xref: /qemu/accel/kvm/kvm-all.c (revision 43692239)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "qemu/event_notifier.h"
37 #include "qemu/main-loop.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40 #include "qapi/visitor.h"
41 #include "qapi/qapi-types-common.h"
42 #include "qapi/qapi-visit-common.h"
43 #include "sysemu/reset.h"
44 #include "qemu/guest-random.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm-cpus.h"
47 
48 #include "hw/boards.h"
49 
50 /* This check must be after config-host.h is included */
51 #ifdef CONFIG_EVENTFD
52 #include <sys/eventfd.h>
53 #endif
54 
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56  * need to use the real host PAGE_SIZE, as that's what KVM will use.
57  */
58 #ifdef PAGE_SIZE
59 #undef PAGE_SIZE
60 #endif
61 #define PAGE_SIZE qemu_real_host_page_size
62 
63 //#define DEBUG_KVM
64 
65 #ifdef DEBUG_KVM
66 #define DPRINTF(fmt, ...) \
67     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
68 #else
69 #define DPRINTF(fmt, ...) \
70     do { } while (0)
71 #endif
72 
73 #define KVM_MSI_HASHTAB_SIZE    256
74 
75 struct KVMParkedVcpu {
76     unsigned long vcpu_id;
77     int kvm_fd;
78     QLIST_ENTRY(KVMParkedVcpu) node;
79 };
80 
81 struct KVMState
82 {
83     AccelState parent_obj;
84 
85     int nr_slots;
86     int fd;
87     int vmfd;
88     int coalesced_mmio;
89     int coalesced_pio;
90     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
91     bool coalesced_flush_in_progress;
92     int vcpu_events;
93     int robust_singlestep;
94     int debugregs;
95 #ifdef KVM_CAP_SET_GUEST_DEBUG
96     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
97 #endif
98     int max_nested_state_len;
99     int many_ioeventfds;
100     int intx_set_mask;
101     int kvm_shadow_mem;
102     bool kernel_irqchip_allowed;
103     bool kernel_irqchip_required;
104     OnOffAuto kernel_irqchip_split;
105     bool sync_mmu;
106     uint64_t manual_dirty_log_protect;
107     /* The man page (and posix) say ioctl numbers are signed int, but
108      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
109      * unsigned, and treating them as signed here can break things */
110     unsigned irq_set_ioctl;
111     unsigned int sigmask_len;
112     GHashTable *gsimap;
113 #ifdef KVM_CAP_IRQ_ROUTING
114     struct kvm_irq_routing *irq_routes;
115     int nr_allocated_irq_routes;
116     unsigned long *used_gsi_bitmap;
117     unsigned int gsi_count;
118     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
119 #endif
120     KVMMemoryListener memory_listener;
121     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
122 
123     /* For "info mtree -f" to tell if an MR is registered in KVM */
124     int nr_as;
125     struct KVMAs {
126         KVMMemoryListener *ml;
127         AddressSpace *as;
128     } *as;
129 };
130 
131 KVMState *kvm_state;
132 bool kvm_kernel_irqchip;
133 bool kvm_split_irqchip;
134 bool kvm_async_interrupts_allowed;
135 bool kvm_halt_in_kernel_allowed;
136 bool kvm_eventfds_allowed;
137 bool kvm_irqfds_allowed;
138 bool kvm_resamplefds_allowed;
139 bool kvm_msi_via_irqfd_allowed;
140 bool kvm_gsi_routing_allowed;
141 bool kvm_gsi_direct_mapping;
142 bool kvm_allowed;
143 bool kvm_readonly_mem_allowed;
144 bool kvm_vm_attributes_allowed;
145 bool kvm_direct_msi_allowed;
146 bool kvm_ioeventfd_any_length_allowed;
147 bool kvm_msi_use_devid;
148 static bool kvm_immediate_exit;
149 static hwaddr kvm_max_slot_size = ~0;
150 
151 static const KVMCapabilityInfo kvm_required_capabilites[] = {
152     KVM_CAP_INFO(USER_MEMORY),
153     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
154     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
155     KVM_CAP_LAST_INFO
156 };
157 
158 static NotifierList kvm_irqchip_change_notifiers =
159     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
160 
161 struct KVMResampleFd {
162     int gsi;
163     EventNotifier *resample_event;
164     QLIST_ENTRY(KVMResampleFd) node;
165 };
166 typedef struct KVMResampleFd KVMResampleFd;
167 
168 /*
169  * Only used with split irqchip where we need to do the resample fd
170  * kick for the kernel from userspace.
171  */
172 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
173     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
174 
175 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
176 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
177 
178 static inline void kvm_resample_fd_remove(int gsi)
179 {
180     KVMResampleFd *rfd;
181 
182     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
183         if (rfd->gsi == gsi) {
184             QLIST_REMOVE(rfd, node);
185             g_free(rfd);
186             break;
187         }
188     }
189 }
190 
191 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
192 {
193     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
194 
195     rfd->gsi = gsi;
196     rfd->resample_event = event;
197 
198     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
199 }
200 
201 void kvm_resample_fd_notify(int gsi)
202 {
203     KVMResampleFd *rfd;
204 
205     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
206         if (rfd->gsi == gsi) {
207             event_notifier_set(rfd->resample_event);
208             trace_kvm_resample_fd_notify(gsi);
209             return;
210         }
211     }
212 }
213 
214 int kvm_get_max_memslots(void)
215 {
216     KVMState *s = KVM_STATE(current_accel());
217 
218     return s->nr_slots;
219 }
220 
221 /* Called with KVMMemoryListener.slots_lock held */
222 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
223 {
224     KVMState *s = kvm_state;
225     int i;
226 
227     for (i = 0; i < s->nr_slots; i++) {
228         if (kml->slots[i].memory_size == 0) {
229             return &kml->slots[i];
230         }
231     }
232 
233     return NULL;
234 }
235 
236 bool kvm_has_free_slot(MachineState *ms)
237 {
238     KVMState *s = KVM_STATE(ms->accelerator);
239     bool result;
240     KVMMemoryListener *kml = &s->memory_listener;
241 
242     kvm_slots_lock(kml);
243     result = !!kvm_get_free_slot(kml);
244     kvm_slots_unlock(kml);
245 
246     return result;
247 }
248 
249 /* Called with KVMMemoryListener.slots_lock held */
250 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
251 {
252     KVMSlot *slot = kvm_get_free_slot(kml);
253 
254     if (slot) {
255         return slot;
256     }
257 
258     fprintf(stderr, "%s: no free slot available\n", __func__);
259     abort();
260 }
261 
262 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
263                                          hwaddr start_addr,
264                                          hwaddr size)
265 {
266     KVMState *s = kvm_state;
267     int i;
268 
269     for (i = 0; i < s->nr_slots; i++) {
270         KVMSlot *mem = &kml->slots[i];
271 
272         if (start_addr == mem->start_addr && size == mem->memory_size) {
273             return mem;
274         }
275     }
276 
277     return NULL;
278 }
279 
280 /*
281  * Calculate and align the start address and the size of the section.
282  * Return the size. If the size is 0, the aligned section is empty.
283  */
284 static hwaddr kvm_align_section(MemoryRegionSection *section,
285                                 hwaddr *start)
286 {
287     hwaddr size = int128_get64(section->size);
288     hwaddr delta, aligned;
289 
290     /* kvm works in page size chunks, but the function may be called
291        with sub-page size and unaligned start address. Pad the start
292        address to next and truncate size to previous page boundary. */
293     aligned = ROUND_UP(section->offset_within_address_space,
294                        qemu_real_host_page_size);
295     delta = aligned - section->offset_within_address_space;
296     *start = aligned;
297     if (delta > size) {
298         return 0;
299     }
300 
301     return (size - delta) & qemu_real_host_page_mask;
302 }
303 
304 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
305                                        hwaddr *phys_addr)
306 {
307     KVMMemoryListener *kml = &s->memory_listener;
308     int i, ret = 0;
309 
310     kvm_slots_lock(kml);
311     for (i = 0; i < s->nr_slots; i++) {
312         KVMSlot *mem = &kml->slots[i];
313 
314         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
315             *phys_addr = mem->start_addr + (ram - mem->ram);
316             ret = 1;
317             break;
318         }
319     }
320     kvm_slots_unlock(kml);
321 
322     return ret;
323 }
324 
325 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
326 {
327     KVMState *s = kvm_state;
328     struct kvm_userspace_memory_region mem;
329     int ret;
330 
331     mem.slot = slot->slot | (kml->as_id << 16);
332     mem.guest_phys_addr = slot->start_addr;
333     mem.userspace_addr = (unsigned long)slot->ram;
334     mem.flags = slot->flags;
335 
336     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
337         /* Set the slot size to 0 before setting the slot to the desired
338          * value. This is needed based on KVM commit 75d61fbc. */
339         mem.memory_size = 0;
340         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
341         if (ret < 0) {
342             goto err;
343         }
344     }
345     mem.memory_size = slot->memory_size;
346     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
347     slot->old_flags = mem.flags;
348 err:
349     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
350                               mem.memory_size, mem.userspace_addr, ret);
351     if (ret < 0) {
352         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
353                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
354                      __func__, mem.slot, slot->start_addr,
355                      (uint64_t)mem.memory_size, strerror(errno));
356     }
357     return ret;
358 }
359 
360 static int do_kvm_destroy_vcpu(CPUState *cpu)
361 {
362     KVMState *s = kvm_state;
363     long mmap_size;
364     struct KVMParkedVcpu *vcpu = NULL;
365     int ret = 0;
366 
367     DPRINTF("kvm_destroy_vcpu\n");
368 
369     ret = kvm_arch_destroy_vcpu(cpu);
370     if (ret < 0) {
371         goto err;
372     }
373 
374     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
375     if (mmap_size < 0) {
376         ret = mmap_size;
377         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
378         goto err;
379     }
380 
381     ret = munmap(cpu->kvm_run, mmap_size);
382     if (ret < 0) {
383         goto err;
384     }
385 
386     vcpu = g_malloc0(sizeof(*vcpu));
387     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
388     vcpu->kvm_fd = cpu->kvm_fd;
389     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
390 err:
391     return ret;
392 }
393 
394 void kvm_destroy_vcpu(CPUState *cpu)
395 {
396     if (do_kvm_destroy_vcpu(cpu) < 0) {
397         error_report("kvm_destroy_vcpu failed");
398         exit(EXIT_FAILURE);
399     }
400 }
401 
402 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
403 {
404     struct KVMParkedVcpu *cpu;
405 
406     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
407         if (cpu->vcpu_id == vcpu_id) {
408             int kvm_fd;
409 
410             QLIST_REMOVE(cpu, node);
411             kvm_fd = cpu->kvm_fd;
412             g_free(cpu);
413             return kvm_fd;
414         }
415     }
416 
417     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
418 }
419 
420 int kvm_init_vcpu(CPUState *cpu, Error **errp)
421 {
422     KVMState *s = kvm_state;
423     long mmap_size;
424     int ret;
425 
426     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
427 
428     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
429     if (ret < 0) {
430         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
431                          kvm_arch_vcpu_id(cpu));
432         goto err;
433     }
434 
435     cpu->kvm_fd = ret;
436     cpu->kvm_state = s;
437     cpu->vcpu_dirty = true;
438 
439     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
440     if (mmap_size < 0) {
441         ret = mmap_size;
442         error_setg_errno(errp, -mmap_size,
443                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
444         goto err;
445     }
446 
447     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
448                         cpu->kvm_fd, 0);
449     if (cpu->kvm_run == MAP_FAILED) {
450         ret = -errno;
451         error_setg_errno(errp, ret,
452                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
453                          kvm_arch_vcpu_id(cpu));
454         goto err;
455     }
456 
457     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
458         s->coalesced_mmio_ring =
459             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
460     }
461 
462     ret = kvm_arch_init_vcpu(cpu);
463     if (ret < 0) {
464         error_setg_errno(errp, -ret,
465                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
466                          kvm_arch_vcpu_id(cpu));
467     }
468 err:
469     return ret;
470 }
471 
472 /*
473  * dirty pages logging control
474  */
475 
476 static int kvm_mem_flags(MemoryRegion *mr)
477 {
478     bool readonly = mr->readonly || memory_region_is_romd(mr);
479     int flags = 0;
480 
481     if (memory_region_get_dirty_log_mask(mr) != 0) {
482         flags |= KVM_MEM_LOG_DIRTY_PAGES;
483     }
484     if (readonly && kvm_readonly_mem_allowed) {
485         flags |= KVM_MEM_READONLY;
486     }
487     return flags;
488 }
489 
490 /* Called with KVMMemoryListener.slots_lock held */
491 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
492                                  MemoryRegion *mr)
493 {
494     mem->flags = kvm_mem_flags(mr);
495 
496     /* If nothing changed effectively, no need to issue ioctl */
497     if (mem->flags == mem->old_flags) {
498         return 0;
499     }
500 
501     return kvm_set_user_memory_region(kml, mem, false);
502 }
503 
504 static int kvm_section_update_flags(KVMMemoryListener *kml,
505                                     MemoryRegionSection *section)
506 {
507     hwaddr start_addr, size, slot_size;
508     KVMSlot *mem;
509     int ret = 0;
510 
511     size = kvm_align_section(section, &start_addr);
512     if (!size) {
513         return 0;
514     }
515 
516     kvm_slots_lock(kml);
517 
518     while (size && !ret) {
519         slot_size = MIN(kvm_max_slot_size, size);
520         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
521         if (!mem) {
522             /* We don't have a slot if we want to trap every access. */
523             goto out;
524         }
525 
526         ret = kvm_slot_update_flags(kml, mem, section->mr);
527         start_addr += slot_size;
528         size -= slot_size;
529     }
530 
531 out:
532     kvm_slots_unlock(kml);
533     return ret;
534 }
535 
536 static void kvm_log_start(MemoryListener *listener,
537                           MemoryRegionSection *section,
538                           int old, int new)
539 {
540     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
541     int r;
542 
543     if (old != 0) {
544         return;
545     }
546 
547     r = kvm_section_update_flags(kml, section);
548     if (r < 0) {
549         abort();
550     }
551 }
552 
553 static void kvm_log_stop(MemoryListener *listener,
554                           MemoryRegionSection *section,
555                           int old, int new)
556 {
557     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
558     int r;
559 
560     if (new != 0) {
561         return;
562     }
563 
564     r = kvm_section_update_flags(kml, section);
565     if (r < 0) {
566         abort();
567     }
568 }
569 
570 /* get kvm's dirty pages bitmap and update qemu's */
571 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
572                                          unsigned long *bitmap)
573 {
574     ram_addr_t start = section->offset_within_region +
575                        memory_region_get_ram_addr(section->mr);
576     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
577 
578     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
579     return 0;
580 }
581 
582 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
583 
584 /* Allocate the dirty bitmap for a slot  */
585 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
586 {
587     /*
588      * XXX bad kernel interface alert
589      * For dirty bitmap, kernel allocates array of size aligned to
590      * bits-per-long.  But for case when the kernel is 64bits and
591      * the userspace is 32bits, userspace can't align to the same
592      * bits-per-long, since sizeof(long) is different between kernel
593      * and user space.  This way, userspace will provide buffer which
594      * may be 4 bytes less than the kernel will use, resulting in
595      * userspace memory corruption (which is not detectable by valgrind
596      * too, in most cases).
597      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
598      * a hope that sizeof(long) won't become >8 any time soon.
599      *
600      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
601      * And mem->memory_size is aligned to it (otherwise this mem can't
602      * be registered to KVM).
603      */
604     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
605                                         /*HOST_LONG_BITS*/ 64) / 8;
606     mem->dirty_bmap = g_malloc0(bitmap_size);
607 }
608 
609 /**
610  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
611  *
612  * This function will first try to fetch dirty bitmap from the kernel,
613  * and then updates qemu's dirty bitmap.
614  *
615  * NOTE: caller must be with kml->slots_lock held.
616  *
617  * @kml: the KVM memory listener object
618  * @section: the memory section to sync the dirty bitmap with
619  */
620 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
621                                           MemoryRegionSection *section)
622 {
623     KVMState *s = kvm_state;
624     struct kvm_dirty_log d = {};
625     KVMSlot *mem;
626     hwaddr start_addr, size;
627     hwaddr slot_size, slot_offset = 0;
628     int ret = 0;
629 
630     size = kvm_align_section(section, &start_addr);
631     while (size) {
632         MemoryRegionSection subsection = *section;
633 
634         slot_size = MIN(kvm_max_slot_size, size);
635         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
636         if (!mem) {
637             /* We don't have a slot if we want to trap every access. */
638             goto out;
639         }
640 
641         if (!mem->dirty_bmap) {
642             /* Allocate on the first log_sync, once and for all */
643             kvm_memslot_init_dirty_bitmap(mem);
644         }
645 
646         d.dirty_bitmap = mem->dirty_bmap;
647         d.slot = mem->slot | (kml->as_id << 16);
648         ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
649         if (ret == -ENOENT) {
650             /* kernel does not have dirty bitmap in this slot */
651             ret = 0;
652         } else if (ret < 0) {
653             error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
654             goto out;
655         } else {
656             subsection.offset_within_region += slot_offset;
657             subsection.size = int128_make64(slot_size);
658             kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
659         }
660 
661         slot_offset += slot_size;
662         start_addr += slot_size;
663         size -= slot_size;
664     }
665 out:
666     return ret;
667 }
668 
669 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
670 #define KVM_CLEAR_LOG_SHIFT  6
671 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
672 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
673 
674 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
675                                   uint64_t size)
676 {
677     KVMState *s = kvm_state;
678     uint64_t end, bmap_start, start_delta, bmap_npages;
679     struct kvm_clear_dirty_log d;
680     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
681     int ret;
682 
683     /*
684      * We need to extend either the start or the size or both to
685      * satisfy the KVM interface requirement.  Firstly, do the start
686      * page alignment on 64 host pages
687      */
688     bmap_start = start & KVM_CLEAR_LOG_MASK;
689     start_delta = start - bmap_start;
690     bmap_start /= psize;
691 
692     /*
693      * The kernel interface has restriction on the size too, that either:
694      *
695      * (1) the size is 64 host pages aligned (just like the start), or
696      * (2) the size fills up until the end of the KVM memslot.
697      */
698     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
699         << KVM_CLEAR_LOG_SHIFT;
700     end = mem->memory_size / psize;
701     if (bmap_npages > end - bmap_start) {
702         bmap_npages = end - bmap_start;
703     }
704     start_delta /= psize;
705 
706     /*
707      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
708      * that we won't clear any unknown dirty bits otherwise we might
709      * accidentally clear some set bits which are not yet synced from
710      * the kernel into QEMU's bitmap, then we'll lose track of the
711      * guest modifications upon those pages (which can directly lead
712      * to guest data loss or panic after migration).
713      *
714      * Layout of the KVMSlot.dirty_bmap:
715      *
716      *                   |<-------- bmap_npages -----------..>|
717      *                                                     [1]
718      *                     start_delta         size
719      *  |----------------|-------------|------------------|------------|
720      *  ^                ^             ^                               ^
721      *  |                |             |                               |
722      * start          bmap_start     (start)                         end
723      * of memslot                                             of memslot
724      *
725      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
726      */
727 
728     assert(bmap_start % BITS_PER_LONG == 0);
729     /* We should never do log_clear before log_sync */
730     assert(mem->dirty_bmap);
731     if (start_delta || bmap_npages - size / psize) {
732         /* Slow path - we need to manipulate a temp bitmap */
733         bmap_clear = bitmap_new(bmap_npages);
734         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
735                                     bmap_start, start_delta + size / psize);
736         /*
737          * We need to fill the holes at start because that was not
738          * specified by the caller and we extended the bitmap only for
739          * 64 pages alignment
740          */
741         bitmap_clear(bmap_clear, 0, start_delta);
742         d.dirty_bitmap = bmap_clear;
743     } else {
744         /*
745          * Fast path - both start and size align well with BITS_PER_LONG
746          * (or the end of memory slot)
747          */
748         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
749     }
750 
751     d.first_page = bmap_start;
752     /* It should never overflow.  If it happens, say something */
753     assert(bmap_npages <= UINT32_MAX);
754     d.num_pages = bmap_npages;
755     d.slot = mem->slot | (as_id << 16);
756 
757     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
758     if (ret < 0 && ret != -ENOENT) {
759         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
760                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
761                      __func__, d.slot, (uint64_t)d.first_page,
762                      (uint32_t)d.num_pages, ret);
763     } else {
764         ret = 0;
765         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
766     }
767 
768     /*
769      * After we have updated the remote dirty bitmap, we update the
770      * cached bitmap as well for the memslot, then if another user
771      * clears the same region we know we shouldn't clear it again on
772      * the remote otherwise it's data loss as well.
773      */
774     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
775                  size / psize);
776     /* This handles the NULL case well */
777     g_free(bmap_clear);
778     return ret;
779 }
780 
781 
782 /**
783  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
784  *
785  * NOTE: this will be a no-op if we haven't enabled manual dirty log
786  * protection in the host kernel because in that case this operation
787  * will be done within log_sync().
788  *
789  * @kml:     the kvm memory listener
790  * @section: the memory range to clear dirty bitmap
791  */
792 static int kvm_physical_log_clear(KVMMemoryListener *kml,
793                                   MemoryRegionSection *section)
794 {
795     KVMState *s = kvm_state;
796     uint64_t start, size, offset, count;
797     KVMSlot *mem;
798     int ret = 0, i;
799 
800     if (!s->manual_dirty_log_protect) {
801         /* No need to do explicit clear */
802         return ret;
803     }
804 
805     start = section->offset_within_address_space;
806     size = int128_get64(section->size);
807 
808     if (!size) {
809         /* Nothing more we can do... */
810         return ret;
811     }
812 
813     kvm_slots_lock(kml);
814 
815     for (i = 0; i < s->nr_slots; i++) {
816         mem = &kml->slots[i];
817         /* Discard slots that are empty or do not overlap the section */
818         if (!mem->memory_size ||
819             mem->start_addr > start + size - 1 ||
820             start > mem->start_addr + mem->memory_size - 1) {
821             continue;
822         }
823 
824         if (start >= mem->start_addr) {
825             /* The slot starts before section or is aligned to it.  */
826             offset = start - mem->start_addr;
827             count = MIN(mem->memory_size - offset, size);
828         } else {
829             /* The slot starts after section.  */
830             offset = 0;
831             count = MIN(mem->memory_size, size - (mem->start_addr - start));
832         }
833         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
834         if (ret < 0) {
835             break;
836         }
837     }
838 
839     kvm_slots_unlock(kml);
840 
841     return ret;
842 }
843 
844 static void kvm_coalesce_mmio_region(MemoryListener *listener,
845                                      MemoryRegionSection *secion,
846                                      hwaddr start, hwaddr size)
847 {
848     KVMState *s = kvm_state;
849 
850     if (s->coalesced_mmio) {
851         struct kvm_coalesced_mmio_zone zone;
852 
853         zone.addr = start;
854         zone.size = size;
855         zone.pad = 0;
856 
857         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
858     }
859 }
860 
861 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
862                                        MemoryRegionSection *secion,
863                                        hwaddr start, hwaddr size)
864 {
865     KVMState *s = kvm_state;
866 
867     if (s->coalesced_mmio) {
868         struct kvm_coalesced_mmio_zone zone;
869 
870         zone.addr = start;
871         zone.size = size;
872         zone.pad = 0;
873 
874         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
875     }
876 }
877 
878 static void kvm_coalesce_pio_add(MemoryListener *listener,
879                                 MemoryRegionSection *section,
880                                 hwaddr start, hwaddr size)
881 {
882     KVMState *s = kvm_state;
883 
884     if (s->coalesced_pio) {
885         struct kvm_coalesced_mmio_zone zone;
886 
887         zone.addr = start;
888         zone.size = size;
889         zone.pio = 1;
890 
891         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
892     }
893 }
894 
895 static void kvm_coalesce_pio_del(MemoryListener *listener,
896                                 MemoryRegionSection *section,
897                                 hwaddr start, hwaddr size)
898 {
899     KVMState *s = kvm_state;
900 
901     if (s->coalesced_pio) {
902         struct kvm_coalesced_mmio_zone zone;
903 
904         zone.addr = start;
905         zone.size = size;
906         zone.pio = 1;
907 
908         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
909      }
910 }
911 
912 static MemoryListener kvm_coalesced_pio_listener = {
913     .coalesced_io_add = kvm_coalesce_pio_add,
914     .coalesced_io_del = kvm_coalesce_pio_del,
915 };
916 
917 int kvm_check_extension(KVMState *s, unsigned int extension)
918 {
919     int ret;
920 
921     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
922     if (ret < 0) {
923         ret = 0;
924     }
925 
926     return ret;
927 }
928 
929 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
930 {
931     int ret;
932 
933     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
934     if (ret < 0) {
935         /* VM wide version not implemented, use global one instead */
936         ret = kvm_check_extension(s, extension);
937     }
938 
939     return ret;
940 }
941 
942 typedef struct HWPoisonPage {
943     ram_addr_t ram_addr;
944     QLIST_ENTRY(HWPoisonPage) list;
945 } HWPoisonPage;
946 
947 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
948     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
949 
950 static void kvm_unpoison_all(void *param)
951 {
952     HWPoisonPage *page, *next_page;
953 
954     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
955         QLIST_REMOVE(page, list);
956         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
957         g_free(page);
958     }
959 }
960 
961 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
962 {
963     HWPoisonPage *page;
964 
965     QLIST_FOREACH(page, &hwpoison_page_list, list) {
966         if (page->ram_addr == ram_addr) {
967             return;
968         }
969     }
970     page = g_new(HWPoisonPage, 1);
971     page->ram_addr = ram_addr;
972     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
973 }
974 
975 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
976 {
977 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
978     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
979      * endianness, but the memory core hands them in target endianness.
980      * For example, PPC is always treated as big-endian even if running
981      * on KVM and on PPC64LE.  Correct here.
982      */
983     switch (size) {
984     case 2:
985         val = bswap16(val);
986         break;
987     case 4:
988         val = bswap32(val);
989         break;
990     }
991 #endif
992     return val;
993 }
994 
995 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
996                                   bool assign, uint32_t size, bool datamatch)
997 {
998     int ret;
999     struct kvm_ioeventfd iofd = {
1000         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1001         .addr = addr,
1002         .len = size,
1003         .flags = 0,
1004         .fd = fd,
1005     };
1006 
1007     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1008                                  datamatch);
1009     if (!kvm_enabled()) {
1010         return -ENOSYS;
1011     }
1012 
1013     if (datamatch) {
1014         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1015     }
1016     if (!assign) {
1017         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1018     }
1019 
1020     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1021 
1022     if (ret < 0) {
1023         return -errno;
1024     }
1025 
1026     return 0;
1027 }
1028 
1029 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1030                                  bool assign, uint32_t size, bool datamatch)
1031 {
1032     struct kvm_ioeventfd kick = {
1033         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1034         .addr = addr,
1035         .flags = KVM_IOEVENTFD_FLAG_PIO,
1036         .len = size,
1037         .fd = fd,
1038     };
1039     int r;
1040     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1041     if (!kvm_enabled()) {
1042         return -ENOSYS;
1043     }
1044     if (datamatch) {
1045         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1046     }
1047     if (!assign) {
1048         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1049     }
1050     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1051     if (r < 0) {
1052         return r;
1053     }
1054     return 0;
1055 }
1056 
1057 
1058 static int kvm_check_many_ioeventfds(void)
1059 {
1060     /* Userspace can use ioeventfd for io notification.  This requires a host
1061      * that supports eventfd(2) and an I/O thread; since eventfd does not
1062      * support SIGIO it cannot interrupt the vcpu.
1063      *
1064      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1065      * can avoid creating too many ioeventfds.
1066      */
1067 #if defined(CONFIG_EVENTFD)
1068     int ioeventfds[7];
1069     int i, ret = 0;
1070     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1071         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1072         if (ioeventfds[i] < 0) {
1073             break;
1074         }
1075         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1076         if (ret < 0) {
1077             close(ioeventfds[i]);
1078             break;
1079         }
1080     }
1081 
1082     /* Decide whether many devices are supported or not */
1083     ret = i == ARRAY_SIZE(ioeventfds);
1084 
1085     while (i-- > 0) {
1086         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1087         close(ioeventfds[i]);
1088     }
1089     return ret;
1090 #else
1091     return 0;
1092 #endif
1093 }
1094 
1095 static const KVMCapabilityInfo *
1096 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1097 {
1098     while (list->name) {
1099         if (!kvm_check_extension(s, list->value)) {
1100             return list;
1101         }
1102         list++;
1103     }
1104     return NULL;
1105 }
1106 
1107 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1108 {
1109     g_assert(
1110         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1111     );
1112     kvm_max_slot_size = max_slot_size;
1113 }
1114 
1115 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1116                              MemoryRegionSection *section, bool add)
1117 {
1118     KVMSlot *mem;
1119     int err;
1120     MemoryRegion *mr = section->mr;
1121     bool writeable = !mr->readonly && !mr->rom_device;
1122     hwaddr start_addr, size, slot_size;
1123     void *ram;
1124 
1125     if (!memory_region_is_ram(mr)) {
1126         if (writeable || !kvm_readonly_mem_allowed) {
1127             return;
1128         } else if (!mr->romd_mode) {
1129             /* If the memory device is not in romd_mode, then we actually want
1130              * to remove the kvm memory slot so all accesses will trap. */
1131             add = false;
1132         }
1133     }
1134 
1135     size = kvm_align_section(section, &start_addr);
1136     if (!size) {
1137         return;
1138     }
1139 
1140     /* use aligned delta to align the ram address */
1141     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1142           (start_addr - section->offset_within_address_space);
1143 
1144     kvm_slots_lock(kml);
1145 
1146     if (!add) {
1147         do {
1148             slot_size = MIN(kvm_max_slot_size, size);
1149             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1150             if (!mem) {
1151                 goto out;
1152             }
1153             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1154                 kvm_physical_sync_dirty_bitmap(kml, section);
1155             }
1156 
1157             /* unregister the slot */
1158             g_free(mem->dirty_bmap);
1159             mem->dirty_bmap = NULL;
1160             mem->memory_size = 0;
1161             mem->flags = 0;
1162             err = kvm_set_user_memory_region(kml, mem, false);
1163             if (err) {
1164                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1165                         __func__, strerror(-err));
1166                 abort();
1167             }
1168             start_addr += slot_size;
1169             size -= slot_size;
1170         } while (size);
1171         goto out;
1172     }
1173 
1174     /* register the new slot */
1175     do {
1176         slot_size = MIN(kvm_max_slot_size, size);
1177         mem = kvm_alloc_slot(kml);
1178         mem->memory_size = slot_size;
1179         mem->start_addr = start_addr;
1180         mem->ram = ram;
1181         mem->flags = kvm_mem_flags(mr);
1182 
1183         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1184             /*
1185              * Reallocate the bmap; it means it doesn't disappear in
1186              * middle of a migrate.
1187              */
1188             kvm_memslot_init_dirty_bitmap(mem);
1189         }
1190         err = kvm_set_user_memory_region(kml, mem, true);
1191         if (err) {
1192             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1193                     strerror(-err));
1194             abort();
1195         }
1196         start_addr += slot_size;
1197         ram += slot_size;
1198         size -= slot_size;
1199     } while (size);
1200 
1201 out:
1202     kvm_slots_unlock(kml);
1203 }
1204 
1205 static void kvm_region_add(MemoryListener *listener,
1206                            MemoryRegionSection *section)
1207 {
1208     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1209 
1210     memory_region_ref(section->mr);
1211     kvm_set_phys_mem(kml, section, true);
1212 }
1213 
1214 static void kvm_region_del(MemoryListener *listener,
1215                            MemoryRegionSection *section)
1216 {
1217     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1218 
1219     kvm_set_phys_mem(kml, section, false);
1220     memory_region_unref(section->mr);
1221 }
1222 
1223 static void kvm_log_sync(MemoryListener *listener,
1224                          MemoryRegionSection *section)
1225 {
1226     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1227     int r;
1228 
1229     kvm_slots_lock(kml);
1230     r = kvm_physical_sync_dirty_bitmap(kml, section);
1231     kvm_slots_unlock(kml);
1232     if (r < 0) {
1233         abort();
1234     }
1235 }
1236 
1237 static void kvm_log_clear(MemoryListener *listener,
1238                           MemoryRegionSection *section)
1239 {
1240     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1241     int r;
1242 
1243     r = kvm_physical_log_clear(kml, section);
1244     if (r < 0) {
1245         error_report_once("%s: kvm log clear failed: mr=%s "
1246                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1247                           section->mr->name, section->offset_within_region,
1248                           int128_get64(section->size));
1249         abort();
1250     }
1251 }
1252 
1253 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1254                                   MemoryRegionSection *section,
1255                                   bool match_data, uint64_t data,
1256                                   EventNotifier *e)
1257 {
1258     int fd = event_notifier_get_fd(e);
1259     int r;
1260 
1261     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1262                                data, true, int128_get64(section->size),
1263                                match_data);
1264     if (r < 0) {
1265         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1266                 __func__, strerror(-r), -r);
1267         abort();
1268     }
1269 }
1270 
1271 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1272                                   MemoryRegionSection *section,
1273                                   bool match_data, uint64_t data,
1274                                   EventNotifier *e)
1275 {
1276     int fd = event_notifier_get_fd(e);
1277     int r;
1278 
1279     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1280                                data, false, int128_get64(section->size),
1281                                match_data);
1282     if (r < 0) {
1283         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1284                 __func__, strerror(-r), -r);
1285         abort();
1286     }
1287 }
1288 
1289 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1290                                  MemoryRegionSection *section,
1291                                  bool match_data, uint64_t data,
1292                                  EventNotifier *e)
1293 {
1294     int fd = event_notifier_get_fd(e);
1295     int r;
1296 
1297     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1298                               data, true, int128_get64(section->size),
1299                               match_data);
1300     if (r < 0) {
1301         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1302                 __func__, strerror(-r), -r);
1303         abort();
1304     }
1305 }
1306 
1307 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1308                                  MemoryRegionSection *section,
1309                                  bool match_data, uint64_t data,
1310                                  EventNotifier *e)
1311 
1312 {
1313     int fd = event_notifier_get_fd(e);
1314     int r;
1315 
1316     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1317                               data, false, int128_get64(section->size),
1318                               match_data);
1319     if (r < 0) {
1320         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1321                 __func__, strerror(-r), -r);
1322         abort();
1323     }
1324 }
1325 
1326 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1327                                   AddressSpace *as, int as_id)
1328 {
1329     int i;
1330 
1331     qemu_mutex_init(&kml->slots_lock);
1332     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1333     kml->as_id = as_id;
1334 
1335     for (i = 0; i < s->nr_slots; i++) {
1336         kml->slots[i].slot = i;
1337     }
1338 
1339     kml->listener.region_add = kvm_region_add;
1340     kml->listener.region_del = kvm_region_del;
1341     kml->listener.log_start = kvm_log_start;
1342     kml->listener.log_stop = kvm_log_stop;
1343     kml->listener.log_sync = kvm_log_sync;
1344     kml->listener.log_clear = kvm_log_clear;
1345     kml->listener.priority = 10;
1346 
1347     memory_listener_register(&kml->listener, as);
1348 
1349     for (i = 0; i < s->nr_as; ++i) {
1350         if (!s->as[i].as) {
1351             s->as[i].as = as;
1352             s->as[i].ml = kml;
1353             break;
1354         }
1355     }
1356 }
1357 
1358 static MemoryListener kvm_io_listener = {
1359     .eventfd_add = kvm_io_ioeventfd_add,
1360     .eventfd_del = kvm_io_ioeventfd_del,
1361     .priority = 10,
1362 };
1363 
1364 int kvm_set_irq(KVMState *s, int irq, int level)
1365 {
1366     struct kvm_irq_level event;
1367     int ret;
1368 
1369     assert(kvm_async_interrupts_enabled());
1370 
1371     event.level = level;
1372     event.irq = irq;
1373     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1374     if (ret < 0) {
1375         perror("kvm_set_irq");
1376         abort();
1377     }
1378 
1379     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1380 }
1381 
1382 #ifdef KVM_CAP_IRQ_ROUTING
1383 typedef struct KVMMSIRoute {
1384     struct kvm_irq_routing_entry kroute;
1385     QTAILQ_ENTRY(KVMMSIRoute) entry;
1386 } KVMMSIRoute;
1387 
1388 static void set_gsi(KVMState *s, unsigned int gsi)
1389 {
1390     set_bit(gsi, s->used_gsi_bitmap);
1391 }
1392 
1393 static void clear_gsi(KVMState *s, unsigned int gsi)
1394 {
1395     clear_bit(gsi, s->used_gsi_bitmap);
1396 }
1397 
1398 void kvm_init_irq_routing(KVMState *s)
1399 {
1400     int gsi_count, i;
1401 
1402     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1403     if (gsi_count > 0) {
1404         /* Round up so we can search ints using ffs */
1405         s->used_gsi_bitmap = bitmap_new(gsi_count);
1406         s->gsi_count = gsi_count;
1407     }
1408 
1409     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1410     s->nr_allocated_irq_routes = 0;
1411 
1412     if (!kvm_direct_msi_allowed) {
1413         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1414             QTAILQ_INIT(&s->msi_hashtab[i]);
1415         }
1416     }
1417 
1418     kvm_arch_init_irq_routing(s);
1419 }
1420 
1421 void kvm_irqchip_commit_routes(KVMState *s)
1422 {
1423     int ret;
1424 
1425     if (kvm_gsi_direct_mapping()) {
1426         return;
1427     }
1428 
1429     if (!kvm_gsi_routing_enabled()) {
1430         return;
1431     }
1432 
1433     s->irq_routes->flags = 0;
1434     trace_kvm_irqchip_commit_routes();
1435     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1436     assert(ret == 0);
1437 }
1438 
1439 static void kvm_add_routing_entry(KVMState *s,
1440                                   struct kvm_irq_routing_entry *entry)
1441 {
1442     struct kvm_irq_routing_entry *new;
1443     int n, size;
1444 
1445     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1446         n = s->nr_allocated_irq_routes * 2;
1447         if (n < 64) {
1448             n = 64;
1449         }
1450         size = sizeof(struct kvm_irq_routing);
1451         size += n * sizeof(*new);
1452         s->irq_routes = g_realloc(s->irq_routes, size);
1453         s->nr_allocated_irq_routes = n;
1454     }
1455     n = s->irq_routes->nr++;
1456     new = &s->irq_routes->entries[n];
1457 
1458     *new = *entry;
1459 
1460     set_gsi(s, entry->gsi);
1461 }
1462 
1463 static int kvm_update_routing_entry(KVMState *s,
1464                                     struct kvm_irq_routing_entry *new_entry)
1465 {
1466     struct kvm_irq_routing_entry *entry;
1467     int n;
1468 
1469     for (n = 0; n < s->irq_routes->nr; n++) {
1470         entry = &s->irq_routes->entries[n];
1471         if (entry->gsi != new_entry->gsi) {
1472             continue;
1473         }
1474 
1475         if(!memcmp(entry, new_entry, sizeof *entry)) {
1476             return 0;
1477         }
1478 
1479         *entry = *new_entry;
1480 
1481         return 0;
1482     }
1483 
1484     return -ESRCH;
1485 }
1486 
1487 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1488 {
1489     struct kvm_irq_routing_entry e = {};
1490 
1491     assert(pin < s->gsi_count);
1492 
1493     e.gsi = irq;
1494     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1495     e.flags = 0;
1496     e.u.irqchip.irqchip = irqchip;
1497     e.u.irqchip.pin = pin;
1498     kvm_add_routing_entry(s, &e);
1499 }
1500 
1501 void kvm_irqchip_release_virq(KVMState *s, int virq)
1502 {
1503     struct kvm_irq_routing_entry *e;
1504     int i;
1505 
1506     if (kvm_gsi_direct_mapping()) {
1507         return;
1508     }
1509 
1510     for (i = 0; i < s->irq_routes->nr; i++) {
1511         e = &s->irq_routes->entries[i];
1512         if (e->gsi == virq) {
1513             s->irq_routes->nr--;
1514             *e = s->irq_routes->entries[s->irq_routes->nr];
1515         }
1516     }
1517     clear_gsi(s, virq);
1518     kvm_arch_release_virq_post(virq);
1519     trace_kvm_irqchip_release_virq(virq);
1520 }
1521 
1522 void kvm_irqchip_add_change_notifier(Notifier *n)
1523 {
1524     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1525 }
1526 
1527 void kvm_irqchip_remove_change_notifier(Notifier *n)
1528 {
1529     notifier_remove(n);
1530 }
1531 
1532 void kvm_irqchip_change_notify(void)
1533 {
1534     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1535 }
1536 
1537 static unsigned int kvm_hash_msi(uint32_t data)
1538 {
1539     /* This is optimized for IA32 MSI layout. However, no other arch shall
1540      * repeat the mistake of not providing a direct MSI injection API. */
1541     return data & 0xff;
1542 }
1543 
1544 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1545 {
1546     KVMMSIRoute *route, *next;
1547     unsigned int hash;
1548 
1549     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1550         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1551             kvm_irqchip_release_virq(s, route->kroute.gsi);
1552             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1553             g_free(route);
1554         }
1555     }
1556 }
1557 
1558 static int kvm_irqchip_get_virq(KVMState *s)
1559 {
1560     int next_virq;
1561 
1562     /*
1563      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1564      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1565      * number can succeed even though a new route entry cannot be added.
1566      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1567      */
1568     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1569         kvm_flush_dynamic_msi_routes(s);
1570     }
1571 
1572     /* Return the lowest unused GSI in the bitmap */
1573     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1574     if (next_virq >= s->gsi_count) {
1575         return -ENOSPC;
1576     } else {
1577         return next_virq;
1578     }
1579 }
1580 
1581 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1582 {
1583     unsigned int hash = kvm_hash_msi(msg.data);
1584     KVMMSIRoute *route;
1585 
1586     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1587         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1588             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1589             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1590             return route;
1591         }
1592     }
1593     return NULL;
1594 }
1595 
1596 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1597 {
1598     struct kvm_msi msi;
1599     KVMMSIRoute *route;
1600 
1601     if (kvm_direct_msi_allowed) {
1602         msi.address_lo = (uint32_t)msg.address;
1603         msi.address_hi = msg.address >> 32;
1604         msi.data = le32_to_cpu(msg.data);
1605         msi.flags = 0;
1606         memset(msi.pad, 0, sizeof(msi.pad));
1607 
1608         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1609     }
1610 
1611     route = kvm_lookup_msi_route(s, msg);
1612     if (!route) {
1613         int virq;
1614 
1615         virq = kvm_irqchip_get_virq(s);
1616         if (virq < 0) {
1617             return virq;
1618         }
1619 
1620         route = g_malloc0(sizeof(KVMMSIRoute));
1621         route->kroute.gsi = virq;
1622         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1623         route->kroute.flags = 0;
1624         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1625         route->kroute.u.msi.address_hi = msg.address >> 32;
1626         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1627 
1628         kvm_add_routing_entry(s, &route->kroute);
1629         kvm_irqchip_commit_routes(s);
1630 
1631         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1632                            entry);
1633     }
1634 
1635     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1636 
1637     return kvm_set_irq(s, route->kroute.gsi, 1);
1638 }
1639 
1640 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1641 {
1642     struct kvm_irq_routing_entry kroute = {};
1643     int virq;
1644     MSIMessage msg = {0, 0};
1645 
1646     if (pci_available && dev) {
1647         msg = pci_get_msi_message(dev, vector);
1648     }
1649 
1650     if (kvm_gsi_direct_mapping()) {
1651         return kvm_arch_msi_data_to_gsi(msg.data);
1652     }
1653 
1654     if (!kvm_gsi_routing_enabled()) {
1655         return -ENOSYS;
1656     }
1657 
1658     virq = kvm_irqchip_get_virq(s);
1659     if (virq < 0) {
1660         return virq;
1661     }
1662 
1663     kroute.gsi = virq;
1664     kroute.type = KVM_IRQ_ROUTING_MSI;
1665     kroute.flags = 0;
1666     kroute.u.msi.address_lo = (uint32_t)msg.address;
1667     kroute.u.msi.address_hi = msg.address >> 32;
1668     kroute.u.msi.data = le32_to_cpu(msg.data);
1669     if (pci_available && kvm_msi_devid_required()) {
1670         kroute.flags = KVM_MSI_VALID_DEVID;
1671         kroute.u.msi.devid = pci_requester_id(dev);
1672     }
1673     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1674         kvm_irqchip_release_virq(s, virq);
1675         return -EINVAL;
1676     }
1677 
1678     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1679                                     vector, virq);
1680 
1681     kvm_add_routing_entry(s, &kroute);
1682     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1683     kvm_irqchip_commit_routes(s);
1684 
1685     return virq;
1686 }
1687 
1688 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1689                                  PCIDevice *dev)
1690 {
1691     struct kvm_irq_routing_entry kroute = {};
1692 
1693     if (kvm_gsi_direct_mapping()) {
1694         return 0;
1695     }
1696 
1697     if (!kvm_irqchip_in_kernel()) {
1698         return -ENOSYS;
1699     }
1700 
1701     kroute.gsi = virq;
1702     kroute.type = KVM_IRQ_ROUTING_MSI;
1703     kroute.flags = 0;
1704     kroute.u.msi.address_lo = (uint32_t)msg.address;
1705     kroute.u.msi.address_hi = msg.address >> 32;
1706     kroute.u.msi.data = le32_to_cpu(msg.data);
1707     if (pci_available && kvm_msi_devid_required()) {
1708         kroute.flags = KVM_MSI_VALID_DEVID;
1709         kroute.u.msi.devid = pci_requester_id(dev);
1710     }
1711     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1712         return -EINVAL;
1713     }
1714 
1715     trace_kvm_irqchip_update_msi_route(virq);
1716 
1717     return kvm_update_routing_entry(s, &kroute);
1718 }
1719 
1720 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1721                                     EventNotifier *resample, int virq,
1722                                     bool assign)
1723 {
1724     int fd = event_notifier_get_fd(event);
1725     int rfd = resample ? event_notifier_get_fd(resample) : -1;
1726 
1727     struct kvm_irqfd irqfd = {
1728         .fd = fd,
1729         .gsi = virq,
1730         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1731     };
1732 
1733     if (rfd != -1) {
1734         assert(assign);
1735         if (kvm_irqchip_is_split()) {
1736             /*
1737              * When the slow irqchip (e.g. IOAPIC) is in the
1738              * userspace, KVM kernel resamplefd will not work because
1739              * the EOI of the interrupt will be delivered to userspace
1740              * instead, so the KVM kernel resamplefd kick will be
1741              * skipped.  The userspace here mimics what the kernel
1742              * provides with resamplefd, remember the resamplefd and
1743              * kick it when we receive EOI of this IRQ.
1744              *
1745              * This is hackery because IOAPIC is mostly bypassed
1746              * (except EOI broadcasts) when irqfd is used.  However
1747              * this can bring much performance back for split irqchip
1748              * with INTx IRQs (for VFIO, this gives 93% perf of the
1749              * full fast path, which is 46% perf boost comparing to
1750              * the INTx slow path).
1751              */
1752             kvm_resample_fd_insert(virq, resample);
1753         } else {
1754             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1755             irqfd.resamplefd = rfd;
1756         }
1757     } else if (!assign) {
1758         if (kvm_irqchip_is_split()) {
1759             kvm_resample_fd_remove(virq);
1760         }
1761     }
1762 
1763     if (!kvm_irqfds_enabled()) {
1764         return -ENOSYS;
1765     }
1766 
1767     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1768 }
1769 
1770 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1771 {
1772     struct kvm_irq_routing_entry kroute = {};
1773     int virq;
1774 
1775     if (!kvm_gsi_routing_enabled()) {
1776         return -ENOSYS;
1777     }
1778 
1779     virq = kvm_irqchip_get_virq(s);
1780     if (virq < 0) {
1781         return virq;
1782     }
1783 
1784     kroute.gsi = virq;
1785     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1786     kroute.flags = 0;
1787     kroute.u.adapter.summary_addr = adapter->summary_addr;
1788     kroute.u.adapter.ind_addr = adapter->ind_addr;
1789     kroute.u.adapter.summary_offset = adapter->summary_offset;
1790     kroute.u.adapter.ind_offset = adapter->ind_offset;
1791     kroute.u.adapter.adapter_id = adapter->adapter_id;
1792 
1793     kvm_add_routing_entry(s, &kroute);
1794 
1795     return virq;
1796 }
1797 
1798 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1799 {
1800     struct kvm_irq_routing_entry kroute = {};
1801     int virq;
1802 
1803     if (!kvm_gsi_routing_enabled()) {
1804         return -ENOSYS;
1805     }
1806     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1807         return -ENOSYS;
1808     }
1809     virq = kvm_irqchip_get_virq(s);
1810     if (virq < 0) {
1811         return virq;
1812     }
1813 
1814     kroute.gsi = virq;
1815     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1816     kroute.flags = 0;
1817     kroute.u.hv_sint.vcpu = vcpu;
1818     kroute.u.hv_sint.sint = sint;
1819 
1820     kvm_add_routing_entry(s, &kroute);
1821     kvm_irqchip_commit_routes(s);
1822 
1823     return virq;
1824 }
1825 
1826 #else /* !KVM_CAP_IRQ_ROUTING */
1827 
1828 void kvm_init_irq_routing(KVMState *s)
1829 {
1830 }
1831 
1832 void kvm_irqchip_release_virq(KVMState *s, int virq)
1833 {
1834 }
1835 
1836 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1837 {
1838     abort();
1839 }
1840 
1841 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1842 {
1843     return -ENOSYS;
1844 }
1845 
1846 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1847 {
1848     return -ENOSYS;
1849 }
1850 
1851 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1852 {
1853     return -ENOSYS;
1854 }
1855 
1856 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1857                                     EventNotifier *resample, int virq,
1858                                     bool assign)
1859 {
1860     abort();
1861 }
1862 
1863 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1864 {
1865     return -ENOSYS;
1866 }
1867 #endif /* !KVM_CAP_IRQ_ROUTING */
1868 
1869 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1870                                        EventNotifier *rn, int virq)
1871 {
1872     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1873 }
1874 
1875 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1876                                           int virq)
1877 {
1878     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1879 }
1880 
1881 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1882                                    EventNotifier *rn, qemu_irq irq)
1883 {
1884     gpointer key, gsi;
1885     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1886 
1887     if (!found) {
1888         return -ENXIO;
1889     }
1890     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1891 }
1892 
1893 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1894                                       qemu_irq irq)
1895 {
1896     gpointer key, gsi;
1897     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1898 
1899     if (!found) {
1900         return -ENXIO;
1901     }
1902     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1903 }
1904 
1905 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1906 {
1907     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1908 }
1909 
1910 static void kvm_irqchip_create(KVMState *s)
1911 {
1912     int ret;
1913 
1914     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1915     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1916         ;
1917     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1918         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1919         if (ret < 0) {
1920             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1921             exit(1);
1922         }
1923     } else {
1924         return;
1925     }
1926 
1927     /* First probe and see if there's a arch-specific hook to create the
1928      * in-kernel irqchip for us */
1929     ret = kvm_arch_irqchip_create(s);
1930     if (ret == 0) {
1931         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1932             perror("Split IRQ chip mode not supported.");
1933             exit(1);
1934         } else {
1935             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1936         }
1937     }
1938     if (ret < 0) {
1939         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1940         exit(1);
1941     }
1942 
1943     kvm_kernel_irqchip = true;
1944     /* If we have an in-kernel IRQ chip then we must have asynchronous
1945      * interrupt delivery (though the reverse is not necessarily true)
1946      */
1947     kvm_async_interrupts_allowed = true;
1948     kvm_halt_in_kernel_allowed = true;
1949 
1950     kvm_init_irq_routing(s);
1951 
1952     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1953 }
1954 
1955 /* Find number of supported CPUs using the recommended
1956  * procedure from the kernel API documentation to cope with
1957  * older kernels that may be missing capabilities.
1958  */
1959 static int kvm_recommended_vcpus(KVMState *s)
1960 {
1961     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1962     return (ret) ? ret : 4;
1963 }
1964 
1965 static int kvm_max_vcpus(KVMState *s)
1966 {
1967     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1968     return (ret) ? ret : kvm_recommended_vcpus(s);
1969 }
1970 
1971 static int kvm_max_vcpu_id(KVMState *s)
1972 {
1973     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1974     return (ret) ? ret : kvm_max_vcpus(s);
1975 }
1976 
1977 bool kvm_vcpu_id_is_valid(int vcpu_id)
1978 {
1979     KVMState *s = KVM_STATE(current_accel());
1980     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1981 }
1982 
1983 static int kvm_init(MachineState *ms)
1984 {
1985     MachineClass *mc = MACHINE_GET_CLASS(ms);
1986     static const char upgrade_note[] =
1987         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1988         "(see http://sourceforge.net/projects/kvm).\n";
1989     struct {
1990         const char *name;
1991         int num;
1992     } num_cpus[] = {
1993         { "SMP",          ms->smp.cpus },
1994         { "hotpluggable", ms->smp.max_cpus },
1995         { NULL, }
1996     }, *nc = num_cpus;
1997     int soft_vcpus_limit, hard_vcpus_limit;
1998     KVMState *s;
1999     const KVMCapabilityInfo *missing_cap;
2000     int ret;
2001     int type = 0;
2002     uint64_t dirty_log_manual_caps;
2003 
2004     s = KVM_STATE(ms->accelerator);
2005 
2006     /*
2007      * On systems where the kernel can support different base page
2008      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2009      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2010      * page size for the system though.
2011      */
2012     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2013 
2014     s->sigmask_len = 8;
2015 
2016 #ifdef KVM_CAP_SET_GUEST_DEBUG
2017     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2018 #endif
2019     QLIST_INIT(&s->kvm_parked_vcpus);
2020     s->vmfd = -1;
2021     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2022     if (s->fd == -1) {
2023         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2024         ret = -errno;
2025         goto err;
2026     }
2027 
2028     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2029     if (ret < KVM_API_VERSION) {
2030         if (ret >= 0) {
2031             ret = -EINVAL;
2032         }
2033         fprintf(stderr, "kvm version too old\n");
2034         goto err;
2035     }
2036 
2037     if (ret > KVM_API_VERSION) {
2038         ret = -EINVAL;
2039         fprintf(stderr, "kvm version not supported\n");
2040         goto err;
2041     }
2042 
2043     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2044     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2045 
2046     /* If unspecified, use the default value */
2047     if (!s->nr_slots) {
2048         s->nr_slots = 32;
2049     }
2050 
2051     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2052     if (s->nr_as <= 1) {
2053         s->nr_as = 1;
2054     }
2055     s->as = g_new0(struct KVMAs, s->nr_as);
2056 
2057     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2058         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2059                                                             "kvm-type",
2060                                                             &error_abort);
2061         type = mc->kvm_type(ms, kvm_type);
2062     } else if (mc->kvm_type) {
2063         type = mc->kvm_type(ms, NULL);
2064     }
2065 
2066     do {
2067         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2068     } while (ret == -EINTR);
2069 
2070     if (ret < 0) {
2071         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2072                 strerror(-ret));
2073 
2074 #ifdef TARGET_S390X
2075         if (ret == -EINVAL) {
2076             fprintf(stderr,
2077                     "Host kernel setup problem detected. Please verify:\n");
2078             fprintf(stderr, "- for kernels supporting the switch_amode or"
2079                     " user_mode parameters, whether\n");
2080             fprintf(stderr,
2081                     "  user space is running in primary address space\n");
2082             fprintf(stderr,
2083                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2084                     "whether it is enabled\n");
2085         }
2086 #endif
2087         goto err;
2088     }
2089 
2090     s->vmfd = ret;
2091 
2092     /* check the vcpu limits */
2093     soft_vcpus_limit = kvm_recommended_vcpus(s);
2094     hard_vcpus_limit = kvm_max_vcpus(s);
2095 
2096     while (nc->name) {
2097         if (nc->num > soft_vcpus_limit) {
2098             warn_report("Number of %s cpus requested (%d) exceeds "
2099                         "the recommended cpus supported by KVM (%d)",
2100                         nc->name, nc->num, soft_vcpus_limit);
2101 
2102             if (nc->num > hard_vcpus_limit) {
2103                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2104                         "the maximum cpus supported by KVM (%d)\n",
2105                         nc->name, nc->num, hard_vcpus_limit);
2106                 exit(1);
2107             }
2108         }
2109         nc++;
2110     }
2111 
2112     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2113     if (!missing_cap) {
2114         missing_cap =
2115             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2116     }
2117     if (missing_cap) {
2118         ret = -EINVAL;
2119         fprintf(stderr, "kvm does not support %s\n%s",
2120                 missing_cap->name, upgrade_note);
2121         goto err;
2122     }
2123 
2124     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2125     s->coalesced_pio = s->coalesced_mmio &&
2126                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2127 
2128     dirty_log_manual_caps =
2129         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2130     dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2131                               KVM_DIRTY_LOG_INITIALLY_SET);
2132     s->manual_dirty_log_protect = dirty_log_manual_caps;
2133     if (dirty_log_manual_caps) {
2134         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2135                                    dirty_log_manual_caps);
2136         if (ret) {
2137             warn_report("Trying to enable capability %"PRIu64" of "
2138                         "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2139                         "Falling back to the legacy mode. ",
2140                         dirty_log_manual_caps);
2141             s->manual_dirty_log_protect = 0;
2142         }
2143     }
2144 
2145 #ifdef KVM_CAP_VCPU_EVENTS
2146     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2147 #endif
2148 
2149     s->robust_singlestep =
2150         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2151 
2152 #ifdef KVM_CAP_DEBUGREGS
2153     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2154 #endif
2155 
2156     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2157 
2158 #ifdef KVM_CAP_IRQ_ROUTING
2159     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2160 #endif
2161 
2162     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2163 
2164     s->irq_set_ioctl = KVM_IRQ_LINE;
2165     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2166         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2167     }
2168 
2169     kvm_readonly_mem_allowed =
2170         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2171 
2172     kvm_eventfds_allowed =
2173         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2174 
2175     kvm_irqfds_allowed =
2176         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2177 
2178     kvm_resamplefds_allowed =
2179         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2180 
2181     kvm_vm_attributes_allowed =
2182         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2183 
2184     kvm_ioeventfd_any_length_allowed =
2185         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2186 
2187     kvm_state = s;
2188 
2189     ret = kvm_arch_init(ms, s);
2190     if (ret < 0) {
2191         goto err;
2192     }
2193 
2194     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2195         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2196     }
2197 
2198     qemu_register_reset(kvm_unpoison_all, NULL);
2199 
2200     if (s->kernel_irqchip_allowed) {
2201         kvm_irqchip_create(s);
2202     }
2203 
2204     if (kvm_eventfds_allowed) {
2205         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2206         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2207     }
2208     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2209     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2210 
2211     kvm_memory_listener_register(s, &s->memory_listener,
2212                                  &address_space_memory, 0);
2213     if (kvm_eventfds_allowed) {
2214         memory_listener_register(&kvm_io_listener,
2215                                  &address_space_io);
2216     }
2217     memory_listener_register(&kvm_coalesced_pio_listener,
2218                              &address_space_io);
2219 
2220     s->many_ioeventfds = kvm_check_many_ioeventfds();
2221 
2222     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2223     if (!s->sync_mmu) {
2224         ret = ram_block_discard_disable(true);
2225         assert(!ret);
2226     }
2227     return 0;
2228 
2229 err:
2230     assert(ret < 0);
2231     if (s->vmfd >= 0) {
2232         close(s->vmfd);
2233     }
2234     if (s->fd != -1) {
2235         close(s->fd);
2236     }
2237     g_free(s->memory_listener.slots);
2238 
2239     return ret;
2240 }
2241 
2242 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2243 {
2244     s->sigmask_len = sigmask_len;
2245 }
2246 
2247 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2248                           int size, uint32_t count)
2249 {
2250     int i;
2251     uint8_t *ptr = data;
2252 
2253     for (i = 0; i < count; i++) {
2254         address_space_rw(&address_space_io, port, attrs,
2255                          ptr, size,
2256                          direction == KVM_EXIT_IO_OUT);
2257         ptr += size;
2258     }
2259 }
2260 
2261 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2262 {
2263     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2264             run->internal.suberror);
2265 
2266     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2267         int i;
2268 
2269         for (i = 0; i < run->internal.ndata; ++i) {
2270             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2271                     i, (uint64_t)run->internal.data[i]);
2272         }
2273     }
2274     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2275         fprintf(stderr, "emulation failure\n");
2276         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2277             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2278             return EXCP_INTERRUPT;
2279         }
2280     }
2281     /* FIXME: Should trigger a qmp message to let management know
2282      * something went wrong.
2283      */
2284     return -1;
2285 }
2286 
2287 void kvm_flush_coalesced_mmio_buffer(void)
2288 {
2289     KVMState *s = kvm_state;
2290 
2291     if (s->coalesced_flush_in_progress) {
2292         return;
2293     }
2294 
2295     s->coalesced_flush_in_progress = true;
2296 
2297     if (s->coalesced_mmio_ring) {
2298         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2299         while (ring->first != ring->last) {
2300             struct kvm_coalesced_mmio *ent;
2301 
2302             ent = &ring->coalesced_mmio[ring->first];
2303 
2304             if (ent->pio == 1) {
2305                 address_space_write(&address_space_io, ent->phys_addr,
2306                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2307                                     ent->len);
2308             } else {
2309                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2310             }
2311             smp_wmb();
2312             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2313         }
2314     }
2315 
2316     s->coalesced_flush_in_progress = false;
2317 }
2318 
2319 bool kvm_cpu_check_are_resettable(void)
2320 {
2321     return kvm_arch_cpu_check_are_resettable();
2322 }
2323 
2324 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2325 {
2326     if (!cpu->vcpu_dirty) {
2327         kvm_arch_get_registers(cpu);
2328         cpu->vcpu_dirty = true;
2329     }
2330 }
2331 
2332 void kvm_cpu_synchronize_state(CPUState *cpu)
2333 {
2334     if (!cpu->vcpu_dirty) {
2335         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2336     }
2337 }
2338 
2339 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2340 {
2341     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2342     cpu->vcpu_dirty = false;
2343 }
2344 
2345 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2346 {
2347     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2348 }
2349 
2350 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2351 {
2352     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2353     cpu->vcpu_dirty = false;
2354 }
2355 
2356 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2357 {
2358     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2359 }
2360 
2361 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2362 {
2363     cpu->vcpu_dirty = true;
2364 }
2365 
2366 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2367 {
2368     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2369 }
2370 
2371 #ifdef KVM_HAVE_MCE_INJECTION
2372 static __thread void *pending_sigbus_addr;
2373 static __thread int pending_sigbus_code;
2374 static __thread bool have_sigbus_pending;
2375 #endif
2376 
2377 static void kvm_cpu_kick(CPUState *cpu)
2378 {
2379     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2380 }
2381 
2382 static void kvm_cpu_kick_self(void)
2383 {
2384     if (kvm_immediate_exit) {
2385         kvm_cpu_kick(current_cpu);
2386     } else {
2387         qemu_cpu_kick_self();
2388     }
2389 }
2390 
2391 static void kvm_eat_signals(CPUState *cpu)
2392 {
2393     struct timespec ts = { 0, 0 };
2394     siginfo_t siginfo;
2395     sigset_t waitset;
2396     sigset_t chkset;
2397     int r;
2398 
2399     if (kvm_immediate_exit) {
2400         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2401         /* Write kvm_run->immediate_exit before the cpu->exit_request
2402          * write in kvm_cpu_exec.
2403          */
2404         smp_wmb();
2405         return;
2406     }
2407 
2408     sigemptyset(&waitset);
2409     sigaddset(&waitset, SIG_IPI);
2410 
2411     do {
2412         r = sigtimedwait(&waitset, &siginfo, &ts);
2413         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2414             perror("sigtimedwait");
2415             exit(1);
2416         }
2417 
2418         r = sigpending(&chkset);
2419         if (r == -1) {
2420             perror("sigpending");
2421             exit(1);
2422         }
2423     } while (sigismember(&chkset, SIG_IPI));
2424 }
2425 
2426 int kvm_cpu_exec(CPUState *cpu)
2427 {
2428     struct kvm_run *run = cpu->kvm_run;
2429     int ret, run_ret;
2430 
2431     DPRINTF("kvm_cpu_exec()\n");
2432 
2433     if (kvm_arch_process_async_events(cpu)) {
2434         qatomic_set(&cpu->exit_request, 0);
2435         return EXCP_HLT;
2436     }
2437 
2438     qemu_mutex_unlock_iothread();
2439     cpu_exec_start(cpu);
2440 
2441     do {
2442         MemTxAttrs attrs;
2443 
2444         if (cpu->vcpu_dirty) {
2445             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2446             cpu->vcpu_dirty = false;
2447         }
2448 
2449         kvm_arch_pre_run(cpu, run);
2450         if (qatomic_read(&cpu->exit_request)) {
2451             DPRINTF("interrupt exit requested\n");
2452             /*
2453              * KVM requires us to reenter the kernel after IO exits to complete
2454              * instruction emulation. This self-signal will ensure that we
2455              * leave ASAP again.
2456              */
2457             kvm_cpu_kick_self();
2458         }
2459 
2460         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2461          * Matching barrier in kvm_eat_signals.
2462          */
2463         smp_rmb();
2464 
2465         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2466 
2467         attrs = kvm_arch_post_run(cpu, run);
2468 
2469 #ifdef KVM_HAVE_MCE_INJECTION
2470         if (unlikely(have_sigbus_pending)) {
2471             qemu_mutex_lock_iothread();
2472             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2473                                     pending_sigbus_addr);
2474             have_sigbus_pending = false;
2475             qemu_mutex_unlock_iothread();
2476         }
2477 #endif
2478 
2479         if (run_ret < 0) {
2480             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2481                 DPRINTF("io window exit\n");
2482                 kvm_eat_signals(cpu);
2483                 ret = EXCP_INTERRUPT;
2484                 break;
2485             }
2486             fprintf(stderr, "error: kvm run failed %s\n",
2487                     strerror(-run_ret));
2488 #ifdef TARGET_PPC
2489             if (run_ret == -EBUSY) {
2490                 fprintf(stderr,
2491                         "This is probably because your SMT is enabled.\n"
2492                         "VCPU can only run on primary threads with all "
2493                         "secondary threads offline.\n");
2494             }
2495 #endif
2496             ret = -1;
2497             break;
2498         }
2499 
2500         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2501         switch (run->exit_reason) {
2502         case KVM_EXIT_IO:
2503             DPRINTF("handle_io\n");
2504             /* Called outside BQL */
2505             kvm_handle_io(run->io.port, attrs,
2506                           (uint8_t *)run + run->io.data_offset,
2507                           run->io.direction,
2508                           run->io.size,
2509                           run->io.count);
2510             ret = 0;
2511             break;
2512         case KVM_EXIT_MMIO:
2513             DPRINTF("handle_mmio\n");
2514             /* Called outside BQL */
2515             address_space_rw(&address_space_memory,
2516                              run->mmio.phys_addr, attrs,
2517                              run->mmio.data,
2518                              run->mmio.len,
2519                              run->mmio.is_write);
2520             ret = 0;
2521             break;
2522         case KVM_EXIT_IRQ_WINDOW_OPEN:
2523             DPRINTF("irq_window_open\n");
2524             ret = EXCP_INTERRUPT;
2525             break;
2526         case KVM_EXIT_SHUTDOWN:
2527             DPRINTF("shutdown\n");
2528             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2529             ret = EXCP_INTERRUPT;
2530             break;
2531         case KVM_EXIT_UNKNOWN:
2532             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2533                     (uint64_t)run->hw.hardware_exit_reason);
2534             ret = -1;
2535             break;
2536         case KVM_EXIT_INTERNAL_ERROR:
2537             ret = kvm_handle_internal_error(cpu, run);
2538             break;
2539         case KVM_EXIT_SYSTEM_EVENT:
2540             switch (run->system_event.type) {
2541             case KVM_SYSTEM_EVENT_SHUTDOWN:
2542                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2543                 ret = EXCP_INTERRUPT;
2544                 break;
2545             case KVM_SYSTEM_EVENT_RESET:
2546                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2547                 ret = EXCP_INTERRUPT;
2548                 break;
2549             case KVM_SYSTEM_EVENT_CRASH:
2550                 kvm_cpu_synchronize_state(cpu);
2551                 qemu_mutex_lock_iothread();
2552                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2553                 qemu_mutex_unlock_iothread();
2554                 ret = 0;
2555                 break;
2556             default:
2557                 DPRINTF("kvm_arch_handle_exit\n");
2558                 ret = kvm_arch_handle_exit(cpu, run);
2559                 break;
2560             }
2561             break;
2562         default:
2563             DPRINTF("kvm_arch_handle_exit\n");
2564             ret = kvm_arch_handle_exit(cpu, run);
2565             break;
2566         }
2567     } while (ret == 0);
2568 
2569     cpu_exec_end(cpu);
2570     qemu_mutex_lock_iothread();
2571 
2572     if (ret < 0) {
2573         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2574         vm_stop(RUN_STATE_INTERNAL_ERROR);
2575     }
2576 
2577     qatomic_set(&cpu->exit_request, 0);
2578     return ret;
2579 }
2580 
2581 int kvm_ioctl(KVMState *s, int type, ...)
2582 {
2583     int ret;
2584     void *arg;
2585     va_list ap;
2586 
2587     va_start(ap, type);
2588     arg = va_arg(ap, void *);
2589     va_end(ap);
2590 
2591     trace_kvm_ioctl(type, arg);
2592     ret = ioctl(s->fd, type, arg);
2593     if (ret == -1) {
2594         ret = -errno;
2595     }
2596     return ret;
2597 }
2598 
2599 int kvm_vm_ioctl(KVMState *s, int type, ...)
2600 {
2601     int ret;
2602     void *arg;
2603     va_list ap;
2604 
2605     va_start(ap, type);
2606     arg = va_arg(ap, void *);
2607     va_end(ap);
2608 
2609     trace_kvm_vm_ioctl(type, arg);
2610     ret = ioctl(s->vmfd, type, arg);
2611     if (ret == -1) {
2612         ret = -errno;
2613     }
2614     return ret;
2615 }
2616 
2617 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2618 {
2619     int ret;
2620     void *arg;
2621     va_list ap;
2622 
2623     va_start(ap, type);
2624     arg = va_arg(ap, void *);
2625     va_end(ap);
2626 
2627     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2628     ret = ioctl(cpu->kvm_fd, type, arg);
2629     if (ret == -1) {
2630         ret = -errno;
2631     }
2632     return ret;
2633 }
2634 
2635 int kvm_device_ioctl(int fd, int type, ...)
2636 {
2637     int ret;
2638     void *arg;
2639     va_list ap;
2640 
2641     va_start(ap, type);
2642     arg = va_arg(ap, void *);
2643     va_end(ap);
2644 
2645     trace_kvm_device_ioctl(fd, type, arg);
2646     ret = ioctl(fd, type, arg);
2647     if (ret == -1) {
2648         ret = -errno;
2649     }
2650     return ret;
2651 }
2652 
2653 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2654 {
2655     int ret;
2656     struct kvm_device_attr attribute = {
2657         .group = group,
2658         .attr = attr,
2659     };
2660 
2661     if (!kvm_vm_attributes_allowed) {
2662         return 0;
2663     }
2664 
2665     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2666     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2667     return ret ? 0 : 1;
2668 }
2669 
2670 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2671 {
2672     struct kvm_device_attr attribute = {
2673         .group = group,
2674         .attr = attr,
2675         .flags = 0,
2676     };
2677 
2678     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2679 }
2680 
2681 int kvm_device_access(int fd, int group, uint64_t attr,
2682                       void *val, bool write, Error **errp)
2683 {
2684     struct kvm_device_attr kvmattr;
2685     int err;
2686 
2687     kvmattr.flags = 0;
2688     kvmattr.group = group;
2689     kvmattr.attr = attr;
2690     kvmattr.addr = (uintptr_t)val;
2691 
2692     err = kvm_device_ioctl(fd,
2693                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2694                            &kvmattr);
2695     if (err < 0) {
2696         error_setg_errno(errp, -err,
2697                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2698                          "attr 0x%016" PRIx64,
2699                          write ? "SET" : "GET", group, attr);
2700     }
2701     return err;
2702 }
2703 
2704 bool kvm_has_sync_mmu(void)
2705 {
2706     return kvm_state->sync_mmu;
2707 }
2708 
2709 int kvm_has_vcpu_events(void)
2710 {
2711     return kvm_state->vcpu_events;
2712 }
2713 
2714 int kvm_has_robust_singlestep(void)
2715 {
2716     return kvm_state->robust_singlestep;
2717 }
2718 
2719 int kvm_has_debugregs(void)
2720 {
2721     return kvm_state->debugregs;
2722 }
2723 
2724 int kvm_max_nested_state_length(void)
2725 {
2726     return kvm_state->max_nested_state_len;
2727 }
2728 
2729 int kvm_has_many_ioeventfds(void)
2730 {
2731     if (!kvm_enabled()) {
2732         return 0;
2733     }
2734     return kvm_state->many_ioeventfds;
2735 }
2736 
2737 int kvm_has_gsi_routing(void)
2738 {
2739 #ifdef KVM_CAP_IRQ_ROUTING
2740     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2741 #else
2742     return false;
2743 #endif
2744 }
2745 
2746 int kvm_has_intx_set_mask(void)
2747 {
2748     return kvm_state->intx_set_mask;
2749 }
2750 
2751 bool kvm_arm_supports_user_irq(void)
2752 {
2753     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2754 }
2755 
2756 #ifdef KVM_CAP_SET_GUEST_DEBUG
2757 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2758                                                  target_ulong pc)
2759 {
2760     struct kvm_sw_breakpoint *bp;
2761 
2762     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2763         if (bp->pc == pc) {
2764             return bp;
2765         }
2766     }
2767     return NULL;
2768 }
2769 
2770 int kvm_sw_breakpoints_active(CPUState *cpu)
2771 {
2772     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2773 }
2774 
2775 struct kvm_set_guest_debug_data {
2776     struct kvm_guest_debug dbg;
2777     int err;
2778 };
2779 
2780 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2781 {
2782     struct kvm_set_guest_debug_data *dbg_data =
2783         (struct kvm_set_guest_debug_data *) data.host_ptr;
2784 
2785     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2786                                    &dbg_data->dbg);
2787 }
2788 
2789 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2790 {
2791     struct kvm_set_guest_debug_data data;
2792 
2793     data.dbg.control = reinject_trap;
2794 
2795     if (cpu->singlestep_enabled) {
2796         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2797     }
2798     kvm_arch_update_guest_debug(cpu, &data.dbg);
2799 
2800     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2801                RUN_ON_CPU_HOST_PTR(&data));
2802     return data.err;
2803 }
2804 
2805 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2806                           target_ulong len, int type)
2807 {
2808     struct kvm_sw_breakpoint *bp;
2809     int err;
2810 
2811     if (type == GDB_BREAKPOINT_SW) {
2812         bp = kvm_find_sw_breakpoint(cpu, addr);
2813         if (bp) {
2814             bp->use_count++;
2815             return 0;
2816         }
2817 
2818         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2819         bp->pc = addr;
2820         bp->use_count = 1;
2821         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2822         if (err) {
2823             g_free(bp);
2824             return err;
2825         }
2826 
2827         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2828     } else {
2829         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2830         if (err) {
2831             return err;
2832         }
2833     }
2834 
2835     CPU_FOREACH(cpu) {
2836         err = kvm_update_guest_debug(cpu, 0);
2837         if (err) {
2838             return err;
2839         }
2840     }
2841     return 0;
2842 }
2843 
2844 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2845                           target_ulong len, int type)
2846 {
2847     struct kvm_sw_breakpoint *bp;
2848     int err;
2849 
2850     if (type == GDB_BREAKPOINT_SW) {
2851         bp = kvm_find_sw_breakpoint(cpu, addr);
2852         if (!bp) {
2853             return -ENOENT;
2854         }
2855 
2856         if (bp->use_count > 1) {
2857             bp->use_count--;
2858             return 0;
2859         }
2860 
2861         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2862         if (err) {
2863             return err;
2864         }
2865 
2866         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2867         g_free(bp);
2868     } else {
2869         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2870         if (err) {
2871             return err;
2872         }
2873     }
2874 
2875     CPU_FOREACH(cpu) {
2876         err = kvm_update_guest_debug(cpu, 0);
2877         if (err) {
2878             return err;
2879         }
2880     }
2881     return 0;
2882 }
2883 
2884 void kvm_remove_all_breakpoints(CPUState *cpu)
2885 {
2886     struct kvm_sw_breakpoint *bp, *next;
2887     KVMState *s = cpu->kvm_state;
2888     CPUState *tmpcpu;
2889 
2890     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2891         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2892             /* Try harder to find a CPU that currently sees the breakpoint. */
2893             CPU_FOREACH(tmpcpu) {
2894                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2895                     break;
2896                 }
2897             }
2898         }
2899         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2900         g_free(bp);
2901     }
2902     kvm_arch_remove_all_hw_breakpoints();
2903 
2904     CPU_FOREACH(cpu) {
2905         kvm_update_guest_debug(cpu, 0);
2906     }
2907 }
2908 
2909 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2910 
2911 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2912 {
2913     return -EINVAL;
2914 }
2915 
2916 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2917                           target_ulong len, int type)
2918 {
2919     return -EINVAL;
2920 }
2921 
2922 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2923                           target_ulong len, int type)
2924 {
2925     return -EINVAL;
2926 }
2927 
2928 void kvm_remove_all_breakpoints(CPUState *cpu)
2929 {
2930 }
2931 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2932 
2933 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2934 {
2935     KVMState *s = kvm_state;
2936     struct kvm_signal_mask *sigmask;
2937     int r;
2938 
2939     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2940 
2941     sigmask->len = s->sigmask_len;
2942     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2943     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2944     g_free(sigmask);
2945 
2946     return r;
2947 }
2948 
2949 static void kvm_ipi_signal(int sig)
2950 {
2951     if (current_cpu) {
2952         assert(kvm_immediate_exit);
2953         kvm_cpu_kick(current_cpu);
2954     }
2955 }
2956 
2957 void kvm_init_cpu_signals(CPUState *cpu)
2958 {
2959     int r;
2960     sigset_t set;
2961     struct sigaction sigact;
2962 
2963     memset(&sigact, 0, sizeof(sigact));
2964     sigact.sa_handler = kvm_ipi_signal;
2965     sigaction(SIG_IPI, &sigact, NULL);
2966 
2967     pthread_sigmask(SIG_BLOCK, NULL, &set);
2968 #if defined KVM_HAVE_MCE_INJECTION
2969     sigdelset(&set, SIGBUS);
2970     pthread_sigmask(SIG_SETMASK, &set, NULL);
2971 #endif
2972     sigdelset(&set, SIG_IPI);
2973     if (kvm_immediate_exit) {
2974         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2975     } else {
2976         r = kvm_set_signal_mask(cpu, &set);
2977     }
2978     if (r) {
2979         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2980         exit(1);
2981     }
2982 }
2983 
2984 /* Called asynchronously in VCPU thread.  */
2985 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2986 {
2987 #ifdef KVM_HAVE_MCE_INJECTION
2988     if (have_sigbus_pending) {
2989         return 1;
2990     }
2991     have_sigbus_pending = true;
2992     pending_sigbus_addr = addr;
2993     pending_sigbus_code = code;
2994     qatomic_set(&cpu->exit_request, 1);
2995     return 0;
2996 #else
2997     return 1;
2998 #endif
2999 }
3000 
3001 /* Called synchronously (via signalfd) in main thread.  */
3002 int kvm_on_sigbus(int code, void *addr)
3003 {
3004 #ifdef KVM_HAVE_MCE_INJECTION
3005     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3006      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3007      * we can only get action optional here.
3008      */
3009     assert(code != BUS_MCEERR_AR);
3010     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3011     return 0;
3012 #else
3013     return 1;
3014 #endif
3015 }
3016 
3017 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3018 {
3019     int ret;
3020     struct kvm_create_device create_dev;
3021 
3022     create_dev.type = type;
3023     create_dev.fd = -1;
3024     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3025 
3026     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3027         return -ENOTSUP;
3028     }
3029 
3030     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3031     if (ret) {
3032         return ret;
3033     }
3034 
3035     return test ? 0 : create_dev.fd;
3036 }
3037 
3038 bool kvm_device_supported(int vmfd, uint64_t type)
3039 {
3040     struct kvm_create_device create_dev = {
3041         .type = type,
3042         .fd = -1,
3043         .flags = KVM_CREATE_DEVICE_TEST,
3044     };
3045 
3046     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3047         return false;
3048     }
3049 
3050     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3051 }
3052 
3053 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3054 {
3055     struct kvm_one_reg reg;
3056     int r;
3057 
3058     reg.id = id;
3059     reg.addr = (uintptr_t) source;
3060     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3061     if (r) {
3062         trace_kvm_failed_reg_set(id, strerror(-r));
3063     }
3064     return r;
3065 }
3066 
3067 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3068 {
3069     struct kvm_one_reg reg;
3070     int r;
3071 
3072     reg.id = id;
3073     reg.addr = (uintptr_t) target;
3074     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3075     if (r) {
3076         trace_kvm_failed_reg_get(id, strerror(-r));
3077     }
3078     return r;
3079 }
3080 
3081 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3082                                  hwaddr start_addr, hwaddr size)
3083 {
3084     KVMState *kvm = KVM_STATE(ms->accelerator);
3085     int i;
3086 
3087     for (i = 0; i < kvm->nr_as; ++i) {
3088         if (kvm->as[i].as == as && kvm->as[i].ml) {
3089             size = MIN(kvm_max_slot_size, size);
3090             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3091                                                     start_addr, size);
3092         }
3093     }
3094 
3095     return false;
3096 }
3097 
3098 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3099                                    const char *name, void *opaque,
3100                                    Error **errp)
3101 {
3102     KVMState *s = KVM_STATE(obj);
3103     int64_t value = s->kvm_shadow_mem;
3104 
3105     visit_type_int(v, name, &value, errp);
3106 }
3107 
3108 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3109                                    const char *name, void *opaque,
3110                                    Error **errp)
3111 {
3112     KVMState *s = KVM_STATE(obj);
3113     int64_t value;
3114 
3115     if (!visit_type_int(v, name, &value, errp)) {
3116         return;
3117     }
3118 
3119     s->kvm_shadow_mem = value;
3120 }
3121 
3122 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3123                                    const char *name, void *opaque,
3124                                    Error **errp)
3125 {
3126     KVMState *s = KVM_STATE(obj);
3127     OnOffSplit mode;
3128 
3129     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3130         return;
3131     }
3132     switch (mode) {
3133     case ON_OFF_SPLIT_ON:
3134         s->kernel_irqchip_allowed = true;
3135         s->kernel_irqchip_required = true;
3136         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3137         break;
3138     case ON_OFF_SPLIT_OFF:
3139         s->kernel_irqchip_allowed = false;
3140         s->kernel_irqchip_required = false;
3141         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3142         break;
3143     case ON_OFF_SPLIT_SPLIT:
3144         s->kernel_irqchip_allowed = true;
3145         s->kernel_irqchip_required = true;
3146         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3147         break;
3148     default:
3149         /* The value was checked in visit_type_OnOffSplit() above. If
3150          * we get here, then something is wrong in QEMU.
3151          */
3152         abort();
3153     }
3154 }
3155 
3156 bool kvm_kernel_irqchip_allowed(void)
3157 {
3158     return kvm_state->kernel_irqchip_allowed;
3159 }
3160 
3161 bool kvm_kernel_irqchip_required(void)
3162 {
3163     return kvm_state->kernel_irqchip_required;
3164 }
3165 
3166 bool kvm_kernel_irqchip_split(void)
3167 {
3168     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3169 }
3170 
3171 static void kvm_accel_instance_init(Object *obj)
3172 {
3173     KVMState *s = KVM_STATE(obj);
3174 
3175     s->kvm_shadow_mem = -1;
3176     s->kernel_irqchip_allowed = true;
3177     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3178 }
3179 
3180 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3181 {
3182     AccelClass *ac = ACCEL_CLASS(oc);
3183     ac->name = "KVM";
3184     ac->init_machine = kvm_init;
3185     ac->has_memory = kvm_accel_has_memory;
3186     ac->allowed = &kvm_allowed;
3187 
3188     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3189         NULL, kvm_set_kernel_irqchip,
3190         NULL, NULL);
3191     object_class_property_set_description(oc, "kernel-irqchip",
3192         "Configure KVM in-kernel irqchip");
3193 
3194     object_class_property_add(oc, "kvm-shadow-mem", "int",
3195         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3196         NULL, NULL);
3197     object_class_property_set_description(oc, "kvm-shadow-mem",
3198         "KVM shadow MMU size");
3199 }
3200 
3201 static const TypeInfo kvm_accel_type = {
3202     .name = TYPE_KVM_ACCEL,
3203     .parent = TYPE_ACCEL,
3204     .instance_init = kvm_accel_instance_init,
3205     .class_init = kvm_accel_class_init,
3206     .instance_size = sizeof(KVMState),
3207 };
3208 
3209 static void kvm_type_init(void)
3210 {
3211     type_register_static(&kvm_accel_type);
3212 }
3213 
3214 type_init(kvm_type_init);
3215