
229 			 * the page so it doesn't clog the inactive list.
230 			 * (We will try paging out it again later).
231 			 */
232 			vm_page_activate(m);
233 			break;
234 		}
235 
236 		pmap_clear_reference(VM_PAGE_TO_PHYS(m));
237 
238 		/*
239 		 * If the operation is still going, leave the page busy
240 		 * to block all other accesses.  Also, leave the paging
241 		 * in progress indicator set so that we don't attempt an
242 		 * object collapse.
243 		 */
244 		if (pageout_status != VM_PAGER_PEND) {
245 			m->flags &= ~PG_BUSY;
246 			PAGE_WAKEUP(m);
247 			object->paging_in_progress--;
248 		}
249 		thread_wakeup((int) object);
250 		vm_object_unlock(object);
251 		m = next;
252 	}
253 
254 	/*
255 	 *	Compute the page shortage.  If we are still very low on memory
256 	 *	be sure that we will move a minimal amount of pages from active
257 	 *	to inactive.
258 	 */
259 
260 	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count;
261 	if (page_shortage <= 0 && pages_freed == 0)
262 		page_shortage = 1;
263 
264 	while (page_shortage > 0) {
265 		/*
266 		 *	Move some more pages from active to inactive.
267 		 */
268 
269 		if (queue_empty(&vm_page_queue_active)) {
270 			break;
271 		}
272 		m = (vm_page_t) queue_first(&vm_page_queue_active);
273 		vm_page_deactivate(m);
274 		page_shortage--;
275 	}
276 
277 	vm_page_unlock_queues();
278 }
279 
280 /*
281  *	vm_pageout is the high level pageout daemon.
282  */
283 
284 void vm_pageout()
285 {
286 	(void) spl0();
287 
288 	/*
289 	 *	Initialize some paging parameters.
290 	 */
291 
292 	if (cnt.v_free_min == 0) {
293 		cnt.v_free_min = cnt.v_free_count / 20;
294 		if (cnt.v_free_min < 3)
295 			cnt.v_free_min = 3;
296 
297 		if (cnt.v_free_min > vm_page_free_min_sanity)
298 			cnt.v_free_min = vm_page_free_min_sanity;
299 	}
300 
301 	if (cnt.v_free_target == 0)
302 		cnt.v_free_target = (cnt.v_free_min * 4) / 3;
303 
304 	if (cnt.v_free_target <= cnt.v_free_min)
305 		cnt.v_free_target = cnt.v_free_min + 1;
306 
307 	/*
308 	 *	The pageout daemon is never done, so loop
309 	 *	forever.
310 	 */
311 
312 	simple_lock(&vm_pages_needed_lock);
313 	while (TRUE) {
314 		thread_sleep((int) &vm_pages_needed, &vm_pages_needed_lock,
315 			     FALSE);
316 		/*
317 		 * Compute the inactive target for this scan.
318 		 * We need to keep a reasonable amount of memory in the
319 		 * inactive list to better simulate LRU behavior.
320 		 */
321 		cnt.v_inactive_target =
322 			(cnt.v_active_count + cnt.v_inactive_count) / 3;
323 		if (cnt.v_inactive_target <= cnt.v_free_target)
324 			cnt.v_inactive_target = cnt.v_free_target + 1;
325 
326 		vm_pageout_scan();
327 		vm_pager_sync();
328 		simple_lock(&vm_pages_needed_lock);
329 		thread_wakeup((int) &cnt.v_free_count);
330 	}
331 }
332