xref: /original-bsd/usr.bin/compress/zopen.c (revision 07303858)
1 /*-
2  * Copyright (c) 1985, 1986, 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Diomidis Spinellis and James A. Woods, derived from original
7  * work by Spencer Thomas and Joseph Orost.
8  *
9  * %sccs.include.redist.c%
10  */
11 
12 #if defined(LIBC_SCCS) && !defined(lint)
13 static char sccsid[] = "@(#)zopen.c	5.2 (Berkeley) 12/17/92";
14 #endif /* LIBC_SCCS and not lint */
15 
16 /*-
17  * fcompress.c - File compression ala IEEE Computer, June 1984.
18  *
19  * Compress authors:
20  *		Spencer W. Thomas	(decvax!utah-cs!thomas)
21  *		Jim McKie		(decvax!mcvax!jim)
22  *		Steve Davies		(decvax!vax135!petsd!peora!srd)
23  *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
24  *		James A. Woods		(decvax!ihnp4!ames!jaw)
25  *		Joe Orost		(decvax!vax135!petsd!joe)
26  *
27  * Cleaned up and converted to library returning I/O streams by
28  * Diomidis Spinellis <dds@doc.ic.ac.uk>.
29  *
30  * zopen(filename, mode, bits)
31  *	Returns a FILE * that can be used for read or write.  The modes
32  *	supported are only "r" and "w".  Seeking is not allowed.  On
33  *	reading the file is decompressed, on writing it is compressed.
34  *	The output is compatible with compress(1) with 16 bit tables.
35  *	Any file produced by compress(1) can be read.
36  */
37 
38 #include <sys/param.h>
39 #include <sys/stat.h>
40 
41 #include <ctype.h>
42 #include <errno.h>
43 #include <signal.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 
49 #define	BITS		16		/* Default bits. */
50 #define	HSIZE		69001		/* 95% occupancy */
51 
52 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
53 typedef long code_int;
54 typedef long count_int;
55 
56 typedef u_char char_type;
57 static char_type magic_header[] =
58 	{'\037', '\235'};		/* 1F 9D */
59 
60 #define	BIT_MASK	0x1f		/* Defines for third byte of header. */
61 #define	BLOCK_MASK	0x80
62 
63 /*
64  * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
65  * a fourth header byte (for expansion).
66  */
67 #define	INIT_BITS 9			/* Initial number of bits/code. */
68 
69 #define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
70 
71 struct s_zstate {
72 	FILE *zs_fp;			/* File stream for I/O */
73 	char zs_mode;			/* r or w */
74 	enum {
75 		S_START, S_MIDDLE, S_EOF
76 	} zs_state;			/* State of computation */
77 	int zs_n_bits;			/* Number of bits/code. */
78 	int zs_maxbits;			/* User settable max # bits/code. */
79 	code_int zs_maxcode;		/* Maximum code, given n_bits. */
80 	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
81 	count_int zs_htab [HSIZE];
82 	u_short zs_codetab [HSIZE];
83 	code_int zs_hsize;		/* For dynamic table sizing. */
84 	code_int zs_free_ent;		/* First unused entry. */
85 	/*
86 	 * Block compression parameters -- after all codes are used up,
87 	 * and compression rate changes, start over.
88 	 */
89 	int zs_block_compress;
90 	int zs_clear_flg;
91 	long zs_ratio;
92 	count_int zs_checkpoint;
93 	int zs_offset;
94 	long zs_in_count;		/* Length of input. */
95 	long zs_bytes_out;		/* Length of compressed output. */
96 	long zs_out_count;		/* # of codes output (for debugging). */
97 	char_type zs_buf[BITS];
98 	union {
99 		struct {
100 			long zs_fcode;
101 			code_int zs_ent;
102 			code_int zs_hsize_reg;
103 			int zs_hshift;
104 		} w;			/* Write paramenters */
105 		struct {
106 			char_type *zs_stackp;
107 			int zs_finchar;
108 			code_int zs_code, zs_oldcode, zs_incode;
109 			int zs_roffset, zs_size;
110 			char_type zs_gbuf[BITS];
111 		} r;			/* Read parameters */
112 	} u;
113 };
114 
115 /* Definitions to retain old variable names */
116 #define	fp		zs->zs_fp
117 #define	zmode		zs->zs_mode
118 #define	state		zs->zs_state
119 #define	n_bits		zs->zs_n_bits
120 #define	maxbits		zs->zs_maxbits
121 #define	maxcode		zs->zs_maxcode
122 #define	maxmaxcode	zs->zs_maxmaxcode
123 #define	htab		zs->zs_htab
124 #define	codetab		zs->zs_codetab
125 #define	hsize		zs->zs_hsize
126 #define	free_ent	zs->zs_free_ent
127 #define	block_compress	zs->zs_block_compress
128 #define	clear_flg	zs->zs_clear_flg
129 #define	ratio		zs->zs_ratio
130 #define	checkpoint	zs->zs_checkpoint
131 #define	offset		zs->zs_offset
132 #define	in_count	zs->zs_in_count
133 #define	bytes_out	zs->zs_bytes_out
134 #define	out_count	zs->zs_out_count
135 #define	buf		zs->zs_buf
136 #define	fcode		zs->u.w.zs_fcode
137 #define	hsize_reg	zs->u.w.zs_hsize_reg
138 #define	ent		zs->u.w.zs_ent
139 #define	hshift		zs->u.w.zs_hshift
140 #define	stackp		zs->u.r.zs_stackp
141 #define	finchar		zs->u.r.zs_finchar
142 #define	code		zs->u.r.zs_code
143 #define	oldcode		zs->u.r.zs_oldcode
144 #define	incode		zs->u.r.zs_incode
145 #define	roffset		zs->u.r.zs_roffset
146 #define	size		zs->u.r.zs_size
147 #define	gbuf		zs->u.r.zs_gbuf
148 
149 /*
150  * To save much memory, we overlay the table used by compress() with those
151  * used by decompress().  The tab_prefix table is the same size and type as
152  * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
153  * from the beginning of htab.  The output stack uses the rest of htab, and
154  * contains characters.  There is plenty of room for any possible stack
155  * (stack used to be 8000 characters).
156  */
157 
158 #define	htabof(i)	htab[i]
159 #define	codetabof(i)	codetab[i]
160 
161 #define	tab_prefixof(i)	codetabof(i)
162 #define	tab_suffixof(i)	((char_type *)(htab))[i]
163 #define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
164 
165 #define	CHECK_GAP 10000		/* Ratio check interval. */
166 
167 /*
168  * the next two codes should not be changed lightly, as they must not
169  * lie within the contiguous general code space.
170  */
171 #define	FIRST	257		/* First free entry. */
172 #define	CLEAR	256		/* Table clear output code. */
173 
174 static int	cl_block __P((struct s_zstate *));
175 static void	cl_hash __P((struct s_zstate *, count_int));
176 static code_int	getcode __P((struct s_zstate *));
177 static int	output __P((struct s_zstate *, code_int));
178 static int	zclose __P((void *));
179 static int	zread __P((void *, char *, int));
180 static int	zwrite __P((void *, const char *, int));
181 
182 /*-
183  * Algorithm from "A Technique for High Performance Data Compression",
184  * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
185  *
186  * Algorithm:
187  * 	Modified Lempel-Ziv method (LZW).  Basically finds common
188  * substrings and replaces them with a variable size code.  This is
189  * deterministic, and can be done on the fly.  Thus, the decompression
190  * procedure needs no input table, but tracks the way the table was built.
191  */
192 
193 /*-
194  * compress write
195  *
196  * Algorithm:  use open addressing double hashing (no chaining) on the
197  * prefix code / next character combination.  We do a variant of Knuth's
198  * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
199  * secondary probe.  Here, the modular division first probe is gives way
200  * to a faster exclusive-or manipulation.  Also do block compression with
201  * an adaptive reset, whereby the code table is cleared when the compression
202  * ratio decreases, but after the table fills.  The variable-length output
203  * codes are re-sized at this point, and a special CLEAR code is generated
204  * for the decompressor.  Late addition:  construct the table according to
205  * file size for noticeable speed improvement on small files.  Please direct
206  * questions about this implementation to ames!jaw.
207  */
208 static int
209 zwrite(cookie, wbp, num)
210 	void *cookie;
211 	const char *wbp;
212 	int num;
213 {
214 	register code_int i;
215 	register int c, disp;
216 	struct s_zstate *zs;
217 	const u_char *bp;
218 	u_char tmp;
219 	int count;
220 
221 	if (num == 0)
222 		return (0);
223 
224 	zs = cookie;
225 	count = num;
226 	bp = (u_char *)wbp;
227 	if (state == S_MIDDLE)
228 		goto middle;
229 	state = S_MIDDLE;
230 
231 	maxmaxcode = 1L << BITS;
232 	if (fwrite(magic_header,
233 	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
234 		return (-1);
235 	tmp = (u_char)(BITS | block_compress);
236 	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
237 		return (-1);
238 
239 	offset = 0;
240 	bytes_out = 3;		/* Includes 3-byte header mojo. */
241 	out_count = 0;
242 	clear_flg = 0;
243 	ratio = 0;
244 	in_count = 1;
245 	checkpoint = CHECK_GAP;
246 	maxcode = MAXCODE(n_bits = INIT_BITS);
247 	free_ent = ((block_compress) ? FIRST : 256);
248 
249 	ent = *bp++;
250 	--count;
251 
252 	hshift = 0;
253 	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
254 		hshift++;
255 	hshift = 8 - hshift;	/* Set hash code range bound. */
256 
257 	hsize_reg = hsize;
258 	cl_hash(zs, (count_int)hsize_reg);	/* Clear hash table. */
259 
260 middle:	for (i = 0; count--;) {
261 		c = *bp++;
262 		in_count++;
263 		fcode = (long)(((long)c << maxbits) + ent);
264 		i = ((c << hshift) ^ ent);	/* Xor hashing. */
265 
266 		if (htabof(i) == fcode) {
267 			ent = codetabof(i);
268 			continue;
269 		} else if ((long)htabof(i) < 0)	/* Empty slot. */
270 			goto nomatch;
271 		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
272 		if (i == 0)
273 			disp = 1;
274 probe:		if ((i -= disp) < 0)
275 			i += hsize_reg;
276 
277 		if (htabof(i) == fcode) {
278 			ent = codetabof(i);
279 			continue;
280 		}
281 		if ((long)htabof(i) >= 0)
282 			goto probe;
283 nomatch:	if (output(zs, (code_int) ent) == -1)
284 			return (-1);
285 		out_count++;
286 		ent = c;
287 		if (free_ent < maxmaxcode) {
288 			codetabof(i) = free_ent++;	/* code -> hashtable */
289 			htabof(i) = fcode;
290 		} else if ((count_int)in_count >=
291 		    checkpoint && block_compress) {
292 			if (cl_block(zs) == -1)
293 				return (-1);
294 		}
295 	}
296 	return (num);
297 }
298 
299 static int
300 zclose(cookie)
301 	void *cookie;
302 {
303 	struct s_zstate *zs;
304 
305 	zs = cookie;
306 	if (zmode == 'w') {		/* Put out the final code. */
307 		if (output(zs, (code_int) ent) == -1) {
308 			free(zs);
309 			(void)fclose(fp);
310 			return (-1);
311 		}
312 		out_count++;
313 		if (output(zs, (code_int) - 1) == -1) {
314 			free(zs);
315 			(void)fclose(fp);
316 			return (-1);
317 		}
318 	}
319 	free(zs);
320 	return (fclose(fp) == EOF ? -1 : 0);
321 }
322 
323 /*-
324  * Output the given code.
325  * Inputs:
326  * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
327  *		that n_bits =< (long)wordsize - 1.
328  * Outputs:
329  * 	Outputs code to the file.
330  * Assumptions:
331  *	Chars are 8 bits long.
332  * Algorithm:
333  * 	Maintain a BITS character long buffer (so that 8 codes will
334  * fit in it exactly).  Use the VAX insv instruction to insert each
335  * code in turn.  When the buffer fills up empty it and start over.
336  */
337 
338 static char_type lmask[9] =
339 	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
340 static char_type rmask[9] =
341 	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
342 
343 static int
344 output(zs, ocode)
345 	struct s_zstate *zs;
346 	code_int ocode;
347 {
348 	register int bits, r_off;
349 	register char_type *bp;
350 
351 	r_off = offset;
352 	bits = n_bits;
353 	bp = buf;
354 	if (ocode >= 0) {
355 		/* Get to the first byte. */
356 		bp += (r_off >> 3);
357 		r_off &= 7;
358 		/*
359 		 * Since ocode is always >= 8 bits, only need to mask the first
360 		 * hunk on the left.
361 		 */
362 		*bp = (*bp & rmask[r_off]) | (ocode << r_off) & lmask[r_off];
363 		bp++;
364 		bits -= (8 - r_off);
365 		ocode >>= 8 - r_off;
366 		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
367 		if (bits >= 8) {
368 			*bp++ = ocode;
369 			ocode >>= 8;
370 			bits -= 8;
371 		}
372 		/* Last bits. */
373 		if (bits)
374 			*bp = ocode;
375 		offset += n_bits;
376 		if (offset == (n_bits << 3)) {
377 			bp = buf;
378 			bits = n_bits;
379 			bytes_out += bits;
380 			if (fwrite(bp, sizeof(char), bits, fp) != bits)
381 				return (-1);
382 			bp += bits;
383 			bits = 0;
384 			offset = 0;
385 		}
386 		/*
387 		 * If the next entry is going to be too big for the ocode size,
388 		 * then increase it, if possible.
389 		 */
390 		if (free_ent > maxcode || (clear_flg > 0)) {
391 		       /*
392 			* Write the whole buffer, because the input side won't
393 			* discover the size increase until after it has read it.
394 			*/
395 			if (offset > 0) {
396 				if (fwrite(buf, 1, n_bits, fp) != n_bits)
397 					return (-1);
398 				bytes_out += n_bits;
399 			}
400 			offset = 0;
401 
402 			if (clear_flg) {
403 				maxcode = MAXCODE(n_bits = INIT_BITS);
404 				clear_flg = 0;
405 			} else {
406 				n_bits++;
407 				if (n_bits == maxbits)
408 					maxcode = maxmaxcode;
409 				else
410 					maxcode = MAXCODE(n_bits);
411 			}
412 		}
413 	} else {
414 		/* At EOF, write the rest of the buffer. */
415 		if (offset > 0) {
416 			offset = (offset + 7) / 8;
417 			if (fwrite(buf, 1, offset, fp) != offset)
418 				return (-1);
419 			bytes_out += offset;
420 		}
421 		offset = 0;
422 	}
423 	return (0);
424 }
425 
426 /*
427  * Decompress read.  This routine adapts to the codes in the file building
428  * the "string" table on-the-fly; requiring no table to be stored in the
429  * compressed file.  The tables used herein are shared with those of the
430  * compress() routine.  See the definitions above.
431  */
432 static int
433 zread(cookie, rbp, num)
434 	void *cookie;
435 	char *rbp;
436 	int num;
437 {
438 	register u_int count;
439 	struct s_zstate *zs;
440 	u_char *bp, header[3];
441 
442 	if (num == 0)
443 		return (0);
444 
445 	zs = cookie;
446 	count = num;
447 	bp = (u_char *)rbp;
448 	switch (state) {
449 	case S_START:
450 		state = S_MIDDLE;
451 		break;
452 	case S_MIDDLE:
453 		goto middle;
454 	case S_EOF:
455 		goto eof;
456 	}
457 
458 	/* Check the magic number */
459 	if (fread(header,
460 	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
461 	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
462 		errno = EFTYPE;
463 		return (-1);
464 	}
465 	maxbits = header[2];	/* Set -b from file. */
466 	block_compress = maxbits & BLOCK_MASK;
467 	maxbits &= BIT_MASK;
468 	maxmaxcode = 1L << maxbits;
469 	if (maxbits > BITS) {
470 		errno = EFTYPE;
471 		return (-1);
472 	}
473 	/* As above, initialize the first 256 entries in the table. */
474 	maxcode = MAXCODE(n_bits = INIT_BITS);
475 	for (code = 255; code >= 0; code--) {
476 		tab_prefixof(code) = 0;
477 		tab_suffixof(code) = (char_type) code;
478 	}
479 	free_ent = block_compress ? FIRST : 256;
480 
481 	finchar = oldcode = getcode(zs);
482 	if (oldcode == -1)	/* EOF already? */
483 		return (0);	/* Get out of here */
484 
485 	/* First code must be 8 bits = char. */
486 	*bp++ = (u_char)finchar;
487 	count--;
488 	stackp = de_stack;
489 
490 	while ((code = getcode(zs)) > -1) {
491 
492 		if ((code == CLEAR) && block_compress) {
493 			for (code = 255; code >= 0; code--)
494 				tab_prefixof(code) = 0;
495 			clear_flg = 1;
496 			free_ent = FIRST - 1;
497 			if ((code = getcode(zs)) == -1)	/* O, untimely death! */
498 				break;
499 		}
500 		incode = code;
501 
502 		/* Special case for KwKwK string. */
503 		if (code >= free_ent) {
504 			*stackp++ = finchar;
505 			code = oldcode;
506 		}
507 
508 		/* Generate output characters in reverse order. */
509 		while (code >= 256) {
510 			*stackp++ = tab_suffixof(code);
511 			code = tab_prefixof(code);
512 		}
513 		*stackp++ = finchar = tab_suffixof(code);
514 
515 		/* And put them out in forward order.  */
516 middle:		do {
517 			if (count-- == 0)
518 				return (num);
519 			*bp++ = *--stackp;
520 		} while (stackp > de_stack);
521 
522 		/* Generate the new entry. */
523 		if ((code = free_ent) < maxmaxcode) {
524 			tab_prefixof(code) = (u_short) oldcode;
525 			tab_suffixof(code) = finchar;
526 			free_ent = code + 1;
527 		}
528 
529 		/* Remember previous code. */
530 		oldcode = incode;
531 	}
532 	state = S_EOF;
533 eof:	return (num - count);
534 }
535 
536 /*-
537  * Read one code from the standard input.  If EOF, return -1.
538  * Inputs:
539  * 	stdin
540  * Outputs:
541  * 	code or -1 is returned.
542  */
543 static code_int
544 getcode(zs)
545 	struct s_zstate *zs;
546 {
547 	register code_int gcode;
548 	register int r_off, bits;
549 	register char_type *bp;
550 
551 	bp = gbuf;
552 	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
553 		/*
554 		 * If the next entry will be too big for the current gcode
555 		 * size, then we must increase the size.  This implies reading
556 		 * a new buffer full, too.
557 		 */
558 		if (free_ent > maxcode) {
559 			n_bits++;
560 			if (n_bits == maxbits)	/* Won't get any bigger now. */
561 				maxcode = maxmaxcode;
562 			else
563 				maxcode = MAXCODE(n_bits);
564 		}
565 		if (clear_flg > 0) {
566 			maxcode = MAXCODE(n_bits = INIT_BITS);
567 			clear_flg = 0;
568 		}
569 		size = fread(gbuf, 1, n_bits, fp);
570 		if (size <= 0)			/* End of file. */
571 			return (-1);
572 		roffset = 0;
573 		/* Round size down to integral number of codes. */
574 		size = (size << 3) - (n_bits - 1);
575 	}
576 	r_off = roffset;
577 	bits = n_bits;
578 
579 	/* Get to the first byte. */
580 	bp += (r_off >> 3);
581 	r_off &= 7;
582 
583 	/* Get first part (low order bits). */
584 	gcode = (*bp++ >> r_off);
585 	bits -= (8 - r_off);
586 	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
587 
588 	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
589 	if (bits >= 8) {
590 		gcode |= *bp++ << r_off;
591 		r_off += 8;
592 		bits -= 8;
593 	}
594 
595 	/* High order bits. */
596 	gcode |= (*bp & rmask[bits]) << r_off;
597 	roffset += n_bits;
598 
599 	return (gcode);
600 }
601 
602 static int
603 cl_block(zs)			/* Table clear for block compress. */
604 	struct s_zstate *zs;
605 {
606 	register long rat;
607 
608 	checkpoint = in_count + CHECK_GAP;
609 
610 	if (in_count > 0x007fffff) {	/* Shift will overflow. */
611 		rat = bytes_out >> 8;
612 		if (rat == 0)		/* Don't divide by zero. */
613 			rat = 0x7fffffff;
614 		else
615 			rat = in_count / rat;
616 	} else
617 		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
618 	if (rat > ratio)
619 		ratio = rat;
620 	else {
621 		ratio = 0;
622 		cl_hash(zs, (count_int) hsize);
623 		free_ent = FIRST;
624 		clear_flg = 1;
625 		if (output(zs, (code_int) CLEAR) == -1)
626 			return (-1);
627 	}
628 	return (0);
629 }
630 
631 static void
632 cl_hash(zs, cl_hsize)			/* Reset code table. */
633 	struct s_zstate *zs;
634 	register count_int cl_hsize;
635 {
636 	register count_int *htab_p;
637 	register long i, m1;
638 
639 	m1 = -1;
640 	htab_p = htab + cl_hsize;
641 	i = cl_hsize - 16;
642 	do {			/* Might use Sys V memset(3) here. */
643 		*(htab_p - 16) = m1;
644 		*(htab_p - 15) = m1;
645 		*(htab_p - 14) = m1;
646 		*(htab_p - 13) = m1;
647 		*(htab_p - 12) = m1;
648 		*(htab_p - 11) = m1;
649 		*(htab_p - 10) = m1;
650 		*(htab_p - 9) = m1;
651 		*(htab_p - 8) = m1;
652 		*(htab_p - 7) = m1;
653 		*(htab_p - 6) = m1;
654 		*(htab_p - 5) = m1;
655 		*(htab_p - 4) = m1;
656 		*(htab_p - 3) = m1;
657 		*(htab_p - 2) = m1;
658 		*(htab_p - 1) = m1;
659 		htab_p -= 16;
660 	} while ((i -= 16) >= 0);
661 	for (i += 16; i > 0; i--)
662 		*--htab_p = m1;
663 }
664 
665 FILE *
666 zopen(fname, mode, bits)
667 	const char *fname, *mode;
668 	int bits;
669 {
670 	struct s_zstate *zs;
671 
672 	if (mode[0] != 'r' && mode[0] != 'w' || mode[1] != '\0' ||
673 	    bits < 0 || bits > BITS) {
674 		errno = EINVAL;
675 		return (NULL);
676 	}
677 
678 	if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
679 		return (NULL);
680 
681 	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
682 	maxmaxcode = 1 << BITS;		/* Should NEVER generate this code. */
683 	hsize = HSIZE;			/* For dynamic table sizing. */
684 	free_ent = 0;			/* First unused entry. */
685 	block_compress = BLOCK_MASK;
686 	clear_flg = 0;
687 	ratio = 0;
688 	checkpoint = CHECK_GAP;
689 	in_count = 1;			/* Length of input. */
690 	out_count = 0;			/* # of codes output (for debugging). */
691 	state = S_START;
692 	roffset = 0;
693 	size = 0;
694 
695 	/*
696 	 * Layering compress on top of stdio in order to provide buffering,
697 	 * and ensure that reads and write work with the data specified.
698 	 */
699 	if ((fp = fopen(fname, mode)) == NULL) {
700 		free(zs);
701 		return (NULL);
702 	}
703 	switch (*mode) {
704 	case 'r':
705 		zmode = 'r';
706 		return (funopen(zs, zread, NULL, NULL, zclose));
707 	case 'w':
708 		zmode = 'w';
709 		return (funopen(zs, NULL, zwrite, NULL, zclose));
710 	}
711 	/* NOTREACHED */
712 }
713