xref: /qemu/accel/kvm/kvm-all.c (revision 27a4a30e)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 #include "qapi/visitor.h"
45 #include "qapi/qapi-types-common.h"
46 #include "qapi/qapi-visit-common.h"
47 
48 #include "hw/boards.h"
49 
50 /* This check must be after config-host.h is included */
51 #ifdef CONFIG_EVENTFD
52 #include <sys/eventfd.h>
53 #endif
54 
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56  * need to use the real host PAGE_SIZE, as that's what KVM will use.
57  */
58 #define PAGE_SIZE qemu_real_host_page_size
59 
60 //#define DEBUG_KVM
61 
62 #ifdef DEBUG_KVM
63 #define DPRINTF(fmt, ...) \
64     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...) \
67     do { } while (0)
68 #endif
69 
70 #define KVM_MSI_HASHTAB_SIZE    256
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 struct KVMState
79 {
80     AccelState parent_obj;
81 
82     int nr_slots;
83     int fd;
84     int vmfd;
85     int coalesced_mmio;
86     int coalesced_pio;
87     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
88     bool coalesced_flush_in_progress;
89     int vcpu_events;
90     int robust_singlestep;
91     int debugregs;
92 #ifdef KVM_CAP_SET_GUEST_DEBUG
93     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
94 #endif
95     int max_nested_state_len;
96     int many_ioeventfds;
97     int intx_set_mask;
98     int kvm_shadow_mem;
99     bool kernel_irqchip_allowed;
100     bool kernel_irqchip_required;
101     OnOffAuto kernel_irqchip_split;
102     bool sync_mmu;
103     bool manual_dirty_log_protect;
104     /* The man page (and posix) say ioctl numbers are signed int, but
105      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
106      * unsigned, and treating them as signed here can break things */
107     unsigned irq_set_ioctl;
108     unsigned int sigmask_len;
109     GHashTable *gsimap;
110 #ifdef KVM_CAP_IRQ_ROUTING
111     struct kvm_irq_routing *irq_routes;
112     int nr_allocated_irq_routes;
113     unsigned long *used_gsi_bitmap;
114     unsigned int gsi_count;
115     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
116 #endif
117     KVMMemoryListener memory_listener;
118     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
119 
120     /* memory encryption */
121     void *memcrypt_handle;
122     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
123 
124     /* For "info mtree -f" to tell if an MR is registered in KVM */
125     int nr_as;
126     struct KVMAs {
127         KVMMemoryListener *ml;
128         AddressSpace *as;
129     } *as;
130 };
131 
132 KVMState *kvm_state;
133 bool kvm_kernel_irqchip;
134 bool kvm_split_irqchip;
135 bool kvm_async_interrupts_allowed;
136 bool kvm_halt_in_kernel_allowed;
137 bool kvm_eventfds_allowed;
138 bool kvm_irqfds_allowed;
139 bool kvm_resamplefds_allowed;
140 bool kvm_msi_via_irqfd_allowed;
141 bool kvm_gsi_routing_allowed;
142 bool kvm_gsi_direct_mapping;
143 bool kvm_allowed;
144 bool kvm_readonly_mem_allowed;
145 bool kvm_vm_attributes_allowed;
146 bool kvm_direct_msi_allowed;
147 bool kvm_ioeventfd_any_length_allowed;
148 bool kvm_msi_use_devid;
149 static bool kvm_immediate_exit;
150 static hwaddr kvm_max_slot_size = ~0;
151 
152 static const KVMCapabilityInfo kvm_required_capabilites[] = {
153     KVM_CAP_INFO(USER_MEMORY),
154     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
155     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
156     KVM_CAP_LAST_INFO
157 };
158 
159 static NotifierList kvm_irqchip_change_notifiers =
160     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
161 
162 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
163 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
164 
165 int kvm_get_max_memslots(void)
166 {
167     KVMState *s = KVM_STATE(current_accel());
168 
169     return s->nr_slots;
170 }
171 
172 bool kvm_memcrypt_enabled(void)
173 {
174     if (kvm_state && kvm_state->memcrypt_handle) {
175         return true;
176     }
177 
178     return false;
179 }
180 
181 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
182 {
183     if (kvm_state->memcrypt_handle &&
184         kvm_state->memcrypt_encrypt_data) {
185         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
186                                               ptr, len);
187     }
188 
189     return 1;
190 }
191 
192 /* Called with KVMMemoryListener.slots_lock held */
193 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
194 {
195     KVMState *s = kvm_state;
196     int i;
197 
198     for (i = 0; i < s->nr_slots; i++) {
199         if (kml->slots[i].memory_size == 0) {
200             return &kml->slots[i];
201         }
202     }
203 
204     return NULL;
205 }
206 
207 bool kvm_has_free_slot(MachineState *ms)
208 {
209     KVMState *s = KVM_STATE(ms->accelerator);
210     bool result;
211     KVMMemoryListener *kml = &s->memory_listener;
212 
213     kvm_slots_lock(kml);
214     result = !!kvm_get_free_slot(kml);
215     kvm_slots_unlock(kml);
216 
217     return result;
218 }
219 
220 /* Called with KVMMemoryListener.slots_lock held */
221 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
222 {
223     KVMSlot *slot = kvm_get_free_slot(kml);
224 
225     if (slot) {
226         return slot;
227     }
228 
229     fprintf(stderr, "%s: no free slot available\n", __func__);
230     abort();
231 }
232 
233 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
234                                          hwaddr start_addr,
235                                          hwaddr size)
236 {
237     KVMState *s = kvm_state;
238     int i;
239 
240     for (i = 0; i < s->nr_slots; i++) {
241         KVMSlot *mem = &kml->slots[i];
242 
243         if (start_addr == mem->start_addr && size == mem->memory_size) {
244             return mem;
245         }
246     }
247 
248     return NULL;
249 }
250 
251 /*
252  * Calculate and align the start address and the size of the section.
253  * Return the size. If the size is 0, the aligned section is empty.
254  */
255 static hwaddr kvm_align_section(MemoryRegionSection *section,
256                                 hwaddr *start)
257 {
258     hwaddr size = int128_get64(section->size);
259     hwaddr delta, aligned;
260 
261     /* kvm works in page size chunks, but the function may be called
262        with sub-page size and unaligned start address. Pad the start
263        address to next and truncate size to previous page boundary. */
264     aligned = ROUND_UP(section->offset_within_address_space,
265                        qemu_real_host_page_size);
266     delta = aligned - section->offset_within_address_space;
267     *start = aligned;
268     if (delta > size) {
269         return 0;
270     }
271 
272     return (size - delta) & qemu_real_host_page_mask;
273 }
274 
275 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
276                                        hwaddr *phys_addr)
277 {
278     KVMMemoryListener *kml = &s->memory_listener;
279     int i, ret = 0;
280 
281     kvm_slots_lock(kml);
282     for (i = 0; i < s->nr_slots; i++) {
283         KVMSlot *mem = &kml->slots[i];
284 
285         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
286             *phys_addr = mem->start_addr + (ram - mem->ram);
287             ret = 1;
288             break;
289         }
290     }
291     kvm_slots_unlock(kml);
292 
293     return ret;
294 }
295 
296 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
297 {
298     KVMState *s = kvm_state;
299     struct kvm_userspace_memory_region mem;
300     int ret;
301 
302     mem.slot = slot->slot | (kml->as_id << 16);
303     mem.guest_phys_addr = slot->start_addr;
304     mem.userspace_addr = (unsigned long)slot->ram;
305     mem.flags = slot->flags;
306 
307     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
308         /* Set the slot size to 0 before setting the slot to the desired
309          * value. This is needed based on KVM commit 75d61fbc. */
310         mem.memory_size = 0;
311         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
312         if (ret < 0) {
313             goto err;
314         }
315     }
316     mem.memory_size = slot->memory_size;
317     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
318     slot->old_flags = mem.flags;
319 err:
320     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
321                               mem.memory_size, mem.userspace_addr, ret);
322     if (ret < 0) {
323         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
324                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
325                      __func__, mem.slot, slot->start_addr,
326                      (uint64_t)mem.memory_size, strerror(errno));
327     }
328     return ret;
329 }
330 
331 int kvm_destroy_vcpu(CPUState *cpu)
332 {
333     KVMState *s = kvm_state;
334     long mmap_size;
335     struct KVMParkedVcpu *vcpu = NULL;
336     int ret = 0;
337 
338     DPRINTF("kvm_destroy_vcpu\n");
339 
340     ret = kvm_arch_destroy_vcpu(cpu);
341     if (ret < 0) {
342         goto err;
343     }
344 
345     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
346     if (mmap_size < 0) {
347         ret = mmap_size;
348         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
349         goto err;
350     }
351 
352     ret = munmap(cpu->kvm_run, mmap_size);
353     if (ret < 0) {
354         goto err;
355     }
356 
357     vcpu = g_malloc0(sizeof(*vcpu));
358     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
359     vcpu->kvm_fd = cpu->kvm_fd;
360     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
361 err:
362     return ret;
363 }
364 
365 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
366 {
367     struct KVMParkedVcpu *cpu;
368 
369     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
370         if (cpu->vcpu_id == vcpu_id) {
371             int kvm_fd;
372 
373             QLIST_REMOVE(cpu, node);
374             kvm_fd = cpu->kvm_fd;
375             g_free(cpu);
376             return kvm_fd;
377         }
378     }
379 
380     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
381 }
382 
383 int kvm_init_vcpu(CPUState *cpu)
384 {
385     KVMState *s = kvm_state;
386     long mmap_size;
387     int ret;
388 
389     DPRINTF("kvm_init_vcpu\n");
390 
391     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
392     if (ret < 0) {
393         DPRINTF("kvm_create_vcpu failed\n");
394         goto err;
395     }
396 
397     cpu->kvm_fd = ret;
398     cpu->kvm_state = s;
399     cpu->vcpu_dirty = true;
400 
401     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
402     if (mmap_size < 0) {
403         ret = mmap_size;
404         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
405         goto err;
406     }
407 
408     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
409                         cpu->kvm_fd, 0);
410     if (cpu->kvm_run == MAP_FAILED) {
411         ret = -errno;
412         DPRINTF("mmap'ing vcpu state failed\n");
413         goto err;
414     }
415 
416     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
417         s->coalesced_mmio_ring =
418             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
419     }
420 
421     ret = kvm_arch_init_vcpu(cpu);
422 err:
423     return ret;
424 }
425 
426 /*
427  * dirty pages logging control
428  */
429 
430 static int kvm_mem_flags(MemoryRegion *mr)
431 {
432     bool readonly = mr->readonly || memory_region_is_romd(mr);
433     int flags = 0;
434 
435     if (memory_region_get_dirty_log_mask(mr) != 0) {
436         flags |= KVM_MEM_LOG_DIRTY_PAGES;
437     }
438     if (readonly && kvm_readonly_mem_allowed) {
439         flags |= KVM_MEM_READONLY;
440     }
441     return flags;
442 }
443 
444 /* Called with KVMMemoryListener.slots_lock held */
445 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
446                                  MemoryRegion *mr)
447 {
448     mem->flags = kvm_mem_flags(mr);
449 
450     /* If nothing changed effectively, no need to issue ioctl */
451     if (mem->flags == mem->old_flags) {
452         return 0;
453     }
454 
455     return kvm_set_user_memory_region(kml, mem, false);
456 }
457 
458 static int kvm_section_update_flags(KVMMemoryListener *kml,
459                                     MemoryRegionSection *section)
460 {
461     hwaddr start_addr, size, slot_size;
462     KVMSlot *mem;
463     int ret = 0;
464 
465     size = kvm_align_section(section, &start_addr);
466     if (!size) {
467         return 0;
468     }
469 
470     kvm_slots_lock(kml);
471 
472     while (size && !ret) {
473         slot_size = MIN(kvm_max_slot_size, size);
474         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
475         if (!mem) {
476             /* We don't have a slot if we want to trap every access. */
477             goto out;
478         }
479 
480         ret = kvm_slot_update_flags(kml, mem, section->mr);
481         start_addr += slot_size;
482         size -= slot_size;
483     }
484 
485 out:
486     kvm_slots_unlock(kml);
487     return ret;
488 }
489 
490 static void kvm_log_start(MemoryListener *listener,
491                           MemoryRegionSection *section,
492                           int old, int new)
493 {
494     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
495     int r;
496 
497     if (old != 0) {
498         return;
499     }
500 
501     r = kvm_section_update_flags(kml, section);
502     if (r < 0) {
503         abort();
504     }
505 }
506 
507 static void kvm_log_stop(MemoryListener *listener,
508                           MemoryRegionSection *section,
509                           int old, int new)
510 {
511     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
512     int r;
513 
514     if (new != 0) {
515         return;
516     }
517 
518     r = kvm_section_update_flags(kml, section);
519     if (r < 0) {
520         abort();
521     }
522 }
523 
524 /* get kvm's dirty pages bitmap and update qemu's */
525 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
526                                          unsigned long *bitmap)
527 {
528     ram_addr_t start = section->offset_within_region +
529                        memory_region_get_ram_addr(section->mr);
530     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
531 
532     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
533     return 0;
534 }
535 
536 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
537 
538 /* Allocate the dirty bitmap for a slot  */
539 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
540 {
541     /*
542      * XXX bad kernel interface alert
543      * For dirty bitmap, kernel allocates array of size aligned to
544      * bits-per-long.  But for case when the kernel is 64bits and
545      * the userspace is 32bits, userspace can't align to the same
546      * bits-per-long, since sizeof(long) is different between kernel
547      * and user space.  This way, userspace will provide buffer which
548      * may be 4 bytes less than the kernel will use, resulting in
549      * userspace memory corruption (which is not detectable by valgrind
550      * too, in most cases).
551      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
552      * a hope that sizeof(long) won't become >8 any time soon.
553      */
554     hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
555                                         /*HOST_LONG_BITS*/ 64) / 8;
556     mem->dirty_bmap = g_malloc0(bitmap_size);
557 }
558 
559 /**
560  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
561  *
562  * This function will first try to fetch dirty bitmap from the kernel,
563  * and then updates qemu's dirty bitmap.
564  *
565  * NOTE: caller must be with kml->slots_lock held.
566  *
567  * @kml: the KVM memory listener object
568  * @section: the memory section to sync the dirty bitmap with
569  */
570 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
571                                           MemoryRegionSection *section)
572 {
573     KVMState *s = kvm_state;
574     struct kvm_dirty_log d = {};
575     KVMSlot *mem;
576     hwaddr start_addr, size;
577     hwaddr slot_size, slot_offset = 0;
578     int ret = 0;
579 
580     size = kvm_align_section(section, &start_addr);
581     while (size) {
582         MemoryRegionSection subsection = *section;
583 
584         slot_size = MIN(kvm_max_slot_size, size);
585         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
586         if (!mem) {
587             /* We don't have a slot if we want to trap every access. */
588             goto out;
589         }
590 
591         if (!mem->dirty_bmap) {
592             /* Allocate on the first log_sync, once and for all */
593             kvm_memslot_init_dirty_bitmap(mem);
594         }
595 
596         d.dirty_bitmap = mem->dirty_bmap;
597         d.slot = mem->slot | (kml->as_id << 16);
598         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
599             DPRINTF("ioctl failed %d\n", errno);
600             ret = -1;
601             goto out;
602         }
603 
604         subsection.offset_within_region += slot_offset;
605         subsection.size = int128_make64(slot_size);
606         kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
607 
608         slot_offset += slot_size;
609         start_addr += slot_size;
610         size -= slot_size;
611     }
612 out:
613     return ret;
614 }
615 
616 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
617 #define KVM_CLEAR_LOG_SHIFT  6
618 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
619 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
620 
621 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
622                                   uint64_t size)
623 {
624     KVMState *s = kvm_state;
625     uint64_t end, bmap_start, start_delta, bmap_npages;
626     struct kvm_clear_dirty_log d;
627     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
628     int ret;
629 
630     /*
631      * We need to extend either the start or the size or both to
632      * satisfy the KVM interface requirement.  Firstly, do the start
633      * page alignment on 64 host pages
634      */
635     bmap_start = start & KVM_CLEAR_LOG_MASK;
636     start_delta = start - bmap_start;
637     bmap_start /= psize;
638 
639     /*
640      * The kernel interface has restriction on the size too, that either:
641      *
642      * (1) the size is 64 host pages aligned (just like the start), or
643      * (2) the size fills up until the end of the KVM memslot.
644      */
645     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
646         << KVM_CLEAR_LOG_SHIFT;
647     end = mem->memory_size / psize;
648     if (bmap_npages > end - bmap_start) {
649         bmap_npages = end - bmap_start;
650     }
651     start_delta /= psize;
652 
653     /*
654      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
655      * that we won't clear any unknown dirty bits otherwise we might
656      * accidentally clear some set bits which are not yet synced from
657      * the kernel into QEMU's bitmap, then we'll lose track of the
658      * guest modifications upon those pages (which can directly lead
659      * to guest data loss or panic after migration).
660      *
661      * Layout of the KVMSlot.dirty_bmap:
662      *
663      *                   |<-------- bmap_npages -----------..>|
664      *                                                     [1]
665      *                     start_delta         size
666      *  |----------------|-------------|------------------|------------|
667      *  ^                ^             ^                               ^
668      *  |                |             |                               |
669      * start          bmap_start     (start)                         end
670      * of memslot                                             of memslot
671      *
672      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
673      */
674 
675     assert(bmap_start % BITS_PER_LONG == 0);
676     /* We should never do log_clear before log_sync */
677     assert(mem->dirty_bmap);
678     if (start_delta) {
679         /* Slow path - we need to manipulate a temp bitmap */
680         bmap_clear = bitmap_new(bmap_npages);
681         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
682                                     bmap_start, start_delta + size / psize);
683         /*
684          * We need to fill the holes at start because that was not
685          * specified by the caller and we extended the bitmap only for
686          * 64 pages alignment
687          */
688         bitmap_clear(bmap_clear, 0, start_delta);
689         d.dirty_bitmap = bmap_clear;
690     } else {
691         /* Fast path - start address aligns well with BITS_PER_LONG */
692         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
693     }
694 
695     d.first_page = bmap_start;
696     /* It should never overflow.  If it happens, say something */
697     assert(bmap_npages <= UINT32_MAX);
698     d.num_pages = bmap_npages;
699     d.slot = mem->slot | (as_id << 16);
700 
701     if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
702         ret = -errno;
703         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
704                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
705                      __func__, d.slot, (uint64_t)d.first_page,
706                      (uint32_t)d.num_pages, ret);
707     } else {
708         ret = 0;
709         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
710     }
711 
712     /*
713      * After we have updated the remote dirty bitmap, we update the
714      * cached bitmap as well for the memslot, then if another user
715      * clears the same region we know we shouldn't clear it again on
716      * the remote otherwise it's data loss as well.
717      */
718     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
719                  size / psize);
720     /* This handles the NULL case well */
721     g_free(bmap_clear);
722     return ret;
723 }
724 
725 
726 /**
727  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
728  *
729  * NOTE: this will be a no-op if we haven't enabled manual dirty log
730  * protection in the host kernel because in that case this operation
731  * will be done within log_sync().
732  *
733  * @kml:     the kvm memory listener
734  * @section: the memory range to clear dirty bitmap
735  */
736 static int kvm_physical_log_clear(KVMMemoryListener *kml,
737                                   MemoryRegionSection *section)
738 {
739     KVMState *s = kvm_state;
740     uint64_t start, size, offset, count;
741     KVMSlot *mem;
742     int ret = 0, i;
743 
744     if (!s->manual_dirty_log_protect) {
745         /* No need to do explicit clear */
746         return ret;
747     }
748 
749     start = section->offset_within_address_space;
750     size = int128_get64(section->size);
751 
752     if (!size) {
753         /* Nothing more we can do... */
754         return ret;
755     }
756 
757     kvm_slots_lock(kml);
758 
759     for (i = 0; i < s->nr_slots; i++) {
760         mem = &kml->slots[i];
761         /* Discard slots that are empty or do not overlap the section */
762         if (!mem->memory_size ||
763             mem->start_addr > start + size - 1 ||
764             start > mem->start_addr + mem->memory_size - 1) {
765             continue;
766         }
767 
768         if (start >= mem->start_addr) {
769             /* The slot starts before section or is aligned to it.  */
770             offset = start - mem->start_addr;
771             count = MIN(mem->memory_size - offset, size);
772         } else {
773             /* The slot starts after section.  */
774             offset = 0;
775             count = MIN(mem->memory_size, size - (mem->start_addr - start));
776         }
777         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
778         if (ret < 0) {
779             break;
780         }
781     }
782 
783     kvm_slots_unlock(kml);
784 
785     return ret;
786 }
787 
788 static void kvm_coalesce_mmio_region(MemoryListener *listener,
789                                      MemoryRegionSection *secion,
790                                      hwaddr start, hwaddr size)
791 {
792     KVMState *s = kvm_state;
793 
794     if (s->coalesced_mmio) {
795         struct kvm_coalesced_mmio_zone zone;
796 
797         zone.addr = start;
798         zone.size = size;
799         zone.pad = 0;
800 
801         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
802     }
803 }
804 
805 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
806                                        MemoryRegionSection *secion,
807                                        hwaddr start, hwaddr size)
808 {
809     KVMState *s = kvm_state;
810 
811     if (s->coalesced_mmio) {
812         struct kvm_coalesced_mmio_zone zone;
813 
814         zone.addr = start;
815         zone.size = size;
816         zone.pad = 0;
817 
818         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
819     }
820 }
821 
822 static void kvm_coalesce_pio_add(MemoryListener *listener,
823                                 MemoryRegionSection *section,
824                                 hwaddr start, hwaddr size)
825 {
826     KVMState *s = kvm_state;
827 
828     if (s->coalesced_pio) {
829         struct kvm_coalesced_mmio_zone zone;
830 
831         zone.addr = start;
832         zone.size = size;
833         zone.pio = 1;
834 
835         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
836     }
837 }
838 
839 static void kvm_coalesce_pio_del(MemoryListener *listener,
840                                 MemoryRegionSection *section,
841                                 hwaddr start, hwaddr size)
842 {
843     KVMState *s = kvm_state;
844 
845     if (s->coalesced_pio) {
846         struct kvm_coalesced_mmio_zone zone;
847 
848         zone.addr = start;
849         zone.size = size;
850         zone.pio = 1;
851 
852         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
853      }
854 }
855 
856 static MemoryListener kvm_coalesced_pio_listener = {
857     .coalesced_io_add = kvm_coalesce_pio_add,
858     .coalesced_io_del = kvm_coalesce_pio_del,
859 };
860 
861 int kvm_check_extension(KVMState *s, unsigned int extension)
862 {
863     int ret;
864 
865     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
866     if (ret < 0) {
867         ret = 0;
868     }
869 
870     return ret;
871 }
872 
873 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
874 {
875     int ret;
876 
877     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
878     if (ret < 0) {
879         /* VM wide version not implemented, use global one instead */
880         ret = kvm_check_extension(s, extension);
881     }
882 
883     return ret;
884 }
885 
886 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
887 {
888 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
889     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
890      * endianness, but the memory core hands them in target endianness.
891      * For example, PPC is always treated as big-endian even if running
892      * on KVM and on PPC64LE.  Correct here.
893      */
894     switch (size) {
895     case 2:
896         val = bswap16(val);
897         break;
898     case 4:
899         val = bswap32(val);
900         break;
901     }
902 #endif
903     return val;
904 }
905 
906 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
907                                   bool assign, uint32_t size, bool datamatch)
908 {
909     int ret;
910     struct kvm_ioeventfd iofd = {
911         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
912         .addr = addr,
913         .len = size,
914         .flags = 0,
915         .fd = fd,
916     };
917 
918     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
919                                  datamatch);
920     if (!kvm_enabled()) {
921         return -ENOSYS;
922     }
923 
924     if (datamatch) {
925         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
926     }
927     if (!assign) {
928         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
929     }
930 
931     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
932 
933     if (ret < 0) {
934         return -errno;
935     }
936 
937     return 0;
938 }
939 
940 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
941                                  bool assign, uint32_t size, bool datamatch)
942 {
943     struct kvm_ioeventfd kick = {
944         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
945         .addr = addr,
946         .flags = KVM_IOEVENTFD_FLAG_PIO,
947         .len = size,
948         .fd = fd,
949     };
950     int r;
951     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
952     if (!kvm_enabled()) {
953         return -ENOSYS;
954     }
955     if (datamatch) {
956         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
957     }
958     if (!assign) {
959         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
960     }
961     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
962     if (r < 0) {
963         return r;
964     }
965     return 0;
966 }
967 
968 
969 static int kvm_check_many_ioeventfds(void)
970 {
971     /* Userspace can use ioeventfd for io notification.  This requires a host
972      * that supports eventfd(2) and an I/O thread; since eventfd does not
973      * support SIGIO it cannot interrupt the vcpu.
974      *
975      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
976      * can avoid creating too many ioeventfds.
977      */
978 #if defined(CONFIG_EVENTFD)
979     int ioeventfds[7];
980     int i, ret = 0;
981     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
982         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
983         if (ioeventfds[i] < 0) {
984             break;
985         }
986         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
987         if (ret < 0) {
988             close(ioeventfds[i]);
989             break;
990         }
991     }
992 
993     /* Decide whether many devices are supported or not */
994     ret = i == ARRAY_SIZE(ioeventfds);
995 
996     while (i-- > 0) {
997         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
998         close(ioeventfds[i]);
999     }
1000     return ret;
1001 #else
1002     return 0;
1003 #endif
1004 }
1005 
1006 static const KVMCapabilityInfo *
1007 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1008 {
1009     while (list->name) {
1010         if (!kvm_check_extension(s, list->value)) {
1011             return list;
1012         }
1013         list++;
1014     }
1015     return NULL;
1016 }
1017 
1018 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1019 {
1020     g_assert(
1021         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1022     );
1023     kvm_max_slot_size = max_slot_size;
1024 }
1025 
1026 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1027                              MemoryRegionSection *section, bool add)
1028 {
1029     KVMSlot *mem;
1030     int err;
1031     MemoryRegion *mr = section->mr;
1032     bool writeable = !mr->readonly && !mr->rom_device;
1033     hwaddr start_addr, size, slot_size;
1034     void *ram;
1035 
1036     if (!memory_region_is_ram(mr)) {
1037         if (writeable || !kvm_readonly_mem_allowed) {
1038             return;
1039         } else if (!mr->romd_mode) {
1040             /* If the memory device is not in romd_mode, then we actually want
1041              * to remove the kvm memory slot so all accesses will trap. */
1042             add = false;
1043         }
1044     }
1045 
1046     size = kvm_align_section(section, &start_addr);
1047     if (!size) {
1048         return;
1049     }
1050 
1051     /* use aligned delta to align the ram address */
1052     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1053           (start_addr - section->offset_within_address_space);
1054 
1055     kvm_slots_lock(kml);
1056 
1057     if (!add) {
1058         do {
1059             slot_size = MIN(kvm_max_slot_size, size);
1060             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1061             if (!mem) {
1062                 goto out;
1063             }
1064             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1065                 kvm_physical_sync_dirty_bitmap(kml, section);
1066             }
1067 
1068             /* unregister the slot */
1069             g_free(mem->dirty_bmap);
1070             mem->dirty_bmap = NULL;
1071             mem->memory_size = 0;
1072             mem->flags = 0;
1073             err = kvm_set_user_memory_region(kml, mem, false);
1074             if (err) {
1075                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1076                         __func__, strerror(-err));
1077                 abort();
1078             }
1079             start_addr += slot_size;
1080             size -= slot_size;
1081         } while (size);
1082         goto out;
1083     }
1084 
1085     /* register the new slot */
1086     do {
1087         slot_size = MIN(kvm_max_slot_size, size);
1088         mem = kvm_alloc_slot(kml);
1089         mem->memory_size = slot_size;
1090         mem->start_addr = start_addr;
1091         mem->ram = ram;
1092         mem->flags = kvm_mem_flags(mr);
1093 
1094         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1095             /*
1096              * Reallocate the bmap; it means it doesn't disappear in
1097              * middle of a migrate.
1098              */
1099             kvm_memslot_init_dirty_bitmap(mem);
1100         }
1101         err = kvm_set_user_memory_region(kml, mem, true);
1102         if (err) {
1103             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1104                     strerror(-err));
1105             abort();
1106         }
1107         start_addr += slot_size;
1108         ram += slot_size;
1109         size -= slot_size;
1110     } while (size);
1111 
1112 out:
1113     kvm_slots_unlock(kml);
1114 }
1115 
1116 static void kvm_region_add(MemoryListener *listener,
1117                            MemoryRegionSection *section)
1118 {
1119     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1120 
1121     memory_region_ref(section->mr);
1122     kvm_set_phys_mem(kml, section, true);
1123 }
1124 
1125 static void kvm_region_del(MemoryListener *listener,
1126                            MemoryRegionSection *section)
1127 {
1128     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1129 
1130     kvm_set_phys_mem(kml, section, false);
1131     memory_region_unref(section->mr);
1132 }
1133 
1134 static void kvm_log_sync(MemoryListener *listener,
1135                          MemoryRegionSection *section)
1136 {
1137     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1138     int r;
1139 
1140     kvm_slots_lock(kml);
1141     r = kvm_physical_sync_dirty_bitmap(kml, section);
1142     kvm_slots_unlock(kml);
1143     if (r < 0) {
1144         abort();
1145     }
1146 }
1147 
1148 static void kvm_log_clear(MemoryListener *listener,
1149                           MemoryRegionSection *section)
1150 {
1151     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1152     int r;
1153 
1154     r = kvm_physical_log_clear(kml, section);
1155     if (r < 0) {
1156         error_report_once("%s: kvm log clear failed: mr=%s "
1157                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1158                           section->mr->name, section->offset_within_region,
1159                           int128_get64(section->size));
1160         abort();
1161     }
1162 }
1163 
1164 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1165                                   MemoryRegionSection *section,
1166                                   bool match_data, uint64_t data,
1167                                   EventNotifier *e)
1168 {
1169     int fd = event_notifier_get_fd(e);
1170     int r;
1171 
1172     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1173                                data, true, int128_get64(section->size),
1174                                match_data);
1175     if (r < 0) {
1176         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1177                 __func__, strerror(-r), -r);
1178         abort();
1179     }
1180 }
1181 
1182 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1183                                   MemoryRegionSection *section,
1184                                   bool match_data, uint64_t data,
1185                                   EventNotifier *e)
1186 {
1187     int fd = event_notifier_get_fd(e);
1188     int r;
1189 
1190     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1191                                data, false, int128_get64(section->size),
1192                                match_data);
1193     if (r < 0) {
1194         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1195                 __func__, strerror(-r), -r);
1196         abort();
1197     }
1198 }
1199 
1200 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1201                                  MemoryRegionSection *section,
1202                                  bool match_data, uint64_t data,
1203                                  EventNotifier *e)
1204 {
1205     int fd = event_notifier_get_fd(e);
1206     int r;
1207 
1208     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1209                               data, true, int128_get64(section->size),
1210                               match_data);
1211     if (r < 0) {
1212         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1213                 __func__, strerror(-r), -r);
1214         abort();
1215     }
1216 }
1217 
1218 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1219                                  MemoryRegionSection *section,
1220                                  bool match_data, uint64_t data,
1221                                  EventNotifier *e)
1222 
1223 {
1224     int fd = event_notifier_get_fd(e);
1225     int r;
1226 
1227     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1228                               data, false, int128_get64(section->size),
1229                               match_data);
1230     if (r < 0) {
1231         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1232                 __func__, strerror(-r), -r);
1233         abort();
1234     }
1235 }
1236 
1237 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1238                                   AddressSpace *as, int as_id)
1239 {
1240     int i;
1241 
1242     qemu_mutex_init(&kml->slots_lock);
1243     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1244     kml->as_id = as_id;
1245 
1246     for (i = 0; i < s->nr_slots; i++) {
1247         kml->slots[i].slot = i;
1248     }
1249 
1250     kml->listener.region_add = kvm_region_add;
1251     kml->listener.region_del = kvm_region_del;
1252     kml->listener.log_start = kvm_log_start;
1253     kml->listener.log_stop = kvm_log_stop;
1254     kml->listener.log_sync = kvm_log_sync;
1255     kml->listener.log_clear = kvm_log_clear;
1256     kml->listener.priority = 10;
1257 
1258     memory_listener_register(&kml->listener, as);
1259 
1260     for (i = 0; i < s->nr_as; ++i) {
1261         if (!s->as[i].as) {
1262             s->as[i].as = as;
1263             s->as[i].ml = kml;
1264             break;
1265         }
1266     }
1267 }
1268 
1269 static MemoryListener kvm_io_listener = {
1270     .eventfd_add = kvm_io_ioeventfd_add,
1271     .eventfd_del = kvm_io_ioeventfd_del,
1272     .priority = 10,
1273 };
1274 
1275 int kvm_set_irq(KVMState *s, int irq, int level)
1276 {
1277     struct kvm_irq_level event;
1278     int ret;
1279 
1280     assert(kvm_async_interrupts_enabled());
1281 
1282     event.level = level;
1283     event.irq = irq;
1284     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1285     if (ret < 0) {
1286         perror("kvm_set_irq");
1287         abort();
1288     }
1289 
1290     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1291 }
1292 
1293 #ifdef KVM_CAP_IRQ_ROUTING
1294 typedef struct KVMMSIRoute {
1295     struct kvm_irq_routing_entry kroute;
1296     QTAILQ_ENTRY(KVMMSIRoute) entry;
1297 } KVMMSIRoute;
1298 
1299 static void set_gsi(KVMState *s, unsigned int gsi)
1300 {
1301     set_bit(gsi, s->used_gsi_bitmap);
1302 }
1303 
1304 static void clear_gsi(KVMState *s, unsigned int gsi)
1305 {
1306     clear_bit(gsi, s->used_gsi_bitmap);
1307 }
1308 
1309 void kvm_init_irq_routing(KVMState *s)
1310 {
1311     int gsi_count, i;
1312 
1313     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1314     if (gsi_count > 0) {
1315         /* Round up so we can search ints using ffs */
1316         s->used_gsi_bitmap = bitmap_new(gsi_count);
1317         s->gsi_count = gsi_count;
1318     }
1319 
1320     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1321     s->nr_allocated_irq_routes = 0;
1322 
1323     if (!kvm_direct_msi_allowed) {
1324         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1325             QTAILQ_INIT(&s->msi_hashtab[i]);
1326         }
1327     }
1328 
1329     kvm_arch_init_irq_routing(s);
1330 }
1331 
1332 void kvm_irqchip_commit_routes(KVMState *s)
1333 {
1334     int ret;
1335 
1336     if (kvm_gsi_direct_mapping()) {
1337         return;
1338     }
1339 
1340     if (!kvm_gsi_routing_enabled()) {
1341         return;
1342     }
1343 
1344     s->irq_routes->flags = 0;
1345     trace_kvm_irqchip_commit_routes();
1346     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1347     assert(ret == 0);
1348 }
1349 
1350 static void kvm_add_routing_entry(KVMState *s,
1351                                   struct kvm_irq_routing_entry *entry)
1352 {
1353     struct kvm_irq_routing_entry *new;
1354     int n, size;
1355 
1356     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1357         n = s->nr_allocated_irq_routes * 2;
1358         if (n < 64) {
1359             n = 64;
1360         }
1361         size = sizeof(struct kvm_irq_routing);
1362         size += n * sizeof(*new);
1363         s->irq_routes = g_realloc(s->irq_routes, size);
1364         s->nr_allocated_irq_routes = n;
1365     }
1366     n = s->irq_routes->nr++;
1367     new = &s->irq_routes->entries[n];
1368 
1369     *new = *entry;
1370 
1371     set_gsi(s, entry->gsi);
1372 }
1373 
1374 static int kvm_update_routing_entry(KVMState *s,
1375                                     struct kvm_irq_routing_entry *new_entry)
1376 {
1377     struct kvm_irq_routing_entry *entry;
1378     int n;
1379 
1380     for (n = 0; n < s->irq_routes->nr; n++) {
1381         entry = &s->irq_routes->entries[n];
1382         if (entry->gsi != new_entry->gsi) {
1383             continue;
1384         }
1385 
1386         if(!memcmp(entry, new_entry, sizeof *entry)) {
1387             return 0;
1388         }
1389 
1390         *entry = *new_entry;
1391 
1392         return 0;
1393     }
1394 
1395     return -ESRCH;
1396 }
1397 
1398 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1399 {
1400     struct kvm_irq_routing_entry e = {};
1401 
1402     assert(pin < s->gsi_count);
1403 
1404     e.gsi = irq;
1405     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1406     e.flags = 0;
1407     e.u.irqchip.irqchip = irqchip;
1408     e.u.irqchip.pin = pin;
1409     kvm_add_routing_entry(s, &e);
1410 }
1411 
1412 void kvm_irqchip_release_virq(KVMState *s, int virq)
1413 {
1414     struct kvm_irq_routing_entry *e;
1415     int i;
1416 
1417     if (kvm_gsi_direct_mapping()) {
1418         return;
1419     }
1420 
1421     for (i = 0; i < s->irq_routes->nr; i++) {
1422         e = &s->irq_routes->entries[i];
1423         if (e->gsi == virq) {
1424             s->irq_routes->nr--;
1425             *e = s->irq_routes->entries[s->irq_routes->nr];
1426         }
1427     }
1428     clear_gsi(s, virq);
1429     kvm_arch_release_virq_post(virq);
1430     trace_kvm_irqchip_release_virq(virq);
1431 }
1432 
1433 void kvm_irqchip_add_change_notifier(Notifier *n)
1434 {
1435     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1436 }
1437 
1438 void kvm_irqchip_remove_change_notifier(Notifier *n)
1439 {
1440     notifier_remove(n);
1441 }
1442 
1443 void kvm_irqchip_change_notify(void)
1444 {
1445     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1446 }
1447 
1448 static unsigned int kvm_hash_msi(uint32_t data)
1449 {
1450     /* This is optimized for IA32 MSI layout. However, no other arch shall
1451      * repeat the mistake of not providing a direct MSI injection API. */
1452     return data & 0xff;
1453 }
1454 
1455 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1456 {
1457     KVMMSIRoute *route, *next;
1458     unsigned int hash;
1459 
1460     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1461         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1462             kvm_irqchip_release_virq(s, route->kroute.gsi);
1463             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1464             g_free(route);
1465         }
1466     }
1467 }
1468 
1469 static int kvm_irqchip_get_virq(KVMState *s)
1470 {
1471     int next_virq;
1472 
1473     /*
1474      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1475      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1476      * number can succeed even though a new route entry cannot be added.
1477      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1478      */
1479     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1480         kvm_flush_dynamic_msi_routes(s);
1481     }
1482 
1483     /* Return the lowest unused GSI in the bitmap */
1484     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1485     if (next_virq >= s->gsi_count) {
1486         return -ENOSPC;
1487     } else {
1488         return next_virq;
1489     }
1490 }
1491 
1492 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1493 {
1494     unsigned int hash = kvm_hash_msi(msg.data);
1495     KVMMSIRoute *route;
1496 
1497     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1498         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1499             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1500             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1501             return route;
1502         }
1503     }
1504     return NULL;
1505 }
1506 
1507 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1508 {
1509     struct kvm_msi msi;
1510     KVMMSIRoute *route;
1511 
1512     if (kvm_direct_msi_allowed) {
1513         msi.address_lo = (uint32_t)msg.address;
1514         msi.address_hi = msg.address >> 32;
1515         msi.data = le32_to_cpu(msg.data);
1516         msi.flags = 0;
1517         memset(msi.pad, 0, sizeof(msi.pad));
1518 
1519         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1520     }
1521 
1522     route = kvm_lookup_msi_route(s, msg);
1523     if (!route) {
1524         int virq;
1525 
1526         virq = kvm_irqchip_get_virq(s);
1527         if (virq < 0) {
1528             return virq;
1529         }
1530 
1531         route = g_malloc0(sizeof(KVMMSIRoute));
1532         route->kroute.gsi = virq;
1533         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1534         route->kroute.flags = 0;
1535         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1536         route->kroute.u.msi.address_hi = msg.address >> 32;
1537         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1538 
1539         kvm_add_routing_entry(s, &route->kroute);
1540         kvm_irqchip_commit_routes(s);
1541 
1542         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1543                            entry);
1544     }
1545 
1546     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1547 
1548     return kvm_set_irq(s, route->kroute.gsi, 1);
1549 }
1550 
1551 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1552 {
1553     struct kvm_irq_routing_entry kroute = {};
1554     int virq;
1555     MSIMessage msg = {0, 0};
1556 
1557     if (pci_available && dev) {
1558         msg = pci_get_msi_message(dev, vector);
1559     }
1560 
1561     if (kvm_gsi_direct_mapping()) {
1562         return kvm_arch_msi_data_to_gsi(msg.data);
1563     }
1564 
1565     if (!kvm_gsi_routing_enabled()) {
1566         return -ENOSYS;
1567     }
1568 
1569     virq = kvm_irqchip_get_virq(s);
1570     if (virq < 0) {
1571         return virq;
1572     }
1573 
1574     kroute.gsi = virq;
1575     kroute.type = KVM_IRQ_ROUTING_MSI;
1576     kroute.flags = 0;
1577     kroute.u.msi.address_lo = (uint32_t)msg.address;
1578     kroute.u.msi.address_hi = msg.address >> 32;
1579     kroute.u.msi.data = le32_to_cpu(msg.data);
1580     if (pci_available && kvm_msi_devid_required()) {
1581         kroute.flags = KVM_MSI_VALID_DEVID;
1582         kroute.u.msi.devid = pci_requester_id(dev);
1583     }
1584     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1585         kvm_irqchip_release_virq(s, virq);
1586         return -EINVAL;
1587     }
1588 
1589     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1590                                     vector, virq);
1591 
1592     kvm_add_routing_entry(s, &kroute);
1593     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1594     kvm_irqchip_commit_routes(s);
1595 
1596     return virq;
1597 }
1598 
1599 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1600                                  PCIDevice *dev)
1601 {
1602     struct kvm_irq_routing_entry kroute = {};
1603 
1604     if (kvm_gsi_direct_mapping()) {
1605         return 0;
1606     }
1607 
1608     if (!kvm_irqchip_in_kernel()) {
1609         return -ENOSYS;
1610     }
1611 
1612     kroute.gsi = virq;
1613     kroute.type = KVM_IRQ_ROUTING_MSI;
1614     kroute.flags = 0;
1615     kroute.u.msi.address_lo = (uint32_t)msg.address;
1616     kroute.u.msi.address_hi = msg.address >> 32;
1617     kroute.u.msi.data = le32_to_cpu(msg.data);
1618     if (pci_available && kvm_msi_devid_required()) {
1619         kroute.flags = KVM_MSI_VALID_DEVID;
1620         kroute.u.msi.devid = pci_requester_id(dev);
1621     }
1622     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1623         return -EINVAL;
1624     }
1625 
1626     trace_kvm_irqchip_update_msi_route(virq);
1627 
1628     return kvm_update_routing_entry(s, &kroute);
1629 }
1630 
1631 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1632                                     bool assign)
1633 {
1634     struct kvm_irqfd irqfd = {
1635         .fd = fd,
1636         .gsi = virq,
1637         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1638     };
1639 
1640     if (rfd != -1) {
1641         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1642         irqfd.resamplefd = rfd;
1643     }
1644 
1645     if (!kvm_irqfds_enabled()) {
1646         return -ENOSYS;
1647     }
1648 
1649     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1650 }
1651 
1652 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1653 {
1654     struct kvm_irq_routing_entry kroute = {};
1655     int virq;
1656 
1657     if (!kvm_gsi_routing_enabled()) {
1658         return -ENOSYS;
1659     }
1660 
1661     virq = kvm_irqchip_get_virq(s);
1662     if (virq < 0) {
1663         return virq;
1664     }
1665 
1666     kroute.gsi = virq;
1667     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1668     kroute.flags = 0;
1669     kroute.u.adapter.summary_addr = adapter->summary_addr;
1670     kroute.u.adapter.ind_addr = adapter->ind_addr;
1671     kroute.u.adapter.summary_offset = adapter->summary_offset;
1672     kroute.u.adapter.ind_offset = adapter->ind_offset;
1673     kroute.u.adapter.adapter_id = adapter->adapter_id;
1674 
1675     kvm_add_routing_entry(s, &kroute);
1676 
1677     return virq;
1678 }
1679 
1680 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1681 {
1682     struct kvm_irq_routing_entry kroute = {};
1683     int virq;
1684 
1685     if (!kvm_gsi_routing_enabled()) {
1686         return -ENOSYS;
1687     }
1688     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1689         return -ENOSYS;
1690     }
1691     virq = kvm_irqchip_get_virq(s);
1692     if (virq < 0) {
1693         return virq;
1694     }
1695 
1696     kroute.gsi = virq;
1697     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1698     kroute.flags = 0;
1699     kroute.u.hv_sint.vcpu = vcpu;
1700     kroute.u.hv_sint.sint = sint;
1701 
1702     kvm_add_routing_entry(s, &kroute);
1703     kvm_irqchip_commit_routes(s);
1704 
1705     return virq;
1706 }
1707 
1708 #else /* !KVM_CAP_IRQ_ROUTING */
1709 
1710 void kvm_init_irq_routing(KVMState *s)
1711 {
1712 }
1713 
1714 void kvm_irqchip_release_virq(KVMState *s, int virq)
1715 {
1716 }
1717 
1718 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1719 {
1720     abort();
1721 }
1722 
1723 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1724 {
1725     return -ENOSYS;
1726 }
1727 
1728 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1729 {
1730     return -ENOSYS;
1731 }
1732 
1733 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1734 {
1735     return -ENOSYS;
1736 }
1737 
1738 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1739 {
1740     abort();
1741 }
1742 
1743 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1744 {
1745     return -ENOSYS;
1746 }
1747 #endif /* !KVM_CAP_IRQ_ROUTING */
1748 
1749 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1750                                        EventNotifier *rn, int virq)
1751 {
1752     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1753            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1754 }
1755 
1756 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1757                                           int virq)
1758 {
1759     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1760            false);
1761 }
1762 
1763 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1764                                    EventNotifier *rn, qemu_irq irq)
1765 {
1766     gpointer key, gsi;
1767     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1768 
1769     if (!found) {
1770         return -ENXIO;
1771     }
1772     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1773 }
1774 
1775 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1776                                       qemu_irq irq)
1777 {
1778     gpointer key, gsi;
1779     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1780 
1781     if (!found) {
1782         return -ENXIO;
1783     }
1784     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1785 }
1786 
1787 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1788 {
1789     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1790 }
1791 
1792 static void kvm_irqchip_create(KVMState *s)
1793 {
1794     int ret;
1795 
1796     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1797     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1798         ;
1799     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1800         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1801         if (ret < 0) {
1802             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1803             exit(1);
1804         }
1805     } else {
1806         return;
1807     }
1808 
1809     /* First probe and see if there's a arch-specific hook to create the
1810      * in-kernel irqchip for us */
1811     ret = kvm_arch_irqchip_create(s);
1812     if (ret == 0) {
1813         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1814             perror("Split IRQ chip mode not supported.");
1815             exit(1);
1816         } else {
1817             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1818         }
1819     }
1820     if (ret < 0) {
1821         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1822         exit(1);
1823     }
1824 
1825     kvm_kernel_irqchip = true;
1826     /* If we have an in-kernel IRQ chip then we must have asynchronous
1827      * interrupt delivery (though the reverse is not necessarily true)
1828      */
1829     kvm_async_interrupts_allowed = true;
1830     kvm_halt_in_kernel_allowed = true;
1831 
1832     kvm_init_irq_routing(s);
1833 
1834     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1835 }
1836 
1837 /* Find number of supported CPUs using the recommended
1838  * procedure from the kernel API documentation to cope with
1839  * older kernels that may be missing capabilities.
1840  */
1841 static int kvm_recommended_vcpus(KVMState *s)
1842 {
1843     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1844     return (ret) ? ret : 4;
1845 }
1846 
1847 static int kvm_max_vcpus(KVMState *s)
1848 {
1849     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1850     return (ret) ? ret : kvm_recommended_vcpus(s);
1851 }
1852 
1853 static int kvm_max_vcpu_id(KVMState *s)
1854 {
1855     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1856     return (ret) ? ret : kvm_max_vcpus(s);
1857 }
1858 
1859 bool kvm_vcpu_id_is_valid(int vcpu_id)
1860 {
1861     KVMState *s = KVM_STATE(current_accel());
1862     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1863 }
1864 
1865 static int kvm_init(MachineState *ms)
1866 {
1867     MachineClass *mc = MACHINE_GET_CLASS(ms);
1868     static const char upgrade_note[] =
1869         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1870         "(see http://sourceforge.net/projects/kvm).\n";
1871     struct {
1872         const char *name;
1873         int num;
1874     } num_cpus[] = {
1875         { "SMP",          ms->smp.cpus },
1876         { "hotpluggable", ms->smp.max_cpus },
1877         { NULL, }
1878     }, *nc = num_cpus;
1879     int soft_vcpus_limit, hard_vcpus_limit;
1880     KVMState *s;
1881     const KVMCapabilityInfo *missing_cap;
1882     int ret;
1883     int type = 0;
1884     const char *kvm_type;
1885 
1886     s = KVM_STATE(ms->accelerator);
1887 
1888     /*
1889      * On systems where the kernel can support different base page
1890      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1891      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1892      * page size for the system though.
1893      */
1894     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1895 
1896     s->sigmask_len = 8;
1897 
1898 #ifdef KVM_CAP_SET_GUEST_DEBUG
1899     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1900 #endif
1901     QLIST_INIT(&s->kvm_parked_vcpus);
1902     s->vmfd = -1;
1903     s->fd = qemu_open("/dev/kvm", O_RDWR);
1904     if (s->fd == -1) {
1905         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1906         ret = -errno;
1907         goto err;
1908     }
1909 
1910     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1911     if (ret < KVM_API_VERSION) {
1912         if (ret >= 0) {
1913             ret = -EINVAL;
1914         }
1915         fprintf(stderr, "kvm version too old\n");
1916         goto err;
1917     }
1918 
1919     if (ret > KVM_API_VERSION) {
1920         ret = -EINVAL;
1921         fprintf(stderr, "kvm version not supported\n");
1922         goto err;
1923     }
1924 
1925     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1926     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1927 
1928     /* If unspecified, use the default value */
1929     if (!s->nr_slots) {
1930         s->nr_slots = 32;
1931     }
1932 
1933     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1934     if (s->nr_as <= 1) {
1935         s->nr_as = 1;
1936     }
1937     s->as = g_new0(struct KVMAs, s->nr_as);
1938 
1939     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1940     if (mc->kvm_type) {
1941         type = mc->kvm_type(ms, kvm_type);
1942     } else if (kvm_type) {
1943         ret = -EINVAL;
1944         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1945         goto err;
1946     }
1947 
1948     do {
1949         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1950     } while (ret == -EINTR);
1951 
1952     if (ret < 0) {
1953         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1954                 strerror(-ret));
1955 
1956 #ifdef TARGET_S390X
1957         if (ret == -EINVAL) {
1958             fprintf(stderr,
1959                     "Host kernel setup problem detected. Please verify:\n");
1960             fprintf(stderr, "- for kernels supporting the switch_amode or"
1961                     " user_mode parameters, whether\n");
1962             fprintf(stderr,
1963                     "  user space is running in primary address space\n");
1964             fprintf(stderr,
1965                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1966                     "whether it is enabled\n");
1967         }
1968 #endif
1969         goto err;
1970     }
1971 
1972     s->vmfd = ret;
1973 
1974     /* check the vcpu limits */
1975     soft_vcpus_limit = kvm_recommended_vcpus(s);
1976     hard_vcpus_limit = kvm_max_vcpus(s);
1977 
1978     while (nc->name) {
1979         if (nc->num > soft_vcpus_limit) {
1980             warn_report("Number of %s cpus requested (%d) exceeds "
1981                         "the recommended cpus supported by KVM (%d)",
1982                         nc->name, nc->num, soft_vcpus_limit);
1983 
1984             if (nc->num > hard_vcpus_limit) {
1985                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1986                         "the maximum cpus supported by KVM (%d)\n",
1987                         nc->name, nc->num, hard_vcpus_limit);
1988                 exit(1);
1989             }
1990         }
1991         nc++;
1992     }
1993 
1994     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1995     if (!missing_cap) {
1996         missing_cap =
1997             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1998     }
1999     if (missing_cap) {
2000         ret = -EINVAL;
2001         fprintf(stderr, "kvm does not support %s\n%s",
2002                 missing_cap->name, upgrade_note);
2003         goto err;
2004     }
2005 
2006     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2007     s->coalesced_pio = s->coalesced_mmio &&
2008                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2009 
2010     s->manual_dirty_log_protect =
2011         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2012     if (s->manual_dirty_log_protect) {
2013         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
2014         if (ret) {
2015             warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
2016                         "but failed.  Falling back to the legacy mode. ");
2017             s->manual_dirty_log_protect = false;
2018         }
2019     }
2020 
2021 #ifdef KVM_CAP_VCPU_EVENTS
2022     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2023 #endif
2024 
2025     s->robust_singlestep =
2026         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2027 
2028 #ifdef KVM_CAP_DEBUGREGS
2029     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2030 #endif
2031 
2032     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2033 
2034 #ifdef KVM_CAP_IRQ_ROUTING
2035     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2036 #endif
2037 
2038     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2039 
2040     s->irq_set_ioctl = KVM_IRQ_LINE;
2041     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2042         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2043     }
2044 
2045     kvm_readonly_mem_allowed =
2046         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2047 
2048     kvm_eventfds_allowed =
2049         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2050 
2051     kvm_irqfds_allowed =
2052         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2053 
2054     kvm_resamplefds_allowed =
2055         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2056 
2057     kvm_vm_attributes_allowed =
2058         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2059 
2060     kvm_ioeventfd_any_length_allowed =
2061         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2062 
2063     kvm_state = s;
2064 
2065     /*
2066      * if memory encryption object is specified then initialize the memory
2067      * encryption context.
2068      */
2069     if (ms->memory_encryption) {
2070         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2071         if (!kvm_state->memcrypt_handle) {
2072             ret = -1;
2073             goto err;
2074         }
2075 
2076         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2077     }
2078 
2079     ret = kvm_arch_init(ms, s);
2080     if (ret < 0) {
2081         goto err;
2082     }
2083 
2084     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2085         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2086     }
2087 
2088     if (s->kernel_irqchip_allowed) {
2089         kvm_irqchip_create(s);
2090     }
2091 
2092     if (kvm_eventfds_allowed) {
2093         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2094         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2095     }
2096     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2097     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2098 
2099     kvm_memory_listener_register(s, &s->memory_listener,
2100                                  &address_space_memory, 0);
2101     memory_listener_register(&kvm_io_listener,
2102                              &address_space_io);
2103     memory_listener_register(&kvm_coalesced_pio_listener,
2104                              &address_space_io);
2105 
2106     s->many_ioeventfds = kvm_check_many_ioeventfds();
2107 
2108     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2109     if (!s->sync_mmu) {
2110         qemu_balloon_inhibit(true);
2111     }
2112 
2113     return 0;
2114 
2115 err:
2116     assert(ret < 0);
2117     if (s->vmfd >= 0) {
2118         close(s->vmfd);
2119     }
2120     if (s->fd != -1) {
2121         close(s->fd);
2122     }
2123     g_free(s->memory_listener.slots);
2124 
2125     return ret;
2126 }
2127 
2128 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2129 {
2130     s->sigmask_len = sigmask_len;
2131 }
2132 
2133 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2134                           int size, uint32_t count)
2135 {
2136     int i;
2137     uint8_t *ptr = data;
2138 
2139     for (i = 0; i < count; i++) {
2140         address_space_rw(&address_space_io, port, attrs,
2141                          ptr, size,
2142                          direction == KVM_EXIT_IO_OUT);
2143         ptr += size;
2144     }
2145 }
2146 
2147 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2148 {
2149     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2150             run->internal.suberror);
2151 
2152     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2153         int i;
2154 
2155         for (i = 0; i < run->internal.ndata; ++i) {
2156             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2157                     i, (uint64_t)run->internal.data[i]);
2158         }
2159     }
2160     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2161         fprintf(stderr, "emulation failure\n");
2162         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2163             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2164             return EXCP_INTERRUPT;
2165         }
2166     }
2167     /* FIXME: Should trigger a qmp message to let management know
2168      * something went wrong.
2169      */
2170     return -1;
2171 }
2172 
2173 void kvm_flush_coalesced_mmio_buffer(void)
2174 {
2175     KVMState *s = kvm_state;
2176 
2177     if (s->coalesced_flush_in_progress) {
2178         return;
2179     }
2180 
2181     s->coalesced_flush_in_progress = true;
2182 
2183     if (s->coalesced_mmio_ring) {
2184         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2185         while (ring->first != ring->last) {
2186             struct kvm_coalesced_mmio *ent;
2187 
2188             ent = &ring->coalesced_mmio[ring->first];
2189 
2190             if (ent->pio == 1) {
2191                 address_space_write(&address_space_io, ent->phys_addr,
2192                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2193                                     ent->len);
2194             } else {
2195                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2196             }
2197             smp_wmb();
2198             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2199         }
2200     }
2201 
2202     s->coalesced_flush_in_progress = false;
2203 }
2204 
2205 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2206 {
2207     if (!cpu->vcpu_dirty) {
2208         kvm_arch_get_registers(cpu);
2209         cpu->vcpu_dirty = true;
2210     }
2211 }
2212 
2213 void kvm_cpu_synchronize_state(CPUState *cpu)
2214 {
2215     if (!cpu->vcpu_dirty) {
2216         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2217     }
2218 }
2219 
2220 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2221 {
2222     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2223     cpu->vcpu_dirty = false;
2224 }
2225 
2226 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2227 {
2228     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2229 }
2230 
2231 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2232 {
2233     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2234     cpu->vcpu_dirty = false;
2235 }
2236 
2237 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2238 {
2239     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2240 }
2241 
2242 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2243 {
2244     cpu->vcpu_dirty = true;
2245 }
2246 
2247 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2248 {
2249     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2250 }
2251 
2252 #ifdef KVM_HAVE_MCE_INJECTION
2253 static __thread void *pending_sigbus_addr;
2254 static __thread int pending_sigbus_code;
2255 static __thread bool have_sigbus_pending;
2256 #endif
2257 
2258 static void kvm_cpu_kick(CPUState *cpu)
2259 {
2260     atomic_set(&cpu->kvm_run->immediate_exit, 1);
2261 }
2262 
2263 static void kvm_cpu_kick_self(void)
2264 {
2265     if (kvm_immediate_exit) {
2266         kvm_cpu_kick(current_cpu);
2267     } else {
2268         qemu_cpu_kick_self();
2269     }
2270 }
2271 
2272 static void kvm_eat_signals(CPUState *cpu)
2273 {
2274     struct timespec ts = { 0, 0 };
2275     siginfo_t siginfo;
2276     sigset_t waitset;
2277     sigset_t chkset;
2278     int r;
2279 
2280     if (kvm_immediate_exit) {
2281         atomic_set(&cpu->kvm_run->immediate_exit, 0);
2282         /* Write kvm_run->immediate_exit before the cpu->exit_request
2283          * write in kvm_cpu_exec.
2284          */
2285         smp_wmb();
2286         return;
2287     }
2288 
2289     sigemptyset(&waitset);
2290     sigaddset(&waitset, SIG_IPI);
2291 
2292     do {
2293         r = sigtimedwait(&waitset, &siginfo, &ts);
2294         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2295             perror("sigtimedwait");
2296             exit(1);
2297         }
2298 
2299         r = sigpending(&chkset);
2300         if (r == -1) {
2301             perror("sigpending");
2302             exit(1);
2303         }
2304     } while (sigismember(&chkset, SIG_IPI));
2305 }
2306 
2307 int kvm_cpu_exec(CPUState *cpu)
2308 {
2309     struct kvm_run *run = cpu->kvm_run;
2310     int ret, run_ret;
2311 
2312     DPRINTF("kvm_cpu_exec()\n");
2313 
2314     if (kvm_arch_process_async_events(cpu)) {
2315         atomic_set(&cpu->exit_request, 0);
2316         return EXCP_HLT;
2317     }
2318 
2319     qemu_mutex_unlock_iothread();
2320     cpu_exec_start(cpu);
2321 
2322     do {
2323         MemTxAttrs attrs;
2324 
2325         if (cpu->vcpu_dirty) {
2326             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2327             cpu->vcpu_dirty = false;
2328         }
2329 
2330         kvm_arch_pre_run(cpu, run);
2331         if (atomic_read(&cpu->exit_request)) {
2332             DPRINTF("interrupt exit requested\n");
2333             /*
2334              * KVM requires us to reenter the kernel after IO exits to complete
2335              * instruction emulation. This self-signal will ensure that we
2336              * leave ASAP again.
2337              */
2338             kvm_cpu_kick_self();
2339         }
2340 
2341         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2342          * Matching barrier in kvm_eat_signals.
2343          */
2344         smp_rmb();
2345 
2346         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2347 
2348         attrs = kvm_arch_post_run(cpu, run);
2349 
2350 #ifdef KVM_HAVE_MCE_INJECTION
2351         if (unlikely(have_sigbus_pending)) {
2352             qemu_mutex_lock_iothread();
2353             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2354                                     pending_sigbus_addr);
2355             have_sigbus_pending = false;
2356             qemu_mutex_unlock_iothread();
2357         }
2358 #endif
2359 
2360         if (run_ret < 0) {
2361             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2362                 DPRINTF("io window exit\n");
2363                 kvm_eat_signals(cpu);
2364                 ret = EXCP_INTERRUPT;
2365                 break;
2366             }
2367             fprintf(stderr, "error: kvm run failed %s\n",
2368                     strerror(-run_ret));
2369 #ifdef TARGET_PPC
2370             if (run_ret == -EBUSY) {
2371                 fprintf(stderr,
2372                         "This is probably because your SMT is enabled.\n"
2373                         "VCPU can only run on primary threads with all "
2374                         "secondary threads offline.\n");
2375             }
2376 #endif
2377             ret = -1;
2378             break;
2379         }
2380 
2381         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2382         switch (run->exit_reason) {
2383         case KVM_EXIT_IO:
2384             DPRINTF("handle_io\n");
2385             /* Called outside BQL */
2386             kvm_handle_io(run->io.port, attrs,
2387                           (uint8_t *)run + run->io.data_offset,
2388                           run->io.direction,
2389                           run->io.size,
2390                           run->io.count);
2391             ret = 0;
2392             break;
2393         case KVM_EXIT_MMIO:
2394             DPRINTF("handle_mmio\n");
2395             /* Called outside BQL */
2396             address_space_rw(&address_space_memory,
2397                              run->mmio.phys_addr, attrs,
2398                              run->mmio.data,
2399                              run->mmio.len,
2400                              run->mmio.is_write);
2401             ret = 0;
2402             break;
2403         case KVM_EXIT_IRQ_WINDOW_OPEN:
2404             DPRINTF("irq_window_open\n");
2405             ret = EXCP_INTERRUPT;
2406             break;
2407         case KVM_EXIT_SHUTDOWN:
2408             DPRINTF("shutdown\n");
2409             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2410             ret = EXCP_INTERRUPT;
2411             break;
2412         case KVM_EXIT_UNKNOWN:
2413             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2414                     (uint64_t)run->hw.hardware_exit_reason);
2415             ret = -1;
2416             break;
2417         case KVM_EXIT_INTERNAL_ERROR:
2418             ret = kvm_handle_internal_error(cpu, run);
2419             break;
2420         case KVM_EXIT_SYSTEM_EVENT:
2421             switch (run->system_event.type) {
2422             case KVM_SYSTEM_EVENT_SHUTDOWN:
2423                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2424                 ret = EXCP_INTERRUPT;
2425                 break;
2426             case KVM_SYSTEM_EVENT_RESET:
2427                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2428                 ret = EXCP_INTERRUPT;
2429                 break;
2430             case KVM_SYSTEM_EVENT_CRASH:
2431                 kvm_cpu_synchronize_state(cpu);
2432                 qemu_mutex_lock_iothread();
2433                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2434                 qemu_mutex_unlock_iothread();
2435                 ret = 0;
2436                 break;
2437             default:
2438                 DPRINTF("kvm_arch_handle_exit\n");
2439                 ret = kvm_arch_handle_exit(cpu, run);
2440                 break;
2441             }
2442             break;
2443         default:
2444             DPRINTF("kvm_arch_handle_exit\n");
2445             ret = kvm_arch_handle_exit(cpu, run);
2446             break;
2447         }
2448     } while (ret == 0);
2449 
2450     cpu_exec_end(cpu);
2451     qemu_mutex_lock_iothread();
2452 
2453     if (ret < 0) {
2454         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2455         vm_stop(RUN_STATE_INTERNAL_ERROR);
2456     }
2457 
2458     atomic_set(&cpu->exit_request, 0);
2459     return ret;
2460 }
2461 
2462 int kvm_ioctl(KVMState *s, int type, ...)
2463 {
2464     int ret;
2465     void *arg;
2466     va_list ap;
2467 
2468     va_start(ap, type);
2469     arg = va_arg(ap, void *);
2470     va_end(ap);
2471 
2472     trace_kvm_ioctl(type, arg);
2473     ret = ioctl(s->fd, type, arg);
2474     if (ret == -1) {
2475         ret = -errno;
2476     }
2477     return ret;
2478 }
2479 
2480 int kvm_vm_ioctl(KVMState *s, int type, ...)
2481 {
2482     int ret;
2483     void *arg;
2484     va_list ap;
2485 
2486     va_start(ap, type);
2487     arg = va_arg(ap, void *);
2488     va_end(ap);
2489 
2490     trace_kvm_vm_ioctl(type, arg);
2491     ret = ioctl(s->vmfd, type, arg);
2492     if (ret == -1) {
2493         ret = -errno;
2494     }
2495     return ret;
2496 }
2497 
2498 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2499 {
2500     int ret;
2501     void *arg;
2502     va_list ap;
2503 
2504     va_start(ap, type);
2505     arg = va_arg(ap, void *);
2506     va_end(ap);
2507 
2508     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2509     ret = ioctl(cpu->kvm_fd, type, arg);
2510     if (ret == -1) {
2511         ret = -errno;
2512     }
2513     return ret;
2514 }
2515 
2516 int kvm_device_ioctl(int fd, int type, ...)
2517 {
2518     int ret;
2519     void *arg;
2520     va_list ap;
2521 
2522     va_start(ap, type);
2523     arg = va_arg(ap, void *);
2524     va_end(ap);
2525 
2526     trace_kvm_device_ioctl(fd, type, arg);
2527     ret = ioctl(fd, type, arg);
2528     if (ret == -1) {
2529         ret = -errno;
2530     }
2531     return ret;
2532 }
2533 
2534 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2535 {
2536     int ret;
2537     struct kvm_device_attr attribute = {
2538         .group = group,
2539         .attr = attr,
2540     };
2541 
2542     if (!kvm_vm_attributes_allowed) {
2543         return 0;
2544     }
2545 
2546     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2547     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2548     return ret ? 0 : 1;
2549 }
2550 
2551 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2552 {
2553     struct kvm_device_attr attribute = {
2554         .group = group,
2555         .attr = attr,
2556         .flags = 0,
2557     };
2558 
2559     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2560 }
2561 
2562 int kvm_device_access(int fd, int group, uint64_t attr,
2563                       void *val, bool write, Error **errp)
2564 {
2565     struct kvm_device_attr kvmattr;
2566     int err;
2567 
2568     kvmattr.flags = 0;
2569     kvmattr.group = group;
2570     kvmattr.attr = attr;
2571     kvmattr.addr = (uintptr_t)val;
2572 
2573     err = kvm_device_ioctl(fd,
2574                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2575                            &kvmattr);
2576     if (err < 0) {
2577         error_setg_errno(errp, -err,
2578                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2579                          "attr 0x%016" PRIx64,
2580                          write ? "SET" : "GET", group, attr);
2581     }
2582     return err;
2583 }
2584 
2585 bool kvm_has_sync_mmu(void)
2586 {
2587     return kvm_state->sync_mmu;
2588 }
2589 
2590 int kvm_has_vcpu_events(void)
2591 {
2592     return kvm_state->vcpu_events;
2593 }
2594 
2595 int kvm_has_robust_singlestep(void)
2596 {
2597     return kvm_state->robust_singlestep;
2598 }
2599 
2600 int kvm_has_debugregs(void)
2601 {
2602     return kvm_state->debugregs;
2603 }
2604 
2605 int kvm_max_nested_state_length(void)
2606 {
2607     return kvm_state->max_nested_state_len;
2608 }
2609 
2610 int kvm_has_many_ioeventfds(void)
2611 {
2612     if (!kvm_enabled()) {
2613         return 0;
2614     }
2615     return kvm_state->many_ioeventfds;
2616 }
2617 
2618 int kvm_has_gsi_routing(void)
2619 {
2620 #ifdef KVM_CAP_IRQ_ROUTING
2621     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2622 #else
2623     return false;
2624 #endif
2625 }
2626 
2627 int kvm_has_intx_set_mask(void)
2628 {
2629     return kvm_state->intx_set_mask;
2630 }
2631 
2632 bool kvm_arm_supports_user_irq(void)
2633 {
2634     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2635 }
2636 
2637 #ifdef KVM_CAP_SET_GUEST_DEBUG
2638 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2639                                                  target_ulong pc)
2640 {
2641     struct kvm_sw_breakpoint *bp;
2642 
2643     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2644         if (bp->pc == pc) {
2645             return bp;
2646         }
2647     }
2648     return NULL;
2649 }
2650 
2651 int kvm_sw_breakpoints_active(CPUState *cpu)
2652 {
2653     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2654 }
2655 
2656 struct kvm_set_guest_debug_data {
2657     struct kvm_guest_debug dbg;
2658     int err;
2659 };
2660 
2661 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2662 {
2663     struct kvm_set_guest_debug_data *dbg_data =
2664         (struct kvm_set_guest_debug_data *) data.host_ptr;
2665 
2666     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2667                                    &dbg_data->dbg);
2668 }
2669 
2670 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2671 {
2672     struct kvm_set_guest_debug_data data;
2673 
2674     data.dbg.control = reinject_trap;
2675 
2676     if (cpu->singlestep_enabled) {
2677         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2678     }
2679     kvm_arch_update_guest_debug(cpu, &data.dbg);
2680 
2681     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2682                RUN_ON_CPU_HOST_PTR(&data));
2683     return data.err;
2684 }
2685 
2686 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2687                           target_ulong len, int type)
2688 {
2689     struct kvm_sw_breakpoint *bp;
2690     int err;
2691 
2692     if (type == GDB_BREAKPOINT_SW) {
2693         bp = kvm_find_sw_breakpoint(cpu, addr);
2694         if (bp) {
2695             bp->use_count++;
2696             return 0;
2697         }
2698 
2699         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2700         bp->pc = addr;
2701         bp->use_count = 1;
2702         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2703         if (err) {
2704             g_free(bp);
2705             return err;
2706         }
2707 
2708         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2709     } else {
2710         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2711         if (err) {
2712             return err;
2713         }
2714     }
2715 
2716     CPU_FOREACH(cpu) {
2717         err = kvm_update_guest_debug(cpu, 0);
2718         if (err) {
2719             return err;
2720         }
2721     }
2722     return 0;
2723 }
2724 
2725 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2726                           target_ulong len, int type)
2727 {
2728     struct kvm_sw_breakpoint *bp;
2729     int err;
2730 
2731     if (type == GDB_BREAKPOINT_SW) {
2732         bp = kvm_find_sw_breakpoint(cpu, addr);
2733         if (!bp) {
2734             return -ENOENT;
2735         }
2736 
2737         if (bp->use_count > 1) {
2738             bp->use_count--;
2739             return 0;
2740         }
2741 
2742         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2743         if (err) {
2744             return err;
2745         }
2746 
2747         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2748         g_free(bp);
2749     } else {
2750         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2751         if (err) {
2752             return err;
2753         }
2754     }
2755 
2756     CPU_FOREACH(cpu) {
2757         err = kvm_update_guest_debug(cpu, 0);
2758         if (err) {
2759             return err;
2760         }
2761     }
2762     return 0;
2763 }
2764 
2765 void kvm_remove_all_breakpoints(CPUState *cpu)
2766 {
2767     struct kvm_sw_breakpoint *bp, *next;
2768     KVMState *s = cpu->kvm_state;
2769     CPUState *tmpcpu;
2770 
2771     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2772         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2773             /* Try harder to find a CPU that currently sees the breakpoint. */
2774             CPU_FOREACH(tmpcpu) {
2775                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2776                     break;
2777                 }
2778             }
2779         }
2780         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2781         g_free(bp);
2782     }
2783     kvm_arch_remove_all_hw_breakpoints();
2784 
2785     CPU_FOREACH(cpu) {
2786         kvm_update_guest_debug(cpu, 0);
2787     }
2788 }
2789 
2790 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2791 
2792 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2793 {
2794     return -EINVAL;
2795 }
2796 
2797 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2798                           target_ulong len, int type)
2799 {
2800     return -EINVAL;
2801 }
2802 
2803 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2804                           target_ulong len, int type)
2805 {
2806     return -EINVAL;
2807 }
2808 
2809 void kvm_remove_all_breakpoints(CPUState *cpu)
2810 {
2811 }
2812 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2813 
2814 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2815 {
2816     KVMState *s = kvm_state;
2817     struct kvm_signal_mask *sigmask;
2818     int r;
2819 
2820     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2821 
2822     sigmask->len = s->sigmask_len;
2823     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2824     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2825     g_free(sigmask);
2826 
2827     return r;
2828 }
2829 
2830 static void kvm_ipi_signal(int sig)
2831 {
2832     if (current_cpu) {
2833         assert(kvm_immediate_exit);
2834         kvm_cpu_kick(current_cpu);
2835     }
2836 }
2837 
2838 void kvm_init_cpu_signals(CPUState *cpu)
2839 {
2840     int r;
2841     sigset_t set;
2842     struct sigaction sigact;
2843 
2844     memset(&sigact, 0, sizeof(sigact));
2845     sigact.sa_handler = kvm_ipi_signal;
2846     sigaction(SIG_IPI, &sigact, NULL);
2847 
2848     pthread_sigmask(SIG_BLOCK, NULL, &set);
2849 #if defined KVM_HAVE_MCE_INJECTION
2850     sigdelset(&set, SIGBUS);
2851     pthread_sigmask(SIG_SETMASK, &set, NULL);
2852 #endif
2853     sigdelset(&set, SIG_IPI);
2854     if (kvm_immediate_exit) {
2855         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2856     } else {
2857         r = kvm_set_signal_mask(cpu, &set);
2858     }
2859     if (r) {
2860         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2861         exit(1);
2862     }
2863 }
2864 
2865 /* Called asynchronously in VCPU thread.  */
2866 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2867 {
2868 #ifdef KVM_HAVE_MCE_INJECTION
2869     if (have_sigbus_pending) {
2870         return 1;
2871     }
2872     have_sigbus_pending = true;
2873     pending_sigbus_addr = addr;
2874     pending_sigbus_code = code;
2875     atomic_set(&cpu->exit_request, 1);
2876     return 0;
2877 #else
2878     return 1;
2879 #endif
2880 }
2881 
2882 /* Called synchronously (via signalfd) in main thread.  */
2883 int kvm_on_sigbus(int code, void *addr)
2884 {
2885 #ifdef KVM_HAVE_MCE_INJECTION
2886     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2887      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2888      * we can only get action optional here.
2889      */
2890     assert(code != BUS_MCEERR_AR);
2891     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2892     return 0;
2893 #else
2894     return 1;
2895 #endif
2896 }
2897 
2898 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2899 {
2900     int ret;
2901     struct kvm_create_device create_dev;
2902 
2903     create_dev.type = type;
2904     create_dev.fd = -1;
2905     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2906 
2907     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2908         return -ENOTSUP;
2909     }
2910 
2911     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2912     if (ret) {
2913         return ret;
2914     }
2915 
2916     return test ? 0 : create_dev.fd;
2917 }
2918 
2919 bool kvm_device_supported(int vmfd, uint64_t type)
2920 {
2921     struct kvm_create_device create_dev = {
2922         .type = type,
2923         .fd = -1,
2924         .flags = KVM_CREATE_DEVICE_TEST,
2925     };
2926 
2927     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2928         return false;
2929     }
2930 
2931     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2932 }
2933 
2934 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2935 {
2936     struct kvm_one_reg reg;
2937     int r;
2938 
2939     reg.id = id;
2940     reg.addr = (uintptr_t) source;
2941     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2942     if (r) {
2943         trace_kvm_failed_reg_set(id, strerror(-r));
2944     }
2945     return r;
2946 }
2947 
2948 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2949 {
2950     struct kvm_one_reg reg;
2951     int r;
2952 
2953     reg.id = id;
2954     reg.addr = (uintptr_t) target;
2955     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2956     if (r) {
2957         trace_kvm_failed_reg_get(id, strerror(-r));
2958     }
2959     return r;
2960 }
2961 
2962 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2963                                  hwaddr start_addr, hwaddr size)
2964 {
2965     KVMState *kvm = KVM_STATE(ms->accelerator);
2966     int i;
2967 
2968     for (i = 0; i < kvm->nr_as; ++i) {
2969         if (kvm->as[i].as == as && kvm->as[i].ml) {
2970             size = MIN(kvm_max_slot_size, size);
2971             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2972                                                     start_addr, size);
2973         }
2974     }
2975 
2976     return false;
2977 }
2978 
2979 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
2980                                    const char *name, void *opaque,
2981                                    Error **errp)
2982 {
2983     KVMState *s = KVM_STATE(obj);
2984     int64_t value = s->kvm_shadow_mem;
2985 
2986     visit_type_int(v, name, &value, errp);
2987 }
2988 
2989 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
2990                                    const char *name, void *opaque,
2991                                    Error **errp)
2992 {
2993     KVMState *s = KVM_STATE(obj);
2994     Error *error = NULL;
2995     int64_t value;
2996 
2997     visit_type_int(v, name, &value, &error);
2998     if (error) {
2999         error_propagate(errp, error);
3000         return;
3001     }
3002 
3003     s->kvm_shadow_mem = value;
3004 }
3005 
3006 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3007                                    const char *name, void *opaque,
3008                                    Error **errp)
3009 {
3010     Error *err = NULL;
3011     KVMState *s = KVM_STATE(obj);
3012     OnOffSplit mode;
3013 
3014     visit_type_OnOffSplit(v, name, &mode, &err);
3015     if (err) {
3016         error_propagate(errp, err);
3017         return;
3018     } else {
3019         switch (mode) {
3020         case ON_OFF_SPLIT_ON:
3021             s->kernel_irqchip_allowed = true;
3022             s->kernel_irqchip_required = true;
3023             s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3024             break;
3025         case ON_OFF_SPLIT_OFF:
3026             s->kernel_irqchip_allowed = false;
3027             s->kernel_irqchip_required = false;
3028             s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3029             break;
3030         case ON_OFF_SPLIT_SPLIT:
3031             s->kernel_irqchip_allowed = true;
3032             s->kernel_irqchip_required = true;
3033             s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3034             break;
3035         default:
3036             /* The value was checked in visit_type_OnOffSplit() above. If
3037              * we get here, then something is wrong in QEMU.
3038              */
3039             abort();
3040         }
3041     }
3042 }
3043 
3044 bool kvm_kernel_irqchip_allowed(void)
3045 {
3046     return kvm_state->kernel_irqchip_allowed;
3047 }
3048 
3049 bool kvm_kernel_irqchip_required(void)
3050 {
3051     return kvm_state->kernel_irqchip_required;
3052 }
3053 
3054 bool kvm_kernel_irqchip_split(void)
3055 {
3056     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3057 }
3058 
3059 static void kvm_accel_instance_init(Object *obj)
3060 {
3061     KVMState *s = KVM_STATE(obj);
3062 
3063     s->kvm_shadow_mem = -1;
3064     s->kernel_irqchip_allowed = true;
3065     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3066 }
3067 
3068 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3069 {
3070     AccelClass *ac = ACCEL_CLASS(oc);
3071     ac->name = "KVM";
3072     ac->init_machine = kvm_init;
3073     ac->has_memory = kvm_accel_has_memory;
3074     ac->allowed = &kvm_allowed;
3075 
3076     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3077         NULL, kvm_set_kernel_irqchip,
3078         NULL, NULL, &error_abort);
3079     object_class_property_set_description(oc, "kernel-irqchip",
3080         "Configure KVM in-kernel irqchip", &error_abort);
3081 
3082     object_class_property_add(oc, "kvm-shadow-mem", "int",
3083         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3084         NULL, NULL, &error_abort);
3085     object_class_property_set_description(oc, "kvm-shadow-mem",
3086         "KVM shadow MMU size", &error_abort);
3087 }
3088 
3089 static const TypeInfo kvm_accel_type = {
3090     .name = TYPE_KVM_ACCEL,
3091     .parent = TYPE_ACCEL,
3092     .instance_init = kvm_accel_instance_init,
3093     .class_init = kvm_accel_class_init,
3094     .instance_size = sizeof(KVMState),
3095 };
3096 
3097 static void kvm_type_init(void)
3098 {
3099     type_register_static(&kvm_accel_type);
3100 }
3101 
3102 type_init(kvm_type_init);
3103