xref: /original-bsd/sys/vm/vm_swap.c (revision f737e041)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)vm_swap.c	8.5 (Berkeley) 02/17/94
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/buf.h>
13 #include <sys/conf.h>
14 #include <sys/proc.h>
15 #include <sys/namei.h>
16 #include <sys/dmap.h>		/* XXX */
17 #include <sys/vnode.h>
18 #include <sys/map.h>
19 #include <sys/file.h>
20 
21 #include <miscfs/specfs/specdev.h>
22 
23 /*
24  * Indirect driver for multi-controller paging.
25  */
26 
27 int	nswap, nswdev;
28 #ifdef SEQSWAP
29 int	niswdev;		/* number of interleaved swap devices */
30 int	niswap;			/* size of interleaved swap area */
31 #endif
32 
33 /*
34  * Set up swap devices.
35  * Initialize linked list of free swap
36  * headers. These do not actually point
37  * to buffers, but rather to pages that
38  * are being swapped in and out.
39  */
40 void
41 swapinit()
42 {
43 	register int i;
44 	register struct buf *sp = swbuf;
45 	register struct proc *p = &proc0;	/* XXX */
46 	struct swdevt *swp;
47 	int error;
48 
49 	/*
50 	 * Count swap devices, and adjust total swap space available.
51 	 * Some of the space will not be countable until later (dynamically
52 	 * configurable devices) and some of the counted space will not be
53 	 * available until a swapon() system call is issued, both usually
54 	 * happen when the system goes multi-user.
55 	 *
56 	 * If using NFS for swap, swdevt[0] will already be bdevvp'd.	XXX
57 	 */
58 #ifdef SEQSWAP
59 	nswdev = niswdev = 0;
60 	nswap = niswap = 0;
61 	/*
62 	 * All interleaved devices must come first
63 	 */
64 	for (swp = swdevt; swp->sw_dev != NODEV || swp->sw_vp != NULL; swp++) {
65 		if (swp->sw_flags & SW_SEQUENTIAL)
66 			break;
67 		niswdev++;
68 		if (swp->sw_nblks > niswap)
69 			niswap = swp->sw_nblks;
70 	}
71 	niswap = roundup(niswap, dmmax);
72 	niswap *= niswdev;
73 	if (swdevt[0].sw_vp == NULL &&
74 	    bdevvp(swdevt[0].sw_dev, &swdevt[0].sw_vp))
75 		panic("swapvp");
76 	/*
77 	 * The remainder must be sequential
78 	 */
79 	for ( ; swp->sw_dev != NODEV; swp++) {
80 		if ((swp->sw_flags & SW_SEQUENTIAL) == 0)
81 			panic("binit: mis-ordered swap devices");
82 		nswdev++;
83 		if (swp->sw_nblks > 0) {
84 			if (swp->sw_nblks % dmmax)
85 				swp->sw_nblks -= (swp->sw_nblks % dmmax);
86 			nswap += swp->sw_nblks;
87 		}
88 	}
89 	nswdev += niswdev;
90 	if (nswdev == 0)
91 		panic("swapinit");
92 	nswap += niswap;
93 #else
94 	nswdev = 0;
95 	nswap = 0;
96 	for (swp = swdevt; swp->sw_dev != NODEV || swp->sw_vp != NULL; swp++) {
97 		nswdev++;
98 		if (swp->sw_nblks > nswap)
99 			nswap = swp->sw_nblks;
100 	}
101 	if (nswdev == 0)
102 		panic("swapinit");
103 	if (nswdev > 1)
104 		nswap = ((nswap + dmmax - 1) / dmmax) * dmmax;
105 	nswap *= nswdev;
106 	if (swdevt[0].sw_vp == NULL &&
107 	    bdevvp(swdevt[0].sw_dev, &swdevt[0].sw_vp))
108 		panic("swapvp");
109 #endif
110 	if (nswap == 0)
111 		printf("WARNING: no swap space found\n");
112 	else if (error = swfree(p, 0)) {
113 		printf("swfree errno %d\n", error);	/* XXX */
114 		panic("swapinit swfree 0");
115 	}
116 
117 	/*
118 	 * Now set up swap buffer headers.
119 	 */
120 	bswlist.b_actf = sp;
121 	for (i = 0; i < nswbuf - 1; i++, sp++) {
122 		sp->b_actf = sp + 1;
123 		sp->b_rcred = sp->b_wcred = p->p_ucred;
124 		sp->b_vnbufs.le_next = NOLIST;
125 	}
126 	sp->b_rcred = sp->b_wcred = p->p_ucred;
127 	sp->b_vnbufs.le_next = NOLIST;
128 	sp->b_actf = NULL;
129 }
130 
131 void
132 swstrategy(bp)
133 	register struct buf *bp;
134 {
135 	int sz, off, seg, index;
136 	register struct swdevt *sp;
137 	struct vnode *vp;
138 
139 #ifdef GENERIC
140 	/*
141 	 * A mini-root gets copied into the front of the swap
142 	 * and we run over top of the swap area just long
143 	 * enough for us to do a mkfs and restor of the real
144 	 * root (sure beats rewriting standalone restor).
145 	 */
146 #define	MINIROOTSIZE	4096
147 	if (rootdev == dumpdev)
148 		bp->b_blkno += MINIROOTSIZE;
149 #endif
150 	sz = howmany(bp->b_bcount, DEV_BSIZE);
151 	if (bp->b_blkno + sz > nswap) {
152 		bp->b_error = EINVAL;
153 		bp->b_flags |= B_ERROR;
154 		biodone(bp);
155 		return;
156 	}
157 	if (nswdev > 1) {
158 #ifdef SEQSWAP
159 		if (bp->b_blkno < niswap) {
160 			if (niswdev > 1) {
161 				off = bp->b_blkno % dmmax;
162 				if (off+sz > dmmax) {
163 					bp->b_error = EINVAL;
164 					bp->b_flags |= B_ERROR;
165 					biodone(bp);
166 					return;
167 				}
168 				seg = bp->b_blkno / dmmax;
169 				index = seg % niswdev;
170 				seg /= niswdev;
171 				bp->b_blkno = seg*dmmax + off;
172 			} else
173 				index = 0;
174 		} else {
175 			register struct swdevt *swp;
176 
177 			bp->b_blkno -= niswap;
178 			for (index = niswdev, swp = &swdevt[niswdev];
179 			     swp->sw_dev != NODEV;
180 			     swp++, index++) {
181 				if (bp->b_blkno < swp->sw_nblks)
182 					break;
183 				bp->b_blkno -= swp->sw_nblks;
184 			}
185 			if (swp->sw_dev == NODEV ||
186 			    bp->b_blkno+sz > swp->sw_nblks) {
187 				bp->b_error = swp->sw_dev == NODEV ?
188 					ENODEV : EINVAL;
189 				bp->b_flags |= B_ERROR;
190 				biodone(bp);
191 				return;
192 			}
193 		}
194 #else
195 		off = bp->b_blkno % dmmax;
196 		if (off+sz > dmmax) {
197 			bp->b_error = EINVAL;
198 			bp->b_flags |= B_ERROR;
199 			biodone(bp);
200 			return;
201 		}
202 		seg = bp->b_blkno / dmmax;
203 		index = seg % nswdev;
204 		seg /= nswdev;
205 		bp->b_blkno = seg*dmmax + off;
206 #endif
207 	} else
208 		index = 0;
209 	sp = &swdevt[index];
210 	if ((bp->b_dev = sp->sw_dev) == NODEV)
211 		panic("swstrategy");
212 	if (sp->sw_vp == NULL) {
213 		bp->b_error = ENODEV;
214 		bp->b_flags |= B_ERROR;
215 		biodone(bp);
216 		return;
217 	}
218 	VHOLD(sp->sw_vp);
219 	if ((bp->b_flags & B_READ) == 0) {
220 		if (vp = bp->b_vp) {
221 			vp->v_numoutput--;
222 			if ((vp->v_flag & VBWAIT) && vp->v_numoutput <= 0) {
223 				vp->v_flag &= ~VBWAIT;
224 				wakeup((caddr_t)&vp->v_numoutput);
225 			}
226 		}
227 		sp->sw_vp->v_numoutput++;
228 	}
229 	if (bp->b_vp != NULL)
230 		brelvp(bp);
231 	bp->b_vp = sp->sw_vp;
232 	VOP_STRATEGY(bp);
233 }
234 
235 /*
236  * System call swapon(name) enables swapping on device name,
237  * which must be in the swdevsw.  Return EBUSY
238  * if already swapping on this device.
239  */
240 struct swapon_args {
241 	char	*name;
242 };
243 /* ARGSUSED */
244 int
245 swapon(p, uap, retval)
246 	struct proc *p;
247 	struct swapon_args *uap;
248 	int *retval;
249 {
250 	register struct vnode *vp;
251 	register struct swdevt *sp;
252 	dev_t dev;
253 	int error;
254 	struct nameidata nd;
255 
256 	if (error = suser(p->p_ucred, &p->p_acflag))
257 		return (error);
258 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, p);
259 	if (error = namei(&nd))
260 		return (error);
261 	vp = nd.ni_vp;
262 	if (vp->v_type != VBLK) {
263 		vrele(vp);
264 		return (ENOTBLK);
265 	}
266 	dev = (dev_t)vp->v_rdev;
267 	if (major(dev) >= nblkdev) {
268 		vrele(vp);
269 		return (ENXIO);
270 	}
271 	for (sp = &swdevt[0]; sp->sw_dev != NODEV; sp++) {
272 		if (sp->sw_dev == dev) {
273 			if (sp->sw_flags & SW_FREED) {
274 				vrele(vp);
275 				return (EBUSY);
276 			}
277 			sp->sw_vp = vp;
278 			if (error = swfree(p, sp - swdevt)) {
279 				vrele(vp);
280 				return (error);
281 			}
282 			return (0);
283 		}
284 #ifdef SEQSWAP
285 		/*
286 		 * If we have reached a non-freed sequential device without
287 		 * finding what we are looking for, it is an error.
288 		 * That is because all interleaved devices must come first
289 		 * and sequential devices must be freed in order.
290 		 */
291 		if ((sp->sw_flags & (SW_SEQUENTIAL|SW_FREED)) == SW_SEQUENTIAL)
292 			break;
293 #endif
294 	}
295 	vrele(vp);
296 	return (EINVAL);
297 }
298 
299 /*
300  * Swfree(index) frees the index'th portion of the swap map.
301  * Each of the nswdev devices provides 1/nswdev'th of the swap
302  * space, which is laid out with blocks of dmmax pages circularly
303  * among the devices.
304  */
305 int
306 swfree(p, index)
307 	struct proc *p;
308 	int index;
309 {
310 	register struct swdevt *sp;
311 	register swblk_t vsbase;
312 	register long blk;
313 	struct vnode *vp;
314 	register swblk_t dvbase;
315 	register int nblks;
316 	int error;
317 
318 	sp = &swdevt[index];
319 	vp = sp->sw_vp;
320 	if (error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p))
321 		return (error);
322 	sp->sw_flags |= SW_FREED;
323 	nblks = sp->sw_nblks;
324 	/*
325 	 * Some devices may not exist til after boot time.
326 	 * If so, their nblk count will be 0.
327 	 */
328 	if (nblks <= 0) {
329 		int perdev;
330 		dev_t dev = sp->sw_dev;
331 
332 		if (bdevsw[major(dev)].d_psize == 0 ||
333 		    (nblks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
334 			(void) VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
335 			sp->sw_flags &= ~SW_FREED;
336 			return (ENXIO);
337 		}
338 #ifdef SEQSWAP
339 		if (index < niswdev) {
340 			perdev = niswap / niswdev;
341 			if (nblks > perdev)
342 				nblks = perdev;
343 		} else {
344 			if (nblks % dmmax)
345 				nblks -= (nblks % dmmax);
346 			nswap += nblks;
347 		}
348 #else
349 		perdev = nswap / nswdev;
350 		if (nblks > perdev)
351 			nblks = perdev;
352 #endif
353 		sp->sw_nblks = nblks;
354 	}
355 	if (nblks == 0) {
356 		(void) VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
357 		sp->sw_flags &= ~SW_FREED;
358 		return (0);	/* XXX error? */
359 	}
360 #ifdef SEQSWAP
361 	if (sp->sw_flags & SW_SEQUENTIAL) {
362 		register struct swdevt *swp;
363 
364 		blk = niswap;
365 		for (swp = &swdevt[niswdev]; swp != sp; swp++)
366 			blk += swp->sw_nblks;
367 		rmfree(swapmap, nblks, blk);
368 		return (0);
369 	}
370 #endif
371 	for (dvbase = 0; dvbase < nblks; dvbase += dmmax) {
372 		blk = nblks - dvbase;
373 #ifdef SEQSWAP
374 		if ((vsbase = index*dmmax + dvbase*niswdev) >= niswap)
375 			panic("swfree");
376 #else
377 		if ((vsbase = index*dmmax + dvbase*nswdev) >= nswap)
378 			panic("swfree");
379 #endif
380 		if (blk > dmmax)
381 			blk = dmmax;
382 		if (vsbase == 0) {
383 			/*
384 			 * First of all chunks... initialize the swapmap.
385 			 * Don't use the first cluster of the device
386 			 * in case it starts with a label or boot block.
387 			 */
388 			rminit(swapmap, blk - ctod(CLSIZE),
389 			    vsbase + ctod(CLSIZE), "swap", nswapmap);
390 		} else if (dvbase == 0) {
391 			/*
392 			 * Don't use the first cluster of the device
393 			 * in case it starts with a label or boot block.
394 			 */
395 			rmfree(swapmap, blk - ctod(CLSIZE),
396 			    vsbase + ctod(CLSIZE));
397 		} else
398 			rmfree(swapmap, blk, vsbase);
399 	}
400 	return (0);
401 }
402