xref: /qemu/accel/kvm/kvm-all.c (revision 7271a819)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 
42 #include "hw/boards.h"
43 
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
48 
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50  * need to use the real host PAGE_SIZE, as that's what KVM will use.
51  */
52 #define PAGE_SIZE getpagesize()
53 
54 //#define DEBUG_KVM
55 
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61     do { } while (0)
62 #endif
63 
64 #define KVM_MSI_HASHTAB_SIZE    256
65 
66 struct KVMParkedVcpu {
67     unsigned long vcpu_id;
68     int kvm_fd;
69     QLIST_ENTRY(KVMParkedVcpu) node;
70 };
71 
72 struct KVMState
73 {
74     AccelState parent_obj;
75 
76     int nr_slots;
77     int fd;
78     int vmfd;
79     int coalesced_mmio;
80     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81     bool coalesced_flush_in_progress;
82     int vcpu_events;
83     int robust_singlestep;
84     int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86     struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88     int many_ioeventfds;
89     int intx_set_mask;
90     bool sync_mmu;
91     /* The man page (and posix) say ioctl numbers are signed int, but
92      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
93      * unsigned, and treating them as signed here can break things */
94     unsigned irq_set_ioctl;
95     unsigned int sigmask_len;
96     GHashTable *gsimap;
97 #ifdef KVM_CAP_IRQ_ROUTING
98     struct kvm_irq_routing *irq_routes;
99     int nr_allocated_irq_routes;
100     unsigned long *used_gsi_bitmap;
101     unsigned int gsi_count;
102     QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 #endif
104     KVMMemoryListener memory_listener;
105     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
106 };
107 
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_split_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_eventfds_allowed;
114 bool kvm_irqfds_allowed;
115 bool kvm_resamplefds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121 bool kvm_vm_attributes_allowed;
122 bool kvm_direct_msi_allowed;
123 bool kvm_ioeventfd_any_length_allowed;
124 bool kvm_msi_use_devid;
125 static bool kvm_immediate_exit;
126 
127 static const KVMCapabilityInfo kvm_required_capabilites[] = {
128     KVM_CAP_INFO(USER_MEMORY),
129     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
130     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
131     KVM_CAP_LAST_INFO
132 };
133 
134 int kvm_get_max_memslots(void)
135 {
136     KVMState *s = KVM_STATE(current_machine->accelerator);
137 
138     return s->nr_slots;
139 }
140 
141 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
142 {
143     KVMState *s = kvm_state;
144     int i;
145 
146     for (i = 0; i < s->nr_slots; i++) {
147         if (kml->slots[i].memory_size == 0) {
148             return &kml->slots[i];
149         }
150     }
151 
152     return NULL;
153 }
154 
155 bool kvm_has_free_slot(MachineState *ms)
156 {
157     KVMState *s = KVM_STATE(ms->accelerator);
158 
159     return kvm_get_free_slot(&s->memory_listener);
160 }
161 
162 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
163 {
164     KVMSlot *slot = kvm_get_free_slot(kml);
165 
166     if (slot) {
167         return slot;
168     }
169 
170     fprintf(stderr, "%s: no free slot available\n", __func__);
171     abort();
172 }
173 
174 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
175                                          hwaddr start_addr,
176                                          hwaddr size)
177 {
178     KVMState *s = kvm_state;
179     int i;
180 
181     for (i = 0; i < s->nr_slots; i++) {
182         KVMSlot *mem = &kml->slots[i];
183 
184         if (start_addr == mem->start_addr && size == mem->memory_size) {
185             return mem;
186         }
187     }
188 
189     return NULL;
190 }
191 
192 /*
193  * Calculate and align the start address and the size of the section.
194  * Return the size. If the size is 0, the aligned section is empty.
195  */
196 static hwaddr kvm_align_section(MemoryRegionSection *section,
197                                 hwaddr *start)
198 {
199     hwaddr size = int128_get64(section->size);
200     hwaddr delta;
201 
202     *start = section->offset_within_address_space;
203 
204     /* kvm works in page size chunks, but the function may be called
205        with sub-page size and unaligned start address. Pad the start
206        address to next and truncate size to previous page boundary. */
207     delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask);
208     delta &= ~qemu_real_host_page_mask;
209     *start += delta;
210     if (delta > size) {
211         return 0;
212     }
213     size -= delta;
214     size &= qemu_real_host_page_mask;
215     if (*start & ~qemu_real_host_page_mask) {
216         return 0;
217     }
218 
219     return size;
220 }
221 
222 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
223                                        hwaddr *phys_addr)
224 {
225     KVMMemoryListener *kml = &s->memory_listener;
226     int i;
227 
228     for (i = 0; i < s->nr_slots; i++) {
229         KVMSlot *mem = &kml->slots[i];
230 
231         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
232             *phys_addr = mem->start_addr + (ram - mem->ram);
233             return 1;
234         }
235     }
236 
237     return 0;
238 }
239 
240 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
241 {
242     KVMState *s = kvm_state;
243     struct kvm_userspace_memory_region mem;
244 
245     mem.slot = slot->slot | (kml->as_id << 16);
246     mem.guest_phys_addr = slot->start_addr;
247     mem.userspace_addr = (unsigned long)slot->ram;
248     mem.flags = slot->flags;
249 
250     if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
251         /* Set the slot size to 0 before setting the slot to the desired
252          * value. This is needed based on KVM commit 75d61fbc. */
253         mem.memory_size = 0;
254         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
255     }
256     mem.memory_size = slot->memory_size;
257     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
258 }
259 
260 int kvm_destroy_vcpu(CPUState *cpu)
261 {
262     KVMState *s = kvm_state;
263     long mmap_size;
264     struct KVMParkedVcpu *vcpu = NULL;
265     int ret = 0;
266 
267     DPRINTF("kvm_destroy_vcpu\n");
268 
269     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
270     if (mmap_size < 0) {
271         ret = mmap_size;
272         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
273         goto err;
274     }
275 
276     ret = munmap(cpu->kvm_run, mmap_size);
277     if (ret < 0) {
278         goto err;
279     }
280 
281     vcpu = g_malloc0(sizeof(*vcpu));
282     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
283     vcpu->kvm_fd = cpu->kvm_fd;
284     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
285 err:
286     return ret;
287 }
288 
289 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
290 {
291     struct KVMParkedVcpu *cpu;
292 
293     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
294         if (cpu->vcpu_id == vcpu_id) {
295             int kvm_fd;
296 
297             QLIST_REMOVE(cpu, node);
298             kvm_fd = cpu->kvm_fd;
299             g_free(cpu);
300             return kvm_fd;
301         }
302     }
303 
304     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
305 }
306 
307 int kvm_init_vcpu(CPUState *cpu)
308 {
309     KVMState *s = kvm_state;
310     long mmap_size;
311     int ret;
312 
313     DPRINTF("kvm_init_vcpu\n");
314 
315     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
316     if (ret < 0) {
317         DPRINTF("kvm_create_vcpu failed\n");
318         goto err;
319     }
320 
321     cpu->kvm_fd = ret;
322     cpu->kvm_state = s;
323     cpu->vcpu_dirty = true;
324 
325     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
326     if (mmap_size < 0) {
327         ret = mmap_size;
328         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
329         goto err;
330     }
331 
332     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
333                         cpu->kvm_fd, 0);
334     if (cpu->kvm_run == MAP_FAILED) {
335         ret = -errno;
336         DPRINTF("mmap'ing vcpu state failed\n");
337         goto err;
338     }
339 
340     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
341         s->coalesced_mmio_ring =
342             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
343     }
344 
345     ret = kvm_arch_init_vcpu(cpu);
346 err:
347     return ret;
348 }
349 
350 /*
351  * dirty pages logging control
352  */
353 
354 static int kvm_mem_flags(MemoryRegion *mr)
355 {
356     bool readonly = mr->readonly || memory_region_is_romd(mr);
357     int flags = 0;
358 
359     if (memory_region_get_dirty_log_mask(mr) != 0) {
360         flags |= KVM_MEM_LOG_DIRTY_PAGES;
361     }
362     if (readonly && kvm_readonly_mem_allowed) {
363         flags |= KVM_MEM_READONLY;
364     }
365     return flags;
366 }
367 
368 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
369                                  MemoryRegion *mr)
370 {
371     int old_flags;
372 
373     old_flags = mem->flags;
374     mem->flags = kvm_mem_flags(mr);
375 
376     /* If nothing changed effectively, no need to issue ioctl */
377     if (mem->flags == old_flags) {
378         return 0;
379     }
380 
381     return kvm_set_user_memory_region(kml, mem);
382 }
383 
384 static int kvm_section_update_flags(KVMMemoryListener *kml,
385                                     MemoryRegionSection *section)
386 {
387     hwaddr start_addr, size;
388     KVMSlot *mem;
389 
390     size = kvm_align_section(section, &start_addr);
391     if (!size) {
392         return 0;
393     }
394 
395     mem = kvm_lookup_matching_slot(kml, start_addr, size);
396     if (!mem) {
397         fprintf(stderr, "%s: error finding slot\n", __func__);
398         abort();
399     }
400 
401     return kvm_slot_update_flags(kml, mem, section->mr);
402 }
403 
404 static void kvm_log_start(MemoryListener *listener,
405                           MemoryRegionSection *section,
406                           int old, int new)
407 {
408     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
409     int r;
410 
411     if (old != 0) {
412         return;
413     }
414 
415     r = kvm_section_update_flags(kml, section);
416     if (r < 0) {
417         abort();
418     }
419 }
420 
421 static void kvm_log_stop(MemoryListener *listener,
422                           MemoryRegionSection *section,
423                           int old, int new)
424 {
425     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
426     int r;
427 
428     if (new != 0) {
429         return;
430     }
431 
432     r = kvm_section_update_flags(kml, section);
433     if (r < 0) {
434         abort();
435     }
436 }
437 
438 /* get kvm's dirty pages bitmap and update qemu's */
439 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
440                                          unsigned long *bitmap)
441 {
442     ram_addr_t start = section->offset_within_region +
443                        memory_region_get_ram_addr(section->mr);
444     ram_addr_t pages = int128_get64(section->size) / getpagesize();
445 
446     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
447     return 0;
448 }
449 
450 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
451 
452 /**
453  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
454  * This function updates qemu's dirty bitmap using
455  * memory_region_set_dirty().  This means all bits are set
456  * to dirty.
457  *
458  * @start_add: start of logged region.
459  * @end_addr: end of logged region.
460  */
461 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
462                                           MemoryRegionSection *section)
463 {
464     KVMState *s = kvm_state;
465     struct kvm_dirty_log d = {};
466     KVMSlot *mem;
467     hwaddr start_addr, size;
468 
469     size = kvm_align_section(section, &start_addr);
470     if (size) {
471         mem = kvm_lookup_matching_slot(kml, start_addr, size);
472         if (!mem) {
473             fprintf(stderr, "%s: error finding slot\n", __func__);
474             abort();
475         }
476 
477         /* XXX bad kernel interface alert
478          * For dirty bitmap, kernel allocates array of size aligned to
479          * bits-per-long.  But for case when the kernel is 64bits and
480          * the userspace is 32bits, userspace can't align to the same
481          * bits-per-long, since sizeof(long) is different between kernel
482          * and user space.  This way, userspace will provide buffer which
483          * may be 4 bytes less than the kernel will use, resulting in
484          * userspace memory corruption (which is not detectable by valgrind
485          * too, in most cases).
486          * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
487          * a hope that sizeof(long) won't become >8 any time soon.
488          */
489         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
490                      /*HOST_LONG_BITS*/ 64) / 8;
491         d.dirty_bitmap = g_malloc0(size);
492 
493         d.slot = mem->slot | (kml->as_id << 16);
494         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
495             DPRINTF("ioctl failed %d\n", errno);
496             g_free(d.dirty_bitmap);
497             return -1;
498         }
499 
500         kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
501         g_free(d.dirty_bitmap);
502     }
503 
504     return 0;
505 }
506 
507 static void kvm_coalesce_mmio_region(MemoryListener *listener,
508                                      MemoryRegionSection *secion,
509                                      hwaddr start, hwaddr size)
510 {
511     KVMState *s = kvm_state;
512 
513     if (s->coalesced_mmio) {
514         struct kvm_coalesced_mmio_zone zone;
515 
516         zone.addr = start;
517         zone.size = size;
518         zone.pad = 0;
519 
520         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
521     }
522 }
523 
524 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
525                                        MemoryRegionSection *secion,
526                                        hwaddr start, hwaddr size)
527 {
528     KVMState *s = kvm_state;
529 
530     if (s->coalesced_mmio) {
531         struct kvm_coalesced_mmio_zone zone;
532 
533         zone.addr = start;
534         zone.size = size;
535         zone.pad = 0;
536 
537         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
538     }
539 }
540 
541 int kvm_check_extension(KVMState *s, unsigned int extension)
542 {
543     int ret;
544 
545     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
546     if (ret < 0) {
547         ret = 0;
548     }
549 
550     return ret;
551 }
552 
553 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
554 {
555     int ret;
556 
557     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
558     if (ret < 0) {
559         /* VM wide version not implemented, use global one instead */
560         ret = kvm_check_extension(s, extension);
561     }
562 
563     return ret;
564 }
565 
566 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
567 {
568 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
569     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
570      * endianness, but the memory core hands them in target endianness.
571      * For example, PPC is always treated as big-endian even if running
572      * on KVM and on PPC64LE.  Correct here.
573      */
574     switch (size) {
575     case 2:
576         val = bswap16(val);
577         break;
578     case 4:
579         val = bswap32(val);
580         break;
581     }
582 #endif
583     return val;
584 }
585 
586 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
587                                   bool assign, uint32_t size, bool datamatch)
588 {
589     int ret;
590     struct kvm_ioeventfd iofd = {
591         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
592         .addr = addr,
593         .len = size,
594         .flags = 0,
595         .fd = fd,
596     };
597 
598     if (!kvm_enabled()) {
599         return -ENOSYS;
600     }
601 
602     if (datamatch) {
603         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
604     }
605     if (!assign) {
606         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
607     }
608 
609     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
610 
611     if (ret < 0) {
612         return -errno;
613     }
614 
615     return 0;
616 }
617 
618 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
619                                  bool assign, uint32_t size, bool datamatch)
620 {
621     struct kvm_ioeventfd kick = {
622         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
623         .addr = addr,
624         .flags = KVM_IOEVENTFD_FLAG_PIO,
625         .len = size,
626         .fd = fd,
627     };
628     int r;
629     if (!kvm_enabled()) {
630         return -ENOSYS;
631     }
632     if (datamatch) {
633         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
634     }
635     if (!assign) {
636         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
637     }
638     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
639     if (r < 0) {
640         return r;
641     }
642     return 0;
643 }
644 
645 
646 static int kvm_check_many_ioeventfds(void)
647 {
648     /* Userspace can use ioeventfd for io notification.  This requires a host
649      * that supports eventfd(2) and an I/O thread; since eventfd does not
650      * support SIGIO it cannot interrupt the vcpu.
651      *
652      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
653      * can avoid creating too many ioeventfds.
654      */
655 #if defined(CONFIG_EVENTFD)
656     int ioeventfds[7];
657     int i, ret = 0;
658     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
659         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
660         if (ioeventfds[i] < 0) {
661             break;
662         }
663         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
664         if (ret < 0) {
665             close(ioeventfds[i]);
666             break;
667         }
668     }
669 
670     /* Decide whether many devices are supported or not */
671     ret = i == ARRAY_SIZE(ioeventfds);
672 
673     while (i-- > 0) {
674         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
675         close(ioeventfds[i]);
676     }
677     return ret;
678 #else
679     return 0;
680 #endif
681 }
682 
683 static const KVMCapabilityInfo *
684 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
685 {
686     while (list->name) {
687         if (!kvm_check_extension(s, list->value)) {
688             return list;
689         }
690         list++;
691     }
692     return NULL;
693 }
694 
695 static void kvm_set_phys_mem(KVMMemoryListener *kml,
696                              MemoryRegionSection *section, bool add)
697 {
698     KVMSlot *mem;
699     int err;
700     MemoryRegion *mr = section->mr;
701     bool writeable = !mr->readonly && !mr->rom_device;
702     hwaddr start_addr, size;
703     void *ram;
704 
705     if (!memory_region_is_ram(mr)) {
706         if (writeable || !kvm_readonly_mem_allowed) {
707             return;
708         } else if (!mr->romd_mode) {
709             /* If the memory device is not in romd_mode, then we actually want
710              * to remove the kvm memory slot so all accesses will trap. */
711             add = false;
712         }
713     }
714 
715     size = kvm_align_section(section, &start_addr);
716     if (!size) {
717         return;
718     }
719 
720     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
721           (section->offset_within_address_space - start_addr);
722 
723     mem = kvm_lookup_matching_slot(kml, start_addr, size);
724     if (!add) {
725         if (!mem) {
726             return;
727         }
728         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
729             kvm_physical_sync_dirty_bitmap(kml, section);
730         }
731 
732         /* unregister the slot */
733         mem->memory_size = 0;
734         err = kvm_set_user_memory_region(kml, mem);
735         if (err) {
736             fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
737                     __func__, strerror(-err));
738             abort();
739         }
740         return;
741     }
742 
743     if (mem) {
744         /* update the slot */
745         kvm_slot_update_flags(kml, mem, mr);
746         return;
747     }
748 
749     /* register the new slot */
750     mem = kvm_alloc_slot(kml);
751     mem->memory_size = size;
752     mem->start_addr = start_addr;
753     mem->ram = ram;
754     mem->flags = kvm_mem_flags(mr);
755 
756     err = kvm_set_user_memory_region(kml, mem);
757     if (err) {
758         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759                 strerror(-err));
760         abort();
761     }
762 }
763 
764 static void kvm_region_add(MemoryListener *listener,
765                            MemoryRegionSection *section)
766 {
767     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
768 
769     memory_region_ref(section->mr);
770     kvm_set_phys_mem(kml, section, true);
771 }
772 
773 static void kvm_region_del(MemoryListener *listener,
774                            MemoryRegionSection *section)
775 {
776     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
777 
778     kvm_set_phys_mem(kml, section, false);
779     memory_region_unref(section->mr);
780 }
781 
782 static void kvm_log_sync(MemoryListener *listener,
783                          MemoryRegionSection *section)
784 {
785     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
786     int r;
787 
788     r = kvm_physical_sync_dirty_bitmap(kml, section);
789     if (r < 0) {
790         abort();
791     }
792 }
793 
794 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
795                                   MemoryRegionSection *section,
796                                   bool match_data, uint64_t data,
797                                   EventNotifier *e)
798 {
799     int fd = event_notifier_get_fd(e);
800     int r;
801 
802     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
803                                data, true, int128_get64(section->size),
804                                match_data);
805     if (r < 0) {
806         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
807                 __func__, strerror(-r));
808         abort();
809     }
810 }
811 
812 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
813                                   MemoryRegionSection *section,
814                                   bool match_data, uint64_t data,
815                                   EventNotifier *e)
816 {
817     int fd = event_notifier_get_fd(e);
818     int r;
819 
820     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821                                data, false, int128_get64(section->size),
822                                match_data);
823     if (r < 0) {
824         abort();
825     }
826 }
827 
828 static void kvm_io_ioeventfd_add(MemoryListener *listener,
829                                  MemoryRegionSection *section,
830                                  bool match_data, uint64_t data,
831                                  EventNotifier *e)
832 {
833     int fd = event_notifier_get_fd(e);
834     int r;
835 
836     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
837                               data, true, int128_get64(section->size),
838                               match_data);
839     if (r < 0) {
840         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
841                 __func__, strerror(-r));
842         abort();
843     }
844 }
845 
846 static void kvm_io_ioeventfd_del(MemoryListener *listener,
847                                  MemoryRegionSection *section,
848                                  bool match_data, uint64_t data,
849                                  EventNotifier *e)
850 
851 {
852     int fd = event_notifier_get_fd(e);
853     int r;
854 
855     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
856                               data, false, int128_get64(section->size),
857                               match_data);
858     if (r < 0) {
859         abort();
860     }
861 }
862 
863 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
864                                   AddressSpace *as, int as_id)
865 {
866     int i;
867 
868     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
869     kml->as_id = as_id;
870 
871     for (i = 0; i < s->nr_slots; i++) {
872         kml->slots[i].slot = i;
873     }
874 
875     kml->listener.region_add = kvm_region_add;
876     kml->listener.region_del = kvm_region_del;
877     kml->listener.log_start = kvm_log_start;
878     kml->listener.log_stop = kvm_log_stop;
879     kml->listener.log_sync = kvm_log_sync;
880     kml->listener.priority = 10;
881 
882     memory_listener_register(&kml->listener, as);
883 }
884 
885 static MemoryListener kvm_io_listener = {
886     .eventfd_add = kvm_io_ioeventfd_add,
887     .eventfd_del = kvm_io_ioeventfd_del,
888     .priority = 10,
889 };
890 
891 int kvm_set_irq(KVMState *s, int irq, int level)
892 {
893     struct kvm_irq_level event;
894     int ret;
895 
896     assert(kvm_async_interrupts_enabled());
897 
898     event.level = level;
899     event.irq = irq;
900     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
901     if (ret < 0) {
902         perror("kvm_set_irq");
903         abort();
904     }
905 
906     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
907 }
908 
909 #ifdef KVM_CAP_IRQ_ROUTING
910 typedef struct KVMMSIRoute {
911     struct kvm_irq_routing_entry kroute;
912     QTAILQ_ENTRY(KVMMSIRoute) entry;
913 } KVMMSIRoute;
914 
915 static void set_gsi(KVMState *s, unsigned int gsi)
916 {
917     set_bit(gsi, s->used_gsi_bitmap);
918 }
919 
920 static void clear_gsi(KVMState *s, unsigned int gsi)
921 {
922     clear_bit(gsi, s->used_gsi_bitmap);
923 }
924 
925 void kvm_init_irq_routing(KVMState *s)
926 {
927     int gsi_count, i;
928 
929     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
930     if (gsi_count > 0) {
931         /* Round up so we can search ints using ffs */
932         s->used_gsi_bitmap = bitmap_new(gsi_count);
933         s->gsi_count = gsi_count;
934     }
935 
936     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
937     s->nr_allocated_irq_routes = 0;
938 
939     if (!kvm_direct_msi_allowed) {
940         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
941             QTAILQ_INIT(&s->msi_hashtab[i]);
942         }
943     }
944 
945     kvm_arch_init_irq_routing(s);
946 }
947 
948 void kvm_irqchip_commit_routes(KVMState *s)
949 {
950     int ret;
951 
952     if (kvm_gsi_direct_mapping()) {
953         return;
954     }
955 
956     if (!kvm_gsi_routing_enabled()) {
957         return;
958     }
959 
960     s->irq_routes->flags = 0;
961     trace_kvm_irqchip_commit_routes();
962     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
963     assert(ret == 0);
964 }
965 
966 static void kvm_add_routing_entry(KVMState *s,
967                                   struct kvm_irq_routing_entry *entry)
968 {
969     struct kvm_irq_routing_entry *new;
970     int n, size;
971 
972     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
973         n = s->nr_allocated_irq_routes * 2;
974         if (n < 64) {
975             n = 64;
976         }
977         size = sizeof(struct kvm_irq_routing);
978         size += n * sizeof(*new);
979         s->irq_routes = g_realloc(s->irq_routes, size);
980         s->nr_allocated_irq_routes = n;
981     }
982     n = s->irq_routes->nr++;
983     new = &s->irq_routes->entries[n];
984 
985     *new = *entry;
986 
987     set_gsi(s, entry->gsi);
988 }
989 
990 static int kvm_update_routing_entry(KVMState *s,
991                                     struct kvm_irq_routing_entry *new_entry)
992 {
993     struct kvm_irq_routing_entry *entry;
994     int n;
995 
996     for (n = 0; n < s->irq_routes->nr; n++) {
997         entry = &s->irq_routes->entries[n];
998         if (entry->gsi != new_entry->gsi) {
999             continue;
1000         }
1001 
1002         if(!memcmp(entry, new_entry, sizeof *entry)) {
1003             return 0;
1004         }
1005 
1006         *entry = *new_entry;
1007 
1008         return 0;
1009     }
1010 
1011     return -ESRCH;
1012 }
1013 
1014 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1015 {
1016     struct kvm_irq_routing_entry e = {};
1017 
1018     assert(pin < s->gsi_count);
1019 
1020     e.gsi = irq;
1021     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1022     e.flags = 0;
1023     e.u.irqchip.irqchip = irqchip;
1024     e.u.irqchip.pin = pin;
1025     kvm_add_routing_entry(s, &e);
1026 }
1027 
1028 void kvm_irqchip_release_virq(KVMState *s, int virq)
1029 {
1030     struct kvm_irq_routing_entry *e;
1031     int i;
1032 
1033     if (kvm_gsi_direct_mapping()) {
1034         return;
1035     }
1036 
1037     for (i = 0; i < s->irq_routes->nr; i++) {
1038         e = &s->irq_routes->entries[i];
1039         if (e->gsi == virq) {
1040             s->irq_routes->nr--;
1041             *e = s->irq_routes->entries[s->irq_routes->nr];
1042         }
1043     }
1044     clear_gsi(s, virq);
1045     kvm_arch_release_virq_post(virq);
1046     trace_kvm_irqchip_release_virq(virq);
1047 }
1048 
1049 static unsigned int kvm_hash_msi(uint32_t data)
1050 {
1051     /* This is optimized for IA32 MSI layout. However, no other arch shall
1052      * repeat the mistake of not providing a direct MSI injection API. */
1053     return data & 0xff;
1054 }
1055 
1056 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1057 {
1058     KVMMSIRoute *route, *next;
1059     unsigned int hash;
1060 
1061     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1062         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1063             kvm_irqchip_release_virq(s, route->kroute.gsi);
1064             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1065             g_free(route);
1066         }
1067     }
1068 }
1069 
1070 static int kvm_irqchip_get_virq(KVMState *s)
1071 {
1072     int next_virq;
1073 
1074     /*
1075      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1076      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1077      * number can succeed even though a new route entry cannot be added.
1078      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1079      */
1080     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1081         kvm_flush_dynamic_msi_routes(s);
1082     }
1083 
1084     /* Return the lowest unused GSI in the bitmap */
1085     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1086     if (next_virq >= s->gsi_count) {
1087         return -ENOSPC;
1088     } else {
1089         return next_virq;
1090     }
1091 }
1092 
1093 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1094 {
1095     unsigned int hash = kvm_hash_msi(msg.data);
1096     KVMMSIRoute *route;
1097 
1098     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1099         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1100             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1101             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1102             return route;
1103         }
1104     }
1105     return NULL;
1106 }
1107 
1108 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1109 {
1110     struct kvm_msi msi;
1111     KVMMSIRoute *route;
1112 
1113     if (kvm_direct_msi_allowed) {
1114         msi.address_lo = (uint32_t)msg.address;
1115         msi.address_hi = msg.address >> 32;
1116         msi.data = le32_to_cpu(msg.data);
1117         msi.flags = 0;
1118         memset(msi.pad, 0, sizeof(msi.pad));
1119 
1120         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1121     }
1122 
1123     route = kvm_lookup_msi_route(s, msg);
1124     if (!route) {
1125         int virq;
1126 
1127         virq = kvm_irqchip_get_virq(s);
1128         if (virq < 0) {
1129             return virq;
1130         }
1131 
1132         route = g_malloc0(sizeof(KVMMSIRoute));
1133         route->kroute.gsi = virq;
1134         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1135         route->kroute.flags = 0;
1136         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1137         route->kroute.u.msi.address_hi = msg.address >> 32;
1138         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1139 
1140         kvm_add_routing_entry(s, &route->kroute);
1141         kvm_irqchip_commit_routes(s);
1142 
1143         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1144                            entry);
1145     }
1146 
1147     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1148 
1149     return kvm_set_irq(s, route->kroute.gsi, 1);
1150 }
1151 
1152 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1153 {
1154     struct kvm_irq_routing_entry kroute = {};
1155     int virq;
1156     MSIMessage msg = {0, 0};
1157 
1158     if (pci_available && dev) {
1159         msg = pci_get_msi_message(dev, vector);
1160     }
1161 
1162     if (kvm_gsi_direct_mapping()) {
1163         return kvm_arch_msi_data_to_gsi(msg.data);
1164     }
1165 
1166     if (!kvm_gsi_routing_enabled()) {
1167         return -ENOSYS;
1168     }
1169 
1170     virq = kvm_irqchip_get_virq(s);
1171     if (virq < 0) {
1172         return virq;
1173     }
1174 
1175     kroute.gsi = virq;
1176     kroute.type = KVM_IRQ_ROUTING_MSI;
1177     kroute.flags = 0;
1178     kroute.u.msi.address_lo = (uint32_t)msg.address;
1179     kroute.u.msi.address_hi = msg.address >> 32;
1180     kroute.u.msi.data = le32_to_cpu(msg.data);
1181     if (pci_available && kvm_msi_devid_required()) {
1182         kroute.flags = KVM_MSI_VALID_DEVID;
1183         kroute.u.msi.devid = pci_requester_id(dev);
1184     }
1185     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1186         kvm_irqchip_release_virq(s, virq);
1187         return -EINVAL;
1188     }
1189 
1190     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1191                                     vector, virq);
1192 
1193     kvm_add_routing_entry(s, &kroute);
1194     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1195     kvm_irqchip_commit_routes(s);
1196 
1197     return virq;
1198 }
1199 
1200 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1201                                  PCIDevice *dev)
1202 {
1203     struct kvm_irq_routing_entry kroute = {};
1204 
1205     if (kvm_gsi_direct_mapping()) {
1206         return 0;
1207     }
1208 
1209     if (!kvm_irqchip_in_kernel()) {
1210         return -ENOSYS;
1211     }
1212 
1213     kroute.gsi = virq;
1214     kroute.type = KVM_IRQ_ROUTING_MSI;
1215     kroute.flags = 0;
1216     kroute.u.msi.address_lo = (uint32_t)msg.address;
1217     kroute.u.msi.address_hi = msg.address >> 32;
1218     kroute.u.msi.data = le32_to_cpu(msg.data);
1219     if (pci_available && kvm_msi_devid_required()) {
1220         kroute.flags = KVM_MSI_VALID_DEVID;
1221         kroute.u.msi.devid = pci_requester_id(dev);
1222     }
1223     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1224         return -EINVAL;
1225     }
1226 
1227     trace_kvm_irqchip_update_msi_route(virq);
1228 
1229     return kvm_update_routing_entry(s, &kroute);
1230 }
1231 
1232 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1233                                     bool assign)
1234 {
1235     struct kvm_irqfd irqfd = {
1236         .fd = fd,
1237         .gsi = virq,
1238         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1239     };
1240 
1241     if (rfd != -1) {
1242         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1243         irqfd.resamplefd = rfd;
1244     }
1245 
1246     if (!kvm_irqfds_enabled()) {
1247         return -ENOSYS;
1248     }
1249 
1250     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1251 }
1252 
1253 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1254 {
1255     struct kvm_irq_routing_entry kroute = {};
1256     int virq;
1257 
1258     if (!kvm_gsi_routing_enabled()) {
1259         return -ENOSYS;
1260     }
1261 
1262     virq = kvm_irqchip_get_virq(s);
1263     if (virq < 0) {
1264         return virq;
1265     }
1266 
1267     kroute.gsi = virq;
1268     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1269     kroute.flags = 0;
1270     kroute.u.adapter.summary_addr = adapter->summary_addr;
1271     kroute.u.adapter.ind_addr = adapter->ind_addr;
1272     kroute.u.adapter.summary_offset = adapter->summary_offset;
1273     kroute.u.adapter.ind_offset = adapter->ind_offset;
1274     kroute.u.adapter.adapter_id = adapter->adapter_id;
1275 
1276     kvm_add_routing_entry(s, &kroute);
1277 
1278     return virq;
1279 }
1280 
1281 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1282 {
1283     struct kvm_irq_routing_entry kroute = {};
1284     int virq;
1285 
1286     if (!kvm_gsi_routing_enabled()) {
1287         return -ENOSYS;
1288     }
1289     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1290         return -ENOSYS;
1291     }
1292     virq = kvm_irqchip_get_virq(s);
1293     if (virq < 0) {
1294         return virq;
1295     }
1296 
1297     kroute.gsi = virq;
1298     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1299     kroute.flags = 0;
1300     kroute.u.hv_sint.vcpu = vcpu;
1301     kroute.u.hv_sint.sint = sint;
1302 
1303     kvm_add_routing_entry(s, &kroute);
1304     kvm_irqchip_commit_routes(s);
1305 
1306     return virq;
1307 }
1308 
1309 #else /* !KVM_CAP_IRQ_ROUTING */
1310 
1311 void kvm_init_irq_routing(KVMState *s)
1312 {
1313 }
1314 
1315 void kvm_irqchip_release_virq(KVMState *s, int virq)
1316 {
1317 }
1318 
1319 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1320 {
1321     abort();
1322 }
1323 
1324 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1325 {
1326     return -ENOSYS;
1327 }
1328 
1329 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1330 {
1331     return -ENOSYS;
1332 }
1333 
1334 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1335 {
1336     return -ENOSYS;
1337 }
1338 
1339 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1340 {
1341     abort();
1342 }
1343 
1344 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1345 {
1346     return -ENOSYS;
1347 }
1348 #endif /* !KVM_CAP_IRQ_ROUTING */
1349 
1350 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1351                                        EventNotifier *rn, int virq)
1352 {
1353     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1354            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1355 }
1356 
1357 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1358                                           int virq)
1359 {
1360     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1361            false);
1362 }
1363 
1364 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1365                                    EventNotifier *rn, qemu_irq irq)
1366 {
1367     gpointer key, gsi;
1368     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1369 
1370     if (!found) {
1371         return -ENXIO;
1372     }
1373     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1374 }
1375 
1376 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1377                                       qemu_irq irq)
1378 {
1379     gpointer key, gsi;
1380     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1381 
1382     if (!found) {
1383         return -ENXIO;
1384     }
1385     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1386 }
1387 
1388 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1389 {
1390     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1391 }
1392 
1393 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1394 {
1395     int ret;
1396 
1397     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1398         ;
1399     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1400         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1401         if (ret < 0) {
1402             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1403             exit(1);
1404         }
1405     } else {
1406         return;
1407     }
1408 
1409     /* First probe and see if there's a arch-specific hook to create the
1410      * in-kernel irqchip for us */
1411     ret = kvm_arch_irqchip_create(machine, s);
1412     if (ret == 0) {
1413         if (machine_kernel_irqchip_split(machine)) {
1414             perror("Split IRQ chip mode not supported.");
1415             exit(1);
1416         } else {
1417             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1418         }
1419     }
1420     if (ret < 0) {
1421         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1422         exit(1);
1423     }
1424 
1425     kvm_kernel_irqchip = true;
1426     /* If we have an in-kernel IRQ chip then we must have asynchronous
1427      * interrupt delivery (though the reverse is not necessarily true)
1428      */
1429     kvm_async_interrupts_allowed = true;
1430     kvm_halt_in_kernel_allowed = true;
1431 
1432     kvm_init_irq_routing(s);
1433 
1434     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1435 }
1436 
1437 /* Find number of supported CPUs using the recommended
1438  * procedure from the kernel API documentation to cope with
1439  * older kernels that may be missing capabilities.
1440  */
1441 static int kvm_recommended_vcpus(KVMState *s)
1442 {
1443     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1444     return (ret) ? ret : 4;
1445 }
1446 
1447 static int kvm_max_vcpus(KVMState *s)
1448 {
1449     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1450     return (ret) ? ret : kvm_recommended_vcpus(s);
1451 }
1452 
1453 static int kvm_max_vcpu_id(KVMState *s)
1454 {
1455     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1456     return (ret) ? ret : kvm_max_vcpus(s);
1457 }
1458 
1459 bool kvm_vcpu_id_is_valid(int vcpu_id)
1460 {
1461     KVMState *s = KVM_STATE(current_machine->accelerator);
1462     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1463 }
1464 
1465 static int kvm_init(MachineState *ms)
1466 {
1467     MachineClass *mc = MACHINE_GET_CLASS(ms);
1468     static const char upgrade_note[] =
1469         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1470         "(see http://sourceforge.net/projects/kvm).\n";
1471     struct {
1472         const char *name;
1473         int num;
1474     } num_cpus[] = {
1475         { "SMP",          smp_cpus },
1476         { "hotpluggable", max_cpus },
1477         { NULL, }
1478     }, *nc = num_cpus;
1479     int soft_vcpus_limit, hard_vcpus_limit;
1480     KVMState *s;
1481     const KVMCapabilityInfo *missing_cap;
1482     int ret;
1483     int type = 0;
1484     const char *kvm_type;
1485 
1486     s = KVM_STATE(ms->accelerator);
1487 
1488     /*
1489      * On systems where the kernel can support different base page
1490      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1491      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1492      * page size for the system though.
1493      */
1494     assert(TARGET_PAGE_SIZE <= getpagesize());
1495 
1496     s->sigmask_len = 8;
1497 
1498 #ifdef KVM_CAP_SET_GUEST_DEBUG
1499     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1500 #endif
1501     QLIST_INIT(&s->kvm_parked_vcpus);
1502     s->vmfd = -1;
1503     s->fd = qemu_open("/dev/kvm", O_RDWR);
1504     if (s->fd == -1) {
1505         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1506         ret = -errno;
1507         goto err;
1508     }
1509 
1510     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1511     if (ret < KVM_API_VERSION) {
1512         if (ret >= 0) {
1513             ret = -EINVAL;
1514         }
1515         fprintf(stderr, "kvm version too old\n");
1516         goto err;
1517     }
1518 
1519     if (ret > KVM_API_VERSION) {
1520         ret = -EINVAL;
1521         fprintf(stderr, "kvm version not supported\n");
1522         goto err;
1523     }
1524 
1525     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1526     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1527 
1528     /* If unspecified, use the default value */
1529     if (!s->nr_slots) {
1530         s->nr_slots = 32;
1531     }
1532 
1533     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1534     if (mc->kvm_type) {
1535         type = mc->kvm_type(kvm_type);
1536     } else if (kvm_type) {
1537         ret = -EINVAL;
1538         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1539         goto err;
1540     }
1541 
1542     do {
1543         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1544     } while (ret == -EINTR);
1545 
1546     if (ret < 0) {
1547         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1548                 strerror(-ret));
1549 
1550 #ifdef TARGET_S390X
1551         if (ret == -EINVAL) {
1552             fprintf(stderr,
1553                     "Host kernel setup problem detected. Please verify:\n");
1554             fprintf(stderr, "- for kernels supporting the switch_amode or"
1555                     " user_mode parameters, whether\n");
1556             fprintf(stderr,
1557                     "  user space is running in primary address space\n");
1558             fprintf(stderr,
1559                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1560                     "whether it is enabled\n");
1561         }
1562 #endif
1563         goto err;
1564     }
1565 
1566     s->vmfd = ret;
1567 
1568     /* check the vcpu limits */
1569     soft_vcpus_limit = kvm_recommended_vcpus(s);
1570     hard_vcpus_limit = kvm_max_vcpus(s);
1571 
1572     while (nc->name) {
1573         if (nc->num > soft_vcpus_limit) {
1574             warn_report("Number of %s cpus requested (%d) exceeds "
1575                         "the recommended cpus supported by KVM (%d)",
1576                         nc->name, nc->num, soft_vcpus_limit);
1577 
1578             if (nc->num > hard_vcpus_limit) {
1579                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1580                         "the maximum cpus supported by KVM (%d)\n",
1581                         nc->name, nc->num, hard_vcpus_limit);
1582                 exit(1);
1583             }
1584         }
1585         nc++;
1586     }
1587 
1588     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1589     if (!missing_cap) {
1590         missing_cap =
1591             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1592     }
1593     if (missing_cap) {
1594         ret = -EINVAL;
1595         fprintf(stderr, "kvm does not support %s\n%s",
1596                 missing_cap->name, upgrade_note);
1597         goto err;
1598     }
1599 
1600     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1601 
1602 #ifdef KVM_CAP_VCPU_EVENTS
1603     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1604 #endif
1605 
1606     s->robust_singlestep =
1607         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1608 
1609 #ifdef KVM_CAP_DEBUGREGS
1610     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1611 #endif
1612 
1613 #ifdef KVM_CAP_IRQ_ROUTING
1614     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1615 #endif
1616 
1617     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1618 
1619     s->irq_set_ioctl = KVM_IRQ_LINE;
1620     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1621         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1622     }
1623 
1624 #ifdef KVM_CAP_READONLY_MEM
1625     kvm_readonly_mem_allowed =
1626         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1627 #endif
1628 
1629     kvm_eventfds_allowed =
1630         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1631 
1632     kvm_irqfds_allowed =
1633         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1634 
1635     kvm_resamplefds_allowed =
1636         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1637 
1638     kvm_vm_attributes_allowed =
1639         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1640 
1641     kvm_ioeventfd_any_length_allowed =
1642         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1643 
1644     kvm_state = s;
1645 
1646     ret = kvm_arch_init(ms, s);
1647     if (ret < 0) {
1648         goto err;
1649     }
1650 
1651     if (machine_kernel_irqchip_allowed(ms)) {
1652         kvm_irqchip_create(ms, s);
1653     }
1654 
1655     if (kvm_eventfds_allowed) {
1656         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1657         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1658     }
1659     s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1660     s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1661 
1662     kvm_memory_listener_register(s, &s->memory_listener,
1663                                  &address_space_memory, 0);
1664     memory_listener_register(&kvm_io_listener,
1665                              &address_space_io);
1666 
1667     s->many_ioeventfds = kvm_check_many_ioeventfds();
1668 
1669     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1670 
1671     return 0;
1672 
1673 err:
1674     assert(ret < 0);
1675     if (s->vmfd >= 0) {
1676         close(s->vmfd);
1677     }
1678     if (s->fd != -1) {
1679         close(s->fd);
1680     }
1681     g_free(s->memory_listener.slots);
1682 
1683     return ret;
1684 }
1685 
1686 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1687 {
1688     s->sigmask_len = sigmask_len;
1689 }
1690 
1691 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1692                           int size, uint32_t count)
1693 {
1694     int i;
1695     uint8_t *ptr = data;
1696 
1697     for (i = 0; i < count; i++) {
1698         address_space_rw(&address_space_io, port, attrs,
1699                          ptr, size,
1700                          direction == KVM_EXIT_IO_OUT);
1701         ptr += size;
1702     }
1703 }
1704 
1705 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1706 {
1707     fprintf(stderr, "KVM internal error. Suberror: %d\n",
1708             run->internal.suberror);
1709 
1710     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1711         int i;
1712 
1713         for (i = 0; i < run->internal.ndata; ++i) {
1714             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1715                     i, (uint64_t)run->internal.data[i]);
1716         }
1717     }
1718     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1719         fprintf(stderr, "emulation failure\n");
1720         if (!kvm_arch_stop_on_emulation_error(cpu)) {
1721             cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1722             return EXCP_INTERRUPT;
1723         }
1724     }
1725     /* FIXME: Should trigger a qmp message to let management know
1726      * something went wrong.
1727      */
1728     return -1;
1729 }
1730 
1731 void kvm_flush_coalesced_mmio_buffer(void)
1732 {
1733     KVMState *s = kvm_state;
1734 
1735     if (s->coalesced_flush_in_progress) {
1736         return;
1737     }
1738 
1739     s->coalesced_flush_in_progress = true;
1740 
1741     if (s->coalesced_mmio_ring) {
1742         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1743         while (ring->first != ring->last) {
1744             struct kvm_coalesced_mmio *ent;
1745 
1746             ent = &ring->coalesced_mmio[ring->first];
1747 
1748             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1749             smp_wmb();
1750             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1751         }
1752     }
1753 
1754     s->coalesced_flush_in_progress = false;
1755 }
1756 
1757 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1758 {
1759     if (!cpu->vcpu_dirty) {
1760         kvm_arch_get_registers(cpu);
1761         cpu->vcpu_dirty = true;
1762     }
1763 }
1764 
1765 void kvm_cpu_synchronize_state(CPUState *cpu)
1766 {
1767     if (!cpu->vcpu_dirty) {
1768         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1769     }
1770 }
1771 
1772 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1773 {
1774     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1775     cpu->vcpu_dirty = false;
1776 }
1777 
1778 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1779 {
1780     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1781 }
1782 
1783 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1784 {
1785     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1786     cpu->vcpu_dirty = false;
1787 }
1788 
1789 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1790 {
1791     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1792 }
1793 
1794 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1795 {
1796     cpu->vcpu_dirty = true;
1797 }
1798 
1799 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1800 {
1801     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1802 }
1803 
1804 #ifdef KVM_HAVE_MCE_INJECTION
1805 static __thread void *pending_sigbus_addr;
1806 static __thread int pending_sigbus_code;
1807 static __thread bool have_sigbus_pending;
1808 #endif
1809 
1810 static void kvm_cpu_kick(CPUState *cpu)
1811 {
1812     atomic_set(&cpu->kvm_run->immediate_exit, 1);
1813 }
1814 
1815 static void kvm_cpu_kick_self(void)
1816 {
1817     if (kvm_immediate_exit) {
1818         kvm_cpu_kick(current_cpu);
1819     } else {
1820         qemu_cpu_kick_self();
1821     }
1822 }
1823 
1824 static void kvm_eat_signals(CPUState *cpu)
1825 {
1826     struct timespec ts = { 0, 0 };
1827     siginfo_t siginfo;
1828     sigset_t waitset;
1829     sigset_t chkset;
1830     int r;
1831 
1832     if (kvm_immediate_exit) {
1833         atomic_set(&cpu->kvm_run->immediate_exit, 0);
1834         /* Write kvm_run->immediate_exit before the cpu->exit_request
1835          * write in kvm_cpu_exec.
1836          */
1837         smp_wmb();
1838         return;
1839     }
1840 
1841     sigemptyset(&waitset);
1842     sigaddset(&waitset, SIG_IPI);
1843 
1844     do {
1845         r = sigtimedwait(&waitset, &siginfo, &ts);
1846         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1847             perror("sigtimedwait");
1848             exit(1);
1849         }
1850 
1851         r = sigpending(&chkset);
1852         if (r == -1) {
1853             perror("sigpending");
1854             exit(1);
1855         }
1856     } while (sigismember(&chkset, SIG_IPI));
1857 }
1858 
1859 int kvm_cpu_exec(CPUState *cpu)
1860 {
1861     struct kvm_run *run = cpu->kvm_run;
1862     int ret, run_ret;
1863 
1864     DPRINTF("kvm_cpu_exec()\n");
1865 
1866     if (kvm_arch_process_async_events(cpu)) {
1867         atomic_set(&cpu->exit_request, 0);
1868         return EXCP_HLT;
1869     }
1870 
1871     qemu_mutex_unlock_iothread();
1872     cpu_exec_start(cpu);
1873 
1874     do {
1875         MemTxAttrs attrs;
1876 
1877         if (cpu->vcpu_dirty) {
1878             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1879             cpu->vcpu_dirty = false;
1880         }
1881 
1882         kvm_arch_pre_run(cpu, run);
1883         if (atomic_read(&cpu->exit_request)) {
1884             DPRINTF("interrupt exit requested\n");
1885             /*
1886              * KVM requires us to reenter the kernel after IO exits to complete
1887              * instruction emulation. This self-signal will ensure that we
1888              * leave ASAP again.
1889              */
1890             kvm_cpu_kick_self();
1891         }
1892 
1893         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1894          * Matching barrier in kvm_eat_signals.
1895          */
1896         smp_rmb();
1897 
1898         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1899 
1900         attrs = kvm_arch_post_run(cpu, run);
1901 
1902 #ifdef KVM_HAVE_MCE_INJECTION
1903         if (unlikely(have_sigbus_pending)) {
1904             qemu_mutex_lock_iothread();
1905             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1906                                     pending_sigbus_addr);
1907             have_sigbus_pending = false;
1908             qemu_mutex_unlock_iothread();
1909         }
1910 #endif
1911 
1912         if (run_ret < 0) {
1913             if (run_ret == -EINTR || run_ret == -EAGAIN) {
1914                 DPRINTF("io window exit\n");
1915                 kvm_eat_signals(cpu);
1916                 ret = EXCP_INTERRUPT;
1917                 break;
1918             }
1919             fprintf(stderr, "error: kvm run failed %s\n",
1920                     strerror(-run_ret));
1921 #ifdef TARGET_PPC
1922             if (run_ret == -EBUSY) {
1923                 fprintf(stderr,
1924                         "This is probably because your SMT is enabled.\n"
1925                         "VCPU can only run on primary threads with all "
1926                         "secondary threads offline.\n");
1927             }
1928 #endif
1929             ret = -1;
1930             break;
1931         }
1932 
1933         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1934         switch (run->exit_reason) {
1935         case KVM_EXIT_IO:
1936             DPRINTF("handle_io\n");
1937             /* Called outside BQL */
1938             kvm_handle_io(run->io.port, attrs,
1939                           (uint8_t *)run + run->io.data_offset,
1940                           run->io.direction,
1941                           run->io.size,
1942                           run->io.count);
1943             ret = 0;
1944             break;
1945         case KVM_EXIT_MMIO:
1946             DPRINTF("handle_mmio\n");
1947             /* Called outside BQL */
1948             address_space_rw(&address_space_memory,
1949                              run->mmio.phys_addr, attrs,
1950                              run->mmio.data,
1951                              run->mmio.len,
1952                              run->mmio.is_write);
1953             ret = 0;
1954             break;
1955         case KVM_EXIT_IRQ_WINDOW_OPEN:
1956             DPRINTF("irq_window_open\n");
1957             ret = EXCP_INTERRUPT;
1958             break;
1959         case KVM_EXIT_SHUTDOWN:
1960             DPRINTF("shutdown\n");
1961             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1962             ret = EXCP_INTERRUPT;
1963             break;
1964         case KVM_EXIT_UNKNOWN:
1965             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1966                     (uint64_t)run->hw.hardware_exit_reason);
1967             ret = -1;
1968             break;
1969         case KVM_EXIT_INTERNAL_ERROR:
1970             ret = kvm_handle_internal_error(cpu, run);
1971             break;
1972         case KVM_EXIT_SYSTEM_EVENT:
1973             switch (run->system_event.type) {
1974             case KVM_SYSTEM_EVENT_SHUTDOWN:
1975                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1976                 ret = EXCP_INTERRUPT;
1977                 break;
1978             case KVM_SYSTEM_EVENT_RESET:
1979                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1980                 ret = EXCP_INTERRUPT;
1981                 break;
1982             case KVM_SYSTEM_EVENT_CRASH:
1983                 kvm_cpu_synchronize_state(cpu);
1984                 qemu_mutex_lock_iothread();
1985                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
1986                 qemu_mutex_unlock_iothread();
1987                 ret = 0;
1988                 break;
1989             default:
1990                 DPRINTF("kvm_arch_handle_exit\n");
1991                 ret = kvm_arch_handle_exit(cpu, run);
1992                 break;
1993             }
1994             break;
1995         default:
1996             DPRINTF("kvm_arch_handle_exit\n");
1997             ret = kvm_arch_handle_exit(cpu, run);
1998             break;
1999         }
2000     } while (ret == 0);
2001 
2002     cpu_exec_end(cpu);
2003     qemu_mutex_lock_iothread();
2004 
2005     if (ret < 0) {
2006         cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2007         vm_stop(RUN_STATE_INTERNAL_ERROR);
2008     }
2009 
2010     atomic_set(&cpu->exit_request, 0);
2011     return ret;
2012 }
2013 
2014 int kvm_ioctl(KVMState *s, int type, ...)
2015 {
2016     int ret;
2017     void *arg;
2018     va_list ap;
2019 
2020     va_start(ap, type);
2021     arg = va_arg(ap, void *);
2022     va_end(ap);
2023 
2024     trace_kvm_ioctl(type, arg);
2025     ret = ioctl(s->fd, type, arg);
2026     if (ret == -1) {
2027         ret = -errno;
2028     }
2029     return ret;
2030 }
2031 
2032 int kvm_vm_ioctl(KVMState *s, int type, ...)
2033 {
2034     int ret;
2035     void *arg;
2036     va_list ap;
2037 
2038     va_start(ap, type);
2039     arg = va_arg(ap, void *);
2040     va_end(ap);
2041 
2042     trace_kvm_vm_ioctl(type, arg);
2043     ret = ioctl(s->vmfd, type, arg);
2044     if (ret == -1) {
2045         ret = -errno;
2046     }
2047     return ret;
2048 }
2049 
2050 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2051 {
2052     int ret;
2053     void *arg;
2054     va_list ap;
2055 
2056     va_start(ap, type);
2057     arg = va_arg(ap, void *);
2058     va_end(ap);
2059 
2060     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2061     ret = ioctl(cpu->kvm_fd, type, arg);
2062     if (ret == -1) {
2063         ret = -errno;
2064     }
2065     return ret;
2066 }
2067 
2068 int kvm_device_ioctl(int fd, int type, ...)
2069 {
2070     int ret;
2071     void *arg;
2072     va_list ap;
2073 
2074     va_start(ap, type);
2075     arg = va_arg(ap, void *);
2076     va_end(ap);
2077 
2078     trace_kvm_device_ioctl(fd, type, arg);
2079     ret = ioctl(fd, type, arg);
2080     if (ret == -1) {
2081         ret = -errno;
2082     }
2083     return ret;
2084 }
2085 
2086 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2087 {
2088     int ret;
2089     struct kvm_device_attr attribute = {
2090         .group = group,
2091         .attr = attr,
2092     };
2093 
2094     if (!kvm_vm_attributes_allowed) {
2095         return 0;
2096     }
2097 
2098     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2099     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2100     return ret ? 0 : 1;
2101 }
2102 
2103 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2104 {
2105     struct kvm_device_attr attribute = {
2106         .group = group,
2107         .attr = attr,
2108         .flags = 0,
2109     };
2110 
2111     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2112 }
2113 
2114 int kvm_device_access(int fd, int group, uint64_t attr,
2115                       void *val, bool write, Error **errp)
2116 {
2117     struct kvm_device_attr kvmattr;
2118     int err;
2119 
2120     kvmattr.flags = 0;
2121     kvmattr.group = group;
2122     kvmattr.attr = attr;
2123     kvmattr.addr = (uintptr_t)val;
2124 
2125     err = kvm_device_ioctl(fd,
2126                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2127                            &kvmattr);
2128     if (err < 0) {
2129         error_setg_errno(errp, -err,
2130                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2131                          "attr 0x%016" PRIx64,
2132                          write ? "SET" : "GET", group, attr);
2133     }
2134     return err;
2135 }
2136 
2137 bool kvm_has_sync_mmu(void)
2138 {
2139     return kvm_state->sync_mmu;
2140 }
2141 
2142 int kvm_has_vcpu_events(void)
2143 {
2144     return kvm_state->vcpu_events;
2145 }
2146 
2147 int kvm_has_robust_singlestep(void)
2148 {
2149     return kvm_state->robust_singlestep;
2150 }
2151 
2152 int kvm_has_debugregs(void)
2153 {
2154     return kvm_state->debugregs;
2155 }
2156 
2157 int kvm_has_many_ioeventfds(void)
2158 {
2159     if (!kvm_enabled()) {
2160         return 0;
2161     }
2162     return kvm_state->many_ioeventfds;
2163 }
2164 
2165 int kvm_has_gsi_routing(void)
2166 {
2167 #ifdef KVM_CAP_IRQ_ROUTING
2168     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2169 #else
2170     return false;
2171 #endif
2172 }
2173 
2174 int kvm_has_intx_set_mask(void)
2175 {
2176     return kvm_state->intx_set_mask;
2177 }
2178 
2179 bool kvm_arm_supports_user_irq(void)
2180 {
2181     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2182 }
2183 
2184 #ifdef KVM_CAP_SET_GUEST_DEBUG
2185 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2186                                                  target_ulong pc)
2187 {
2188     struct kvm_sw_breakpoint *bp;
2189 
2190     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2191         if (bp->pc == pc) {
2192             return bp;
2193         }
2194     }
2195     return NULL;
2196 }
2197 
2198 int kvm_sw_breakpoints_active(CPUState *cpu)
2199 {
2200     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2201 }
2202 
2203 struct kvm_set_guest_debug_data {
2204     struct kvm_guest_debug dbg;
2205     int err;
2206 };
2207 
2208 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2209 {
2210     struct kvm_set_guest_debug_data *dbg_data =
2211         (struct kvm_set_guest_debug_data *) data.host_ptr;
2212 
2213     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2214                                    &dbg_data->dbg);
2215 }
2216 
2217 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2218 {
2219     struct kvm_set_guest_debug_data data;
2220 
2221     data.dbg.control = reinject_trap;
2222 
2223     if (cpu->singlestep_enabled) {
2224         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2225     }
2226     kvm_arch_update_guest_debug(cpu, &data.dbg);
2227 
2228     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2229                RUN_ON_CPU_HOST_PTR(&data));
2230     return data.err;
2231 }
2232 
2233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2234                           target_ulong len, int type)
2235 {
2236     struct kvm_sw_breakpoint *bp;
2237     int err;
2238 
2239     if (type == GDB_BREAKPOINT_SW) {
2240         bp = kvm_find_sw_breakpoint(cpu, addr);
2241         if (bp) {
2242             bp->use_count++;
2243             return 0;
2244         }
2245 
2246         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2247         bp->pc = addr;
2248         bp->use_count = 1;
2249         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2250         if (err) {
2251             g_free(bp);
2252             return err;
2253         }
2254 
2255         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2256     } else {
2257         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2258         if (err) {
2259             return err;
2260         }
2261     }
2262 
2263     CPU_FOREACH(cpu) {
2264         err = kvm_update_guest_debug(cpu, 0);
2265         if (err) {
2266             return err;
2267         }
2268     }
2269     return 0;
2270 }
2271 
2272 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2273                           target_ulong len, int type)
2274 {
2275     struct kvm_sw_breakpoint *bp;
2276     int err;
2277 
2278     if (type == GDB_BREAKPOINT_SW) {
2279         bp = kvm_find_sw_breakpoint(cpu, addr);
2280         if (!bp) {
2281             return -ENOENT;
2282         }
2283 
2284         if (bp->use_count > 1) {
2285             bp->use_count--;
2286             return 0;
2287         }
2288 
2289         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2290         if (err) {
2291             return err;
2292         }
2293 
2294         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2295         g_free(bp);
2296     } else {
2297         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2298         if (err) {
2299             return err;
2300         }
2301     }
2302 
2303     CPU_FOREACH(cpu) {
2304         err = kvm_update_guest_debug(cpu, 0);
2305         if (err) {
2306             return err;
2307         }
2308     }
2309     return 0;
2310 }
2311 
2312 void kvm_remove_all_breakpoints(CPUState *cpu)
2313 {
2314     struct kvm_sw_breakpoint *bp, *next;
2315     KVMState *s = cpu->kvm_state;
2316     CPUState *tmpcpu;
2317 
2318     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2319         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2320             /* Try harder to find a CPU that currently sees the breakpoint. */
2321             CPU_FOREACH(tmpcpu) {
2322                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2323                     break;
2324                 }
2325             }
2326         }
2327         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2328         g_free(bp);
2329     }
2330     kvm_arch_remove_all_hw_breakpoints();
2331 
2332     CPU_FOREACH(cpu) {
2333         kvm_update_guest_debug(cpu, 0);
2334     }
2335 }
2336 
2337 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2338 
2339 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2340 {
2341     return -EINVAL;
2342 }
2343 
2344 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2345                           target_ulong len, int type)
2346 {
2347     return -EINVAL;
2348 }
2349 
2350 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2351                           target_ulong len, int type)
2352 {
2353     return -EINVAL;
2354 }
2355 
2356 void kvm_remove_all_breakpoints(CPUState *cpu)
2357 {
2358 }
2359 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2360 
2361 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2362 {
2363     KVMState *s = kvm_state;
2364     struct kvm_signal_mask *sigmask;
2365     int r;
2366 
2367     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2368 
2369     sigmask->len = s->sigmask_len;
2370     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2371     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2372     g_free(sigmask);
2373 
2374     return r;
2375 }
2376 
2377 static void kvm_ipi_signal(int sig)
2378 {
2379     if (current_cpu) {
2380         assert(kvm_immediate_exit);
2381         kvm_cpu_kick(current_cpu);
2382     }
2383 }
2384 
2385 void kvm_init_cpu_signals(CPUState *cpu)
2386 {
2387     int r;
2388     sigset_t set;
2389     struct sigaction sigact;
2390 
2391     memset(&sigact, 0, sizeof(sigact));
2392     sigact.sa_handler = kvm_ipi_signal;
2393     sigaction(SIG_IPI, &sigact, NULL);
2394 
2395     pthread_sigmask(SIG_BLOCK, NULL, &set);
2396 #if defined KVM_HAVE_MCE_INJECTION
2397     sigdelset(&set, SIGBUS);
2398     pthread_sigmask(SIG_SETMASK, &set, NULL);
2399 #endif
2400     sigdelset(&set, SIG_IPI);
2401     if (kvm_immediate_exit) {
2402         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2403     } else {
2404         r = kvm_set_signal_mask(cpu, &set);
2405     }
2406     if (r) {
2407         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2408         exit(1);
2409     }
2410 }
2411 
2412 /* Called asynchronously in VCPU thread.  */
2413 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2414 {
2415 #ifdef KVM_HAVE_MCE_INJECTION
2416     if (have_sigbus_pending) {
2417         return 1;
2418     }
2419     have_sigbus_pending = true;
2420     pending_sigbus_addr = addr;
2421     pending_sigbus_code = code;
2422     atomic_set(&cpu->exit_request, 1);
2423     return 0;
2424 #else
2425     return 1;
2426 #endif
2427 }
2428 
2429 /* Called synchronously (via signalfd) in main thread.  */
2430 int kvm_on_sigbus(int code, void *addr)
2431 {
2432 #ifdef KVM_HAVE_MCE_INJECTION
2433     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2434      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2435      * we can only get action optional here.
2436      */
2437     assert(code != BUS_MCEERR_AR);
2438     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2439     return 0;
2440 #else
2441     return 1;
2442 #endif
2443 }
2444 
2445 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2446 {
2447     int ret;
2448     struct kvm_create_device create_dev;
2449 
2450     create_dev.type = type;
2451     create_dev.fd = -1;
2452     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2453 
2454     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2455         return -ENOTSUP;
2456     }
2457 
2458     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2459     if (ret) {
2460         return ret;
2461     }
2462 
2463     return test ? 0 : create_dev.fd;
2464 }
2465 
2466 bool kvm_device_supported(int vmfd, uint64_t type)
2467 {
2468     struct kvm_create_device create_dev = {
2469         .type = type,
2470         .fd = -1,
2471         .flags = KVM_CREATE_DEVICE_TEST,
2472     };
2473 
2474     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2475         return false;
2476     }
2477 
2478     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2479 }
2480 
2481 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2482 {
2483     struct kvm_one_reg reg;
2484     int r;
2485 
2486     reg.id = id;
2487     reg.addr = (uintptr_t) source;
2488     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2489     if (r) {
2490         trace_kvm_failed_reg_set(id, strerror(-r));
2491     }
2492     return r;
2493 }
2494 
2495 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2496 {
2497     struct kvm_one_reg reg;
2498     int r;
2499 
2500     reg.id = id;
2501     reg.addr = (uintptr_t) target;
2502     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2503     if (r) {
2504         trace_kvm_failed_reg_get(id, strerror(-r));
2505     }
2506     return r;
2507 }
2508 
2509 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2510 {
2511     AccelClass *ac = ACCEL_CLASS(oc);
2512     ac->name = "KVM";
2513     ac->init_machine = kvm_init;
2514     ac->allowed = &kvm_allowed;
2515 }
2516 
2517 static const TypeInfo kvm_accel_type = {
2518     .name = TYPE_KVM_ACCEL,
2519     .parent = TYPE_ACCEL,
2520     .class_init = kvm_accel_class_init,
2521     .instance_size = sizeof(KVMState),
2522 };
2523 
2524 static void kvm_type_init(void)
2525 {
2526     type_register_static(&kvm_accel_type);
2527 }
2528 
2529 type_init(kvm_type_init);
2530