xref: /qemu/accel/kvm/kvm-all.c (revision 727385c4)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 
49 #include "hw/boards.h"
50 
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
55 
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57  * need to use the real host PAGE_SIZE, as that's what KVM will use.
58  */
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size
63 
64 //#define DEBUG_KVM
65 
66 #ifdef DEBUG_KVM
67 #define DPRINTF(fmt, ...) \
68     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
69 #else
70 #define DPRINTF(fmt, ...) \
71     do { } while (0)
72 #endif
73 
74 #define KVM_MSI_HASHTAB_SIZE    256
75 
76 struct KVMParkedVcpu {
77     unsigned long vcpu_id;
78     int kvm_fd;
79     QLIST_ENTRY(KVMParkedVcpu) node;
80 };
81 
82 enum KVMDirtyRingReaperState {
83     KVM_DIRTY_RING_REAPER_NONE = 0,
84     /* The reaper is sleeping */
85     KVM_DIRTY_RING_REAPER_WAIT,
86     /* The reaper is reaping for dirty pages */
87     KVM_DIRTY_RING_REAPER_REAPING,
88 };
89 
90 /*
91  * KVM reaper instance, responsible for collecting the KVM dirty bits
92  * via the dirty ring.
93  */
94 struct KVMDirtyRingReaper {
95     /* The reaper thread */
96     QemuThread reaper_thr;
97     volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
98     volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
99 };
100 
101 struct KVMState
102 {
103     AccelState parent_obj;
104 
105     int nr_slots;
106     int fd;
107     int vmfd;
108     int coalesced_mmio;
109     int coalesced_pio;
110     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
111     bool coalesced_flush_in_progress;
112     int vcpu_events;
113     int robust_singlestep;
114     int debugregs;
115 #ifdef KVM_CAP_SET_GUEST_DEBUG
116     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
117 #endif
118     int max_nested_state_len;
119     int many_ioeventfds;
120     int intx_set_mask;
121     int kvm_shadow_mem;
122     bool kernel_irqchip_allowed;
123     bool kernel_irqchip_required;
124     OnOffAuto kernel_irqchip_split;
125     bool sync_mmu;
126     uint64_t manual_dirty_log_protect;
127     /* The man page (and posix) say ioctl numbers are signed int, but
128      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
129      * unsigned, and treating them as signed here can break things */
130     unsigned irq_set_ioctl;
131     unsigned int sigmask_len;
132     GHashTable *gsimap;
133 #ifdef KVM_CAP_IRQ_ROUTING
134     struct kvm_irq_routing *irq_routes;
135     int nr_allocated_irq_routes;
136     unsigned long *used_gsi_bitmap;
137     unsigned int gsi_count;
138     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
139 #endif
140     KVMMemoryListener memory_listener;
141     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
142 
143     /* For "info mtree -f" to tell if an MR is registered in KVM */
144     int nr_as;
145     struct KVMAs {
146         KVMMemoryListener *ml;
147         AddressSpace *as;
148     } *as;
149     uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
150     uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
151     struct KVMDirtyRingReaper reaper;
152 };
153 
154 KVMState *kvm_state;
155 bool kvm_kernel_irqchip;
156 bool kvm_split_irqchip;
157 bool kvm_async_interrupts_allowed;
158 bool kvm_halt_in_kernel_allowed;
159 bool kvm_eventfds_allowed;
160 bool kvm_irqfds_allowed;
161 bool kvm_resamplefds_allowed;
162 bool kvm_msi_via_irqfd_allowed;
163 bool kvm_gsi_routing_allowed;
164 bool kvm_gsi_direct_mapping;
165 bool kvm_allowed;
166 bool kvm_readonly_mem_allowed;
167 bool kvm_vm_attributes_allowed;
168 bool kvm_direct_msi_allowed;
169 bool kvm_ioeventfd_any_length_allowed;
170 bool kvm_msi_use_devid;
171 static bool kvm_immediate_exit;
172 static hwaddr kvm_max_slot_size = ~0;
173 
174 static const KVMCapabilityInfo kvm_required_capabilites[] = {
175     KVM_CAP_INFO(USER_MEMORY),
176     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
177     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
178     KVM_CAP_LAST_INFO
179 };
180 
181 static NotifierList kvm_irqchip_change_notifiers =
182     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
183 
184 struct KVMResampleFd {
185     int gsi;
186     EventNotifier *resample_event;
187     QLIST_ENTRY(KVMResampleFd) node;
188 };
189 typedef struct KVMResampleFd KVMResampleFd;
190 
191 /*
192  * Only used with split irqchip where we need to do the resample fd
193  * kick for the kernel from userspace.
194  */
195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
196     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
197 
198 static QemuMutex kml_slots_lock;
199 
200 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
201 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
202 
203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
204 
205 static inline void kvm_resample_fd_remove(int gsi)
206 {
207     KVMResampleFd *rfd;
208 
209     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
210         if (rfd->gsi == gsi) {
211             QLIST_REMOVE(rfd, node);
212             g_free(rfd);
213             break;
214         }
215     }
216 }
217 
218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
219 {
220     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
221 
222     rfd->gsi = gsi;
223     rfd->resample_event = event;
224 
225     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
226 }
227 
228 void kvm_resample_fd_notify(int gsi)
229 {
230     KVMResampleFd *rfd;
231 
232     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
233         if (rfd->gsi == gsi) {
234             event_notifier_set(rfd->resample_event);
235             trace_kvm_resample_fd_notify(gsi);
236             return;
237         }
238     }
239 }
240 
241 int kvm_get_max_memslots(void)
242 {
243     KVMState *s = KVM_STATE(current_accel());
244 
245     return s->nr_slots;
246 }
247 
248 /* Called with KVMMemoryListener.slots_lock held */
249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
250 {
251     KVMState *s = kvm_state;
252     int i;
253 
254     for (i = 0; i < s->nr_slots; i++) {
255         if (kml->slots[i].memory_size == 0) {
256             return &kml->slots[i];
257         }
258     }
259 
260     return NULL;
261 }
262 
263 bool kvm_has_free_slot(MachineState *ms)
264 {
265     KVMState *s = KVM_STATE(ms->accelerator);
266     bool result;
267     KVMMemoryListener *kml = &s->memory_listener;
268 
269     kvm_slots_lock();
270     result = !!kvm_get_free_slot(kml);
271     kvm_slots_unlock();
272 
273     return result;
274 }
275 
276 /* Called with KVMMemoryListener.slots_lock held */
277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
278 {
279     KVMSlot *slot = kvm_get_free_slot(kml);
280 
281     if (slot) {
282         return slot;
283     }
284 
285     fprintf(stderr, "%s: no free slot available\n", __func__);
286     abort();
287 }
288 
289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
290                                          hwaddr start_addr,
291                                          hwaddr size)
292 {
293     KVMState *s = kvm_state;
294     int i;
295 
296     for (i = 0; i < s->nr_slots; i++) {
297         KVMSlot *mem = &kml->slots[i];
298 
299         if (start_addr == mem->start_addr && size == mem->memory_size) {
300             return mem;
301         }
302     }
303 
304     return NULL;
305 }
306 
307 /*
308  * Calculate and align the start address and the size of the section.
309  * Return the size. If the size is 0, the aligned section is empty.
310  */
311 static hwaddr kvm_align_section(MemoryRegionSection *section,
312                                 hwaddr *start)
313 {
314     hwaddr size = int128_get64(section->size);
315     hwaddr delta, aligned;
316 
317     /* kvm works in page size chunks, but the function may be called
318        with sub-page size and unaligned start address. Pad the start
319        address to next and truncate size to previous page boundary. */
320     aligned = ROUND_UP(section->offset_within_address_space,
321                        qemu_real_host_page_size);
322     delta = aligned - section->offset_within_address_space;
323     *start = aligned;
324     if (delta > size) {
325         return 0;
326     }
327 
328     return (size - delta) & qemu_real_host_page_mask;
329 }
330 
331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
332                                        hwaddr *phys_addr)
333 {
334     KVMMemoryListener *kml = &s->memory_listener;
335     int i, ret = 0;
336 
337     kvm_slots_lock();
338     for (i = 0; i < s->nr_slots; i++) {
339         KVMSlot *mem = &kml->slots[i];
340 
341         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
342             *phys_addr = mem->start_addr + (ram - mem->ram);
343             ret = 1;
344             break;
345         }
346     }
347     kvm_slots_unlock();
348 
349     return ret;
350 }
351 
352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
353 {
354     KVMState *s = kvm_state;
355     struct kvm_userspace_memory_region mem;
356     int ret;
357 
358     mem.slot = slot->slot | (kml->as_id << 16);
359     mem.guest_phys_addr = slot->start_addr;
360     mem.userspace_addr = (unsigned long)slot->ram;
361     mem.flags = slot->flags;
362 
363     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
364         /* Set the slot size to 0 before setting the slot to the desired
365          * value. This is needed based on KVM commit 75d61fbc. */
366         mem.memory_size = 0;
367         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
368         if (ret < 0) {
369             goto err;
370         }
371     }
372     mem.memory_size = slot->memory_size;
373     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374     slot->old_flags = mem.flags;
375 err:
376     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
377                               mem.memory_size, mem.userspace_addr, ret);
378     if (ret < 0) {
379         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
380                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
381                      __func__, mem.slot, slot->start_addr,
382                      (uint64_t)mem.memory_size, strerror(errno));
383     }
384     return ret;
385 }
386 
387 static int do_kvm_destroy_vcpu(CPUState *cpu)
388 {
389     KVMState *s = kvm_state;
390     long mmap_size;
391     struct KVMParkedVcpu *vcpu = NULL;
392     int ret = 0;
393 
394     DPRINTF("kvm_destroy_vcpu\n");
395 
396     ret = kvm_arch_destroy_vcpu(cpu);
397     if (ret < 0) {
398         goto err;
399     }
400 
401     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
402     if (mmap_size < 0) {
403         ret = mmap_size;
404         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
405         goto err;
406     }
407 
408     ret = munmap(cpu->kvm_run, mmap_size);
409     if (ret < 0) {
410         goto err;
411     }
412 
413     if (cpu->kvm_dirty_gfns) {
414         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
415         if (ret < 0) {
416             goto err;
417         }
418     }
419 
420     vcpu = g_malloc0(sizeof(*vcpu));
421     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
422     vcpu->kvm_fd = cpu->kvm_fd;
423     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
424 err:
425     return ret;
426 }
427 
428 void kvm_destroy_vcpu(CPUState *cpu)
429 {
430     if (do_kvm_destroy_vcpu(cpu) < 0) {
431         error_report("kvm_destroy_vcpu failed");
432         exit(EXIT_FAILURE);
433     }
434 }
435 
436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
437 {
438     struct KVMParkedVcpu *cpu;
439 
440     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
441         if (cpu->vcpu_id == vcpu_id) {
442             int kvm_fd;
443 
444             QLIST_REMOVE(cpu, node);
445             kvm_fd = cpu->kvm_fd;
446             g_free(cpu);
447             return kvm_fd;
448         }
449     }
450 
451     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
452 }
453 
454 int kvm_init_vcpu(CPUState *cpu, Error **errp)
455 {
456     KVMState *s = kvm_state;
457     long mmap_size;
458     int ret;
459 
460     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
461 
462     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
463     if (ret < 0) {
464         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
465                          kvm_arch_vcpu_id(cpu));
466         goto err;
467     }
468 
469     cpu->kvm_fd = ret;
470     cpu->kvm_state = s;
471     cpu->vcpu_dirty = true;
472     cpu->dirty_pages = 0;
473 
474     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
475     if (mmap_size < 0) {
476         ret = mmap_size;
477         error_setg_errno(errp, -mmap_size,
478                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
479         goto err;
480     }
481 
482     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
483                         cpu->kvm_fd, 0);
484     if (cpu->kvm_run == MAP_FAILED) {
485         ret = -errno;
486         error_setg_errno(errp, ret,
487                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
488                          kvm_arch_vcpu_id(cpu));
489         goto err;
490     }
491 
492     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
493         s->coalesced_mmio_ring =
494             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
495     }
496 
497     if (s->kvm_dirty_ring_size) {
498         /* Use MAP_SHARED to share pages with the kernel */
499         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
500                                    PROT_READ | PROT_WRITE, MAP_SHARED,
501                                    cpu->kvm_fd,
502                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
503         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
504             ret = -errno;
505             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
506             goto err;
507         }
508     }
509 
510     ret = kvm_arch_init_vcpu(cpu);
511     if (ret < 0) {
512         error_setg_errno(errp, -ret,
513                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
514                          kvm_arch_vcpu_id(cpu));
515     }
516 err:
517     return ret;
518 }
519 
520 /*
521  * dirty pages logging control
522  */
523 
524 static int kvm_mem_flags(MemoryRegion *mr)
525 {
526     bool readonly = mr->readonly || memory_region_is_romd(mr);
527     int flags = 0;
528 
529     if (memory_region_get_dirty_log_mask(mr) != 0) {
530         flags |= KVM_MEM_LOG_DIRTY_PAGES;
531     }
532     if (readonly && kvm_readonly_mem_allowed) {
533         flags |= KVM_MEM_READONLY;
534     }
535     return flags;
536 }
537 
538 /* Called with KVMMemoryListener.slots_lock held */
539 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
540                                  MemoryRegion *mr)
541 {
542     mem->flags = kvm_mem_flags(mr);
543 
544     /* If nothing changed effectively, no need to issue ioctl */
545     if (mem->flags == mem->old_flags) {
546         return 0;
547     }
548 
549     kvm_slot_init_dirty_bitmap(mem);
550     return kvm_set_user_memory_region(kml, mem, false);
551 }
552 
553 static int kvm_section_update_flags(KVMMemoryListener *kml,
554                                     MemoryRegionSection *section)
555 {
556     hwaddr start_addr, size, slot_size;
557     KVMSlot *mem;
558     int ret = 0;
559 
560     size = kvm_align_section(section, &start_addr);
561     if (!size) {
562         return 0;
563     }
564 
565     kvm_slots_lock();
566 
567     while (size && !ret) {
568         slot_size = MIN(kvm_max_slot_size, size);
569         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
570         if (!mem) {
571             /* We don't have a slot if we want to trap every access. */
572             goto out;
573         }
574 
575         ret = kvm_slot_update_flags(kml, mem, section->mr);
576         start_addr += slot_size;
577         size -= slot_size;
578     }
579 
580 out:
581     kvm_slots_unlock();
582     return ret;
583 }
584 
585 static void kvm_log_start(MemoryListener *listener,
586                           MemoryRegionSection *section,
587                           int old, int new)
588 {
589     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
590     int r;
591 
592     if (old != 0) {
593         return;
594     }
595 
596     r = kvm_section_update_flags(kml, section);
597     if (r < 0) {
598         abort();
599     }
600 }
601 
602 static void kvm_log_stop(MemoryListener *listener,
603                           MemoryRegionSection *section,
604                           int old, int new)
605 {
606     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
607     int r;
608 
609     if (new != 0) {
610         return;
611     }
612 
613     r = kvm_section_update_flags(kml, section);
614     if (r < 0) {
615         abort();
616     }
617 }
618 
619 /* get kvm's dirty pages bitmap and update qemu's */
620 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
621 {
622     ram_addr_t start = slot->ram_start_offset;
623     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
624 
625     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
626 }
627 
628 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
629 {
630     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
631 }
632 
633 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
634 
635 /* Allocate the dirty bitmap for a slot  */
636 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
637 {
638     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
639         return;
640     }
641 
642     /*
643      * XXX bad kernel interface alert
644      * For dirty bitmap, kernel allocates array of size aligned to
645      * bits-per-long.  But for case when the kernel is 64bits and
646      * the userspace is 32bits, userspace can't align to the same
647      * bits-per-long, since sizeof(long) is different between kernel
648      * and user space.  This way, userspace will provide buffer which
649      * may be 4 bytes less than the kernel will use, resulting in
650      * userspace memory corruption (which is not detectable by valgrind
651      * too, in most cases).
652      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
653      * a hope that sizeof(long) won't become >8 any time soon.
654      *
655      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
656      * And mem->memory_size is aligned to it (otherwise this mem can't
657      * be registered to KVM).
658      */
659     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
660                                         /*HOST_LONG_BITS*/ 64) / 8;
661     mem->dirty_bmap = g_malloc0(bitmap_size);
662     mem->dirty_bmap_size = bitmap_size;
663 }
664 
665 /*
666  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
667  * succeeded, false otherwise
668  */
669 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
670 {
671     struct kvm_dirty_log d = {};
672     int ret;
673 
674     d.dirty_bitmap = slot->dirty_bmap;
675     d.slot = slot->slot | (slot->as_id << 16);
676     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
677 
678     if (ret == -ENOENT) {
679         /* kernel does not have dirty bitmap in this slot */
680         ret = 0;
681     }
682     if (ret) {
683         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
684                           __func__, ret);
685     }
686     return ret == 0;
687 }
688 
689 /* Should be with all slots_lock held for the address spaces. */
690 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
691                                      uint32_t slot_id, uint64_t offset)
692 {
693     KVMMemoryListener *kml;
694     KVMSlot *mem;
695 
696     if (as_id >= s->nr_as) {
697         return;
698     }
699 
700     kml = s->as[as_id].ml;
701     mem = &kml->slots[slot_id];
702 
703     if (!mem->memory_size || offset >=
704         (mem->memory_size / qemu_real_host_page_size)) {
705         return;
706     }
707 
708     set_bit(offset, mem->dirty_bmap);
709 }
710 
711 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
712 {
713     return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
714 }
715 
716 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
717 {
718     gfn->flags = KVM_DIRTY_GFN_F_RESET;
719 }
720 
721 /*
722  * Should be with all slots_lock held for the address spaces.  It returns the
723  * dirty page we've collected on this dirty ring.
724  */
725 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
726 {
727     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
728     uint32_t ring_size = s->kvm_dirty_ring_size;
729     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
730 
731     assert(dirty_gfns && ring_size);
732     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
733 
734     while (true) {
735         cur = &dirty_gfns[fetch % ring_size];
736         if (!dirty_gfn_is_dirtied(cur)) {
737             break;
738         }
739         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
740                                  cur->offset);
741         dirty_gfn_set_collected(cur);
742         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
743         fetch++;
744         count++;
745     }
746     cpu->kvm_fetch_index = fetch;
747     cpu->dirty_pages += count;
748 
749     return count;
750 }
751 
752 /* Must be with slots_lock held */
753 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
754 {
755     int ret;
756     CPUState *cpu;
757     uint64_t total = 0;
758     int64_t stamp;
759 
760     stamp = get_clock();
761 
762     CPU_FOREACH(cpu) {
763         total += kvm_dirty_ring_reap_one(s, cpu);
764     }
765 
766     if (total) {
767         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
768         assert(ret == total);
769     }
770 
771     stamp = get_clock() - stamp;
772 
773     if (total) {
774         trace_kvm_dirty_ring_reap(total, stamp / 1000);
775     }
776 
777     return total;
778 }
779 
780 /*
781  * Currently for simplicity, we must hold BQL before calling this.  We can
782  * consider to drop the BQL if we're clear with all the race conditions.
783  */
784 static uint64_t kvm_dirty_ring_reap(KVMState *s)
785 {
786     uint64_t total;
787 
788     /*
789      * We need to lock all kvm slots for all address spaces here,
790      * because:
791      *
792      * (1) We need to mark dirty for dirty bitmaps in multiple slots
793      *     and for tons of pages, so it's better to take the lock here
794      *     once rather than once per page.  And more importantly,
795      *
796      * (2) We must _NOT_ publish dirty bits to the other threads
797      *     (e.g., the migration thread) via the kvm memory slot dirty
798      *     bitmaps before correctly re-protect those dirtied pages.
799      *     Otherwise we can have potential risk of data corruption if
800      *     the page data is read in the other thread before we do
801      *     reset below.
802      */
803     kvm_slots_lock();
804     total = kvm_dirty_ring_reap_locked(s);
805     kvm_slots_unlock();
806 
807     return total;
808 }
809 
810 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
811 {
812     /* No need to do anything */
813 }
814 
815 /*
816  * Kick all vcpus out in a synchronized way.  When returned, we
817  * guarantee that every vcpu has been kicked and at least returned to
818  * userspace once.
819  */
820 static void kvm_cpu_synchronize_kick_all(void)
821 {
822     CPUState *cpu;
823 
824     CPU_FOREACH(cpu) {
825         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
826     }
827 }
828 
829 /*
830  * Flush all the existing dirty pages to the KVM slot buffers.  When
831  * this call returns, we guarantee that all the touched dirty pages
832  * before calling this function have been put into the per-kvmslot
833  * dirty bitmap.
834  *
835  * This function must be called with BQL held.
836  */
837 static void kvm_dirty_ring_flush(void)
838 {
839     trace_kvm_dirty_ring_flush(0);
840     /*
841      * The function needs to be serialized.  Since this function
842      * should always be with BQL held, serialization is guaranteed.
843      * However, let's be sure of it.
844      */
845     assert(qemu_mutex_iothread_locked());
846     /*
847      * First make sure to flush the hardware buffers by kicking all
848      * vcpus out in a synchronous way.
849      */
850     kvm_cpu_synchronize_kick_all();
851     kvm_dirty_ring_reap(kvm_state);
852     trace_kvm_dirty_ring_flush(1);
853 }
854 
855 /**
856  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
857  *
858  * This function will first try to fetch dirty bitmap from the kernel,
859  * and then updates qemu's dirty bitmap.
860  *
861  * NOTE: caller must be with kml->slots_lock held.
862  *
863  * @kml: the KVM memory listener object
864  * @section: the memory section to sync the dirty bitmap with
865  */
866 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
867                                            MemoryRegionSection *section)
868 {
869     KVMState *s = kvm_state;
870     KVMSlot *mem;
871     hwaddr start_addr, size;
872     hwaddr slot_size;
873 
874     size = kvm_align_section(section, &start_addr);
875     while (size) {
876         slot_size = MIN(kvm_max_slot_size, size);
877         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
878         if (!mem) {
879             /* We don't have a slot if we want to trap every access. */
880             return;
881         }
882         if (kvm_slot_get_dirty_log(s, mem)) {
883             kvm_slot_sync_dirty_pages(mem);
884         }
885         start_addr += slot_size;
886         size -= slot_size;
887     }
888 }
889 
890 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
891 #define KVM_CLEAR_LOG_SHIFT  6
892 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
893 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
894 
895 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
896                                   uint64_t size)
897 {
898     KVMState *s = kvm_state;
899     uint64_t end, bmap_start, start_delta, bmap_npages;
900     struct kvm_clear_dirty_log d;
901     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
902     int ret;
903 
904     /*
905      * We need to extend either the start or the size or both to
906      * satisfy the KVM interface requirement.  Firstly, do the start
907      * page alignment on 64 host pages
908      */
909     bmap_start = start & KVM_CLEAR_LOG_MASK;
910     start_delta = start - bmap_start;
911     bmap_start /= psize;
912 
913     /*
914      * The kernel interface has restriction on the size too, that either:
915      *
916      * (1) the size is 64 host pages aligned (just like the start), or
917      * (2) the size fills up until the end of the KVM memslot.
918      */
919     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
920         << KVM_CLEAR_LOG_SHIFT;
921     end = mem->memory_size / psize;
922     if (bmap_npages > end - bmap_start) {
923         bmap_npages = end - bmap_start;
924     }
925     start_delta /= psize;
926 
927     /*
928      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
929      * that we won't clear any unknown dirty bits otherwise we might
930      * accidentally clear some set bits which are not yet synced from
931      * the kernel into QEMU's bitmap, then we'll lose track of the
932      * guest modifications upon those pages (which can directly lead
933      * to guest data loss or panic after migration).
934      *
935      * Layout of the KVMSlot.dirty_bmap:
936      *
937      *                   |<-------- bmap_npages -----------..>|
938      *                                                     [1]
939      *                     start_delta         size
940      *  |----------------|-------------|------------------|------------|
941      *  ^                ^             ^                               ^
942      *  |                |             |                               |
943      * start          bmap_start     (start)                         end
944      * of memslot                                             of memslot
945      *
946      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
947      */
948 
949     assert(bmap_start % BITS_PER_LONG == 0);
950     /* We should never do log_clear before log_sync */
951     assert(mem->dirty_bmap);
952     if (start_delta || bmap_npages - size / psize) {
953         /* Slow path - we need to manipulate a temp bitmap */
954         bmap_clear = bitmap_new(bmap_npages);
955         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
956                                     bmap_start, start_delta + size / psize);
957         /*
958          * We need to fill the holes at start because that was not
959          * specified by the caller and we extended the bitmap only for
960          * 64 pages alignment
961          */
962         bitmap_clear(bmap_clear, 0, start_delta);
963         d.dirty_bitmap = bmap_clear;
964     } else {
965         /*
966          * Fast path - both start and size align well with BITS_PER_LONG
967          * (or the end of memory slot)
968          */
969         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
970     }
971 
972     d.first_page = bmap_start;
973     /* It should never overflow.  If it happens, say something */
974     assert(bmap_npages <= UINT32_MAX);
975     d.num_pages = bmap_npages;
976     d.slot = mem->slot | (as_id << 16);
977 
978     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
979     if (ret < 0 && ret != -ENOENT) {
980         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
981                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
982                      __func__, d.slot, (uint64_t)d.first_page,
983                      (uint32_t)d.num_pages, ret);
984     } else {
985         ret = 0;
986         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
987     }
988 
989     /*
990      * After we have updated the remote dirty bitmap, we update the
991      * cached bitmap as well for the memslot, then if another user
992      * clears the same region we know we shouldn't clear it again on
993      * the remote otherwise it's data loss as well.
994      */
995     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
996                  size / psize);
997     /* This handles the NULL case well */
998     g_free(bmap_clear);
999     return ret;
1000 }
1001 
1002 
1003 /**
1004  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1005  *
1006  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1007  * protection in the host kernel because in that case this operation
1008  * will be done within log_sync().
1009  *
1010  * @kml:     the kvm memory listener
1011  * @section: the memory range to clear dirty bitmap
1012  */
1013 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1014                                   MemoryRegionSection *section)
1015 {
1016     KVMState *s = kvm_state;
1017     uint64_t start, size, offset, count;
1018     KVMSlot *mem;
1019     int ret = 0, i;
1020 
1021     if (!s->manual_dirty_log_protect) {
1022         /* No need to do explicit clear */
1023         return ret;
1024     }
1025 
1026     start = section->offset_within_address_space;
1027     size = int128_get64(section->size);
1028 
1029     if (!size) {
1030         /* Nothing more we can do... */
1031         return ret;
1032     }
1033 
1034     kvm_slots_lock();
1035 
1036     for (i = 0; i < s->nr_slots; i++) {
1037         mem = &kml->slots[i];
1038         /* Discard slots that are empty or do not overlap the section */
1039         if (!mem->memory_size ||
1040             mem->start_addr > start + size - 1 ||
1041             start > mem->start_addr + mem->memory_size - 1) {
1042             continue;
1043         }
1044 
1045         if (start >= mem->start_addr) {
1046             /* The slot starts before section or is aligned to it.  */
1047             offset = start - mem->start_addr;
1048             count = MIN(mem->memory_size - offset, size);
1049         } else {
1050             /* The slot starts after section.  */
1051             offset = 0;
1052             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1053         }
1054         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1055         if (ret < 0) {
1056             break;
1057         }
1058     }
1059 
1060     kvm_slots_unlock();
1061 
1062     return ret;
1063 }
1064 
1065 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1066                                      MemoryRegionSection *secion,
1067                                      hwaddr start, hwaddr size)
1068 {
1069     KVMState *s = kvm_state;
1070 
1071     if (s->coalesced_mmio) {
1072         struct kvm_coalesced_mmio_zone zone;
1073 
1074         zone.addr = start;
1075         zone.size = size;
1076         zone.pad = 0;
1077 
1078         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1079     }
1080 }
1081 
1082 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1083                                        MemoryRegionSection *secion,
1084                                        hwaddr start, hwaddr size)
1085 {
1086     KVMState *s = kvm_state;
1087 
1088     if (s->coalesced_mmio) {
1089         struct kvm_coalesced_mmio_zone zone;
1090 
1091         zone.addr = start;
1092         zone.size = size;
1093         zone.pad = 0;
1094 
1095         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1096     }
1097 }
1098 
1099 static void kvm_coalesce_pio_add(MemoryListener *listener,
1100                                 MemoryRegionSection *section,
1101                                 hwaddr start, hwaddr size)
1102 {
1103     KVMState *s = kvm_state;
1104 
1105     if (s->coalesced_pio) {
1106         struct kvm_coalesced_mmio_zone zone;
1107 
1108         zone.addr = start;
1109         zone.size = size;
1110         zone.pio = 1;
1111 
1112         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1113     }
1114 }
1115 
1116 static void kvm_coalesce_pio_del(MemoryListener *listener,
1117                                 MemoryRegionSection *section,
1118                                 hwaddr start, hwaddr size)
1119 {
1120     KVMState *s = kvm_state;
1121 
1122     if (s->coalesced_pio) {
1123         struct kvm_coalesced_mmio_zone zone;
1124 
1125         zone.addr = start;
1126         zone.size = size;
1127         zone.pio = 1;
1128 
1129         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1130      }
1131 }
1132 
1133 static MemoryListener kvm_coalesced_pio_listener = {
1134     .name = "kvm-coalesced-pio",
1135     .coalesced_io_add = kvm_coalesce_pio_add,
1136     .coalesced_io_del = kvm_coalesce_pio_del,
1137 };
1138 
1139 int kvm_check_extension(KVMState *s, unsigned int extension)
1140 {
1141     int ret;
1142 
1143     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1144     if (ret < 0) {
1145         ret = 0;
1146     }
1147 
1148     return ret;
1149 }
1150 
1151 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1152 {
1153     int ret;
1154 
1155     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1156     if (ret < 0) {
1157         /* VM wide version not implemented, use global one instead */
1158         ret = kvm_check_extension(s, extension);
1159     }
1160 
1161     return ret;
1162 }
1163 
1164 typedef struct HWPoisonPage {
1165     ram_addr_t ram_addr;
1166     QLIST_ENTRY(HWPoisonPage) list;
1167 } HWPoisonPage;
1168 
1169 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1170     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1171 
1172 static void kvm_unpoison_all(void *param)
1173 {
1174     HWPoisonPage *page, *next_page;
1175 
1176     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1177         QLIST_REMOVE(page, list);
1178         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1179         g_free(page);
1180     }
1181 }
1182 
1183 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1184 {
1185     HWPoisonPage *page;
1186 
1187     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1188         if (page->ram_addr == ram_addr) {
1189             return;
1190         }
1191     }
1192     page = g_new(HWPoisonPage, 1);
1193     page->ram_addr = ram_addr;
1194     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1195 }
1196 
1197 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1198 {
1199 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1200     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1201      * endianness, but the memory core hands them in target endianness.
1202      * For example, PPC is always treated as big-endian even if running
1203      * on KVM and on PPC64LE.  Correct here.
1204      */
1205     switch (size) {
1206     case 2:
1207         val = bswap16(val);
1208         break;
1209     case 4:
1210         val = bswap32(val);
1211         break;
1212     }
1213 #endif
1214     return val;
1215 }
1216 
1217 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1218                                   bool assign, uint32_t size, bool datamatch)
1219 {
1220     int ret;
1221     struct kvm_ioeventfd iofd = {
1222         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1223         .addr = addr,
1224         .len = size,
1225         .flags = 0,
1226         .fd = fd,
1227     };
1228 
1229     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1230                                  datamatch);
1231     if (!kvm_enabled()) {
1232         return -ENOSYS;
1233     }
1234 
1235     if (datamatch) {
1236         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1237     }
1238     if (!assign) {
1239         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1240     }
1241 
1242     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1243 
1244     if (ret < 0) {
1245         return -errno;
1246     }
1247 
1248     return 0;
1249 }
1250 
1251 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1252                                  bool assign, uint32_t size, bool datamatch)
1253 {
1254     struct kvm_ioeventfd kick = {
1255         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1256         .addr = addr,
1257         .flags = KVM_IOEVENTFD_FLAG_PIO,
1258         .len = size,
1259         .fd = fd,
1260     };
1261     int r;
1262     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1263     if (!kvm_enabled()) {
1264         return -ENOSYS;
1265     }
1266     if (datamatch) {
1267         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1268     }
1269     if (!assign) {
1270         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1271     }
1272     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1273     if (r < 0) {
1274         return r;
1275     }
1276     return 0;
1277 }
1278 
1279 
1280 static int kvm_check_many_ioeventfds(void)
1281 {
1282     /* Userspace can use ioeventfd for io notification.  This requires a host
1283      * that supports eventfd(2) and an I/O thread; since eventfd does not
1284      * support SIGIO it cannot interrupt the vcpu.
1285      *
1286      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1287      * can avoid creating too many ioeventfds.
1288      */
1289 #if defined(CONFIG_EVENTFD)
1290     int ioeventfds[7];
1291     int i, ret = 0;
1292     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1293         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1294         if (ioeventfds[i] < 0) {
1295             break;
1296         }
1297         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1298         if (ret < 0) {
1299             close(ioeventfds[i]);
1300             break;
1301         }
1302     }
1303 
1304     /* Decide whether many devices are supported or not */
1305     ret = i == ARRAY_SIZE(ioeventfds);
1306 
1307     while (i-- > 0) {
1308         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1309         close(ioeventfds[i]);
1310     }
1311     return ret;
1312 #else
1313     return 0;
1314 #endif
1315 }
1316 
1317 static const KVMCapabilityInfo *
1318 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1319 {
1320     while (list->name) {
1321         if (!kvm_check_extension(s, list->value)) {
1322             return list;
1323         }
1324         list++;
1325     }
1326     return NULL;
1327 }
1328 
1329 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1330 {
1331     g_assert(
1332         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1333     );
1334     kvm_max_slot_size = max_slot_size;
1335 }
1336 
1337 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1338                              MemoryRegionSection *section, bool add)
1339 {
1340     KVMSlot *mem;
1341     int err;
1342     MemoryRegion *mr = section->mr;
1343     bool writeable = !mr->readonly && !mr->rom_device;
1344     hwaddr start_addr, size, slot_size, mr_offset;
1345     ram_addr_t ram_start_offset;
1346     void *ram;
1347 
1348     if (!memory_region_is_ram(mr)) {
1349         if (writeable || !kvm_readonly_mem_allowed) {
1350             return;
1351         } else if (!mr->romd_mode) {
1352             /* If the memory device is not in romd_mode, then we actually want
1353              * to remove the kvm memory slot so all accesses will trap. */
1354             add = false;
1355         }
1356     }
1357 
1358     size = kvm_align_section(section, &start_addr);
1359     if (!size) {
1360         return;
1361     }
1362 
1363     /* The offset of the kvmslot within the memory region */
1364     mr_offset = section->offset_within_region + start_addr -
1365         section->offset_within_address_space;
1366 
1367     /* use aligned delta to align the ram address and offset */
1368     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1369     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1370 
1371     kvm_slots_lock();
1372 
1373     if (!add) {
1374         do {
1375             slot_size = MIN(kvm_max_slot_size, size);
1376             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1377             if (!mem) {
1378                 goto out;
1379             }
1380             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1381                 /*
1382                  * NOTE: We should be aware of the fact that here we're only
1383                  * doing a best effort to sync dirty bits.  No matter whether
1384                  * we're using dirty log or dirty ring, we ignored two facts:
1385                  *
1386                  * (1) dirty bits can reside in hardware buffers (PML)
1387                  *
1388                  * (2) after we collected dirty bits here, pages can be dirtied
1389                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1390                  * remove the slot.
1391                  *
1392                  * Not easy.  Let's cross the fingers until it's fixed.
1393                  */
1394                 if (kvm_state->kvm_dirty_ring_size) {
1395                     kvm_dirty_ring_reap_locked(kvm_state);
1396                 } else {
1397                     kvm_slot_get_dirty_log(kvm_state, mem);
1398                 }
1399                 kvm_slot_sync_dirty_pages(mem);
1400             }
1401 
1402             /* unregister the slot */
1403             g_free(mem->dirty_bmap);
1404             mem->dirty_bmap = NULL;
1405             mem->memory_size = 0;
1406             mem->flags = 0;
1407             err = kvm_set_user_memory_region(kml, mem, false);
1408             if (err) {
1409                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1410                         __func__, strerror(-err));
1411                 abort();
1412             }
1413             start_addr += slot_size;
1414             size -= slot_size;
1415         } while (size);
1416         goto out;
1417     }
1418 
1419     /* register the new slot */
1420     do {
1421         slot_size = MIN(kvm_max_slot_size, size);
1422         mem = kvm_alloc_slot(kml);
1423         mem->as_id = kml->as_id;
1424         mem->memory_size = slot_size;
1425         mem->start_addr = start_addr;
1426         mem->ram_start_offset = ram_start_offset;
1427         mem->ram = ram;
1428         mem->flags = kvm_mem_flags(mr);
1429         kvm_slot_init_dirty_bitmap(mem);
1430         err = kvm_set_user_memory_region(kml, mem, true);
1431         if (err) {
1432             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1433                     strerror(-err));
1434             abort();
1435         }
1436         start_addr += slot_size;
1437         ram_start_offset += slot_size;
1438         ram += slot_size;
1439         size -= slot_size;
1440     } while (size);
1441 
1442 out:
1443     kvm_slots_unlock();
1444 }
1445 
1446 static void *kvm_dirty_ring_reaper_thread(void *data)
1447 {
1448     KVMState *s = data;
1449     struct KVMDirtyRingReaper *r = &s->reaper;
1450 
1451     rcu_register_thread();
1452 
1453     trace_kvm_dirty_ring_reaper("init");
1454 
1455     while (true) {
1456         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1457         trace_kvm_dirty_ring_reaper("wait");
1458         /*
1459          * TODO: provide a smarter timeout rather than a constant?
1460          */
1461         sleep(1);
1462 
1463         trace_kvm_dirty_ring_reaper("wakeup");
1464         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1465 
1466         qemu_mutex_lock_iothread();
1467         kvm_dirty_ring_reap(s);
1468         qemu_mutex_unlock_iothread();
1469 
1470         r->reaper_iteration++;
1471     }
1472 
1473     trace_kvm_dirty_ring_reaper("exit");
1474 
1475     rcu_unregister_thread();
1476 
1477     return NULL;
1478 }
1479 
1480 static int kvm_dirty_ring_reaper_init(KVMState *s)
1481 {
1482     struct KVMDirtyRingReaper *r = &s->reaper;
1483 
1484     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1485                        kvm_dirty_ring_reaper_thread,
1486                        s, QEMU_THREAD_JOINABLE);
1487 
1488     return 0;
1489 }
1490 
1491 static void kvm_region_add(MemoryListener *listener,
1492                            MemoryRegionSection *section)
1493 {
1494     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1495 
1496     memory_region_ref(section->mr);
1497     kvm_set_phys_mem(kml, section, true);
1498 }
1499 
1500 static void kvm_region_del(MemoryListener *listener,
1501                            MemoryRegionSection *section)
1502 {
1503     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1504 
1505     kvm_set_phys_mem(kml, section, false);
1506     memory_region_unref(section->mr);
1507 }
1508 
1509 static void kvm_log_sync(MemoryListener *listener,
1510                          MemoryRegionSection *section)
1511 {
1512     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1513 
1514     kvm_slots_lock();
1515     kvm_physical_sync_dirty_bitmap(kml, section);
1516     kvm_slots_unlock();
1517 }
1518 
1519 static void kvm_log_sync_global(MemoryListener *l)
1520 {
1521     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1522     KVMState *s = kvm_state;
1523     KVMSlot *mem;
1524     int i;
1525 
1526     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1527     kvm_dirty_ring_flush();
1528 
1529     /*
1530      * TODO: make this faster when nr_slots is big while there are
1531      * only a few used slots (small VMs).
1532      */
1533     kvm_slots_lock();
1534     for (i = 0; i < s->nr_slots; i++) {
1535         mem = &kml->slots[i];
1536         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1537             kvm_slot_sync_dirty_pages(mem);
1538             /*
1539              * This is not needed by KVM_GET_DIRTY_LOG because the
1540              * ioctl will unconditionally overwrite the whole region.
1541              * However kvm dirty ring has no such side effect.
1542              */
1543             kvm_slot_reset_dirty_pages(mem);
1544         }
1545     }
1546     kvm_slots_unlock();
1547 }
1548 
1549 static void kvm_log_clear(MemoryListener *listener,
1550                           MemoryRegionSection *section)
1551 {
1552     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1553     int r;
1554 
1555     r = kvm_physical_log_clear(kml, section);
1556     if (r < 0) {
1557         error_report_once("%s: kvm log clear failed: mr=%s "
1558                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1559                           section->mr->name, section->offset_within_region,
1560                           int128_get64(section->size));
1561         abort();
1562     }
1563 }
1564 
1565 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1566                                   MemoryRegionSection *section,
1567                                   bool match_data, uint64_t data,
1568                                   EventNotifier *e)
1569 {
1570     int fd = event_notifier_get_fd(e);
1571     int r;
1572 
1573     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1574                                data, true, int128_get64(section->size),
1575                                match_data);
1576     if (r < 0) {
1577         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1578                 __func__, strerror(-r), -r);
1579         abort();
1580     }
1581 }
1582 
1583 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1584                                   MemoryRegionSection *section,
1585                                   bool match_data, uint64_t data,
1586                                   EventNotifier *e)
1587 {
1588     int fd = event_notifier_get_fd(e);
1589     int r;
1590 
1591     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1592                                data, false, int128_get64(section->size),
1593                                match_data);
1594     if (r < 0) {
1595         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1596                 __func__, strerror(-r), -r);
1597         abort();
1598     }
1599 }
1600 
1601 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1602                                  MemoryRegionSection *section,
1603                                  bool match_data, uint64_t data,
1604                                  EventNotifier *e)
1605 {
1606     int fd = event_notifier_get_fd(e);
1607     int r;
1608 
1609     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1610                               data, true, int128_get64(section->size),
1611                               match_data);
1612     if (r < 0) {
1613         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1614                 __func__, strerror(-r), -r);
1615         abort();
1616     }
1617 }
1618 
1619 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1620                                  MemoryRegionSection *section,
1621                                  bool match_data, uint64_t data,
1622                                  EventNotifier *e)
1623 
1624 {
1625     int fd = event_notifier_get_fd(e);
1626     int r;
1627 
1628     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1629                               data, false, int128_get64(section->size),
1630                               match_data);
1631     if (r < 0) {
1632         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1633                 __func__, strerror(-r), -r);
1634         abort();
1635     }
1636 }
1637 
1638 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1639                                   AddressSpace *as, int as_id, const char *name)
1640 {
1641     int i;
1642 
1643     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1644     kml->as_id = as_id;
1645 
1646     for (i = 0; i < s->nr_slots; i++) {
1647         kml->slots[i].slot = i;
1648     }
1649 
1650     kml->listener.region_add = kvm_region_add;
1651     kml->listener.region_del = kvm_region_del;
1652     kml->listener.log_start = kvm_log_start;
1653     kml->listener.log_stop = kvm_log_stop;
1654     kml->listener.priority = 10;
1655     kml->listener.name = name;
1656 
1657     if (s->kvm_dirty_ring_size) {
1658         kml->listener.log_sync_global = kvm_log_sync_global;
1659     } else {
1660         kml->listener.log_sync = kvm_log_sync;
1661         kml->listener.log_clear = kvm_log_clear;
1662     }
1663 
1664     memory_listener_register(&kml->listener, as);
1665 
1666     for (i = 0; i < s->nr_as; ++i) {
1667         if (!s->as[i].as) {
1668             s->as[i].as = as;
1669             s->as[i].ml = kml;
1670             break;
1671         }
1672     }
1673 }
1674 
1675 static MemoryListener kvm_io_listener = {
1676     .name = "kvm-io",
1677     .eventfd_add = kvm_io_ioeventfd_add,
1678     .eventfd_del = kvm_io_ioeventfd_del,
1679     .priority = 10,
1680 };
1681 
1682 int kvm_set_irq(KVMState *s, int irq, int level)
1683 {
1684     struct kvm_irq_level event;
1685     int ret;
1686 
1687     assert(kvm_async_interrupts_enabled());
1688 
1689     event.level = level;
1690     event.irq = irq;
1691     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1692     if (ret < 0) {
1693         perror("kvm_set_irq");
1694         abort();
1695     }
1696 
1697     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1698 }
1699 
1700 #ifdef KVM_CAP_IRQ_ROUTING
1701 typedef struct KVMMSIRoute {
1702     struct kvm_irq_routing_entry kroute;
1703     QTAILQ_ENTRY(KVMMSIRoute) entry;
1704 } KVMMSIRoute;
1705 
1706 static void set_gsi(KVMState *s, unsigned int gsi)
1707 {
1708     set_bit(gsi, s->used_gsi_bitmap);
1709 }
1710 
1711 static void clear_gsi(KVMState *s, unsigned int gsi)
1712 {
1713     clear_bit(gsi, s->used_gsi_bitmap);
1714 }
1715 
1716 void kvm_init_irq_routing(KVMState *s)
1717 {
1718     int gsi_count, i;
1719 
1720     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1721     if (gsi_count > 0) {
1722         /* Round up so we can search ints using ffs */
1723         s->used_gsi_bitmap = bitmap_new(gsi_count);
1724         s->gsi_count = gsi_count;
1725     }
1726 
1727     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1728     s->nr_allocated_irq_routes = 0;
1729 
1730     if (!kvm_direct_msi_allowed) {
1731         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1732             QTAILQ_INIT(&s->msi_hashtab[i]);
1733         }
1734     }
1735 
1736     kvm_arch_init_irq_routing(s);
1737 }
1738 
1739 void kvm_irqchip_commit_routes(KVMState *s)
1740 {
1741     int ret;
1742 
1743     if (kvm_gsi_direct_mapping()) {
1744         return;
1745     }
1746 
1747     if (!kvm_gsi_routing_enabled()) {
1748         return;
1749     }
1750 
1751     s->irq_routes->flags = 0;
1752     trace_kvm_irqchip_commit_routes();
1753     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1754     assert(ret == 0);
1755 }
1756 
1757 static void kvm_add_routing_entry(KVMState *s,
1758                                   struct kvm_irq_routing_entry *entry)
1759 {
1760     struct kvm_irq_routing_entry *new;
1761     int n, size;
1762 
1763     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1764         n = s->nr_allocated_irq_routes * 2;
1765         if (n < 64) {
1766             n = 64;
1767         }
1768         size = sizeof(struct kvm_irq_routing);
1769         size += n * sizeof(*new);
1770         s->irq_routes = g_realloc(s->irq_routes, size);
1771         s->nr_allocated_irq_routes = n;
1772     }
1773     n = s->irq_routes->nr++;
1774     new = &s->irq_routes->entries[n];
1775 
1776     *new = *entry;
1777 
1778     set_gsi(s, entry->gsi);
1779 }
1780 
1781 static int kvm_update_routing_entry(KVMState *s,
1782                                     struct kvm_irq_routing_entry *new_entry)
1783 {
1784     struct kvm_irq_routing_entry *entry;
1785     int n;
1786 
1787     for (n = 0; n < s->irq_routes->nr; n++) {
1788         entry = &s->irq_routes->entries[n];
1789         if (entry->gsi != new_entry->gsi) {
1790             continue;
1791         }
1792 
1793         if(!memcmp(entry, new_entry, sizeof *entry)) {
1794             return 0;
1795         }
1796 
1797         *entry = *new_entry;
1798 
1799         return 0;
1800     }
1801 
1802     return -ESRCH;
1803 }
1804 
1805 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1806 {
1807     struct kvm_irq_routing_entry e = {};
1808 
1809     assert(pin < s->gsi_count);
1810 
1811     e.gsi = irq;
1812     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1813     e.flags = 0;
1814     e.u.irqchip.irqchip = irqchip;
1815     e.u.irqchip.pin = pin;
1816     kvm_add_routing_entry(s, &e);
1817 }
1818 
1819 void kvm_irqchip_release_virq(KVMState *s, int virq)
1820 {
1821     struct kvm_irq_routing_entry *e;
1822     int i;
1823 
1824     if (kvm_gsi_direct_mapping()) {
1825         return;
1826     }
1827 
1828     for (i = 0; i < s->irq_routes->nr; i++) {
1829         e = &s->irq_routes->entries[i];
1830         if (e->gsi == virq) {
1831             s->irq_routes->nr--;
1832             *e = s->irq_routes->entries[s->irq_routes->nr];
1833         }
1834     }
1835     clear_gsi(s, virq);
1836     kvm_arch_release_virq_post(virq);
1837     trace_kvm_irqchip_release_virq(virq);
1838 }
1839 
1840 void kvm_irqchip_add_change_notifier(Notifier *n)
1841 {
1842     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1843 }
1844 
1845 void kvm_irqchip_remove_change_notifier(Notifier *n)
1846 {
1847     notifier_remove(n);
1848 }
1849 
1850 void kvm_irqchip_change_notify(void)
1851 {
1852     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1853 }
1854 
1855 static unsigned int kvm_hash_msi(uint32_t data)
1856 {
1857     /* This is optimized for IA32 MSI layout. However, no other arch shall
1858      * repeat the mistake of not providing a direct MSI injection API. */
1859     return data & 0xff;
1860 }
1861 
1862 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1863 {
1864     KVMMSIRoute *route, *next;
1865     unsigned int hash;
1866 
1867     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1868         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1869             kvm_irqchip_release_virq(s, route->kroute.gsi);
1870             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1871             g_free(route);
1872         }
1873     }
1874 }
1875 
1876 static int kvm_irqchip_get_virq(KVMState *s)
1877 {
1878     int next_virq;
1879 
1880     /*
1881      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1882      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1883      * number can succeed even though a new route entry cannot be added.
1884      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1885      */
1886     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1887         kvm_flush_dynamic_msi_routes(s);
1888     }
1889 
1890     /* Return the lowest unused GSI in the bitmap */
1891     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1892     if (next_virq >= s->gsi_count) {
1893         return -ENOSPC;
1894     } else {
1895         return next_virq;
1896     }
1897 }
1898 
1899 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1900 {
1901     unsigned int hash = kvm_hash_msi(msg.data);
1902     KVMMSIRoute *route;
1903 
1904     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1905         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1906             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1907             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1908             return route;
1909         }
1910     }
1911     return NULL;
1912 }
1913 
1914 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1915 {
1916     struct kvm_msi msi;
1917     KVMMSIRoute *route;
1918 
1919     if (kvm_direct_msi_allowed) {
1920         msi.address_lo = (uint32_t)msg.address;
1921         msi.address_hi = msg.address >> 32;
1922         msi.data = le32_to_cpu(msg.data);
1923         msi.flags = 0;
1924         memset(msi.pad, 0, sizeof(msi.pad));
1925 
1926         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1927     }
1928 
1929     route = kvm_lookup_msi_route(s, msg);
1930     if (!route) {
1931         int virq;
1932 
1933         virq = kvm_irqchip_get_virq(s);
1934         if (virq < 0) {
1935             return virq;
1936         }
1937 
1938         route = g_malloc0(sizeof(KVMMSIRoute));
1939         route->kroute.gsi = virq;
1940         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1941         route->kroute.flags = 0;
1942         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1943         route->kroute.u.msi.address_hi = msg.address >> 32;
1944         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1945 
1946         kvm_add_routing_entry(s, &route->kroute);
1947         kvm_irqchip_commit_routes(s);
1948 
1949         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1950                            entry);
1951     }
1952 
1953     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1954 
1955     return kvm_set_irq(s, route->kroute.gsi, 1);
1956 }
1957 
1958 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1959 {
1960     struct kvm_irq_routing_entry kroute = {};
1961     int virq;
1962     MSIMessage msg = {0, 0};
1963 
1964     if (pci_available && dev) {
1965         msg = pci_get_msi_message(dev, vector);
1966     }
1967 
1968     if (kvm_gsi_direct_mapping()) {
1969         return kvm_arch_msi_data_to_gsi(msg.data);
1970     }
1971 
1972     if (!kvm_gsi_routing_enabled()) {
1973         return -ENOSYS;
1974     }
1975 
1976     virq = kvm_irqchip_get_virq(s);
1977     if (virq < 0) {
1978         return virq;
1979     }
1980 
1981     kroute.gsi = virq;
1982     kroute.type = KVM_IRQ_ROUTING_MSI;
1983     kroute.flags = 0;
1984     kroute.u.msi.address_lo = (uint32_t)msg.address;
1985     kroute.u.msi.address_hi = msg.address >> 32;
1986     kroute.u.msi.data = le32_to_cpu(msg.data);
1987     if (pci_available && kvm_msi_devid_required()) {
1988         kroute.flags = KVM_MSI_VALID_DEVID;
1989         kroute.u.msi.devid = pci_requester_id(dev);
1990     }
1991     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1992         kvm_irqchip_release_virq(s, virq);
1993         return -EINVAL;
1994     }
1995 
1996     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1997                                     vector, virq);
1998 
1999     kvm_add_routing_entry(s, &kroute);
2000     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2001     kvm_irqchip_commit_routes(s);
2002 
2003     return virq;
2004 }
2005 
2006 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2007                                  PCIDevice *dev)
2008 {
2009     struct kvm_irq_routing_entry kroute = {};
2010 
2011     if (kvm_gsi_direct_mapping()) {
2012         return 0;
2013     }
2014 
2015     if (!kvm_irqchip_in_kernel()) {
2016         return -ENOSYS;
2017     }
2018 
2019     kroute.gsi = virq;
2020     kroute.type = KVM_IRQ_ROUTING_MSI;
2021     kroute.flags = 0;
2022     kroute.u.msi.address_lo = (uint32_t)msg.address;
2023     kroute.u.msi.address_hi = msg.address >> 32;
2024     kroute.u.msi.data = le32_to_cpu(msg.data);
2025     if (pci_available && kvm_msi_devid_required()) {
2026         kroute.flags = KVM_MSI_VALID_DEVID;
2027         kroute.u.msi.devid = pci_requester_id(dev);
2028     }
2029     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2030         return -EINVAL;
2031     }
2032 
2033     trace_kvm_irqchip_update_msi_route(virq);
2034 
2035     return kvm_update_routing_entry(s, &kroute);
2036 }
2037 
2038 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2039                                     EventNotifier *resample, int virq,
2040                                     bool assign)
2041 {
2042     int fd = event_notifier_get_fd(event);
2043     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2044 
2045     struct kvm_irqfd irqfd = {
2046         .fd = fd,
2047         .gsi = virq,
2048         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2049     };
2050 
2051     if (rfd != -1) {
2052         assert(assign);
2053         if (kvm_irqchip_is_split()) {
2054             /*
2055              * When the slow irqchip (e.g. IOAPIC) is in the
2056              * userspace, KVM kernel resamplefd will not work because
2057              * the EOI of the interrupt will be delivered to userspace
2058              * instead, so the KVM kernel resamplefd kick will be
2059              * skipped.  The userspace here mimics what the kernel
2060              * provides with resamplefd, remember the resamplefd and
2061              * kick it when we receive EOI of this IRQ.
2062              *
2063              * This is hackery because IOAPIC is mostly bypassed
2064              * (except EOI broadcasts) when irqfd is used.  However
2065              * this can bring much performance back for split irqchip
2066              * with INTx IRQs (for VFIO, this gives 93% perf of the
2067              * full fast path, which is 46% perf boost comparing to
2068              * the INTx slow path).
2069              */
2070             kvm_resample_fd_insert(virq, resample);
2071         } else {
2072             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2073             irqfd.resamplefd = rfd;
2074         }
2075     } else if (!assign) {
2076         if (kvm_irqchip_is_split()) {
2077             kvm_resample_fd_remove(virq);
2078         }
2079     }
2080 
2081     if (!kvm_irqfds_enabled()) {
2082         return -ENOSYS;
2083     }
2084 
2085     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2086 }
2087 
2088 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2089 {
2090     struct kvm_irq_routing_entry kroute = {};
2091     int virq;
2092 
2093     if (!kvm_gsi_routing_enabled()) {
2094         return -ENOSYS;
2095     }
2096 
2097     virq = kvm_irqchip_get_virq(s);
2098     if (virq < 0) {
2099         return virq;
2100     }
2101 
2102     kroute.gsi = virq;
2103     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2104     kroute.flags = 0;
2105     kroute.u.adapter.summary_addr = adapter->summary_addr;
2106     kroute.u.adapter.ind_addr = adapter->ind_addr;
2107     kroute.u.adapter.summary_offset = adapter->summary_offset;
2108     kroute.u.adapter.ind_offset = adapter->ind_offset;
2109     kroute.u.adapter.adapter_id = adapter->adapter_id;
2110 
2111     kvm_add_routing_entry(s, &kroute);
2112 
2113     return virq;
2114 }
2115 
2116 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2117 {
2118     struct kvm_irq_routing_entry kroute = {};
2119     int virq;
2120 
2121     if (!kvm_gsi_routing_enabled()) {
2122         return -ENOSYS;
2123     }
2124     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2125         return -ENOSYS;
2126     }
2127     virq = kvm_irqchip_get_virq(s);
2128     if (virq < 0) {
2129         return virq;
2130     }
2131 
2132     kroute.gsi = virq;
2133     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2134     kroute.flags = 0;
2135     kroute.u.hv_sint.vcpu = vcpu;
2136     kroute.u.hv_sint.sint = sint;
2137 
2138     kvm_add_routing_entry(s, &kroute);
2139     kvm_irqchip_commit_routes(s);
2140 
2141     return virq;
2142 }
2143 
2144 #else /* !KVM_CAP_IRQ_ROUTING */
2145 
2146 void kvm_init_irq_routing(KVMState *s)
2147 {
2148 }
2149 
2150 void kvm_irqchip_release_virq(KVMState *s, int virq)
2151 {
2152 }
2153 
2154 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2155 {
2156     abort();
2157 }
2158 
2159 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
2160 {
2161     return -ENOSYS;
2162 }
2163 
2164 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2165 {
2166     return -ENOSYS;
2167 }
2168 
2169 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2170 {
2171     return -ENOSYS;
2172 }
2173 
2174 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2175                                     EventNotifier *resample, int virq,
2176                                     bool assign)
2177 {
2178     abort();
2179 }
2180 
2181 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2182 {
2183     return -ENOSYS;
2184 }
2185 #endif /* !KVM_CAP_IRQ_ROUTING */
2186 
2187 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2188                                        EventNotifier *rn, int virq)
2189 {
2190     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2191 }
2192 
2193 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2194                                           int virq)
2195 {
2196     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2197 }
2198 
2199 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2200                                    EventNotifier *rn, qemu_irq irq)
2201 {
2202     gpointer key, gsi;
2203     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2204 
2205     if (!found) {
2206         return -ENXIO;
2207     }
2208     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2209 }
2210 
2211 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2212                                       qemu_irq irq)
2213 {
2214     gpointer key, gsi;
2215     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2216 
2217     if (!found) {
2218         return -ENXIO;
2219     }
2220     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2221 }
2222 
2223 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2224 {
2225     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2226 }
2227 
2228 static void kvm_irqchip_create(KVMState *s)
2229 {
2230     int ret;
2231 
2232     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2233     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2234         ;
2235     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2236         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2237         if (ret < 0) {
2238             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2239             exit(1);
2240         }
2241     } else {
2242         return;
2243     }
2244 
2245     /* First probe and see if there's a arch-specific hook to create the
2246      * in-kernel irqchip for us */
2247     ret = kvm_arch_irqchip_create(s);
2248     if (ret == 0) {
2249         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2250             perror("Split IRQ chip mode not supported.");
2251             exit(1);
2252         } else {
2253             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2254         }
2255     }
2256     if (ret < 0) {
2257         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2258         exit(1);
2259     }
2260 
2261     kvm_kernel_irqchip = true;
2262     /* If we have an in-kernel IRQ chip then we must have asynchronous
2263      * interrupt delivery (though the reverse is not necessarily true)
2264      */
2265     kvm_async_interrupts_allowed = true;
2266     kvm_halt_in_kernel_allowed = true;
2267 
2268     kvm_init_irq_routing(s);
2269 
2270     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2271 }
2272 
2273 /* Find number of supported CPUs using the recommended
2274  * procedure from the kernel API documentation to cope with
2275  * older kernels that may be missing capabilities.
2276  */
2277 static int kvm_recommended_vcpus(KVMState *s)
2278 {
2279     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2280     return (ret) ? ret : 4;
2281 }
2282 
2283 static int kvm_max_vcpus(KVMState *s)
2284 {
2285     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2286     return (ret) ? ret : kvm_recommended_vcpus(s);
2287 }
2288 
2289 static int kvm_max_vcpu_id(KVMState *s)
2290 {
2291     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2292     return (ret) ? ret : kvm_max_vcpus(s);
2293 }
2294 
2295 bool kvm_vcpu_id_is_valid(int vcpu_id)
2296 {
2297     KVMState *s = KVM_STATE(current_accel());
2298     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2299 }
2300 
2301 bool kvm_dirty_ring_enabled(void)
2302 {
2303     return kvm_state->kvm_dirty_ring_size ? true : false;
2304 }
2305 
2306 static int kvm_init(MachineState *ms)
2307 {
2308     MachineClass *mc = MACHINE_GET_CLASS(ms);
2309     static const char upgrade_note[] =
2310         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2311         "(see http://sourceforge.net/projects/kvm).\n";
2312     struct {
2313         const char *name;
2314         int num;
2315     } num_cpus[] = {
2316         { "SMP",          ms->smp.cpus },
2317         { "hotpluggable", ms->smp.max_cpus },
2318         { NULL, }
2319     }, *nc = num_cpus;
2320     int soft_vcpus_limit, hard_vcpus_limit;
2321     KVMState *s;
2322     const KVMCapabilityInfo *missing_cap;
2323     int ret;
2324     int type = 0;
2325     uint64_t dirty_log_manual_caps;
2326 
2327     qemu_mutex_init(&kml_slots_lock);
2328 
2329     s = KVM_STATE(ms->accelerator);
2330 
2331     /*
2332      * On systems where the kernel can support different base page
2333      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2334      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2335      * page size for the system though.
2336      */
2337     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2338 
2339     s->sigmask_len = 8;
2340 
2341 #ifdef KVM_CAP_SET_GUEST_DEBUG
2342     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2343 #endif
2344     QLIST_INIT(&s->kvm_parked_vcpus);
2345     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2346     if (s->fd == -1) {
2347         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2348         ret = -errno;
2349         goto err;
2350     }
2351 
2352     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2353     if (ret < KVM_API_VERSION) {
2354         if (ret >= 0) {
2355             ret = -EINVAL;
2356         }
2357         fprintf(stderr, "kvm version too old\n");
2358         goto err;
2359     }
2360 
2361     if (ret > KVM_API_VERSION) {
2362         ret = -EINVAL;
2363         fprintf(stderr, "kvm version not supported\n");
2364         goto err;
2365     }
2366 
2367     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2368     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2369 
2370     /* If unspecified, use the default value */
2371     if (!s->nr_slots) {
2372         s->nr_slots = 32;
2373     }
2374 
2375     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2376     if (s->nr_as <= 1) {
2377         s->nr_as = 1;
2378     }
2379     s->as = g_new0(struct KVMAs, s->nr_as);
2380 
2381     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2382         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2383                                                             "kvm-type",
2384                                                             &error_abort);
2385         type = mc->kvm_type(ms, kvm_type);
2386     } else if (mc->kvm_type) {
2387         type = mc->kvm_type(ms, NULL);
2388     }
2389 
2390     do {
2391         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2392     } while (ret == -EINTR);
2393 
2394     if (ret < 0) {
2395         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2396                 strerror(-ret));
2397 
2398 #ifdef TARGET_S390X
2399         if (ret == -EINVAL) {
2400             fprintf(stderr,
2401                     "Host kernel setup problem detected. Please verify:\n");
2402             fprintf(stderr, "- for kernels supporting the switch_amode or"
2403                     " user_mode parameters, whether\n");
2404             fprintf(stderr,
2405                     "  user space is running in primary address space\n");
2406             fprintf(stderr,
2407                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2408                     "whether it is enabled\n");
2409         }
2410 #elif defined(TARGET_PPC)
2411         if (ret == -EINVAL) {
2412             fprintf(stderr,
2413                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2414                     (type == 2) ? "pr" : "hv");
2415         }
2416 #endif
2417         goto err;
2418     }
2419 
2420     s->vmfd = ret;
2421 
2422     /* check the vcpu limits */
2423     soft_vcpus_limit = kvm_recommended_vcpus(s);
2424     hard_vcpus_limit = kvm_max_vcpus(s);
2425 
2426     while (nc->name) {
2427         if (nc->num > soft_vcpus_limit) {
2428             warn_report("Number of %s cpus requested (%d) exceeds "
2429                         "the recommended cpus supported by KVM (%d)",
2430                         nc->name, nc->num, soft_vcpus_limit);
2431 
2432             if (nc->num > hard_vcpus_limit) {
2433                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2434                         "the maximum cpus supported by KVM (%d)\n",
2435                         nc->name, nc->num, hard_vcpus_limit);
2436                 exit(1);
2437             }
2438         }
2439         nc++;
2440     }
2441 
2442     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2443     if (!missing_cap) {
2444         missing_cap =
2445             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2446     }
2447     if (missing_cap) {
2448         ret = -EINVAL;
2449         fprintf(stderr, "kvm does not support %s\n%s",
2450                 missing_cap->name, upgrade_note);
2451         goto err;
2452     }
2453 
2454     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2455     s->coalesced_pio = s->coalesced_mmio &&
2456                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2457 
2458     /*
2459      * Enable KVM dirty ring if supported, otherwise fall back to
2460      * dirty logging mode
2461      */
2462     if (s->kvm_dirty_ring_size > 0) {
2463         uint64_t ring_bytes;
2464 
2465         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2466 
2467         /* Read the max supported pages */
2468         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2469         if (ret > 0) {
2470             if (ring_bytes > ret) {
2471                 error_report("KVM dirty ring size %" PRIu32 " too big "
2472                              "(maximum is %ld).  Please use a smaller value.",
2473                              s->kvm_dirty_ring_size,
2474                              (long)ret / sizeof(struct kvm_dirty_gfn));
2475                 ret = -EINVAL;
2476                 goto err;
2477             }
2478 
2479             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2480             if (ret) {
2481                 error_report("Enabling of KVM dirty ring failed: %s. "
2482                              "Suggested minimum value is 1024.", strerror(-ret));
2483                 goto err;
2484             }
2485 
2486             s->kvm_dirty_ring_bytes = ring_bytes;
2487          } else {
2488              warn_report("KVM dirty ring not available, using bitmap method");
2489              s->kvm_dirty_ring_size = 0;
2490         }
2491     }
2492 
2493     /*
2494      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2495      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2496      * page is wr-protected initially, which is against how kvm dirty ring is
2497      * usage - kvm dirty ring requires all pages are wr-protected at the very
2498      * beginning.  Enabling this feature for dirty ring causes data corruption.
2499      *
2500      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2501      * we may expect a higher stall time when starting the migration.  In the
2502      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2503      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2504      * guest pages.
2505      */
2506     if (!s->kvm_dirty_ring_size) {
2507         dirty_log_manual_caps =
2508             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2509         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2510                                   KVM_DIRTY_LOG_INITIALLY_SET);
2511         s->manual_dirty_log_protect = dirty_log_manual_caps;
2512         if (dirty_log_manual_caps) {
2513             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2514                                     dirty_log_manual_caps);
2515             if (ret) {
2516                 warn_report("Trying to enable capability %"PRIu64" of "
2517                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2518                             "Falling back to the legacy mode. ",
2519                             dirty_log_manual_caps);
2520                 s->manual_dirty_log_protect = 0;
2521             }
2522         }
2523     }
2524 
2525 #ifdef KVM_CAP_VCPU_EVENTS
2526     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2527 #endif
2528 
2529     s->robust_singlestep =
2530         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2531 
2532 #ifdef KVM_CAP_DEBUGREGS
2533     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2534 #endif
2535 
2536     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2537 
2538 #ifdef KVM_CAP_IRQ_ROUTING
2539     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2540 #endif
2541 
2542     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2543 
2544     s->irq_set_ioctl = KVM_IRQ_LINE;
2545     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2546         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2547     }
2548 
2549     kvm_readonly_mem_allowed =
2550         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2551 
2552     kvm_eventfds_allowed =
2553         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2554 
2555     kvm_irqfds_allowed =
2556         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2557 
2558     kvm_resamplefds_allowed =
2559         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2560 
2561     kvm_vm_attributes_allowed =
2562         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2563 
2564     kvm_ioeventfd_any_length_allowed =
2565         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2566 
2567     kvm_state = s;
2568 
2569     ret = kvm_arch_init(ms, s);
2570     if (ret < 0) {
2571         goto err;
2572     }
2573 
2574     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2575         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2576     }
2577 
2578     qemu_register_reset(kvm_unpoison_all, NULL);
2579 
2580     if (s->kernel_irqchip_allowed) {
2581         kvm_irqchip_create(s);
2582     }
2583 
2584     if (kvm_eventfds_allowed) {
2585         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2586         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2587     }
2588     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2589     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2590 
2591     kvm_memory_listener_register(s, &s->memory_listener,
2592                                  &address_space_memory, 0, "kvm-memory");
2593     if (kvm_eventfds_allowed) {
2594         memory_listener_register(&kvm_io_listener,
2595                                  &address_space_io);
2596     }
2597     memory_listener_register(&kvm_coalesced_pio_listener,
2598                              &address_space_io);
2599 
2600     s->many_ioeventfds = kvm_check_many_ioeventfds();
2601 
2602     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2603     if (!s->sync_mmu) {
2604         ret = ram_block_discard_disable(true);
2605         assert(!ret);
2606     }
2607 
2608     if (s->kvm_dirty_ring_size) {
2609         ret = kvm_dirty_ring_reaper_init(s);
2610         if (ret) {
2611             goto err;
2612         }
2613     }
2614 
2615     return 0;
2616 
2617 err:
2618     assert(ret < 0);
2619     if (s->vmfd >= 0) {
2620         close(s->vmfd);
2621     }
2622     if (s->fd != -1) {
2623         close(s->fd);
2624     }
2625     g_free(s->memory_listener.slots);
2626 
2627     return ret;
2628 }
2629 
2630 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2631 {
2632     s->sigmask_len = sigmask_len;
2633 }
2634 
2635 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2636                           int size, uint32_t count)
2637 {
2638     int i;
2639     uint8_t *ptr = data;
2640 
2641     for (i = 0; i < count; i++) {
2642         address_space_rw(&address_space_io, port, attrs,
2643                          ptr, size,
2644                          direction == KVM_EXIT_IO_OUT);
2645         ptr += size;
2646     }
2647 }
2648 
2649 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2650 {
2651     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2652             run->internal.suberror);
2653 
2654     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2655         int i;
2656 
2657         for (i = 0; i < run->internal.ndata; ++i) {
2658             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2659                     i, (uint64_t)run->internal.data[i]);
2660         }
2661     }
2662     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2663         fprintf(stderr, "emulation failure\n");
2664         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2665             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2666             return EXCP_INTERRUPT;
2667         }
2668     }
2669     /* FIXME: Should trigger a qmp message to let management know
2670      * something went wrong.
2671      */
2672     return -1;
2673 }
2674 
2675 void kvm_flush_coalesced_mmio_buffer(void)
2676 {
2677     KVMState *s = kvm_state;
2678 
2679     if (s->coalesced_flush_in_progress) {
2680         return;
2681     }
2682 
2683     s->coalesced_flush_in_progress = true;
2684 
2685     if (s->coalesced_mmio_ring) {
2686         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2687         while (ring->first != ring->last) {
2688             struct kvm_coalesced_mmio *ent;
2689 
2690             ent = &ring->coalesced_mmio[ring->first];
2691 
2692             if (ent->pio == 1) {
2693                 address_space_write(&address_space_io, ent->phys_addr,
2694                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2695                                     ent->len);
2696             } else {
2697                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2698             }
2699             smp_wmb();
2700             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2701         }
2702     }
2703 
2704     s->coalesced_flush_in_progress = false;
2705 }
2706 
2707 bool kvm_cpu_check_are_resettable(void)
2708 {
2709     return kvm_arch_cpu_check_are_resettable();
2710 }
2711 
2712 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2713 {
2714     if (!cpu->vcpu_dirty) {
2715         kvm_arch_get_registers(cpu);
2716         cpu->vcpu_dirty = true;
2717     }
2718 }
2719 
2720 void kvm_cpu_synchronize_state(CPUState *cpu)
2721 {
2722     if (!cpu->vcpu_dirty) {
2723         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2724     }
2725 }
2726 
2727 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2728 {
2729     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2730     cpu->vcpu_dirty = false;
2731 }
2732 
2733 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2734 {
2735     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2736 }
2737 
2738 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2739 {
2740     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2741     cpu->vcpu_dirty = false;
2742 }
2743 
2744 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2745 {
2746     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2747 }
2748 
2749 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2750 {
2751     cpu->vcpu_dirty = true;
2752 }
2753 
2754 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2755 {
2756     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2757 }
2758 
2759 #ifdef KVM_HAVE_MCE_INJECTION
2760 static __thread void *pending_sigbus_addr;
2761 static __thread int pending_sigbus_code;
2762 static __thread bool have_sigbus_pending;
2763 #endif
2764 
2765 static void kvm_cpu_kick(CPUState *cpu)
2766 {
2767     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2768 }
2769 
2770 static void kvm_cpu_kick_self(void)
2771 {
2772     if (kvm_immediate_exit) {
2773         kvm_cpu_kick(current_cpu);
2774     } else {
2775         qemu_cpu_kick_self();
2776     }
2777 }
2778 
2779 static void kvm_eat_signals(CPUState *cpu)
2780 {
2781     struct timespec ts = { 0, 0 };
2782     siginfo_t siginfo;
2783     sigset_t waitset;
2784     sigset_t chkset;
2785     int r;
2786 
2787     if (kvm_immediate_exit) {
2788         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2789         /* Write kvm_run->immediate_exit before the cpu->exit_request
2790          * write in kvm_cpu_exec.
2791          */
2792         smp_wmb();
2793         return;
2794     }
2795 
2796     sigemptyset(&waitset);
2797     sigaddset(&waitset, SIG_IPI);
2798 
2799     do {
2800         r = sigtimedwait(&waitset, &siginfo, &ts);
2801         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2802             perror("sigtimedwait");
2803             exit(1);
2804         }
2805 
2806         r = sigpending(&chkset);
2807         if (r == -1) {
2808             perror("sigpending");
2809             exit(1);
2810         }
2811     } while (sigismember(&chkset, SIG_IPI));
2812 }
2813 
2814 int kvm_cpu_exec(CPUState *cpu)
2815 {
2816     struct kvm_run *run = cpu->kvm_run;
2817     int ret, run_ret;
2818 
2819     DPRINTF("kvm_cpu_exec()\n");
2820 
2821     if (kvm_arch_process_async_events(cpu)) {
2822         qatomic_set(&cpu->exit_request, 0);
2823         return EXCP_HLT;
2824     }
2825 
2826     qemu_mutex_unlock_iothread();
2827     cpu_exec_start(cpu);
2828 
2829     do {
2830         MemTxAttrs attrs;
2831 
2832         if (cpu->vcpu_dirty) {
2833             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2834             cpu->vcpu_dirty = false;
2835         }
2836 
2837         kvm_arch_pre_run(cpu, run);
2838         if (qatomic_read(&cpu->exit_request)) {
2839             DPRINTF("interrupt exit requested\n");
2840             /*
2841              * KVM requires us to reenter the kernel after IO exits to complete
2842              * instruction emulation. This self-signal will ensure that we
2843              * leave ASAP again.
2844              */
2845             kvm_cpu_kick_self();
2846         }
2847 
2848         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2849          * Matching barrier in kvm_eat_signals.
2850          */
2851         smp_rmb();
2852 
2853         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2854 
2855         attrs = kvm_arch_post_run(cpu, run);
2856 
2857 #ifdef KVM_HAVE_MCE_INJECTION
2858         if (unlikely(have_sigbus_pending)) {
2859             qemu_mutex_lock_iothread();
2860             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2861                                     pending_sigbus_addr);
2862             have_sigbus_pending = false;
2863             qemu_mutex_unlock_iothread();
2864         }
2865 #endif
2866 
2867         if (run_ret < 0) {
2868             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2869                 DPRINTF("io window exit\n");
2870                 kvm_eat_signals(cpu);
2871                 ret = EXCP_INTERRUPT;
2872                 break;
2873             }
2874             fprintf(stderr, "error: kvm run failed %s\n",
2875                     strerror(-run_ret));
2876 #ifdef TARGET_PPC
2877             if (run_ret == -EBUSY) {
2878                 fprintf(stderr,
2879                         "This is probably because your SMT is enabled.\n"
2880                         "VCPU can only run on primary threads with all "
2881                         "secondary threads offline.\n");
2882             }
2883 #endif
2884             ret = -1;
2885             break;
2886         }
2887 
2888         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2889         switch (run->exit_reason) {
2890         case KVM_EXIT_IO:
2891             DPRINTF("handle_io\n");
2892             /* Called outside BQL */
2893             kvm_handle_io(run->io.port, attrs,
2894                           (uint8_t *)run + run->io.data_offset,
2895                           run->io.direction,
2896                           run->io.size,
2897                           run->io.count);
2898             ret = 0;
2899             break;
2900         case KVM_EXIT_MMIO:
2901             DPRINTF("handle_mmio\n");
2902             /* Called outside BQL */
2903             address_space_rw(&address_space_memory,
2904                              run->mmio.phys_addr, attrs,
2905                              run->mmio.data,
2906                              run->mmio.len,
2907                              run->mmio.is_write);
2908             ret = 0;
2909             break;
2910         case KVM_EXIT_IRQ_WINDOW_OPEN:
2911             DPRINTF("irq_window_open\n");
2912             ret = EXCP_INTERRUPT;
2913             break;
2914         case KVM_EXIT_SHUTDOWN:
2915             DPRINTF("shutdown\n");
2916             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2917             ret = EXCP_INTERRUPT;
2918             break;
2919         case KVM_EXIT_UNKNOWN:
2920             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2921                     (uint64_t)run->hw.hardware_exit_reason);
2922             ret = -1;
2923             break;
2924         case KVM_EXIT_INTERNAL_ERROR:
2925             ret = kvm_handle_internal_error(cpu, run);
2926             break;
2927         case KVM_EXIT_DIRTY_RING_FULL:
2928             /*
2929              * We shouldn't continue if the dirty ring of this vcpu is
2930              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2931              */
2932             trace_kvm_dirty_ring_full(cpu->cpu_index);
2933             qemu_mutex_lock_iothread();
2934             kvm_dirty_ring_reap(kvm_state);
2935             qemu_mutex_unlock_iothread();
2936             ret = 0;
2937             break;
2938         case KVM_EXIT_SYSTEM_EVENT:
2939             switch (run->system_event.type) {
2940             case KVM_SYSTEM_EVENT_SHUTDOWN:
2941                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2942                 ret = EXCP_INTERRUPT;
2943                 break;
2944             case KVM_SYSTEM_EVENT_RESET:
2945                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2946                 ret = EXCP_INTERRUPT;
2947                 break;
2948             case KVM_SYSTEM_EVENT_CRASH:
2949                 kvm_cpu_synchronize_state(cpu);
2950                 qemu_mutex_lock_iothread();
2951                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2952                 qemu_mutex_unlock_iothread();
2953                 ret = 0;
2954                 break;
2955             default:
2956                 DPRINTF("kvm_arch_handle_exit\n");
2957                 ret = kvm_arch_handle_exit(cpu, run);
2958                 break;
2959             }
2960             break;
2961         default:
2962             DPRINTF("kvm_arch_handle_exit\n");
2963             ret = kvm_arch_handle_exit(cpu, run);
2964             break;
2965         }
2966     } while (ret == 0);
2967 
2968     cpu_exec_end(cpu);
2969     qemu_mutex_lock_iothread();
2970 
2971     if (ret < 0) {
2972         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2973         vm_stop(RUN_STATE_INTERNAL_ERROR);
2974     }
2975 
2976     qatomic_set(&cpu->exit_request, 0);
2977     return ret;
2978 }
2979 
2980 int kvm_ioctl(KVMState *s, int type, ...)
2981 {
2982     int ret;
2983     void *arg;
2984     va_list ap;
2985 
2986     va_start(ap, type);
2987     arg = va_arg(ap, void *);
2988     va_end(ap);
2989 
2990     trace_kvm_ioctl(type, arg);
2991     ret = ioctl(s->fd, type, arg);
2992     if (ret == -1) {
2993         ret = -errno;
2994     }
2995     return ret;
2996 }
2997 
2998 int kvm_vm_ioctl(KVMState *s, int type, ...)
2999 {
3000     int ret;
3001     void *arg;
3002     va_list ap;
3003 
3004     va_start(ap, type);
3005     arg = va_arg(ap, void *);
3006     va_end(ap);
3007 
3008     trace_kvm_vm_ioctl(type, arg);
3009     ret = ioctl(s->vmfd, type, arg);
3010     if (ret == -1) {
3011         ret = -errno;
3012     }
3013     return ret;
3014 }
3015 
3016 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3017 {
3018     int ret;
3019     void *arg;
3020     va_list ap;
3021 
3022     va_start(ap, type);
3023     arg = va_arg(ap, void *);
3024     va_end(ap);
3025 
3026     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3027     ret = ioctl(cpu->kvm_fd, type, arg);
3028     if (ret == -1) {
3029         ret = -errno;
3030     }
3031     return ret;
3032 }
3033 
3034 int kvm_device_ioctl(int fd, int type, ...)
3035 {
3036     int ret;
3037     void *arg;
3038     va_list ap;
3039 
3040     va_start(ap, type);
3041     arg = va_arg(ap, void *);
3042     va_end(ap);
3043 
3044     trace_kvm_device_ioctl(fd, type, arg);
3045     ret = ioctl(fd, type, arg);
3046     if (ret == -1) {
3047         ret = -errno;
3048     }
3049     return ret;
3050 }
3051 
3052 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3053 {
3054     int ret;
3055     struct kvm_device_attr attribute = {
3056         .group = group,
3057         .attr = attr,
3058     };
3059 
3060     if (!kvm_vm_attributes_allowed) {
3061         return 0;
3062     }
3063 
3064     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3065     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3066     return ret ? 0 : 1;
3067 }
3068 
3069 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3070 {
3071     struct kvm_device_attr attribute = {
3072         .group = group,
3073         .attr = attr,
3074         .flags = 0,
3075     };
3076 
3077     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3078 }
3079 
3080 int kvm_device_access(int fd, int group, uint64_t attr,
3081                       void *val, bool write, Error **errp)
3082 {
3083     struct kvm_device_attr kvmattr;
3084     int err;
3085 
3086     kvmattr.flags = 0;
3087     kvmattr.group = group;
3088     kvmattr.attr = attr;
3089     kvmattr.addr = (uintptr_t)val;
3090 
3091     err = kvm_device_ioctl(fd,
3092                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3093                            &kvmattr);
3094     if (err < 0) {
3095         error_setg_errno(errp, -err,
3096                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3097                          "attr 0x%016" PRIx64,
3098                          write ? "SET" : "GET", group, attr);
3099     }
3100     return err;
3101 }
3102 
3103 bool kvm_has_sync_mmu(void)
3104 {
3105     return kvm_state->sync_mmu;
3106 }
3107 
3108 int kvm_has_vcpu_events(void)
3109 {
3110     return kvm_state->vcpu_events;
3111 }
3112 
3113 int kvm_has_robust_singlestep(void)
3114 {
3115     return kvm_state->robust_singlestep;
3116 }
3117 
3118 int kvm_has_debugregs(void)
3119 {
3120     return kvm_state->debugregs;
3121 }
3122 
3123 int kvm_max_nested_state_length(void)
3124 {
3125     return kvm_state->max_nested_state_len;
3126 }
3127 
3128 int kvm_has_many_ioeventfds(void)
3129 {
3130     if (!kvm_enabled()) {
3131         return 0;
3132     }
3133     return kvm_state->many_ioeventfds;
3134 }
3135 
3136 int kvm_has_gsi_routing(void)
3137 {
3138 #ifdef KVM_CAP_IRQ_ROUTING
3139     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3140 #else
3141     return false;
3142 #endif
3143 }
3144 
3145 int kvm_has_intx_set_mask(void)
3146 {
3147     return kvm_state->intx_set_mask;
3148 }
3149 
3150 bool kvm_arm_supports_user_irq(void)
3151 {
3152     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3153 }
3154 
3155 #ifdef KVM_CAP_SET_GUEST_DEBUG
3156 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3157                                                  target_ulong pc)
3158 {
3159     struct kvm_sw_breakpoint *bp;
3160 
3161     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3162         if (bp->pc == pc) {
3163             return bp;
3164         }
3165     }
3166     return NULL;
3167 }
3168 
3169 int kvm_sw_breakpoints_active(CPUState *cpu)
3170 {
3171     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3172 }
3173 
3174 struct kvm_set_guest_debug_data {
3175     struct kvm_guest_debug dbg;
3176     int err;
3177 };
3178 
3179 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3180 {
3181     struct kvm_set_guest_debug_data *dbg_data =
3182         (struct kvm_set_guest_debug_data *) data.host_ptr;
3183 
3184     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3185                                    &dbg_data->dbg);
3186 }
3187 
3188 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3189 {
3190     struct kvm_set_guest_debug_data data;
3191 
3192     data.dbg.control = reinject_trap;
3193 
3194     if (cpu->singlestep_enabled) {
3195         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3196     }
3197     kvm_arch_update_guest_debug(cpu, &data.dbg);
3198 
3199     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3200                RUN_ON_CPU_HOST_PTR(&data));
3201     return data.err;
3202 }
3203 
3204 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3205                           target_ulong len, int type)
3206 {
3207     struct kvm_sw_breakpoint *bp;
3208     int err;
3209 
3210     if (type == GDB_BREAKPOINT_SW) {
3211         bp = kvm_find_sw_breakpoint(cpu, addr);
3212         if (bp) {
3213             bp->use_count++;
3214             return 0;
3215         }
3216 
3217         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
3218         bp->pc = addr;
3219         bp->use_count = 1;
3220         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3221         if (err) {
3222             g_free(bp);
3223             return err;
3224         }
3225 
3226         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3227     } else {
3228         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3229         if (err) {
3230             return err;
3231         }
3232     }
3233 
3234     CPU_FOREACH(cpu) {
3235         err = kvm_update_guest_debug(cpu, 0);
3236         if (err) {
3237             return err;
3238         }
3239     }
3240     return 0;
3241 }
3242 
3243 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3244                           target_ulong len, int type)
3245 {
3246     struct kvm_sw_breakpoint *bp;
3247     int err;
3248 
3249     if (type == GDB_BREAKPOINT_SW) {
3250         bp = kvm_find_sw_breakpoint(cpu, addr);
3251         if (!bp) {
3252             return -ENOENT;
3253         }
3254 
3255         if (bp->use_count > 1) {
3256             bp->use_count--;
3257             return 0;
3258         }
3259 
3260         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3261         if (err) {
3262             return err;
3263         }
3264 
3265         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3266         g_free(bp);
3267     } else {
3268         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3269         if (err) {
3270             return err;
3271         }
3272     }
3273 
3274     CPU_FOREACH(cpu) {
3275         err = kvm_update_guest_debug(cpu, 0);
3276         if (err) {
3277             return err;
3278         }
3279     }
3280     return 0;
3281 }
3282 
3283 void kvm_remove_all_breakpoints(CPUState *cpu)
3284 {
3285     struct kvm_sw_breakpoint *bp, *next;
3286     KVMState *s = cpu->kvm_state;
3287     CPUState *tmpcpu;
3288 
3289     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3290         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3291             /* Try harder to find a CPU that currently sees the breakpoint. */
3292             CPU_FOREACH(tmpcpu) {
3293                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3294                     break;
3295                 }
3296             }
3297         }
3298         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3299         g_free(bp);
3300     }
3301     kvm_arch_remove_all_hw_breakpoints();
3302 
3303     CPU_FOREACH(cpu) {
3304         kvm_update_guest_debug(cpu, 0);
3305     }
3306 }
3307 
3308 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3309 
3310 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3311 {
3312     return -EINVAL;
3313 }
3314 
3315 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3316                           target_ulong len, int type)
3317 {
3318     return -EINVAL;
3319 }
3320 
3321 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3322                           target_ulong len, int type)
3323 {
3324     return -EINVAL;
3325 }
3326 
3327 void kvm_remove_all_breakpoints(CPUState *cpu)
3328 {
3329 }
3330 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3331 
3332 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3333 {
3334     KVMState *s = kvm_state;
3335     struct kvm_signal_mask *sigmask;
3336     int r;
3337 
3338     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3339 
3340     sigmask->len = s->sigmask_len;
3341     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3342     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3343     g_free(sigmask);
3344 
3345     return r;
3346 }
3347 
3348 static void kvm_ipi_signal(int sig)
3349 {
3350     if (current_cpu) {
3351         assert(kvm_immediate_exit);
3352         kvm_cpu_kick(current_cpu);
3353     }
3354 }
3355 
3356 void kvm_init_cpu_signals(CPUState *cpu)
3357 {
3358     int r;
3359     sigset_t set;
3360     struct sigaction sigact;
3361 
3362     memset(&sigact, 0, sizeof(sigact));
3363     sigact.sa_handler = kvm_ipi_signal;
3364     sigaction(SIG_IPI, &sigact, NULL);
3365 
3366     pthread_sigmask(SIG_BLOCK, NULL, &set);
3367 #if defined KVM_HAVE_MCE_INJECTION
3368     sigdelset(&set, SIGBUS);
3369     pthread_sigmask(SIG_SETMASK, &set, NULL);
3370 #endif
3371     sigdelset(&set, SIG_IPI);
3372     if (kvm_immediate_exit) {
3373         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3374     } else {
3375         r = kvm_set_signal_mask(cpu, &set);
3376     }
3377     if (r) {
3378         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3379         exit(1);
3380     }
3381 }
3382 
3383 /* Called asynchronously in VCPU thread.  */
3384 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3385 {
3386 #ifdef KVM_HAVE_MCE_INJECTION
3387     if (have_sigbus_pending) {
3388         return 1;
3389     }
3390     have_sigbus_pending = true;
3391     pending_sigbus_addr = addr;
3392     pending_sigbus_code = code;
3393     qatomic_set(&cpu->exit_request, 1);
3394     return 0;
3395 #else
3396     return 1;
3397 #endif
3398 }
3399 
3400 /* Called synchronously (via signalfd) in main thread.  */
3401 int kvm_on_sigbus(int code, void *addr)
3402 {
3403 #ifdef KVM_HAVE_MCE_INJECTION
3404     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3405      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3406      * we can only get action optional here.
3407      */
3408     assert(code != BUS_MCEERR_AR);
3409     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3410     return 0;
3411 #else
3412     return 1;
3413 #endif
3414 }
3415 
3416 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3417 {
3418     int ret;
3419     struct kvm_create_device create_dev;
3420 
3421     create_dev.type = type;
3422     create_dev.fd = -1;
3423     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3424 
3425     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3426         return -ENOTSUP;
3427     }
3428 
3429     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3430     if (ret) {
3431         return ret;
3432     }
3433 
3434     return test ? 0 : create_dev.fd;
3435 }
3436 
3437 bool kvm_device_supported(int vmfd, uint64_t type)
3438 {
3439     struct kvm_create_device create_dev = {
3440         .type = type,
3441         .fd = -1,
3442         .flags = KVM_CREATE_DEVICE_TEST,
3443     };
3444 
3445     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3446         return false;
3447     }
3448 
3449     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3450 }
3451 
3452 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3453 {
3454     struct kvm_one_reg reg;
3455     int r;
3456 
3457     reg.id = id;
3458     reg.addr = (uintptr_t) source;
3459     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3460     if (r) {
3461         trace_kvm_failed_reg_set(id, strerror(-r));
3462     }
3463     return r;
3464 }
3465 
3466 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3467 {
3468     struct kvm_one_reg reg;
3469     int r;
3470 
3471     reg.id = id;
3472     reg.addr = (uintptr_t) target;
3473     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3474     if (r) {
3475         trace_kvm_failed_reg_get(id, strerror(-r));
3476     }
3477     return r;
3478 }
3479 
3480 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3481                                  hwaddr start_addr, hwaddr size)
3482 {
3483     KVMState *kvm = KVM_STATE(ms->accelerator);
3484     int i;
3485 
3486     for (i = 0; i < kvm->nr_as; ++i) {
3487         if (kvm->as[i].as == as && kvm->as[i].ml) {
3488             size = MIN(kvm_max_slot_size, size);
3489             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3490                                                     start_addr, size);
3491         }
3492     }
3493 
3494     return false;
3495 }
3496 
3497 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3498                                    const char *name, void *opaque,
3499                                    Error **errp)
3500 {
3501     KVMState *s = KVM_STATE(obj);
3502     int64_t value = s->kvm_shadow_mem;
3503 
3504     visit_type_int(v, name, &value, errp);
3505 }
3506 
3507 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3508                                    const char *name, void *opaque,
3509                                    Error **errp)
3510 {
3511     KVMState *s = KVM_STATE(obj);
3512     int64_t value;
3513 
3514     if (s->fd != -1) {
3515         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3516         return;
3517     }
3518 
3519     if (!visit_type_int(v, name, &value, errp)) {
3520         return;
3521     }
3522 
3523     s->kvm_shadow_mem = value;
3524 }
3525 
3526 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3527                                    const char *name, void *opaque,
3528                                    Error **errp)
3529 {
3530     KVMState *s = KVM_STATE(obj);
3531     OnOffSplit mode;
3532 
3533     if (s->fd != -1) {
3534         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3535         return;
3536     }
3537 
3538     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3539         return;
3540     }
3541     switch (mode) {
3542     case ON_OFF_SPLIT_ON:
3543         s->kernel_irqchip_allowed = true;
3544         s->kernel_irqchip_required = true;
3545         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3546         break;
3547     case ON_OFF_SPLIT_OFF:
3548         s->kernel_irqchip_allowed = false;
3549         s->kernel_irqchip_required = false;
3550         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3551         break;
3552     case ON_OFF_SPLIT_SPLIT:
3553         s->kernel_irqchip_allowed = true;
3554         s->kernel_irqchip_required = true;
3555         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3556         break;
3557     default:
3558         /* The value was checked in visit_type_OnOffSplit() above. If
3559          * we get here, then something is wrong in QEMU.
3560          */
3561         abort();
3562     }
3563 }
3564 
3565 bool kvm_kernel_irqchip_allowed(void)
3566 {
3567     return kvm_state->kernel_irqchip_allowed;
3568 }
3569 
3570 bool kvm_kernel_irqchip_required(void)
3571 {
3572     return kvm_state->kernel_irqchip_required;
3573 }
3574 
3575 bool kvm_kernel_irqchip_split(void)
3576 {
3577     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3578 }
3579 
3580 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3581                                     const char *name, void *opaque,
3582                                     Error **errp)
3583 {
3584     KVMState *s = KVM_STATE(obj);
3585     uint32_t value = s->kvm_dirty_ring_size;
3586 
3587     visit_type_uint32(v, name, &value, errp);
3588 }
3589 
3590 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3591                                     const char *name, void *opaque,
3592                                     Error **errp)
3593 {
3594     KVMState *s = KVM_STATE(obj);
3595     Error *error = NULL;
3596     uint32_t value;
3597 
3598     if (s->fd != -1) {
3599         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3600         return;
3601     }
3602 
3603     visit_type_uint32(v, name, &value, &error);
3604     if (error) {
3605         error_propagate(errp, error);
3606         return;
3607     }
3608     if (value & (value - 1)) {
3609         error_setg(errp, "dirty-ring-size must be a power of two.");
3610         return;
3611     }
3612 
3613     s->kvm_dirty_ring_size = value;
3614 }
3615 
3616 static void kvm_accel_instance_init(Object *obj)
3617 {
3618     KVMState *s = KVM_STATE(obj);
3619 
3620     s->fd = -1;
3621     s->vmfd = -1;
3622     s->kvm_shadow_mem = -1;
3623     s->kernel_irqchip_allowed = true;
3624     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3625     /* KVM dirty ring is by default off */
3626     s->kvm_dirty_ring_size = 0;
3627 }
3628 
3629 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3630 {
3631     AccelClass *ac = ACCEL_CLASS(oc);
3632     ac->name = "KVM";
3633     ac->init_machine = kvm_init;
3634     ac->has_memory = kvm_accel_has_memory;
3635     ac->allowed = &kvm_allowed;
3636 
3637     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3638         NULL, kvm_set_kernel_irqchip,
3639         NULL, NULL);
3640     object_class_property_set_description(oc, "kernel-irqchip",
3641         "Configure KVM in-kernel irqchip");
3642 
3643     object_class_property_add(oc, "kvm-shadow-mem", "int",
3644         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3645         NULL, NULL);
3646     object_class_property_set_description(oc, "kvm-shadow-mem",
3647         "KVM shadow MMU size");
3648 
3649     object_class_property_add(oc, "dirty-ring-size", "uint32",
3650         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3651         NULL, NULL);
3652     object_class_property_set_description(oc, "dirty-ring-size",
3653         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3654 }
3655 
3656 static const TypeInfo kvm_accel_type = {
3657     .name = TYPE_KVM_ACCEL,
3658     .parent = TYPE_ACCEL,
3659     .instance_init = kvm_accel_instance_init,
3660     .class_init = kvm_accel_class_init,
3661     .instance_size = sizeof(KVMState),
3662 };
3663 
3664 static void kvm_type_init(void)
3665 {
3666     type_register_static(&kvm_accel_type);
3667 }
3668 
3669 type_init(kvm_type_init);
3670