xref: /qemu/accel/kvm/kvm-all.c (revision 02326733)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static hwaddr kvm_max_slot_size = ~0;
95 
96 static const KVMCapabilityInfo kvm_required_capabilites[] = {
97     KVM_CAP_INFO(USER_MEMORY),
98     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
99     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
100     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
101     KVM_CAP_INFO(IOEVENTFD),
102     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
103     KVM_CAP_LAST_INFO
104 };
105 
106 static NotifierList kvm_irqchip_change_notifiers =
107     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
108 
109 struct KVMResampleFd {
110     int gsi;
111     EventNotifier *resample_event;
112     QLIST_ENTRY(KVMResampleFd) node;
113 };
114 typedef struct KVMResampleFd KVMResampleFd;
115 
116 /*
117  * Only used with split irqchip where we need to do the resample fd
118  * kick for the kernel from userspace.
119  */
120 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
121     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
122 
123 static QemuMutex kml_slots_lock;
124 
125 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
126 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
127 
128 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
129 
130 static inline void kvm_resample_fd_remove(int gsi)
131 {
132     KVMResampleFd *rfd;
133 
134     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
135         if (rfd->gsi == gsi) {
136             QLIST_REMOVE(rfd, node);
137             g_free(rfd);
138             break;
139         }
140     }
141 }
142 
143 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
144 {
145     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
146 
147     rfd->gsi = gsi;
148     rfd->resample_event = event;
149 
150     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
151 }
152 
153 void kvm_resample_fd_notify(int gsi)
154 {
155     KVMResampleFd *rfd;
156 
157     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
158         if (rfd->gsi == gsi) {
159             event_notifier_set(rfd->resample_event);
160             trace_kvm_resample_fd_notify(gsi);
161             return;
162         }
163     }
164 }
165 
166 unsigned int kvm_get_max_memslots(void)
167 {
168     KVMState *s = KVM_STATE(current_accel());
169 
170     return s->nr_slots;
171 }
172 
173 unsigned int kvm_get_free_memslots(void)
174 {
175     unsigned int used_slots = 0;
176     KVMState *s = kvm_state;
177     int i;
178 
179     kvm_slots_lock();
180     for (i = 0; i < s->nr_as; i++) {
181         if (!s->as[i].ml) {
182             continue;
183         }
184         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
185     }
186     kvm_slots_unlock();
187 
188     return s->nr_slots - used_slots;
189 }
190 
191 /* Called with KVMMemoryListener.slots_lock held */
192 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
193 {
194     KVMState *s = kvm_state;
195     int i;
196 
197     for (i = 0; i < s->nr_slots; i++) {
198         if (kml->slots[i].memory_size == 0) {
199             return &kml->slots[i];
200         }
201     }
202 
203     return NULL;
204 }
205 
206 /* Called with KVMMemoryListener.slots_lock held */
207 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
208 {
209     KVMSlot *slot = kvm_get_free_slot(kml);
210 
211     if (slot) {
212         return slot;
213     }
214 
215     fprintf(stderr, "%s: no free slot available\n", __func__);
216     abort();
217 }
218 
219 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
220                                          hwaddr start_addr,
221                                          hwaddr size)
222 {
223     KVMState *s = kvm_state;
224     int i;
225 
226     for (i = 0; i < s->nr_slots; i++) {
227         KVMSlot *mem = &kml->slots[i];
228 
229         if (start_addr == mem->start_addr && size == mem->memory_size) {
230             return mem;
231         }
232     }
233 
234     return NULL;
235 }
236 
237 /*
238  * Calculate and align the start address and the size of the section.
239  * Return the size. If the size is 0, the aligned section is empty.
240  */
241 static hwaddr kvm_align_section(MemoryRegionSection *section,
242                                 hwaddr *start)
243 {
244     hwaddr size = int128_get64(section->size);
245     hwaddr delta, aligned;
246 
247     /* kvm works in page size chunks, but the function may be called
248        with sub-page size and unaligned start address. Pad the start
249        address to next and truncate size to previous page boundary. */
250     aligned = ROUND_UP(section->offset_within_address_space,
251                        qemu_real_host_page_size());
252     delta = aligned - section->offset_within_address_space;
253     *start = aligned;
254     if (delta > size) {
255         return 0;
256     }
257 
258     return (size - delta) & qemu_real_host_page_mask();
259 }
260 
261 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
262                                        hwaddr *phys_addr)
263 {
264     KVMMemoryListener *kml = &s->memory_listener;
265     int i, ret = 0;
266 
267     kvm_slots_lock();
268     for (i = 0; i < s->nr_slots; i++) {
269         KVMSlot *mem = &kml->slots[i];
270 
271         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
272             *phys_addr = mem->start_addr + (ram - mem->ram);
273             ret = 1;
274             break;
275         }
276     }
277     kvm_slots_unlock();
278 
279     return ret;
280 }
281 
282 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
283 {
284     KVMState *s = kvm_state;
285     struct kvm_userspace_memory_region mem;
286     int ret;
287 
288     mem.slot = slot->slot | (kml->as_id << 16);
289     mem.guest_phys_addr = slot->start_addr;
290     mem.userspace_addr = (unsigned long)slot->ram;
291     mem.flags = slot->flags;
292 
293     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
294         /* Set the slot size to 0 before setting the slot to the desired
295          * value. This is needed based on KVM commit 75d61fbc. */
296         mem.memory_size = 0;
297         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
298         if (ret < 0) {
299             goto err;
300         }
301     }
302     mem.memory_size = slot->memory_size;
303     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304     slot->old_flags = mem.flags;
305 err:
306     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
307                               mem.memory_size, mem.userspace_addr, ret);
308     if (ret < 0) {
309         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
310                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
311                      __func__, mem.slot, slot->start_addr,
312                      (uint64_t)mem.memory_size, strerror(errno));
313     }
314     return ret;
315 }
316 
317 static int do_kvm_destroy_vcpu(CPUState *cpu)
318 {
319     KVMState *s = kvm_state;
320     long mmap_size;
321     struct KVMParkedVcpu *vcpu = NULL;
322     int ret = 0;
323 
324     trace_kvm_destroy_vcpu();
325 
326     ret = kvm_arch_destroy_vcpu(cpu);
327     if (ret < 0) {
328         goto err;
329     }
330 
331     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
332     if (mmap_size < 0) {
333         ret = mmap_size;
334         trace_kvm_failed_get_vcpu_mmap_size();
335         goto err;
336     }
337 
338     ret = munmap(cpu->kvm_run, mmap_size);
339     if (ret < 0) {
340         goto err;
341     }
342 
343     if (cpu->kvm_dirty_gfns) {
344         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
345         if (ret < 0) {
346             goto err;
347         }
348     }
349 
350     vcpu = g_malloc0(sizeof(*vcpu));
351     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
352     vcpu->kvm_fd = cpu->kvm_fd;
353     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
354 err:
355     return ret;
356 }
357 
358 void kvm_destroy_vcpu(CPUState *cpu)
359 {
360     if (do_kvm_destroy_vcpu(cpu) < 0) {
361         error_report("kvm_destroy_vcpu failed");
362         exit(EXIT_FAILURE);
363     }
364 }
365 
366 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
367 {
368     struct KVMParkedVcpu *cpu;
369 
370     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
371         if (cpu->vcpu_id == vcpu_id) {
372             int kvm_fd;
373 
374             QLIST_REMOVE(cpu, node);
375             kvm_fd = cpu->kvm_fd;
376             g_free(cpu);
377             return kvm_fd;
378         }
379     }
380 
381     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
382 }
383 
384 int kvm_init_vcpu(CPUState *cpu, Error **errp)
385 {
386     KVMState *s = kvm_state;
387     long mmap_size;
388     int ret;
389 
390     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
391 
392     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
393     if (ret < 0) {
394         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
395                          kvm_arch_vcpu_id(cpu));
396         goto err;
397     }
398 
399     cpu->kvm_fd = ret;
400     cpu->kvm_state = s;
401     cpu->vcpu_dirty = true;
402     cpu->dirty_pages = 0;
403     cpu->throttle_us_per_full = 0;
404 
405     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
406     if (mmap_size < 0) {
407         ret = mmap_size;
408         error_setg_errno(errp, -mmap_size,
409                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
410         goto err;
411     }
412 
413     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
414                         cpu->kvm_fd, 0);
415     if (cpu->kvm_run == MAP_FAILED) {
416         ret = -errno;
417         error_setg_errno(errp, ret,
418                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
419                          kvm_arch_vcpu_id(cpu));
420         goto err;
421     }
422 
423     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
424         s->coalesced_mmio_ring =
425             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
426     }
427 
428     if (s->kvm_dirty_ring_size) {
429         /* Use MAP_SHARED to share pages with the kernel */
430         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
431                                    PROT_READ | PROT_WRITE, MAP_SHARED,
432                                    cpu->kvm_fd,
433                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
434         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
435             ret = -errno;
436             goto err;
437         }
438     }
439 
440     ret = kvm_arch_init_vcpu(cpu);
441     if (ret < 0) {
442         error_setg_errno(errp, -ret,
443                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
444                          kvm_arch_vcpu_id(cpu));
445     }
446     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
447 
448 err:
449     return ret;
450 }
451 
452 /*
453  * dirty pages logging control
454  */
455 
456 static int kvm_mem_flags(MemoryRegion *mr)
457 {
458     bool readonly = mr->readonly || memory_region_is_romd(mr);
459     int flags = 0;
460 
461     if (memory_region_get_dirty_log_mask(mr) != 0) {
462         flags |= KVM_MEM_LOG_DIRTY_PAGES;
463     }
464     if (readonly && kvm_readonly_mem_allowed) {
465         flags |= KVM_MEM_READONLY;
466     }
467     return flags;
468 }
469 
470 /* Called with KVMMemoryListener.slots_lock held */
471 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
472                                  MemoryRegion *mr)
473 {
474     mem->flags = kvm_mem_flags(mr);
475 
476     /* If nothing changed effectively, no need to issue ioctl */
477     if (mem->flags == mem->old_flags) {
478         return 0;
479     }
480 
481     kvm_slot_init_dirty_bitmap(mem);
482     return kvm_set_user_memory_region(kml, mem, false);
483 }
484 
485 static int kvm_section_update_flags(KVMMemoryListener *kml,
486                                     MemoryRegionSection *section)
487 {
488     hwaddr start_addr, size, slot_size;
489     KVMSlot *mem;
490     int ret = 0;
491 
492     size = kvm_align_section(section, &start_addr);
493     if (!size) {
494         return 0;
495     }
496 
497     kvm_slots_lock();
498 
499     while (size && !ret) {
500         slot_size = MIN(kvm_max_slot_size, size);
501         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
502         if (!mem) {
503             /* We don't have a slot if we want to trap every access. */
504             goto out;
505         }
506 
507         ret = kvm_slot_update_flags(kml, mem, section->mr);
508         start_addr += slot_size;
509         size -= slot_size;
510     }
511 
512 out:
513     kvm_slots_unlock();
514     return ret;
515 }
516 
517 static void kvm_log_start(MemoryListener *listener,
518                           MemoryRegionSection *section,
519                           int old, int new)
520 {
521     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
522     int r;
523 
524     if (old != 0) {
525         return;
526     }
527 
528     r = kvm_section_update_flags(kml, section);
529     if (r < 0) {
530         abort();
531     }
532 }
533 
534 static void kvm_log_stop(MemoryListener *listener,
535                           MemoryRegionSection *section,
536                           int old, int new)
537 {
538     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
539     int r;
540 
541     if (new != 0) {
542         return;
543     }
544 
545     r = kvm_section_update_flags(kml, section);
546     if (r < 0) {
547         abort();
548     }
549 }
550 
551 /* get kvm's dirty pages bitmap and update qemu's */
552 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
553 {
554     ram_addr_t start = slot->ram_start_offset;
555     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
556 
557     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
558 }
559 
560 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
561 {
562     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
563 }
564 
565 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
566 
567 /* Allocate the dirty bitmap for a slot  */
568 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
569 {
570     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
571         return;
572     }
573 
574     /*
575      * XXX bad kernel interface alert
576      * For dirty bitmap, kernel allocates array of size aligned to
577      * bits-per-long.  But for case when the kernel is 64bits and
578      * the userspace is 32bits, userspace can't align to the same
579      * bits-per-long, since sizeof(long) is different between kernel
580      * and user space.  This way, userspace will provide buffer which
581      * may be 4 bytes less than the kernel will use, resulting in
582      * userspace memory corruption (which is not detectable by valgrind
583      * too, in most cases).
584      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
585      * a hope that sizeof(long) won't become >8 any time soon.
586      *
587      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
588      * And mem->memory_size is aligned to it (otherwise this mem can't
589      * be registered to KVM).
590      */
591     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
592                                         /*HOST_LONG_BITS*/ 64) / 8;
593     mem->dirty_bmap = g_malloc0(bitmap_size);
594     mem->dirty_bmap_size = bitmap_size;
595 }
596 
597 /*
598  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
599  * succeeded, false otherwise
600  */
601 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
602 {
603     struct kvm_dirty_log d = {};
604     int ret;
605 
606     d.dirty_bitmap = slot->dirty_bmap;
607     d.slot = slot->slot | (slot->as_id << 16);
608     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
609 
610     if (ret == -ENOENT) {
611         /* kernel does not have dirty bitmap in this slot */
612         ret = 0;
613     }
614     if (ret) {
615         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
616                           __func__, ret);
617     }
618     return ret == 0;
619 }
620 
621 /* Should be with all slots_lock held for the address spaces. */
622 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
623                                      uint32_t slot_id, uint64_t offset)
624 {
625     KVMMemoryListener *kml;
626     KVMSlot *mem;
627 
628     if (as_id >= s->nr_as) {
629         return;
630     }
631 
632     kml = s->as[as_id].ml;
633     mem = &kml->slots[slot_id];
634 
635     if (!mem->memory_size || offset >=
636         (mem->memory_size / qemu_real_host_page_size())) {
637         return;
638     }
639 
640     set_bit(offset, mem->dirty_bmap);
641 }
642 
643 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
644 {
645     /*
646      * Read the flags before the value.  Pairs with barrier in
647      * KVM's kvm_dirty_ring_push() function.
648      */
649     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
650 }
651 
652 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
653 {
654     /*
655      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
656      * sees the full content of the ring:
657      *
658      * CPU0                     CPU1                         CPU2
659      * ------------------------------------------------------------------------------
660      *                                                       fill gfn0
661      *                                                       store-rel flags for gfn0
662      * load-acq flags for gfn0
663      * store-rel RESET for gfn0
664      *                          ioctl(RESET_RINGS)
665      *                            load-acq flags for gfn0
666      *                            check if flags have RESET
667      *
668      * The synchronization goes from CPU2 to CPU0 to CPU1.
669      */
670     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
671 }
672 
673 /*
674  * Should be with all slots_lock held for the address spaces.  It returns the
675  * dirty page we've collected on this dirty ring.
676  */
677 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
678 {
679     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
680     uint32_t ring_size = s->kvm_dirty_ring_size;
681     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
682 
683     /*
684      * It's possible that we race with vcpu creation code where the vcpu is
685      * put onto the vcpus list but not yet initialized the dirty ring
686      * structures.  If so, skip it.
687      */
688     if (!cpu->created) {
689         return 0;
690     }
691 
692     assert(dirty_gfns && ring_size);
693     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
694 
695     while (true) {
696         cur = &dirty_gfns[fetch % ring_size];
697         if (!dirty_gfn_is_dirtied(cur)) {
698             break;
699         }
700         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
701                                  cur->offset);
702         dirty_gfn_set_collected(cur);
703         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
704         fetch++;
705         count++;
706     }
707     cpu->kvm_fetch_index = fetch;
708     cpu->dirty_pages += count;
709 
710     return count;
711 }
712 
713 /* Must be with slots_lock held */
714 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
715 {
716     int ret;
717     uint64_t total = 0;
718     int64_t stamp;
719 
720     stamp = get_clock();
721 
722     if (cpu) {
723         total = kvm_dirty_ring_reap_one(s, cpu);
724     } else {
725         CPU_FOREACH(cpu) {
726             total += kvm_dirty_ring_reap_one(s, cpu);
727         }
728     }
729 
730     if (total) {
731         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
732         assert(ret == total);
733     }
734 
735     stamp = get_clock() - stamp;
736 
737     if (total) {
738         trace_kvm_dirty_ring_reap(total, stamp / 1000);
739     }
740 
741     return total;
742 }
743 
744 /*
745  * Currently for simplicity, we must hold BQL before calling this.  We can
746  * consider to drop the BQL if we're clear with all the race conditions.
747  */
748 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
749 {
750     uint64_t total;
751 
752     /*
753      * We need to lock all kvm slots for all address spaces here,
754      * because:
755      *
756      * (1) We need to mark dirty for dirty bitmaps in multiple slots
757      *     and for tons of pages, so it's better to take the lock here
758      *     once rather than once per page.  And more importantly,
759      *
760      * (2) We must _NOT_ publish dirty bits to the other threads
761      *     (e.g., the migration thread) via the kvm memory slot dirty
762      *     bitmaps before correctly re-protect those dirtied pages.
763      *     Otherwise we can have potential risk of data corruption if
764      *     the page data is read in the other thread before we do
765      *     reset below.
766      */
767     kvm_slots_lock();
768     total = kvm_dirty_ring_reap_locked(s, cpu);
769     kvm_slots_unlock();
770 
771     return total;
772 }
773 
774 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
775 {
776     /* No need to do anything */
777 }
778 
779 /*
780  * Kick all vcpus out in a synchronized way.  When returned, we
781  * guarantee that every vcpu has been kicked and at least returned to
782  * userspace once.
783  */
784 static void kvm_cpu_synchronize_kick_all(void)
785 {
786     CPUState *cpu;
787 
788     CPU_FOREACH(cpu) {
789         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
790     }
791 }
792 
793 /*
794  * Flush all the existing dirty pages to the KVM slot buffers.  When
795  * this call returns, we guarantee that all the touched dirty pages
796  * before calling this function have been put into the per-kvmslot
797  * dirty bitmap.
798  *
799  * This function must be called with BQL held.
800  */
801 static void kvm_dirty_ring_flush(void)
802 {
803     trace_kvm_dirty_ring_flush(0);
804     /*
805      * The function needs to be serialized.  Since this function
806      * should always be with BQL held, serialization is guaranteed.
807      * However, let's be sure of it.
808      */
809     assert(bql_locked());
810     /*
811      * First make sure to flush the hardware buffers by kicking all
812      * vcpus out in a synchronous way.
813      */
814     kvm_cpu_synchronize_kick_all();
815     kvm_dirty_ring_reap(kvm_state, NULL);
816     trace_kvm_dirty_ring_flush(1);
817 }
818 
819 /**
820  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
821  *
822  * This function will first try to fetch dirty bitmap from the kernel,
823  * and then updates qemu's dirty bitmap.
824  *
825  * NOTE: caller must be with kml->slots_lock held.
826  *
827  * @kml: the KVM memory listener object
828  * @section: the memory section to sync the dirty bitmap with
829  */
830 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
831                                            MemoryRegionSection *section)
832 {
833     KVMState *s = kvm_state;
834     KVMSlot *mem;
835     hwaddr start_addr, size;
836     hwaddr slot_size;
837 
838     size = kvm_align_section(section, &start_addr);
839     while (size) {
840         slot_size = MIN(kvm_max_slot_size, size);
841         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
842         if (!mem) {
843             /* We don't have a slot if we want to trap every access. */
844             return;
845         }
846         if (kvm_slot_get_dirty_log(s, mem)) {
847             kvm_slot_sync_dirty_pages(mem);
848         }
849         start_addr += slot_size;
850         size -= slot_size;
851     }
852 }
853 
854 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
855 #define KVM_CLEAR_LOG_SHIFT  6
856 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
857 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
858 
859 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
860                                   uint64_t size)
861 {
862     KVMState *s = kvm_state;
863     uint64_t end, bmap_start, start_delta, bmap_npages;
864     struct kvm_clear_dirty_log d;
865     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
866     int ret;
867 
868     /*
869      * We need to extend either the start or the size or both to
870      * satisfy the KVM interface requirement.  Firstly, do the start
871      * page alignment on 64 host pages
872      */
873     bmap_start = start & KVM_CLEAR_LOG_MASK;
874     start_delta = start - bmap_start;
875     bmap_start /= psize;
876 
877     /*
878      * The kernel interface has restriction on the size too, that either:
879      *
880      * (1) the size is 64 host pages aligned (just like the start), or
881      * (2) the size fills up until the end of the KVM memslot.
882      */
883     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
884         << KVM_CLEAR_LOG_SHIFT;
885     end = mem->memory_size / psize;
886     if (bmap_npages > end - bmap_start) {
887         bmap_npages = end - bmap_start;
888     }
889     start_delta /= psize;
890 
891     /*
892      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
893      * that we won't clear any unknown dirty bits otherwise we might
894      * accidentally clear some set bits which are not yet synced from
895      * the kernel into QEMU's bitmap, then we'll lose track of the
896      * guest modifications upon those pages (which can directly lead
897      * to guest data loss or panic after migration).
898      *
899      * Layout of the KVMSlot.dirty_bmap:
900      *
901      *                   |<-------- bmap_npages -----------..>|
902      *                                                     [1]
903      *                     start_delta         size
904      *  |----------------|-------------|------------------|------------|
905      *  ^                ^             ^                               ^
906      *  |                |             |                               |
907      * start          bmap_start     (start)                         end
908      * of memslot                                             of memslot
909      *
910      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
911      */
912 
913     assert(bmap_start % BITS_PER_LONG == 0);
914     /* We should never do log_clear before log_sync */
915     assert(mem->dirty_bmap);
916     if (start_delta || bmap_npages - size / psize) {
917         /* Slow path - we need to manipulate a temp bitmap */
918         bmap_clear = bitmap_new(bmap_npages);
919         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
920                                     bmap_start, start_delta + size / psize);
921         /*
922          * We need to fill the holes at start because that was not
923          * specified by the caller and we extended the bitmap only for
924          * 64 pages alignment
925          */
926         bitmap_clear(bmap_clear, 0, start_delta);
927         d.dirty_bitmap = bmap_clear;
928     } else {
929         /*
930          * Fast path - both start and size align well with BITS_PER_LONG
931          * (or the end of memory slot)
932          */
933         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
934     }
935 
936     d.first_page = bmap_start;
937     /* It should never overflow.  If it happens, say something */
938     assert(bmap_npages <= UINT32_MAX);
939     d.num_pages = bmap_npages;
940     d.slot = mem->slot | (as_id << 16);
941 
942     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
943     if (ret < 0 && ret != -ENOENT) {
944         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
945                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
946                      __func__, d.slot, (uint64_t)d.first_page,
947                      (uint32_t)d.num_pages, ret);
948     } else {
949         ret = 0;
950         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
951     }
952 
953     /*
954      * After we have updated the remote dirty bitmap, we update the
955      * cached bitmap as well for the memslot, then if another user
956      * clears the same region we know we shouldn't clear it again on
957      * the remote otherwise it's data loss as well.
958      */
959     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
960                  size / psize);
961     /* This handles the NULL case well */
962     g_free(bmap_clear);
963     return ret;
964 }
965 
966 
967 /**
968  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
969  *
970  * NOTE: this will be a no-op if we haven't enabled manual dirty log
971  * protection in the host kernel because in that case this operation
972  * will be done within log_sync().
973  *
974  * @kml:     the kvm memory listener
975  * @section: the memory range to clear dirty bitmap
976  */
977 static int kvm_physical_log_clear(KVMMemoryListener *kml,
978                                   MemoryRegionSection *section)
979 {
980     KVMState *s = kvm_state;
981     uint64_t start, size, offset, count;
982     KVMSlot *mem;
983     int ret = 0, i;
984 
985     if (!s->manual_dirty_log_protect) {
986         /* No need to do explicit clear */
987         return ret;
988     }
989 
990     start = section->offset_within_address_space;
991     size = int128_get64(section->size);
992 
993     if (!size) {
994         /* Nothing more we can do... */
995         return ret;
996     }
997 
998     kvm_slots_lock();
999 
1000     for (i = 0; i < s->nr_slots; i++) {
1001         mem = &kml->slots[i];
1002         /* Discard slots that are empty or do not overlap the section */
1003         if (!mem->memory_size ||
1004             mem->start_addr > start + size - 1 ||
1005             start > mem->start_addr + mem->memory_size - 1) {
1006             continue;
1007         }
1008 
1009         if (start >= mem->start_addr) {
1010             /* The slot starts before section or is aligned to it.  */
1011             offset = start - mem->start_addr;
1012             count = MIN(mem->memory_size - offset, size);
1013         } else {
1014             /* The slot starts after section.  */
1015             offset = 0;
1016             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1017         }
1018         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1019         if (ret < 0) {
1020             break;
1021         }
1022     }
1023 
1024     kvm_slots_unlock();
1025 
1026     return ret;
1027 }
1028 
1029 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1030                                      MemoryRegionSection *secion,
1031                                      hwaddr start, hwaddr size)
1032 {
1033     KVMState *s = kvm_state;
1034 
1035     if (s->coalesced_mmio) {
1036         struct kvm_coalesced_mmio_zone zone;
1037 
1038         zone.addr = start;
1039         zone.size = size;
1040         zone.pad = 0;
1041 
1042         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1043     }
1044 }
1045 
1046 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1047                                        MemoryRegionSection *secion,
1048                                        hwaddr start, hwaddr size)
1049 {
1050     KVMState *s = kvm_state;
1051 
1052     if (s->coalesced_mmio) {
1053         struct kvm_coalesced_mmio_zone zone;
1054 
1055         zone.addr = start;
1056         zone.size = size;
1057         zone.pad = 0;
1058 
1059         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1060     }
1061 }
1062 
1063 static void kvm_coalesce_pio_add(MemoryListener *listener,
1064                                 MemoryRegionSection *section,
1065                                 hwaddr start, hwaddr size)
1066 {
1067     KVMState *s = kvm_state;
1068 
1069     if (s->coalesced_pio) {
1070         struct kvm_coalesced_mmio_zone zone;
1071 
1072         zone.addr = start;
1073         zone.size = size;
1074         zone.pio = 1;
1075 
1076         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1077     }
1078 }
1079 
1080 static void kvm_coalesce_pio_del(MemoryListener *listener,
1081                                 MemoryRegionSection *section,
1082                                 hwaddr start, hwaddr size)
1083 {
1084     KVMState *s = kvm_state;
1085 
1086     if (s->coalesced_pio) {
1087         struct kvm_coalesced_mmio_zone zone;
1088 
1089         zone.addr = start;
1090         zone.size = size;
1091         zone.pio = 1;
1092 
1093         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1094      }
1095 }
1096 
1097 int kvm_check_extension(KVMState *s, unsigned int extension)
1098 {
1099     int ret;
1100 
1101     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102     if (ret < 0) {
1103         ret = 0;
1104     }
1105 
1106     return ret;
1107 }
1108 
1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1110 {
1111     int ret;
1112 
1113     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114     if (ret < 0) {
1115         /* VM wide version not implemented, use global one instead */
1116         ret = kvm_check_extension(s, extension);
1117     }
1118 
1119     return ret;
1120 }
1121 
1122 /*
1123  * We track the poisoned pages to be able to:
1124  * - replace them on VM reset
1125  * - block a migration for a VM with a poisoned page
1126  */
1127 typedef struct HWPoisonPage {
1128     ram_addr_t ram_addr;
1129     QLIST_ENTRY(HWPoisonPage) list;
1130 } HWPoisonPage;
1131 
1132 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1133     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1134 
1135 static void kvm_unpoison_all(void *param)
1136 {
1137     HWPoisonPage *page, *next_page;
1138 
1139     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1140         QLIST_REMOVE(page, list);
1141         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1142         g_free(page);
1143     }
1144 }
1145 
1146 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1147 {
1148     HWPoisonPage *page;
1149 
1150     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1151         if (page->ram_addr == ram_addr) {
1152             return;
1153         }
1154     }
1155     page = g_new(HWPoisonPage, 1);
1156     page->ram_addr = ram_addr;
1157     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1158 }
1159 
1160 bool kvm_hwpoisoned_mem(void)
1161 {
1162     return !QLIST_EMPTY(&hwpoison_page_list);
1163 }
1164 
1165 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1166 {
1167 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1168     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1169      * endianness, but the memory core hands them in target endianness.
1170      * For example, PPC is always treated as big-endian even if running
1171      * on KVM and on PPC64LE.  Correct here.
1172      */
1173     switch (size) {
1174     case 2:
1175         val = bswap16(val);
1176         break;
1177     case 4:
1178         val = bswap32(val);
1179         break;
1180     }
1181 #endif
1182     return val;
1183 }
1184 
1185 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1186                                   bool assign, uint32_t size, bool datamatch)
1187 {
1188     int ret;
1189     struct kvm_ioeventfd iofd = {
1190         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1191         .addr = addr,
1192         .len = size,
1193         .flags = 0,
1194         .fd = fd,
1195     };
1196 
1197     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1198                                  datamatch);
1199     if (!kvm_enabled()) {
1200         return -ENOSYS;
1201     }
1202 
1203     if (datamatch) {
1204         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1205     }
1206     if (!assign) {
1207         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1208     }
1209 
1210     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1211 
1212     if (ret < 0) {
1213         return -errno;
1214     }
1215 
1216     return 0;
1217 }
1218 
1219 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1220                                  bool assign, uint32_t size, bool datamatch)
1221 {
1222     struct kvm_ioeventfd kick = {
1223         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1224         .addr = addr,
1225         .flags = KVM_IOEVENTFD_FLAG_PIO,
1226         .len = size,
1227         .fd = fd,
1228     };
1229     int r;
1230     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1231     if (!kvm_enabled()) {
1232         return -ENOSYS;
1233     }
1234     if (datamatch) {
1235         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1236     }
1237     if (!assign) {
1238         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1239     }
1240     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1241     if (r < 0) {
1242         return r;
1243     }
1244     return 0;
1245 }
1246 
1247 
1248 static const KVMCapabilityInfo *
1249 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1250 {
1251     while (list->name) {
1252         if (!kvm_check_extension(s, list->value)) {
1253             return list;
1254         }
1255         list++;
1256     }
1257     return NULL;
1258 }
1259 
1260 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1261 {
1262     g_assert(
1263         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1264     );
1265     kvm_max_slot_size = max_slot_size;
1266 }
1267 
1268 /* Called with KVMMemoryListener.slots_lock held */
1269 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1270                              MemoryRegionSection *section, bool add)
1271 {
1272     KVMSlot *mem;
1273     int err;
1274     MemoryRegion *mr = section->mr;
1275     bool writable = !mr->readonly && !mr->rom_device;
1276     hwaddr start_addr, size, slot_size, mr_offset;
1277     ram_addr_t ram_start_offset;
1278     void *ram;
1279 
1280     if (!memory_region_is_ram(mr)) {
1281         if (writable || !kvm_readonly_mem_allowed) {
1282             return;
1283         } else if (!mr->romd_mode) {
1284             /* If the memory device is not in romd_mode, then we actually want
1285              * to remove the kvm memory slot so all accesses will trap. */
1286             add = false;
1287         }
1288     }
1289 
1290     size = kvm_align_section(section, &start_addr);
1291     if (!size) {
1292         return;
1293     }
1294 
1295     /* The offset of the kvmslot within the memory region */
1296     mr_offset = section->offset_within_region + start_addr -
1297         section->offset_within_address_space;
1298 
1299     /* use aligned delta to align the ram address and offset */
1300     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1301     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1302 
1303     if (!add) {
1304         do {
1305             slot_size = MIN(kvm_max_slot_size, size);
1306             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1307             if (!mem) {
1308                 return;
1309             }
1310             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1311                 /*
1312                  * NOTE: We should be aware of the fact that here we're only
1313                  * doing a best effort to sync dirty bits.  No matter whether
1314                  * we're using dirty log or dirty ring, we ignored two facts:
1315                  *
1316                  * (1) dirty bits can reside in hardware buffers (PML)
1317                  *
1318                  * (2) after we collected dirty bits here, pages can be dirtied
1319                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1320                  * remove the slot.
1321                  *
1322                  * Not easy.  Let's cross the fingers until it's fixed.
1323                  */
1324                 if (kvm_state->kvm_dirty_ring_size) {
1325                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1326                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1327                         kvm_slot_sync_dirty_pages(mem);
1328                         kvm_slot_get_dirty_log(kvm_state, mem);
1329                     }
1330                 } else {
1331                     kvm_slot_get_dirty_log(kvm_state, mem);
1332                 }
1333                 kvm_slot_sync_dirty_pages(mem);
1334             }
1335 
1336             /* unregister the slot */
1337             g_free(mem->dirty_bmap);
1338             mem->dirty_bmap = NULL;
1339             mem->memory_size = 0;
1340             mem->flags = 0;
1341             err = kvm_set_user_memory_region(kml, mem, false);
1342             if (err) {
1343                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1344                         __func__, strerror(-err));
1345                 abort();
1346             }
1347             start_addr += slot_size;
1348             size -= slot_size;
1349             kml->nr_used_slots--;
1350         } while (size);
1351         return;
1352     }
1353 
1354     /* register the new slot */
1355     do {
1356         slot_size = MIN(kvm_max_slot_size, size);
1357         mem = kvm_alloc_slot(kml);
1358         mem->as_id = kml->as_id;
1359         mem->memory_size = slot_size;
1360         mem->start_addr = start_addr;
1361         mem->ram_start_offset = ram_start_offset;
1362         mem->ram = ram;
1363         mem->flags = kvm_mem_flags(mr);
1364         kvm_slot_init_dirty_bitmap(mem);
1365         err = kvm_set_user_memory_region(kml, mem, true);
1366         if (err) {
1367             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1368                     strerror(-err));
1369             abort();
1370         }
1371         start_addr += slot_size;
1372         ram_start_offset += slot_size;
1373         ram += slot_size;
1374         size -= slot_size;
1375         kml->nr_used_slots++;
1376     } while (size);
1377 }
1378 
1379 static void *kvm_dirty_ring_reaper_thread(void *data)
1380 {
1381     KVMState *s = data;
1382     struct KVMDirtyRingReaper *r = &s->reaper;
1383 
1384     rcu_register_thread();
1385 
1386     trace_kvm_dirty_ring_reaper("init");
1387 
1388     while (true) {
1389         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1390         trace_kvm_dirty_ring_reaper("wait");
1391         /*
1392          * TODO: provide a smarter timeout rather than a constant?
1393          */
1394         sleep(1);
1395 
1396         /* keep sleeping so that dirtylimit not be interfered by reaper */
1397         if (dirtylimit_in_service()) {
1398             continue;
1399         }
1400 
1401         trace_kvm_dirty_ring_reaper("wakeup");
1402         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1403 
1404         bql_lock();
1405         kvm_dirty_ring_reap(s, NULL);
1406         bql_unlock();
1407 
1408         r->reaper_iteration++;
1409     }
1410 
1411     trace_kvm_dirty_ring_reaper("exit");
1412 
1413     rcu_unregister_thread();
1414 
1415     return NULL;
1416 }
1417 
1418 static void kvm_dirty_ring_reaper_init(KVMState *s)
1419 {
1420     struct KVMDirtyRingReaper *r = &s->reaper;
1421 
1422     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1423                        kvm_dirty_ring_reaper_thread,
1424                        s, QEMU_THREAD_JOINABLE);
1425 }
1426 
1427 static int kvm_dirty_ring_init(KVMState *s)
1428 {
1429     uint32_t ring_size = s->kvm_dirty_ring_size;
1430     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1431     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1432     int ret;
1433 
1434     s->kvm_dirty_ring_size = 0;
1435     s->kvm_dirty_ring_bytes = 0;
1436 
1437     /* Bail if the dirty ring size isn't specified */
1438     if (!ring_size) {
1439         return 0;
1440     }
1441 
1442     /*
1443      * Read the max supported pages. Fall back to dirty logging mode
1444      * if the dirty ring isn't supported.
1445      */
1446     ret = kvm_vm_check_extension(s, capability);
1447     if (ret <= 0) {
1448         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1449         ret = kvm_vm_check_extension(s, capability);
1450     }
1451 
1452     if (ret <= 0) {
1453         warn_report("KVM dirty ring not available, using bitmap method");
1454         return 0;
1455     }
1456 
1457     if (ring_bytes > ret) {
1458         error_report("KVM dirty ring size %" PRIu32 " too big "
1459                      "(maximum is %ld).  Please use a smaller value.",
1460                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1461         return -EINVAL;
1462     }
1463 
1464     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1465     if (ret) {
1466         error_report("Enabling of KVM dirty ring failed: %s. "
1467                      "Suggested minimum value is 1024.", strerror(-ret));
1468         return -EIO;
1469     }
1470 
1471     /* Enable the backup bitmap if it is supported */
1472     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1473     if (ret > 0) {
1474         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1475         if (ret) {
1476             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1477                          "%s. ", strerror(-ret));
1478             return -EIO;
1479         }
1480 
1481         s->kvm_dirty_ring_with_bitmap = true;
1482     }
1483 
1484     s->kvm_dirty_ring_size = ring_size;
1485     s->kvm_dirty_ring_bytes = ring_bytes;
1486 
1487     return 0;
1488 }
1489 
1490 static void kvm_region_add(MemoryListener *listener,
1491                            MemoryRegionSection *section)
1492 {
1493     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1494     KVMMemoryUpdate *update;
1495 
1496     update = g_new0(KVMMemoryUpdate, 1);
1497     update->section = *section;
1498 
1499     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1500 }
1501 
1502 static void kvm_region_del(MemoryListener *listener,
1503                            MemoryRegionSection *section)
1504 {
1505     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1506     KVMMemoryUpdate *update;
1507 
1508     update = g_new0(KVMMemoryUpdate, 1);
1509     update->section = *section;
1510 
1511     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1512 }
1513 
1514 static void kvm_region_commit(MemoryListener *listener)
1515 {
1516     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1517                                           listener);
1518     KVMMemoryUpdate *u1, *u2;
1519     bool need_inhibit = false;
1520 
1521     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1522         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1523         return;
1524     }
1525 
1526     /*
1527      * We have to be careful when regions to add overlap with ranges to remove.
1528      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1529      * is currently active.
1530      *
1531      * The lists are order by addresses, so it's easy to find overlaps.
1532      */
1533     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1534     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1535     while (u1 && u2) {
1536         Range r1, r2;
1537 
1538         range_init_nofail(&r1, u1->section.offset_within_address_space,
1539                           int128_get64(u1->section.size));
1540         range_init_nofail(&r2, u2->section.offset_within_address_space,
1541                           int128_get64(u2->section.size));
1542 
1543         if (range_overlaps_range(&r1, &r2)) {
1544             need_inhibit = true;
1545             break;
1546         }
1547         if (range_lob(&r1) < range_lob(&r2)) {
1548             u1 = QSIMPLEQ_NEXT(u1, next);
1549         } else {
1550             u2 = QSIMPLEQ_NEXT(u2, next);
1551         }
1552     }
1553 
1554     kvm_slots_lock();
1555     if (need_inhibit) {
1556         accel_ioctl_inhibit_begin();
1557     }
1558 
1559     /* Remove all memslots before adding the new ones. */
1560     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1561         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1562         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1563 
1564         kvm_set_phys_mem(kml, &u1->section, false);
1565         memory_region_unref(u1->section.mr);
1566 
1567         g_free(u1);
1568     }
1569     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1570         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1571         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1572 
1573         memory_region_ref(u1->section.mr);
1574         kvm_set_phys_mem(kml, &u1->section, true);
1575 
1576         g_free(u1);
1577     }
1578 
1579     if (need_inhibit) {
1580         accel_ioctl_inhibit_end();
1581     }
1582     kvm_slots_unlock();
1583 }
1584 
1585 static void kvm_log_sync(MemoryListener *listener,
1586                          MemoryRegionSection *section)
1587 {
1588     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1589 
1590     kvm_slots_lock();
1591     kvm_physical_sync_dirty_bitmap(kml, section);
1592     kvm_slots_unlock();
1593 }
1594 
1595 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1596 {
1597     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1598     KVMState *s = kvm_state;
1599     KVMSlot *mem;
1600     int i;
1601 
1602     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1603     kvm_dirty_ring_flush();
1604 
1605     /*
1606      * TODO: make this faster when nr_slots is big while there are
1607      * only a few used slots (small VMs).
1608      */
1609     kvm_slots_lock();
1610     for (i = 0; i < s->nr_slots; i++) {
1611         mem = &kml->slots[i];
1612         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1613             kvm_slot_sync_dirty_pages(mem);
1614 
1615             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1616                 kvm_slot_get_dirty_log(s, mem)) {
1617                 kvm_slot_sync_dirty_pages(mem);
1618             }
1619 
1620             /*
1621              * This is not needed by KVM_GET_DIRTY_LOG because the
1622              * ioctl will unconditionally overwrite the whole region.
1623              * However kvm dirty ring has no such side effect.
1624              */
1625             kvm_slot_reset_dirty_pages(mem);
1626         }
1627     }
1628     kvm_slots_unlock();
1629 }
1630 
1631 static void kvm_log_clear(MemoryListener *listener,
1632                           MemoryRegionSection *section)
1633 {
1634     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1635     int r;
1636 
1637     r = kvm_physical_log_clear(kml, section);
1638     if (r < 0) {
1639         error_report_once("%s: kvm log clear failed: mr=%s "
1640                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1641                           section->mr->name, section->offset_within_region,
1642                           int128_get64(section->size));
1643         abort();
1644     }
1645 }
1646 
1647 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1648                                   MemoryRegionSection *section,
1649                                   bool match_data, uint64_t data,
1650                                   EventNotifier *e)
1651 {
1652     int fd = event_notifier_get_fd(e);
1653     int r;
1654 
1655     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1656                                data, true, int128_get64(section->size),
1657                                match_data);
1658     if (r < 0) {
1659         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1660                 __func__, strerror(-r), -r);
1661         abort();
1662     }
1663 }
1664 
1665 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1666                                   MemoryRegionSection *section,
1667                                   bool match_data, uint64_t data,
1668                                   EventNotifier *e)
1669 {
1670     int fd = event_notifier_get_fd(e);
1671     int r;
1672 
1673     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1674                                data, false, int128_get64(section->size),
1675                                match_data);
1676     if (r < 0) {
1677         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1678                 __func__, strerror(-r), -r);
1679         abort();
1680     }
1681 }
1682 
1683 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1684                                  MemoryRegionSection *section,
1685                                  bool match_data, uint64_t data,
1686                                  EventNotifier *e)
1687 {
1688     int fd = event_notifier_get_fd(e);
1689     int r;
1690 
1691     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1692                               data, true, int128_get64(section->size),
1693                               match_data);
1694     if (r < 0) {
1695         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1696                 __func__, strerror(-r), -r);
1697         abort();
1698     }
1699 }
1700 
1701 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1702                                  MemoryRegionSection *section,
1703                                  bool match_data, uint64_t data,
1704                                  EventNotifier *e)
1705 
1706 {
1707     int fd = event_notifier_get_fd(e);
1708     int r;
1709 
1710     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1711                               data, false, int128_get64(section->size),
1712                               match_data);
1713     if (r < 0) {
1714         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1715                 __func__, strerror(-r), -r);
1716         abort();
1717     }
1718 }
1719 
1720 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1721                                   AddressSpace *as, int as_id, const char *name)
1722 {
1723     int i;
1724 
1725     kml->slots = g_new0(KVMSlot, s->nr_slots);
1726     kml->as_id = as_id;
1727 
1728     for (i = 0; i < s->nr_slots; i++) {
1729         kml->slots[i].slot = i;
1730     }
1731 
1732     QSIMPLEQ_INIT(&kml->transaction_add);
1733     QSIMPLEQ_INIT(&kml->transaction_del);
1734 
1735     kml->listener.region_add = kvm_region_add;
1736     kml->listener.region_del = kvm_region_del;
1737     kml->listener.commit = kvm_region_commit;
1738     kml->listener.log_start = kvm_log_start;
1739     kml->listener.log_stop = kvm_log_stop;
1740     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1741     kml->listener.name = name;
1742 
1743     if (s->kvm_dirty_ring_size) {
1744         kml->listener.log_sync_global = kvm_log_sync_global;
1745     } else {
1746         kml->listener.log_sync = kvm_log_sync;
1747         kml->listener.log_clear = kvm_log_clear;
1748     }
1749 
1750     memory_listener_register(&kml->listener, as);
1751 
1752     for (i = 0; i < s->nr_as; ++i) {
1753         if (!s->as[i].as) {
1754             s->as[i].as = as;
1755             s->as[i].ml = kml;
1756             break;
1757         }
1758     }
1759 }
1760 
1761 static MemoryListener kvm_io_listener = {
1762     .name = "kvm-io",
1763     .coalesced_io_add = kvm_coalesce_pio_add,
1764     .coalesced_io_del = kvm_coalesce_pio_del,
1765     .eventfd_add = kvm_io_ioeventfd_add,
1766     .eventfd_del = kvm_io_ioeventfd_del,
1767     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1768 };
1769 
1770 int kvm_set_irq(KVMState *s, int irq, int level)
1771 {
1772     struct kvm_irq_level event;
1773     int ret;
1774 
1775     assert(kvm_async_interrupts_enabled());
1776 
1777     event.level = level;
1778     event.irq = irq;
1779     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1780     if (ret < 0) {
1781         perror("kvm_set_irq");
1782         abort();
1783     }
1784 
1785     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1786 }
1787 
1788 #ifdef KVM_CAP_IRQ_ROUTING
1789 typedef struct KVMMSIRoute {
1790     struct kvm_irq_routing_entry kroute;
1791     QTAILQ_ENTRY(KVMMSIRoute) entry;
1792 } KVMMSIRoute;
1793 
1794 static void set_gsi(KVMState *s, unsigned int gsi)
1795 {
1796     set_bit(gsi, s->used_gsi_bitmap);
1797 }
1798 
1799 static void clear_gsi(KVMState *s, unsigned int gsi)
1800 {
1801     clear_bit(gsi, s->used_gsi_bitmap);
1802 }
1803 
1804 void kvm_init_irq_routing(KVMState *s)
1805 {
1806     int gsi_count;
1807 
1808     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1809     if (gsi_count > 0) {
1810         /* Round up so we can search ints using ffs */
1811         s->used_gsi_bitmap = bitmap_new(gsi_count);
1812         s->gsi_count = gsi_count;
1813     }
1814 
1815     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1816     s->nr_allocated_irq_routes = 0;
1817 
1818     kvm_arch_init_irq_routing(s);
1819 }
1820 
1821 void kvm_irqchip_commit_routes(KVMState *s)
1822 {
1823     int ret;
1824 
1825     if (kvm_gsi_direct_mapping()) {
1826         return;
1827     }
1828 
1829     if (!kvm_gsi_routing_enabled()) {
1830         return;
1831     }
1832 
1833     s->irq_routes->flags = 0;
1834     trace_kvm_irqchip_commit_routes();
1835     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1836     assert(ret == 0);
1837 }
1838 
1839 static void kvm_add_routing_entry(KVMState *s,
1840                                   struct kvm_irq_routing_entry *entry)
1841 {
1842     struct kvm_irq_routing_entry *new;
1843     int n, size;
1844 
1845     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1846         n = s->nr_allocated_irq_routes * 2;
1847         if (n < 64) {
1848             n = 64;
1849         }
1850         size = sizeof(struct kvm_irq_routing);
1851         size += n * sizeof(*new);
1852         s->irq_routes = g_realloc(s->irq_routes, size);
1853         s->nr_allocated_irq_routes = n;
1854     }
1855     n = s->irq_routes->nr++;
1856     new = &s->irq_routes->entries[n];
1857 
1858     *new = *entry;
1859 
1860     set_gsi(s, entry->gsi);
1861 }
1862 
1863 static int kvm_update_routing_entry(KVMState *s,
1864                                     struct kvm_irq_routing_entry *new_entry)
1865 {
1866     struct kvm_irq_routing_entry *entry;
1867     int n;
1868 
1869     for (n = 0; n < s->irq_routes->nr; n++) {
1870         entry = &s->irq_routes->entries[n];
1871         if (entry->gsi != new_entry->gsi) {
1872             continue;
1873         }
1874 
1875         if(!memcmp(entry, new_entry, sizeof *entry)) {
1876             return 0;
1877         }
1878 
1879         *entry = *new_entry;
1880 
1881         return 0;
1882     }
1883 
1884     return -ESRCH;
1885 }
1886 
1887 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1888 {
1889     struct kvm_irq_routing_entry e = {};
1890 
1891     assert(pin < s->gsi_count);
1892 
1893     e.gsi = irq;
1894     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1895     e.flags = 0;
1896     e.u.irqchip.irqchip = irqchip;
1897     e.u.irqchip.pin = pin;
1898     kvm_add_routing_entry(s, &e);
1899 }
1900 
1901 void kvm_irqchip_release_virq(KVMState *s, int virq)
1902 {
1903     struct kvm_irq_routing_entry *e;
1904     int i;
1905 
1906     if (kvm_gsi_direct_mapping()) {
1907         return;
1908     }
1909 
1910     for (i = 0; i < s->irq_routes->nr; i++) {
1911         e = &s->irq_routes->entries[i];
1912         if (e->gsi == virq) {
1913             s->irq_routes->nr--;
1914             *e = s->irq_routes->entries[s->irq_routes->nr];
1915         }
1916     }
1917     clear_gsi(s, virq);
1918     kvm_arch_release_virq_post(virq);
1919     trace_kvm_irqchip_release_virq(virq);
1920 }
1921 
1922 void kvm_irqchip_add_change_notifier(Notifier *n)
1923 {
1924     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1925 }
1926 
1927 void kvm_irqchip_remove_change_notifier(Notifier *n)
1928 {
1929     notifier_remove(n);
1930 }
1931 
1932 void kvm_irqchip_change_notify(void)
1933 {
1934     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1935 }
1936 
1937 static int kvm_irqchip_get_virq(KVMState *s)
1938 {
1939     int next_virq;
1940 
1941     /* Return the lowest unused GSI in the bitmap */
1942     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1943     if (next_virq >= s->gsi_count) {
1944         return -ENOSPC;
1945     } else {
1946         return next_virq;
1947     }
1948 }
1949 
1950 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1951 {
1952     struct kvm_msi msi;
1953 
1954     msi.address_lo = (uint32_t)msg.address;
1955     msi.address_hi = msg.address >> 32;
1956     msi.data = le32_to_cpu(msg.data);
1957     msi.flags = 0;
1958     memset(msi.pad, 0, sizeof(msi.pad));
1959 
1960     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1961 }
1962 
1963 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1964 {
1965     struct kvm_irq_routing_entry kroute = {};
1966     int virq;
1967     KVMState *s = c->s;
1968     MSIMessage msg = {0, 0};
1969 
1970     if (pci_available && dev) {
1971         msg = pci_get_msi_message(dev, vector);
1972     }
1973 
1974     if (kvm_gsi_direct_mapping()) {
1975         return kvm_arch_msi_data_to_gsi(msg.data);
1976     }
1977 
1978     if (!kvm_gsi_routing_enabled()) {
1979         return -ENOSYS;
1980     }
1981 
1982     virq = kvm_irqchip_get_virq(s);
1983     if (virq < 0) {
1984         return virq;
1985     }
1986 
1987     kroute.gsi = virq;
1988     kroute.type = KVM_IRQ_ROUTING_MSI;
1989     kroute.flags = 0;
1990     kroute.u.msi.address_lo = (uint32_t)msg.address;
1991     kroute.u.msi.address_hi = msg.address >> 32;
1992     kroute.u.msi.data = le32_to_cpu(msg.data);
1993     if (pci_available && kvm_msi_devid_required()) {
1994         kroute.flags = KVM_MSI_VALID_DEVID;
1995         kroute.u.msi.devid = pci_requester_id(dev);
1996     }
1997     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1998         kvm_irqchip_release_virq(s, virq);
1999         return -EINVAL;
2000     }
2001 
2002     if (s->irq_routes->nr < s->gsi_count) {
2003         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2004                                         vector, virq);
2005 
2006         kvm_add_routing_entry(s, &kroute);
2007         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2008         c->changes++;
2009     } else {
2010         kvm_irqchip_release_virq(s, virq);
2011         return -ENOSPC;
2012     }
2013 
2014     return virq;
2015 }
2016 
2017 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2018                                  PCIDevice *dev)
2019 {
2020     struct kvm_irq_routing_entry kroute = {};
2021 
2022     if (kvm_gsi_direct_mapping()) {
2023         return 0;
2024     }
2025 
2026     if (!kvm_irqchip_in_kernel()) {
2027         return -ENOSYS;
2028     }
2029 
2030     kroute.gsi = virq;
2031     kroute.type = KVM_IRQ_ROUTING_MSI;
2032     kroute.flags = 0;
2033     kroute.u.msi.address_lo = (uint32_t)msg.address;
2034     kroute.u.msi.address_hi = msg.address >> 32;
2035     kroute.u.msi.data = le32_to_cpu(msg.data);
2036     if (pci_available && kvm_msi_devid_required()) {
2037         kroute.flags = KVM_MSI_VALID_DEVID;
2038         kroute.u.msi.devid = pci_requester_id(dev);
2039     }
2040     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2041         return -EINVAL;
2042     }
2043 
2044     trace_kvm_irqchip_update_msi_route(virq);
2045 
2046     return kvm_update_routing_entry(s, &kroute);
2047 }
2048 
2049 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2050                                     EventNotifier *resample, int virq,
2051                                     bool assign)
2052 {
2053     int fd = event_notifier_get_fd(event);
2054     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2055 
2056     struct kvm_irqfd irqfd = {
2057         .fd = fd,
2058         .gsi = virq,
2059         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2060     };
2061 
2062     if (rfd != -1) {
2063         assert(assign);
2064         if (kvm_irqchip_is_split()) {
2065             /*
2066              * When the slow irqchip (e.g. IOAPIC) is in the
2067              * userspace, KVM kernel resamplefd will not work because
2068              * the EOI of the interrupt will be delivered to userspace
2069              * instead, so the KVM kernel resamplefd kick will be
2070              * skipped.  The userspace here mimics what the kernel
2071              * provides with resamplefd, remember the resamplefd and
2072              * kick it when we receive EOI of this IRQ.
2073              *
2074              * This is hackery because IOAPIC is mostly bypassed
2075              * (except EOI broadcasts) when irqfd is used.  However
2076              * this can bring much performance back for split irqchip
2077              * with INTx IRQs (for VFIO, this gives 93% perf of the
2078              * full fast path, which is 46% perf boost comparing to
2079              * the INTx slow path).
2080              */
2081             kvm_resample_fd_insert(virq, resample);
2082         } else {
2083             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2084             irqfd.resamplefd = rfd;
2085         }
2086     } else if (!assign) {
2087         if (kvm_irqchip_is_split()) {
2088             kvm_resample_fd_remove(virq);
2089         }
2090     }
2091 
2092     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2093 }
2094 
2095 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2096 {
2097     struct kvm_irq_routing_entry kroute = {};
2098     int virq;
2099 
2100     if (!kvm_gsi_routing_enabled()) {
2101         return -ENOSYS;
2102     }
2103 
2104     virq = kvm_irqchip_get_virq(s);
2105     if (virq < 0) {
2106         return virq;
2107     }
2108 
2109     kroute.gsi = virq;
2110     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2111     kroute.flags = 0;
2112     kroute.u.adapter.summary_addr = adapter->summary_addr;
2113     kroute.u.adapter.ind_addr = adapter->ind_addr;
2114     kroute.u.adapter.summary_offset = adapter->summary_offset;
2115     kroute.u.adapter.ind_offset = adapter->ind_offset;
2116     kroute.u.adapter.adapter_id = adapter->adapter_id;
2117 
2118     kvm_add_routing_entry(s, &kroute);
2119 
2120     return virq;
2121 }
2122 
2123 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2124 {
2125     struct kvm_irq_routing_entry kroute = {};
2126     int virq;
2127 
2128     if (!kvm_gsi_routing_enabled()) {
2129         return -ENOSYS;
2130     }
2131     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2132         return -ENOSYS;
2133     }
2134     virq = kvm_irqchip_get_virq(s);
2135     if (virq < 0) {
2136         return virq;
2137     }
2138 
2139     kroute.gsi = virq;
2140     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2141     kroute.flags = 0;
2142     kroute.u.hv_sint.vcpu = vcpu;
2143     kroute.u.hv_sint.sint = sint;
2144 
2145     kvm_add_routing_entry(s, &kroute);
2146     kvm_irqchip_commit_routes(s);
2147 
2148     return virq;
2149 }
2150 
2151 #else /* !KVM_CAP_IRQ_ROUTING */
2152 
2153 void kvm_init_irq_routing(KVMState *s)
2154 {
2155 }
2156 
2157 void kvm_irqchip_release_virq(KVMState *s, int virq)
2158 {
2159 }
2160 
2161 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2162 {
2163     abort();
2164 }
2165 
2166 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2167 {
2168     return -ENOSYS;
2169 }
2170 
2171 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2172 {
2173     return -ENOSYS;
2174 }
2175 
2176 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2177 {
2178     return -ENOSYS;
2179 }
2180 
2181 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2182                                     EventNotifier *resample, int virq,
2183                                     bool assign)
2184 {
2185     abort();
2186 }
2187 
2188 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2189 {
2190     return -ENOSYS;
2191 }
2192 #endif /* !KVM_CAP_IRQ_ROUTING */
2193 
2194 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2195                                        EventNotifier *rn, int virq)
2196 {
2197     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2198 }
2199 
2200 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2201                                           int virq)
2202 {
2203     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2204 }
2205 
2206 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2207                                    EventNotifier *rn, qemu_irq irq)
2208 {
2209     gpointer key, gsi;
2210     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211 
2212     if (!found) {
2213         return -ENXIO;
2214     }
2215     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2216 }
2217 
2218 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2219                                       qemu_irq irq)
2220 {
2221     gpointer key, gsi;
2222     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2223 
2224     if (!found) {
2225         return -ENXIO;
2226     }
2227     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2228 }
2229 
2230 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2231 {
2232     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2233 }
2234 
2235 static void kvm_irqchip_create(KVMState *s)
2236 {
2237     int ret;
2238 
2239     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2240     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2241         ;
2242     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2243         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2244         if (ret < 0) {
2245             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2246             exit(1);
2247         }
2248     } else {
2249         return;
2250     }
2251 
2252     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2253         fprintf(stderr, "kvm: irqfd not implemented\n");
2254         exit(1);
2255     }
2256 
2257     /* First probe and see if there's a arch-specific hook to create the
2258      * in-kernel irqchip for us */
2259     ret = kvm_arch_irqchip_create(s);
2260     if (ret == 0) {
2261         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2262             error_report("Split IRQ chip mode not supported.");
2263             exit(1);
2264         } else {
2265             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2266         }
2267     }
2268     if (ret < 0) {
2269         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2270         exit(1);
2271     }
2272 
2273     kvm_kernel_irqchip = true;
2274     /* If we have an in-kernel IRQ chip then we must have asynchronous
2275      * interrupt delivery (though the reverse is not necessarily true)
2276      */
2277     kvm_async_interrupts_allowed = true;
2278     kvm_halt_in_kernel_allowed = true;
2279 
2280     kvm_init_irq_routing(s);
2281 
2282     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2283 }
2284 
2285 /* Find number of supported CPUs using the recommended
2286  * procedure from the kernel API documentation to cope with
2287  * older kernels that may be missing capabilities.
2288  */
2289 static int kvm_recommended_vcpus(KVMState *s)
2290 {
2291     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2292     return (ret) ? ret : 4;
2293 }
2294 
2295 static int kvm_max_vcpus(KVMState *s)
2296 {
2297     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2298     return (ret) ? ret : kvm_recommended_vcpus(s);
2299 }
2300 
2301 static int kvm_max_vcpu_id(KVMState *s)
2302 {
2303     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2304     return (ret) ? ret : kvm_max_vcpus(s);
2305 }
2306 
2307 bool kvm_vcpu_id_is_valid(int vcpu_id)
2308 {
2309     KVMState *s = KVM_STATE(current_accel());
2310     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2311 }
2312 
2313 bool kvm_dirty_ring_enabled(void)
2314 {
2315     return kvm_state->kvm_dirty_ring_size ? true : false;
2316 }
2317 
2318 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2319                            strList *names, strList *targets, Error **errp);
2320 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2321 
2322 uint32_t kvm_dirty_ring_size(void)
2323 {
2324     return kvm_state->kvm_dirty_ring_size;
2325 }
2326 
2327 static int kvm_init(MachineState *ms)
2328 {
2329     MachineClass *mc = MACHINE_GET_CLASS(ms);
2330     static const char upgrade_note[] =
2331         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2332         "(see http://sourceforge.net/projects/kvm).\n";
2333     const struct {
2334         const char *name;
2335         int num;
2336     } num_cpus[] = {
2337         { "SMP",          ms->smp.cpus },
2338         { "hotpluggable", ms->smp.max_cpus },
2339         { /* end of list */ }
2340     }, *nc = num_cpus;
2341     int soft_vcpus_limit, hard_vcpus_limit;
2342     KVMState *s;
2343     const KVMCapabilityInfo *missing_cap;
2344     int ret;
2345     int type;
2346     uint64_t dirty_log_manual_caps;
2347 
2348     qemu_mutex_init(&kml_slots_lock);
2349 
2350     s = KVM_STATE(ms->accelerator);
2351 
2352     /*
2353      * On systems where the kernel can support different base page
2354      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2355      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2356      * page size for the system though.
2357      */
2358     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2359 
2360     s->sigmask_len = 8;
2361     accel_blocker_init();
2362 
2363 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2364     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2365 #endif
2366     QLIST_INIT(&s->kvm_parked_vcpus);
2367     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2368     if (s->fd == -1) {
2369         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2370         ret = -errno;
2371         goto err;
2372     }
2373 
2374     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2375     if (ret < KVM_API_VERSION) {
2376         if (ret >= 0) {
2377             ret = -EINVAL;
2378         }
2379         fprintf(stderr, "kvm version too old\n");
2380         goto err;
2381     }
2382 
2383     if (ret > KVM_API_VERSION) {
2384         ret = -EINVAL;
2385         fprintf(stderr, "kvm version not supported\n");
2386         goto err;
2387     }
2388 
2389     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2390     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2391 
2392     /* If unspecified, use the default value */
2393     if (!s->nr_slots) {
2394         s->nr_slots = 32;
2395     }
2396 
2397     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2398     if (s->nr_as <= 1) {
2399         s->nr_as = 1;
2400     }
2401     s->as = g_new0(struct KVMAs, s->nr_as);
2402 
2403     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2404         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2405                                                             "kvm-type",
2406                                                             &error_abort);
2407         type = mc->kvm_type(ms, kvm_type);
2408     } else if (mc->kvm_type) {
2409         type = mc->kvm_type(ms, NULL);
2410     } else {
2411         type = kvm_arch_get_default_type(ms);
2412     }
2413 
2414     if (type < 0) {
2415         ret = -EINVAL;
2416         goto err;
2417     }
2418 
2419     do {
2420         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2421     } while (ret == -EINTR);
2422 
2423     if (ret < 0) {
2424         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2425                 strerror(-ret));
2426 
2427 #ifdef TARGET_S390X
2428         if (ret == -EINVAL) {
2429             fprintf(stderr,
2430                     "Host kernel setup problem detected. Please verify:\n");
2431             fprintf(stderr, "- for kernels supporting the switch_amode or"
2432                     " user_mode parameters, whether\n");
2433             fprintf(stderr,
2434                     "  user space is running in primary address space\n");
2435             fprintf(stderr,
2436                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2437                     "whether it is enabled\n");
2438         }
2439 #elif defined(TARGET_PPC)
2440         if (ret == -EINVAL) {
2441             fprintf(stderr,
2442                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2443                     (type == 2) ? "pr" : "hv");
2444         }
2445 #endif
2446         goto err;
2447     }
2448 
2449     s->vmfd = ret;
2450 
2451     /* check the vcpu limits */
2452     soft_vcpus_limit = kvm_recommended_vcpus(s);
2453     hard_vcpus_limit = kvm_max_vcpus(s);
2454 
2455     while (nc->name) {
2456         if (nc->num > soft_vcpus_limit) {
2457             warn_report("Number of %s cpus requested (%d) exceeds "
2458                         "the recommended cpus supported by KVM (%d)",
2459                         nc->name, nc->num, soft_vcpus_limit);
2460 
2461             if (nc->num > hard_vcpus_limit) {
2462                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2463                         "the maximum cpus supported by KVM (%d)\n",
2464                         nc->name, nc->num, hard_vcpus_limit);
2465                 exit(1);
2466             }
2467         }
2468         nc++;
2469     }
2470 
2471     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2472     if (!missing_cap) {
2473         missing_cap =
2474             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2475     }
2476     if (missing_cap) {
2477         ret = -EINVAL;
2478         fprintf(stderr, "kvm does not support %s\n%s",
2479                 missing_cap->name, upgrade_note);
2480         goto err;
2481     }
2482 
2483     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2484     s->coalesced_pio = s->coalesced_mmio &&
2485                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2486 
2487     /*
2488      * Enable KVM dirty ring if supported, otherwise fall back to
2489      * dirty logging mode
2490      */
2491     ret = kvm_dirty_ring_init(s);
2492     if (ret < 0) {
2493         goto err;
2494     }
2495 
2496     /*
2497      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2498      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2499      * page is wr-protected initially, which is against how kvm dirty ring is
2500      * usage - kvm dirty ring requires all pages are wr-protected at the very
2501      * beginning.  Enabling this feature for dirty ring causes data corruption.
2502      *
2503      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2504      * we may expect a higher stall time when starting the migration.  In the
2505      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2506      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2507      * guest pages.
2508      */
2509     if (!s->kvm_dirty_ring_size) {
2510         dirty_log_manual_caps =
2511             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2512         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2513                                   KVM_DIRTY_LOG_INITIALLY_SET);
2514         s->manual_dirty_log_protect = dirty_log_manual_caps;
2515         if (dirty_log_manual_caps) {
2516             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2517                                     dirty_log_manual_caps);
2518             if (ret) {
2519                 warn_report("Trying to enable capability %"PRIu64" of "
2520                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2521                             "Falling back to the legacy mode. ",
2522                             dirty_log_manual_caps);
2523                 s->manual_dirty_log_protect = 0;
2524             }
2525         }
2526     }
2527 
2528 #ifdef KVM_CAP_VCPU_EVENTS
2529     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2530 #endif
2531     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2532 
2533     s->irq_set_ioctl = KVM_IRQ_LINE;
2534     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2535         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2536     }
2537 
2538     kvm_readonly_mem_allowed =
2539         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2540 
2541     kvm_resamplefds_allowed =
2542         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2543 
2544     kvm_vm_attributes_allowed =
2545         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2546 
2547 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2548     kvm_has_guest_debug =
2549         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2550 #endif
2551 
2552     kvm_sstep_flags = 0;
2553     if (kvm_has_guest_debug) {
2554         kvm_sstep_flags = SSTEP_ENABLE;
2555 
2556 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2557         int guest_debug_flags =
2558             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2559 
2560         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2561             kvm_sstep_flags |= SSTEP_NOIRQ;
2562         }
2563 #endif
2564     }
2565 
2566     kvm_state = s;
2567 
2568     ret = kvm_arch_init(ms, s);
2569     if (ret < 0) {
2570         goto err;
2571     }
2572 
2573     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2574         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2575     }
2576 
2577     qemu_register_reset(kvm_unpoison_all, NULL);
2578 
2579     if (s->kernel_irqchip_allowed) {
2580         kvm_irqchip_create(s);
2581     }
2582 
2583     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2584     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2585     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2586     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2587 
2588     kvm_memory_listener_register(s, &s->memory_listener,
2589                                  &address_space_memory, 0, "kvm-memory");
2590     memory_listener_register(&kvm_io_listener,
2591                              &address_space_io);
2592 
2593     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2594     if (!s->sync_mmu) {
2595         ret = ram_block_discard_disable(true);
2596         assert(!ret);
2597     }
2598 
2599     if (s->kvm_dirty_ring_size) {
2600         kvm_dirty_ring_reaper_init(s);
2601     }
2602 
2603     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2604         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2605                             query_stats_schemas_cb);
2606     }
2607 
2608     return 0;
2609 
2610 err:
2611     assert(ret < 0);
2612     if (s->vmfd >= 0) {
2613         close(s->vmfd);
2614     }
2615     if (s->fd != -1) {
2616         close(s->fd);
2617     }
2618     g_free(s->as);
2619     g_free(s->memory_listener.slots);
2620 
2621     return ret;
2622 }
2623 
2624 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2625 {
2626     s->sigmask_len = sigmask_len;
2627 }
2628 
2629 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2630                           int size, uint32_t count)
2631 {
2632     int i;
2633     uint8_t *ptr = data;
2634 
2635     for (i = 0; i < count; i++) {
2636         address_space_rw(&address_space_io, port, attrs,
2637                          ptr, size,
2638                          direction == KVM_EXIT_IO_OUT);
2639         ptr += size;
2640     }
2641 }
2642 
2643 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2644 {
2645     int i;
2646 
2647     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2648             run->internal.suberror);
2649 
2650     for (i = 0; i < run->internal.ndata; ++i) {
2651         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2652                 i, (uint64_t)run->internal.data[i]);
2653     }
2654     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2655         fprintf(stderr, "emulation failure\n");
2656         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2657             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2658             return EXCP_INTERRUPT;
2659         }
2660     }
2661     /* FIXME: Should trigger a qmp message to let management know
2662      * something went wrong.
2663      */
2664     return -1;
2665 }
2666 
2667 void kvm_flush_coalesced_mmio_buffer(void)
2668 {
2669     KVMState *s = kvm_state;
2670 
2671     if (!s || s->coalesced_flush_in_progress) {
2672         return;
2673     }
2674 
2675     s->coalesced_flush_in_progress = true;
2676 
2677     if (s->coalesced_mmio_ring) {
2678         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2679         while (ring->first != ring->last) {
2680             struct kvm_coalesced_mmio *ent;
2681 
2682             ent = &ring->coalesced_mmio[ring->first];
2683 
2684             if (ent->pio == 1) {
2685                 address_space_write(&address_space_io, ent->phys_addr,
2686                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2687                                     ent->len);
2688             } else {
2689                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2690             }
2691             smp_wmb();
2692             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2693         }
2694     }
2695 
2696     s->coalesced_flush_in_progress = false;
2697 }
2698 
2699 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2700 {
2701     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2702         int ret = kvm_arch_get_registers(cpu);
2703         if (ret) {
2704             error_report("Failed to get registers: %s", strerror(-ret));
2705             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2706             vm_stop(RUN_STATE_INTERNAL_ERROR);
2707         }
2708 
2709         cpu->vcpu_dirty = true;
2710     }
2711 }
2712 
2713 void kvm_cpu_synchronize_state(CPUState *cpu)
2714 {
2715     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2716         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2717     }
2718 }
2719 
2720 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2721 {
2722     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2723     if (ret) {
2724         error_report("Failed to put registers after reset: %s", strerror(-ret));
2725         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2726         vm_stop(RUN_STATE_INTERNAL_ERROR);
2727     }
2728 
2729     cpu->vcpu_dirty = false;
2730 }
2731 
2732 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2733 {
2734     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2735 }
2736 
2737 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2738 {
2739     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2740     if (ret) {
2741         error_report("Failed to put registers after init: %s", strerror(-ret));
2742         exit(1);
2743     }
2744 
2745     cpu->vcpu_dirty = false;
2746 }
2747 
2748 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2749 {
2750     if (!kvm_state->guest_state_protected) {
2751         /*
2752          * This runs before the machine_init_done notifiers, and is the last
2753          * opportunity to synchronize the state of confidential guests.
2754          */
2755         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2756     }
2757 }
2758 
2759 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2760 {
2761     cpu->vcpu_dirty = true;
2762 }
2763 
2764 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2765 {
2766     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2767 }
2768 
2769 #ifdef KVM_HAVE_MCE_INJECTION
2770 static __thread void *pending_sigbus_addr;
2771 static __thread int pending_sigbus_code;
2772 static __thread bool have_sigbus_pending;
2773 #endif
2774 
2775 static void kvm_cpu_kick(CPUState *cpu)
2776 {
2777     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2778 }
2779 
2780 static void kvm_cpu_kick_self(void)
2781 {
2782     if (kvm_immediate_exit) {
2783         kvm_cpu_kick(current_cpu);
2784     } else {
2785         qemu_cpu_kick_self();
2786     }
2787 }
2788 
2789 static void kvm_eat_signals(CPUState *cpu)
2790 {
2791     struct timespec ts = { 0, 0 };
2792     siginfo_t siginfo;
2793     sigset_t waitset;
2794     sigset_t chkset;
2795     int r;
2796 
2797     if (kvm_immediate_exit) {
2798         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2799         /* Write kvm_run->immediate_exit before the cpu->exit_request
2800          * write in kvm_cpu_exec.
2801          */
2802         smp_wmb();
2803         return;
2804     }
2805 
2806     sigemptyset(&waitset);
2807     sigaddset(&waitset, SIG_IPI);
2808 
2809     do {
2810         r = sigtimedwait(&waitset, &siginfo, &ts);
2811         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2812             perror("sigtimedwait");
2813             exit(1);
2814         }
2815 
2816         r = sigpending(&chkset);
2817         if (r == -1) {
2818             perror("sigpending");
2819             exit(1);
2820         }
2821     } while (sigismember(&chkset, SIG_IPI));
2822 }
2823 
2824 int kvm_cpu_exec(CPUState *cpu)
2825 {
2826     struct kvm_run *run = cpu->kvm_run;
2827     int ret, run_ret;
2828 
2829     trace_kvm_cpu_exec();
2830 
2831     if (kvm_arch_process_async_events(cpu)) {
2832         qatomic_set(&cpu->exit_request, 0);
2833         return EXCP_HLT;
2834     }
2835 
2836     bql_unlock();
2837     cpu_exec_start(cpu);
2838 
2839     do {
2840         MemTxAttrs attrs;
2841 
2842         if (cpu->vcpu_dirty) {
2843             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2844             if (ret) {
2845                 error_report("Failed to put registers after init: %s",
2846                              strerror(-ret));
2847                 ret = -1;
2848                 break;
2849             }
2850 
2851             cpu->vcpu_dirty = false;
2852         }
2853 
2854         kvm_arch_pre_run(cpu, run);
2855         if (qatomic_read(&cpu->exit_request)) {
2856 	    trace_kvm_interrupt_exit_request();
2857             /*
2858              * KVM requires us to reenter the kernel after IO exits to complete
2859              * instruction emulation. This self-signal will ensure that we
2860              * leave ASAP again.
2861              */
2862             kvm_cpu_kick_self();
2863         }
2864 
2865         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2866          * Matching barrier in kvm_eat_signals.
2867          */
2868         smp_rmb();
2869 
2870         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2871 
2872         attrs = kvm_arch_post_run(cpu, run);
2873 
2874 #ifdef KVM_HAVE_MCE_INJECTION
2875         if (unlikely(have_sigbus_pending)) {
2876             bql_lock();
2877             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2878                                     pending_sigbus_addr);
2879             have_sigbus_pending = false;
2880             bql_unlock();
2881         }
2882 #endif
2883 
2884         if (run_ret < 0) {
2885             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2886                 trace_kvm_io_window_exit();
2887                 kvm_eat_signals(cpu);
2888                 ret = EXCP_INTERRUPT;
2889                 break;
2890             }
2891             fprintf(stderr, "error: kvm run failed %s\n",
2892                     strerror(-run_ret));
2893 #ifdef TARGET_PPC
2894             if (run_ret == -EBUSY) {
2895                 fprintf(stderr,
2896                         "This is probably because your SMT is enabled.\n"
2897                         "VCPU can only run on primary threads with all "
2898                         "secondary threads offline.\n");
2899             }
2900 #endif
2901             ret = -1;
2902             break;
2903         }
2904 
2905         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2906         switch (run->exit_reason) {
2907         case KVM_EXIT_IO:
2908             /* Called outside BQL */
2909             kvm_handle_io(run->io.port, attrs,
2910                           (uint8_t *)run + run->io.data_offset,
2911                           run->io.direction,
2912                           run->io.size,
2913                           run->io.count);
2914             ret = 0;
2915             break;
2916         case KVM_EXIT_MMIO:
2917             /* Called outside BQL */
2918             address_space_rw(&address_space_memory,
2919                              run->mmio.phys_addr, attrs,
2920                              run->mmio.data,
2921                              run->mmio.len,
2922                              run->mmio.is_write);
2923             ret = 0;
2924             break;
2925         case KVM_EXIT_IRQ_WINDOW_OPEN:
2926             ret = EXCP_INTERRUPT;
2927             break;
2928         case KVM_EXIT_SHUTDOWN:
2929             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2930             ret = EXCP_INTERRUPT;
2931             break;
2932         case KVM_EXIT_UNKNOWN:
2933             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2934                     (uint64_t)run->hw.hardware_exit_reason);
2935             ret = -1;
2936             break;
2937         case KVM_EXIT_INTERNAL_ERROR:
2938             ret = kvm_handle_internal_error(cpu, run);
2939             break;
2940         case KVM_EXIT_DIRTY_RING_FULL:
2941             /*
2942              * We shouldn't continue if the dirty ring of this vcpu is
2943              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2944              */
2945             trace_kvm_dirty_ring_full(cpu->cpu_index);
2946             bql_lock();
2947             /*
2948              * We throttle vCPU by making it sleep once it exit from kernel
2949              * due to dirty ring full. In the dirtylimit scenario, reaping
2950              * all vCPUs after a single vCPU dirty ring get full result in
2951              * the miss of sleep, so just reap the ring-fulled vCPU.
2952              */
2953             if (dirtylimit_in_service()) {
2954                 kvm_dirty_ring_reap(kvm_state, cpu);
2955             } else {
2956                 kvm_dirty_ring_reap(kvm_state, NULL);
2957             }
2958             bql_unlock();
2959             dirtylimit_vcpu_execute(cpu);
2960             ret = 0;
2961             break;
2962         case KVM_EXIT_SYSTEM_EVENT:
2963             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
2964             switch (run->system_event.type) {
2965             case KVM_SYSTEM_EVENT_SHUTDOWN:
2966                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2967                 ret = EXCP_INTERRUPT;
2968                 break;
2969             case KVM_SYSTEM_EVENT_RESET:
2970                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2971                 ret = EXCP_INTERRUPT;
2972                 break;
2973             case KVM_SYSTEM_EVENT_CRASH:
2974                 kvm_cpu_synchronize_state(cpu);
2975                 bql_lock();
2976                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2977                 bql_unlock();
2978                 ret = 0;
2979                 break;
2980             default:
2981                 ret = kvm_arch_handle_exit(cpu, run);
2982                 break;
2983             }
2984             break;
2985         default:
2986             ret = kvm_arch_handle_exit(cpu, run);
2987             break;
2988         }
2989     } while (ret == 0);
2990 
2991     cpu_exec_end(cpu);
2992     bql_lock();
2993 
2994     if (ret < 0) {
2995         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2996         vm_stop(RUN_STATE_INTERNAL_ERROR);
2997     }
2998 
2999     qatomic_set(&cpu->exit_request, 0);
3000     return ret;
3001 }
3002 
3003 int kvm_ioctl(KVMState *s, int type, ...)
3004 {
3005     int ret;
3006     void *arg;
3007     va_list ap;
3008 
3009     va_start(ap, type);
3010     arg = va_arg(ap, void *);
3011     va_end(ap);
3012 
3013     trace_kvm_ioctl(type, arg);
3014     ret = ioctl(s->fd, type, arg);
3015     if (ret == -1) {
3016         ret = -errno;
3017     }
3018     return ret;
3019 }
3020 
3021 int kvm_vm_ioctl(KVMState *s, int type, ...)
3022 {
3023     int ret;
3024     void *arg;
3025     va_list ap;
3026 
3027     va_start(ap, type);
3028     arg = va_arg(ap, void *);
3029     va_end(ap);
3030 
3031     trace_kvm_vm_ioctl(type, arg);
3032     accel_ioctl_begin();
3033     ret = ioctl(s->vmfd, type, arg);
3034     accel_ioctl_end();
3035     if (ret == -1) {
3036         ret = -errno;
3037     }
3038     return ret;
3039 }
3040 
3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3042 {
3043     int ret;
3044     void *arg;
3045     va_list ap;
3046 
3047     va_start(ap, type);
3048     arg = va_arg(ap, void *);
3049     va_end(ap);
3050 
3051     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3052     accel_cpu_ioctl_begin(cpu);
3053     ret = ioctl(cpu->kvm_fd, type, arg);
3054     accel_cpu_ioctl_end(cpu);
3055     if (ret == -1) {
3056         ret = -errno;
3057     }
3058     return ret;
3059 }
3060 
3061 int kvm_device_ioctl(int fd, int type, ...)
3062 {
3063     int ret;
3064     void *arg;
3065     va_list ap;
3066 
3067     va_start(ap, type);
3068     arg = va_arg(ap, void *);
3069     va_end(ap);
3070 
3071     trace_kvm_device_ioctl(fd, type, arg);
3072     accel_ioctl_begin();
3073     ret = ioctl(fd, type, arg);
3074     accel_ioctl_end();
3075     if (ret == -1) {
3076         ret = -errno;
3077     }
3078     return ret;
3079 }
3080 
3081 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3082 {
3083     int ret;
3084     struct kvm_device_attr attribute = {
3085         .group = group,
3086         .attr = attr,
3087     };
3088 
3089     if (!kvm_vm_attributes_allowed) {
3090         return 0;
3091     }
3092 
3093     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3094     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3095     return ret ? 0 : 1;
3096 }
3097 
3098 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3099 {
3100     struct kvm_device_attr attribute = {
3101         .group = group,
3102         .attr = attr,
3103         .flags = 0,
3104     };
3105 
3106     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3107 }
3108 
3109 int kvm_device_access(int fd, int group, uint64_t attr,
3110                       void *val, bool write, Error **errp)
3111 {
3112     struct kvm_device_attr kvmattr;
3113     int err;
3114 
3115     kvmattr.flags = 0;
3116     kvmattr.group = group;
3117     kvmattr.attr = attr;
3118     kvmattr.addr = (uintptr_t)val;
3119 
3120     err = kvm_device_ioctl(fd,
3121                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3122                            &kvmattr);
3123     if (err < 0) {
3124         error_setg_errno(errp, -err,
3125                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3126                          "attr 0x%016" PRIx64,
3127                          write ? "SET" : "GET", group, attr);
3128     }
3129     return err;
3130 }
3131 
3132 bool kvm_has_sync_mmu(void)
3133 {
3134     return kvm_state->sync_mmu;
3135 }
3136 
3137 int kvm_has_vcpu_events(void)
3138 {
3139     return kvm_state->vcpu_events;
3140 }
3141 
3142 int kvm_max_nested_state_length(void)
3143 {
3144     return kvm_state->max_nested_state_len;
3145 }
3146 
3147 int kvm_has_gsi_routing(void)
3148 {
3149 #ifdef KVM_CAP_IRQ_ROUTING
3150     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3151 #else
3152     return false;
3153 #endif
3154 }
3155 
3156 bool kvm_arm_supports_user_irq(void)
3157 {
3158     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3159 }
3160 
3161 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3162 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3163 {
3164     struct kvm_sw_breakpoint *bp;
3165 
3166     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3167         if (bp->pc == pc) {
3168             return bp;
3169         }
3170     }
3171     return NULL;
3172 }
3173 
3174 int kvm_sw_breakpoints_active(CPUState *cpu)
3175 {
3176     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3177 }
3178 
3179 struct kvm_set_guest_debug_data {
3180     struct kvm_guest_debug dbg;
3181     int err;
3182 };
3183 
3184 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3185 {
3186     struct kvm_set_guest_debug_data *dbg_data =
3187         (struct kvm_set_guest_debug_data *) data.host_ptr;
3188 
3189     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3190                                    &dbg_data->dbg);
3191 }
3192 
3193 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3194 {
3195     struct kvm_set_guest_debug_data data;
3196 
3197     data.dbg.control = reinject_trap;
3198 
3199     if (cpu->singlestep_enabled) {
3200         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3201 
3202         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3203             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3204         }
3205     }
3206     kvm_arch_update_guest_debug(cpu, &data.dbg);
3207 
3208     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3209                RUN_ON_CPU_HOST_PTR(&data));
3210     return data.err;
3211 }
3212 
3213 bool kvm_supports_guest_debug(void)
3214 {
3215     /* probed during kvm_init() */
3216     return kvm_has_guest_debug;
3217 }
3218 
3219 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3220 {
3221     struct kvm_sw_breakpoint *bp;
3222     int err;
3223 
3224     if (type == GDB_BREAKPOINT_SW) {
3225         bp = kvm_find_sw_breakpoint(cpu, addr);
3226         if (bp) {
3227             bp->use_count++;
3228             return 0;
3229         }
3230 
3231         bp = g_new(struct kvm_sw_breakpoint, 1);
3232         bp->pc = addr;
3233         bp->use_count = 1;
3234         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3235         if (err) {
3236             g_free(bp);
3237             return err;
3238         }
3239 
3240         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3241     } else {
3242         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3243         if (err) {
3244             return err;
3245         }
3246     }
3247 
3248     CPU_FOREACH(cpu) {
3249         err = kvm_update_guest_debug(cpu, 0);
3250         if (err) {
3251             return err;
3252         }
3253     }
3254     return 0;
3255 }
3256 
3257 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3258 {
3259     struct kvm_sw_breakpoint *bp;
3260     int err;
3261 
3262     if (type == GDB_BREAKPOINT_SW) {
3263         bp = kvm_find_sw_breakpoint(cpu, addr);
3264         if (!bp) {
3265             return -ENOENT;
3266         }
3267 
3268         if (bp->use_count > 1) {
3269             bp->use_count--;
3270             return 0;
3271         }
3272 
3273         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3274         if (err) {
3275             return err;
3276         }
3277 
3278         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3279         g_free(bp);
3280     } else {
3281         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3282         if (err) {
3283             return err;
3284         }
3285     }
3286 
3287     CPU_FOREACH(cpu) {
3288         err = kvm_update_guest_debug(cpu, 0);
3289         if (err) {
3290             return err;
3291         }
3292     }
3293     return 0;
3294 }
3295 
3296 void kvm_remove_all_breakpoints(CPUState *cpu)
3297 {
3298     struct kvm_sw_breakpoint *bp, *next;
3299     KVMState *s = cpu->kvm_state;
3300     CPUState *tmpcpu;
3301 
3302     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3303         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3304             /* Try harder to find a CPU that currently sees the breakpoint. */
3305             CPU_FOREACH(tmpcpu) {
3306                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3307                     break;
3308                 }
3309             }
3310         }
3311         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3312         g_free(bp);
3313     }
3314     kvm_arch_remove_all_hw_breakpoints();
3315 
3316     CPU_FOREACH(cpu) {
3317         kvm_update_guest_debug(cpu, 0);
3318     }
3319 }
3320 
3321 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3322 
3323 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3324 {
3325     KVMState *s = kvm_state;
3326     struct kvm_signal_mask *sigmask;
3327     int r;
3328 
3329     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3330 
3331     sigmask->len = s->sigmask_len;
3332     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3333     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3334     g_free(sigmask);
3335 
3336     return r;
3337 }
3338 
3339 static void kvm_ipi_signal(int sig)
3340 {
3341     if (current_cpu) {
3342         assert(kvm_immediate_exit);
3343         kvm_cpu_kick(current_cpu);
3344     }
3345 }
3346 
3347 void kvm_init_cpu_signals(CPUState *cpu)
3348 {
3349     int r;
3350     sigset_t set;
3351     struct sigaction sigact;
3352 
3353     memset(&sigact, 0, sizeof(sigact));
3354     sigact.sa_handler = kvm_ipi_signal;
3355     sigaction(SIG_IPI, &sigact, NULL);
3356 
3357     pthread_sigmask(SIG_BLOCK, NULL, &set);
3358 #if defined KVM_HAVE_MCE_INJECTION
3359     sigdelset(&set, SIGBUS);
3360     pthread_sigmask(SIG_SETMASK, &set, NULL);
3361 #endif
3362     sigdelset(&set, SIG_IPI);
3363     if (kvm_immediate_exit) {
3364         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3365     } else {
3366         r = kvm_set_signal_mask(cpu, &set);
3367     }
3368     if (r) {
3369         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3370         exit(1);
3371     }
3372 }
3373 
3374 /* Called asynchronously in VCPU thread.  */
3375 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3376 {
3377 #ifdef KVM_HAVE_MCE_INJECTION
3378     if (have_sigbus_pending) {
3379         return 1;
3380     }
3381     have_sigbus_pending = true;
3382     pending_sigbus_addr = addr;
3383     pending_sigbus_code = code;
3384     qatomic_set(&cpu->exit_request, 1);
3385     return 0;
3386 #else
3387     return 1;
3388 #endif
3389 }
3390 
3391 /* Called synchronously (via signalfd) in main thread.  */
3392 int kvm_on_sigbus(int code, void *addr)
3393 {
3394 #ifdef KVM_HAVE_MCE_INJECTION
3395     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3396      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3397      * we can only get action optional here.
3398      */
3399     assert(code != BUS_MCEERR_AR);
3400     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3401     return 0;
3402 #else
3403     return 1;
3404 #endif
3405 }
3406 
3407 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3408 {
3409     int ret;
3410     struct kvm_create_device create_dev;
3411 
3412     create_dev.type = type;
3413     create_dev.fd = -1;
3414     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3415 
3416     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3417         return -ENOTSUP;
3418     }
3419 
3420     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3421     if (ret) {
3422         return ret;
3423     }
3424 
3425     return test ? 0 : create_dev.fd;
3426 }
3427 
3428 bool kvm_device_supported(int vmfd, uint64_t type)
3429 {
3430     struct kvm_create_device create_dev = {
3431         .type = type,
3432         .fd = -1,
3433         .flags = KVM_CREATE_DEVICE_TEST,
3434     };
3435 
3436     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3437         return false;
3438     }
3439 
3440     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3441 }
3442 
3443 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3444 {
3445     struct kvm_one_reg reg;
3446     int r;
3447 
3448     reg.id = id;
3449     reg.addr = (uintptr_t) source;
3450     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3451     if (r) {
3452         trace_kvm_failed_reg_set(id, strerror(-r));
3453     }
3454     return r;
3455 }
3456 
3457 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3458 {
3459     struct kvm_one_reg reg;
3460     int r;
3461 
3462     reg.id = id;
3463     reg.addr = (uintptr_t) target;
3464     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3465     if (r) {
3466         trace_kvm_failed_reg_get(id, strerror(-r));
3467     }
3468     return r;
3469 }
3470 
3471 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3472                                  hwaddr start_addr, hwaddr size)
3473 {
3474     KVMState *kvm = KVM_STATE(ms->accelerator);
3475     int i;
3476 
3477     for (i = 0; i < kvm->nr_as; ++i) {
3478         if (kvm->as[i].as == as && kvm->as[i].ml) {
3479             size = MIN(kvm_max_slot_size, size);
3480             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3481                                                     start_addr, size);
3482         }
3483     }
3484 
3485     return false;
3486 }
3487 
3488 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3489                                    const char *name, void *opaque,
3490                                    Error **errp)
3491 {
3492     KVMState *s = KVM_STATE(obj);
3493     int64_t value = s->kvm_shadow_mem;
3494 
3495     visit_type_int(v, name, &value, errp);
3496 }
3497 
3498 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3499                                    const char *name, void *opaque,
3500                                    Error **errp)
3501 {
3502     KVMState *s = KVM_STATE(obj);
3503     int64_t value;
3504 
3505     if (s->fd != -1) {
3506         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3507         return;
3508     }
3509 
3510     if (!visit_type_int(v, name, &value, errp)) {
3511         return;
3512     }
3513 
3514     s->kvm_shadow_mem = value;
3515 }
3516 
3517 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3518                                    const char *name, void *opaque,
3519                                    Error **errp)
3520 {
3521     KVMState *s = KVM_STATE(obj);
3522     OnOffSplit mode;
3523 
3524     if (s->fd != -1) {
3525         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3526         return;
3527     }
3528 
3529     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3530         return;
3531     }
3532     switch (mode) {
3533     case ON_OFF_SPLIT_ON:
3534         s->kernel_irqchip_allowed = true;
3535         s->kernel_irqchip_required = true;
3536         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3537         break;
3538     case ON_OFF_SPLIT_OFF:
3539         s->kernel_irqchip_allowed = false;
3540         s->kernel_irqchip_required = false;
3541         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3542         break;
3543     case ON_OFF_SPLIT_SPLIT:
3544         s->kernel_irqchip_allowed = true;
3545         s->kernel_irqchip_required = true;
3546         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3547         break;
3548     default:
3549         /* The value was checked in visit_type_OnOffSplit() above. If
3550          * we get here, then something is wrong in QEMU.
3551          */
3552         abort();
3553     }
3554 }
3555 
3556 bool kvm_kernel_irqchip_allowed(void)
3557 {
3558     return kvm_state->kernel_irqchip_allowed;
3559 }
3560 
3561 bool kvm_kernel_irqchip_required(void)
3562 {
3563     return kvm_state->kernel_irqchip_required;
3564 }
3565 
3566 bool kvm_kernel_irqchip_split(void)
3567 {
3568     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3569 }
3570 
3571 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3572                                     const char *name, void *opaque,
3573                                     Error **errp)
3574 {
3575     KVMState *s = KVM_STATE(obj);
3576     uint32_t value = s->kvm_dirty_ring_size;
3577 
3578     visit_type_uint32(v, name, &value, errp);
3579 }
3580 
3581 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3582                                     const char *name, void *opaque,
3583                                     Error **errp)
3584 {
3585     KVMState *s = KVM_STATE(obj);
3586     uint32_t value;
3587 
3588     if (s->fd != -1) {
3589         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3590         return;
3591     }
3592 
3593     if (!visit_type_uint32(v, name, &value, errp)) {
3594         return;
3595     }
3596     if (value & (value - 1)) {
3597         error_setg(errp, "dirty-ring-size must be a power of two.");
3598         return;
3599     }
3600 
3601     s->kvm_dirty_ring_size = value;
3602 }
3603 
3604 static char *kvm_get_device(Object *obj,
3605                             Error **errp G_GNUC_UNUSED)
3606 {
3607     KVMState *s = KVM_STATE(obj);
3608 
3609     return g_strdup(s->device);
3610 }
3611 
3612 static void kvm_set_device(Object *obj,
3613                            const char *value,
3614                            Error **errp G_GNUC_UNUSED)
3615 {
3616     KVMState *s = KVM_STATE(obj);
3617 
3618     g_free(s->device);
3619     s->device = g_strdup(value);
3620 }
3621 
3622 static void kvm_accel_instance_init(Object *obj)
3623 {
3624     KVMState *s = KVM_STATE(obj);
3625 
3626     s->fd = -1;
3627     s->vmfd = -1;
3628     s->kvm_shadow_mem = -1;
3629     s->kernel_irqchip_allowed = true;
3630     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3631     /* KVM dirty ring is by default off */
3632     s->kvm_dirty_ring_size = 0;
3633     s->kvm_dirty_ring_with_bitmap = false;
3634     s->kvm_eager_split_size = 0;
3635     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3636     s->notify_window = 0;
3637     s->xen_version = 0;
3638     s->xen_gnttab_max_frames = 64;
3639     s->xen_evtchn_max_pirq = 256;
3640     s->device = NULL;
3641 }
3642 
3643 /**
3644  * kvm_gdbstub_sstep_flags():
3645  *
3646  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3647  * support is probed during kvm_init()
3648  */
3649 static int kvm_gdbstub_sstep_flags(void)
3650 {
3651     return kvm_sstep_flags;
3652 }
3653 
3654 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3655 {
3656     AccelClass *ac = ACCEL_CLASS(oc);
3657     ac->name = "KVM";
3658     ac->init_machine = kvm_init;
3659     ac->has_memory = kvm_accel_has_memory;
3660     ac->allowed = &kvm_allowed;
3661     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3662 
3663     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3664         NULL, kvm_set_kernel_irqchip,
3665         NULL, NULL);
3666     object_class_property_set_description(oc, "kernel-irqchip",
3667         "Configure KVM in-kernel irqchip");
3668 
3669     object_class_property_add(oc, "kvm-shadow-mem", "int",
3670         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3671         NULL, NULL);
3672     object_class_property_set_description(oc, "kvm-shadow-mem",
3673         "KVM shadow MMU size");
3674 
3675     object_class_property_add(oc, "dirty-ring-size", "uint32",
3676         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3677         NULL, NULL);
3678     object_class_property_set_description(oc, "dirty-ring-size",
3679         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3680 
3681     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3682     object_class_property_set_description(oc, "device",
3683         "Path to the device node to use (default: /dev/kvm)");
3684 
3685     kvm_arch_accel_class_init(oc);
3686 }
3687 
3688 static const TypeInfo kvm_accel_type = {
3689     .name = TYPE_KVM_ACCEL,
3690     .parent = TYPE_ACCEL,
3691     .instance_init = kvm_accel_instance_init,
3692     .class_init = kvm_accel_class_init,
3693     .instance_size = sizeof(KVMState),
3694 };
3695 
3696 static void kvm_type_init(void)
3697 {
3698     type_register_static(&kvm_accel_type);
3699 }
3700 
3701 type_init(kvm_type_init);
3702 
3703 typedef struct StatsArgs {
3704     union StatsResultsType {
3705         StatsResultList **stats;
3706         StatsSchemaList **schema;
3707     } result;
3708     strList *names;
3709     Error **errp;
3710 } StatsArgs;
3711 
3712 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3713                                     uint64_t *stats_data,
3714                                     StatsList *stats_list,
3715                                     Error **errp)
3716 {
3717 
3718     Stats *stats;
3719     uint64List *val_list = NULL;
3720 
3721     /* Only add stats that we understand.  */
3722     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3723     case KVM_STATS_TYPE_CUMULATIVE:
3724     case KVM_STATS_TYPE_INSTANT:
3725     case KVM_STATS_TYPE_PEAK:
3726     case KVM_STATS_TYPE_LINEAR_HIST:
3727     case KVM_STATS_TYPE_LOG_HIST:
3728         break;
3729     default:
3730         return stats_list;
3731     }
3732 
3733     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3734     case KVM_STATS_UNIT_NONE:
3735     case KVM_STATS_UNIT_BYTES:
3736     case KVM_STATS_UNIT_CYCLES:
3737     case KVM_STATS_UNIT_SECONDS:
3738     case KVM_STATS_UNIT_BOOLEAN:
3739         break;
3740     default:
3741         return stats_list;
3742     }
3743 
3744     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3745     case KVM_STATS_BASE_POW10:
3746     case KVM_STATS_BASE_POW2:
3747         break;
3748     default:
3749         return stats_list;
3750     }
3751 
3752     /* Alloc and populate data list */
3753     stats = g_new0(Stats, 1);
3754     stats->name = g_strdup(pdesc->name);
3755     stats->value = g_new0(StatsValue, 1);;
3756 
3757     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3758         stats->value->u.boolean = *stats_data;
3759         stats->value->type = QTYPE_QBOOL;
3760     } else if (pdesc->size == 1) {
3761         stats->value->u.scalar = *stats_data;
3762         stats->value->type = QTYPE_QNUM;
3763     } else {
3764         int i;
3765         for (i = 0; i < pdesc->size; i++) {
3766             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3767         }
3768         stats->value->u.list = val_list;
3769         stats->value->type = QTYPE_QLIST;
3770     }
3771 
3772     QAPI_LIST_PREPEND(stats_list, stats);
3773     return stats_list;
3774 }
3775 
3776 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3777                                                  StatsSchemaValueList *list,
3778                                                  Error **errp)
3779 {
3780     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3781     schema_entry->value = g_new0(StatsSchemaValue, 1);
3782 
3783     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3784     case KVM_STATS_TYPE_CUMULATIVE:
3785         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3786         break;
3787     case KVM_STATS_TYPE_INSTANT:
3788         schema_entry->value->type = STATS_TYPE_INSTANT;
3789         break;
3790     case KVM_STATS_TYPE_PEAK:
3791         schema_entry->value->type = STATS_TYPE_PEAK;
3792         break;
3793     case KVM_STATS_TYPE_LINEAR_HIST:
3794         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3795         schema_entry->value->bucket_size = pdesc->bucket_size;
3796         schema_entry->value->has_bucket_size = true;
3797         break;
3798     case KVM_STATS_TYPE_LOG_HIST:
3799         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3800         break;
3801     default:
3802         goto exit;
3803     }
3804 
3805     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3806     case KVM_STATS_UNIT_NONE:
3807         break;
3808     case KVM_STATS_UNIT_BOOLEAN:
3809         schema_entry->value->has_unit = true;
3810         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3811         break;
3812     case KVM_STATS_UNIT_BYTES:
3813         schema_entry->value->has_unit = true;
3814         schema_entry->value->unit = STATS_UNIT_BYTES;
3815         break;
3816     case KVM_STATS_UNIT_CYCLES:
3817         schema_entry->value->has_unit = true;
3818         schema_entry->value->unit = STATS_UNIT_CYCLES;
3819         break;
3820     case KVM_STATS_UNIT_SECONDS:
3821         schema_entry->value->has_unit = true;
3822         schema_entry->value->unit = STATS_UNIT_SECONDS;
3823         break;
3824     default:
3825         goto exit;
3826     }
3827 
3828     schema_entry->value->exponent = pdesc->exponent;
3829     if (pdesc->exponent) {
3830         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3831         case KVM_STATS_BASE_POW10:
3832             schema_entry->value->has_base = true;
3833             schema_entry->value->base = 10;
3834             break;
3835         case KVM_STATS_BASE_POW2:
3836             schema_entry->value->has_base = true;
3837             schema_entry->value->base = 2;
3838             break;
3839         default:
3840             goto exit;
3841         }
3842     }
3843 
3844     schema_entry->value->name = g_strdup(pdesc->name);
3845     schema_entry->next = list;
3846     return schema_entry;
3847 exit:
3848     g_free(schema_entry->value);
3849     g_free(schema_entry);
3850     return list;
3851 }
3852 
3853 /* Cached stats descriptors */
3854 typedef struct StatsDescriptors {
3855     const char *ident; /* cache key, currently the StatsTarget */
3856     struct kvm_stats_desc *kvm_stats_desc;
3857     struct kvm_stats_header kvm_stats_header;
3858     QTAILQ_ENTRY(StatsDescriptors) next;
3859 } StatsDescriptors;
3860 
3861 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3862     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3863 
3864 /*
3865  * Return the descriptors for 'target', that either have already been read
3866  * or are retrieved from 'stats_fd'.
3867  */
3868 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3869                                                 Error **errp)
3870 {
3871     StatsDescriptors *descriptors;
3872     const char *ident;
3873     struct kvm_stats_desc *kvm_stats_desc;
3874     struct kvm_stats_header *kvm_stats_header;
3875     size_t size_desc;
3876     ssize_t ret;
3877 
3878     ident = StatsTarget_str(target);
3879     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3880         if (g_str_equal(descriptors->ident, ident)) {
3881             return descriptors;
3882         }
3883     }
3884 
3885     descriptors = g_new0(StatsDescriptors, 1);
3886 
3887     /* Read stats header */
3888     kvm_stats_header = &descriptors->kvm_stats_header;
3889     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3890     if (ret != sizeof(*kvm_stats_header)) {
3891         error_setg(errp, "KVM stats: failed to read stats header: "
3892                    "expected %zu actual %zu",
3893                    sizeof(*kvm_stats_header), ret);
3894         g_free(descriptors);
3895         return NULL;
3896     }
3897     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3898 
3899     /* Read stats descriptors */
3900     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3901     ret = pread(stats_fd, kvm_stats_desc,
3902                 size_desc * kvm_stats_header->num_desc,
3903                 kvm_stats_header->desc_offset);
3904 
3905     if (ret != size_desc * kvm_stats_header->num_desc) {
3906         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3907                    "expected %zu actual %zu",
3908                    size_desc * kvm_stats_header->num_desc, ret);
3909         g_free(descriptors);
3910         g_free(kvm_stats_desc);
3911         return NULL;
3912     }
3913     descriptors->kvm_stats_desc = kvm_stats_desc;
3914     descriptors->ident = ident;
3915     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3916     return descriptors;
3917 }
3918 
3919 static void query_stats(StatsResultList **result, StatsTarget target,
3920                         strList *names, int stats_fd, CPUState *cpu,
3921                         Error **errp)
3922 {
3923     struct kvm_stats_desc *kvm_stats_desc;
3924     struct kvm_stats_header *kvm_stats_header;
3925     StatsDescriptors *descriptors;
3926     g_autofree uint64_t *stats_data = NULL;
3927     struct kvm_stats_desc *pdesc;
3928     StatsList *stats_list = NULL;
3929     size_t size_desc, size_data = 0;
3930     ssize_t ret;
3931     int i;
3932 
3933     descriptors = find_stats_descriptors(target, stats_fd, errp);
3934     if (!descriptors) {
3935         return;
3936     }
3937 
3938     kvm_stats_header = &descriptors->kvm_stats_header;
3939     kvm_stats_desc = descriptors->kvm_stats_desc;
3940     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3941 
3942     /* Tally the total data size; read schema data */
3943     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3944         pdesc = (void *)kvm_stats_desc + i * size_desc;
3945         size_data += pdesc->size * sizeof(*stats_data);
3946     }
3947 
3948     stats_data = g_malloc0(size_data);
3949     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3950 
3951     if (ret != size_data) {
3952         error_setg(errp, "KVM stats: failed to read data: "
3953                    "expected %zu actual %zu", size_data, ret);
3954         return;
3955     }
3956 
3957     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3958         uint64_t *stats;
3959         pdesc = (void *)kvm_stats_desc + i * size_desc;
3960 
3961         /* Add entry to the list */
3962         stats = (void *)stats_data + pdesc->offset;
3963         if (!apply_str_list_filter(pdesc->name, names)) {
3964             continue;
3965         }
3966         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3967     }
3968 
3969     if (!stats_list) {
3970         return;
3971     }
3972 
3973     switch (target) {
3974     case STATS_TARGET_VM:
3975         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3976         break;
3977     case STATS_TARGET_VCPU:
3978         add_stats_entry(result, STATS_PROVIDER_KVM,
3979                         cpu->parent_obj.canonical_path,
3980                         stats_list);
3981         break;
3982     default:
3983         g_assert_not_reached();
3984     }
3985 }
3986 
3987 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3988                                int stats_fd, Error **errp)
3989 {
3990     struct kvm_stats_desc *kvm_stats_desc;
3991     struct kvm_stats_header *kvm_stats_header;
3992     StatsDescriptors *descriptors;
3993     struct kvm_stats_desc *pdesc;
3994     StatsSchemaValueList *stats_list = NULL;
3995     size_t size_desc;
3996     int i;
3997 
3998     descriptors = find_stats_descriptors(target, stats_fd, errp);
3999     if (!descriptors) {
4000         return;
4001     }
4002 
4003     kvm_stats_header = &descriptors->kvm_stats_header;
4004     kvm_stats_desc = descriptors->kvm_stats_desc;
4005     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4006 
4007     /* Tally the total data size; read schema data */
4008     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4009         pdesc = (void *)kvm_stats_desc + i * size_desc;
4010         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4011     }
4012 
4013     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4014 }
4015 
4016 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4017 {
4018     int stats_fd = cpu->kvm_vcpu_stats_fd;
4019     Error *local_err = NULL;
4020 
4021     if (stats_fd == -1) {
4022         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4023         error_propagate(kvm_stats_args->errp, local_err);
4024         return;
4025     }
4026     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4027                 kvm_stats_args->names, stats_fd, cpu,
4028                 kvm_stats_args->errp);
4029 }
4030 
4031 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4032 {
4033     int stats_fd = cpu->kvm_vcpu_stats_fd;
4034     Error *local_err = NULL;
4035 
4036     if (stats_fd == -1) {
4037         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4038         error_propagate(kvm_stats_args->errp, local_err);
4039         return;
4040     }
4041     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4042                        kvm_stats_args->errp);
4043 }
4044 
4045 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4046                            strList *names, strList *targets, Error **errp)
4047 {
4048     KVMState *s = kvm_state;
4049     CPUState *cpu;
4050     int stats_fd;
4051 
4052     switch (target) {
4053     case STATS_TARGET_VM:
4054     {
4055         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4056         if (stats_fd == -1) {
4057             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4058             return;
4059         }
4060         query_stats(result, target, names, stats_fd, NULL, errp);
4061         close(stats_fd);
4062         break;
4063     }
4064     case STATS_TARGET_VCPU:
4065     {
4066         StatsArgs stats_args;
4067         stats_args.result.stats = result;
4068         stats_args.names = names;
4069         stats_args.errp = errp;
4070         CPU_FOREACH(cpu) {
4071             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4072                 continue;
4073             }
4074             query_stats_vcpu(cpu, &stats_args);
4075         }
4076         break;
4077     }
4078     default:
4079         break;
4080     }
4081 }
4082 
4083 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4084 {
4085     StatsArgs stats_args;
4086     KVMState *s = kvm_state;
4087     int stats_fd;
4088 
4089     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4090     if (stats_fd == -1) {
4091         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4092         return;
4093     }
4094     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4095     close(stats_fd);
4096 
4097     if (first_cpu) {
4098         stats_args.result.schema = result;
4099         stats_args.errp = errp;
4100         query_stats_schema_vcpu(first_cpu, &stats_args);
4101     }
4102 }
4103 
4104 void kvm_mark_guest_state_protected(void)
4105 {
4106     kvm_state->guest_state_protected = true;
4107 }
4108