xref: /qemu/accel/kvm/kvm-all.c (revision 7cebff0d)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 
50 #include "hw/boards.h"
51 
52 /* This check must be after config-host.h is included */
53 #ifdef CONFIG_EVENTFD
54 #include <sys/eventfd.h>
55 #endif
56 
57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
58  * need to use the real host PAGE_SIZE, as that's what KVM will use.
59  */
60 #ifdef PAGE_SIZE
61 #undef PAGE_SIZE
62 #endif
63 #define PAGE_SIZE qemu_real_host_page_size
64 
65 //#define DEBUG_KVM
66 
67 #ifdef DEBUG_KVM
68 #define DPRINTF(fmt, ...) \
69     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
70 #else
71 #define DPRINTF(fmt, ...) \
72     do { } while (0)
73 #endif
74 
75 #define KVM_MSI_HASHTAB_SIZE    256
76 
77 struct KVMParkedVcpu {
78     unsigned long vcpu_id;
79     int kvm_fd;
80     QLIST_ENTRY(KVMParkedVcpu) node;
81 };
82 
83 struct KVMState
84 {
85     AccelState parent_obj;
86 
87     int nr_slots;
88     int fd;
89     int vmfd;
90     int coalesced_mmio;
91     int coalesced_pio;
92     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
93     bool coalesced_flush_in_progress;
94     int vcpu_events;
95     int robust_singlestep;
96     int debugregs;
97 #ifdef KVM_CAP_SET_GUEST_DEBUG
98     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
99 #endif
100     int max_nested_state_len;
101     int many_ioeventfds;
102     int intx_set_mask;
103     int kvm_shadow_mem;
104     bool kernel_irqchip_allowed;
105     bool kernel_irqchip_required;
106     OnOffAuto kernel_irqchip_split;
107     bool sync_mmu;
108     uint64_t manual_dirty_log_protect;
109     /* The man page (and posix) say ioctl numbers are signed int, but
110      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
111      * unsigned, and treating them as signed here can break things */
112     unsigned irq_set_ioctl;
113     unsigned int sigmask_len;
114     GHashTable *gsimap;
115 #ifdef KVM_CAP_IRQ_ROUTING
116     struct kvm_irq_routing *irq_routes;
117     int nr_allocated_irq_routes;
118     unsigned long *used_gsi_bitmap;
119     unsigned int gsi_count;
120     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
121 #endif
122     KVMMemoryListener memory_listener;
123     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
124 
125     /* For "info mtree -f" to tell if an MR is registered in KVM */
126     int nr_as;
127     struct KVMAs {
128         KVMMemoryListener *ml;
129         AddressSpace *as;
130     } *as;
131 };
132 
133 KVMState *kvm_state;
134 bool kvm_kernel_irqchip;
135 bool kvm_split_irqchip;
136 bool kvm_async_interrupts_allowed;
137 bool kvm_halt_in_kernel_allowed;
138 bool kvm_eventfds_allowed;
139 bool kvm_irqfds_allowed;
140 bool kvm_resamplefds_allowed;
141 bool kvm_msi_via_irqfd_allowed;
142 bool kvm_gsi_routing_allowed;
143 bool kvm_gsi_direct_mapping;
144 bool kvm_allowed;
145 bool kvm_readonly_mem_allowed;
146 bool kvm_vm_attributes_allowed;
147 bool kvm_direct_msi_allowed;
148 bool kvm_ioeventfd_any_length_allowed;
149 bool kvm_msi_use_devid;
150 static bool kvm_immediate_exit;
151 static hwaddr kvm_max_slot_size = ~0;
152 
153 static const KVMCapabilityInfo kvm_required_capabilites[] = {
154     KVM_CAP_INFO(USER_MEMORY),
155     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
156     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
157     KVM_CAP_LAST_INFO
158 };
159 
160 static NotifierList kvm_irqchip_change_notifiers =
161     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
162 
163 struct KVMResampleFd {
164     int gsi;
165     EventNotifier *resample_event;
166     QLIST_ENTRY(KVMResampleFd) node;
167 };
168 typedef struct KVMResampleFd KVMResampleFd;
169 
170 /*
171  * Only used with split irqchip where we need to do the resample fd
172  * kick for the kernel from userspace.
173  */
174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
175     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
176 
177 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
179 
180 static inline void kvm_resample_fd_remove(int gsi)
181 {
182     KVMResampleFd *rfd;
183 
184     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
185         if (rfd->gsi == gsi) {
186             QLIST_REMOVE(rfd, node);
187             g_free(rfd);
188             break;
189         }
190     }
191 }
192 
193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
194 {
195     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
196 
197     rfd->gsi = gsi;
198     rfd->resample_event = event;
199 
200     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
201 }
202 
203 void kvm_resample_fd_notify(int gsi)
204 {
205     KVMResampleFd *rfd;
206 
207     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
208         if (rfd->gsi == gsi) {
209             event_notifier_set(rfd->resample_event);
210             trace_kvm_resample_fd_notify(gsi);
211             return;
212         }
213     }
214 }
215 
216 int kvm_get_max_memslots(void)
217 {
218     KVMState *s = KVM_STATE(current_accel());
219 
220     return s->nr_slots;
221 }
222 
223 /* Called with KVMMemoryListener.slots_lock held */
224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
225 {
226     KVMState *s = kvm_state;
227     int i;
228 
229     for (i = 0; i < s->nr_slots; i++) {
230         if (kml->slots[i].memory_size == 0) {
231             return &kml->slots[i];
232         }
233     }
234 
235     return NULL;
236 }
237 
238 bool kvm_has_free_slot(MachineState *ms)
239 {
240     KVMState *s = KVM_STATE(ms->accelerator);
241     bool result;
242     KVMMemoryListener *kml = &s->memory_listener;
243 
244     kvm_slots_lock(kml);
245     result = !!kvm_get_free_slot(kml);
246     kvm_slots_unlock(kml);
247 
248     return result;
249 }
250 
251 /* Called with KVMMemoryListener.slots_lock held */
252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
253 {
254     KVMSlot *slot = kvm_get_free_slot(kml);
255 
256     if (slot) {
257         return slot;
258     }
259 
260     fprintf(stderr, "%s: no free slot available\n", __func__);
261     abort();
262 }
263 
264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
265                                          hwaddr start_addr,
266                                          hwaddr size)
267 {
268     KVMState *s = kvm_state;
269     int i;
270 
271     for (i = 0; i < s->nr_slots; i++) {
272         KVMSlot *mem = &kml->slots[i];
273 
274         if (start_addr == mem->start_addr && size == mem->memory_size) {
275             return mem;
276         }
277     }
278 
279     return NULL;
280 }
281 
282 /*
283  * Calculate and align the start address and the size of the section.
284  * Return the size. If the size is 0, the aligned section is empty.
285  */
286 static hwaddr kvm_align_section(MemoryRegionSection *section,
287                                 hwaddr *start)
288 {
289     hwaddr size = int128_get64(section->size);
290     hwaddr delta, aligned;
291 
292     /* kvm works in page size chunks, but the function may be called
293        with sub-page size and unaligned start address. Pad the start
294        address to next and truncate size to previous page boundary. */
295     aligned = ROUND_UP(section->offset_within_address_space,
296                        qemu_real_host_page_size);
297     delta = aligned - section->offset_within_address_space;
298     *start = aligned;
299     if (delta > size) {
300         return 0;
301     }
302 
303     return (size - delta) & qemu_real_host_page_mask;
304 }
305 
306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
307                                        hwaddr *phys_addr)
308 {
309     KVMMemoryListener *kml = &s->memory_listener;
310     int i, ret = 0;
311 
312     kvm_slots_lock(kml);
313     for (i = 0; i < s->nr_slots; i++) {
314         KVMSlot *mem = &kml->slots[i];
315 
316         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
317             *phys_addr = mem->start_addr + (ram - mem->ram);
318             ret = 1;
319             break;
320         }
321     }
322     kvm_slots_unlock(kml);
323 
324     return ret;
325 }
326 
327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
328 {
329     KVMState *s = kvm_state;
330     struct kvm_userspace_memory_region mem;
331     int ret;
332 
333     mem.slot = slot->slot | (kml->as_id << 16);
334     mem.guest_phys_addr = slot->start_addr;
335     mem.userspace_addr = (unsigned long)slot->ram;
336     mem.flags = slot->flags;
337 
338     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
339         /* Set the slot size to 0 before setting the slot to the desired
340          * value. This is needed based on KVM commit 75d61fbc. */
341         mem.memory_size = 0;
342         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
343         if (ret < 0) {
344             goto err;
345         }
346     }
347     mem.memory_size = slot->memory_size;
348     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
349     slot->old_flags = mem.flags;
350 err:
351     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
352                               mem.memory_size, mem.userspace_addr, ret);
353     if (ret < 0) {
354         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
355                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
356                      __func__, mem.slot, slot->start_addr,
357                      (uint64_t)mem.memory_size, strerror(errno));
358     }
359     return ret;
360 }
361 
362 static int do_kvm_destroy_vcpu(CPUState *cpu)
363 {
364     KVMState *s = kvm_state;
365     long mmap_size;
366     struct KVMParkedVcpu *vcpu = NULL;
367     int ret = 0;
368 
369     DPRINTF("kvm_destroy_vcpu\n");
370 
371     ret = kvm_arch_destroy_vcpu(cpu);
372     if (ret < 0) {
373         goto err;
374     }
375 
376     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
377     if (mmap_size < 0) {
378         ret = mmap_size;
379         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
380         goto err;
381     }
382 
383     ret = munmap(cpu->kvm_run, mmap_size);
384     if (ret < 0) {
385         goto err;
386     }
387 
388     vcpu = g_malloc0(sizeof(*vcpu));
389     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
390     vcpu->kvm_fd = cpu->kvm_fd;
391     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
392 err:
393     return ret;
394 }
395 
396 void kvm_destroy_vcpu(CPUState *cpu)
397 {
398     if (do_kvm_destroy_vcpu(cpu) < 0) {
399         error_report("kvm_destroy_vcpu failed");
400         exit(EXIT_FAILURE);
401     }
402 }
403 
404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
405 {
406     struct KVMParkedVcpu *cpu;
407 
408     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
409         if (cpu->vcpu_id == vcpu_id) {
410             int kvm_fd;
411 
412             QLIST_REMOVE(cpu, node);
413             kvm_fd = cpu->kvm_fd;
414             g_free(cpu);
415             return kvm_fd;
416         }
417     }
418 
419     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
420 }
421 
422 int kvm_init_vcpu(CPUState *cpu, Error **errp)
423 {
424     KVMState *s = kvm_state;
425     long mmap_size;
426     int ret;
427 
428     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
429 
430     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
431     if (ret < 0) {
432         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
433                          kvm_arch_vcpu_id(cpu));
434         goto err;
435     }
436 
437     cpu->kvm_fd = ret;
438     cpu->kvm_state = s;
439     cpu->vcpu_dirty = true;
440 
441     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
442     if (mmap_size < 0) {
443         ret = mmap_size;
444         error_setg_errno(errp, -mmap_size,
445                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
446         goto err;
447     }
448 
449     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
450                         cpu->kvm_fd, 0);
451     if (cpu->kvm_run == MAP_FAILED) {
452         ret = -errno;
453         error_setg_errno(errp, ret,
454                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
455                          kvm_arch_vcpu_id(cpu));
456         goto err;
457     }
458 
459     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
460         s->coalesced_mmio_ring =
461             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
462     }
463 
464     ret = kvm_arch_init_vcpu(cpu);
465     if (ret < 0) {
466         error_setg_errno(errp, -ret,
467                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
468                          kvm_arch_vcpu_id(cpu));
469     }
470 err:
471     return ret;
472 }
473 
474 /*
475  * dirty pages logging control
476  */
477 
478 static int kvm_mem_flags(MemoryRegion *mr)
479 {
480     bool readonly = mr->readonly || memory_region_is_romd(mr);
481     int flags = 0;
482 
483     if (memory_region_get_dirty_log_mask(mr) != 0) {
484         flags |= KVM_MEM_LOG_DIRTY_PAGES;
485     }
486     if (readonly && kvm_readonly_mem_allowed) {
487         flags |= KVM_MEM_READONLY;
488     }
489     return flags;
490 }
491 
492 /* Called with KVMMemoryListener.slots_lock held */
493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
494                                  MemoryRegion *mr)
495 {
496     mem->flags = kvm_mem_flags(mr);
497 
498     /* If nothing changed effectively, no need to issue ioctl */
499     if (mem->flags == mem->old_flags) {
500         return 0;
501     }
502 
503     return kvm_set_user_memory_region(kml, mem, false);
504 }
505 
506 static int kvm_section_update_flags(KVMMemoryListener *kml,
507                                     MemoryRegionSection *section)
508 {
509     hwaddr start_addr, size, slot_size;
510     KVMSlot *mem;
511     int ret = 0;
512 
513     size = kvm_align_section(section, &start_addr);
514     if (!size) {
515         return 0;
516     }
517 
518     kvm_slots_lock(kml);
519 
520     while (size && !ret) {
521         slot_size = MIN(kvm_max_slot_size, size);
522         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
523         if (!mem) {
524             /* We don't have a slot if we want to trap every access. */
525             goto out;
526         }
527 
528         ret = kvm_slot_update_flags(kml, mem, section->mr);
529         start_addr += slot_size;
530         size -= slot_size;
531     }
532 
533 out:
534     kvm_slots_unlock(kml);
535     return ret;
536 }
537 
538 static void kvm_log_start(MemoryListener *listener,
539                           MemoryRegionSection *section,
540                           int old, int new)
541 {
542     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
543     int r;
544 
545     if (old != 0) {
546         return;
547     }
548 
549     r = kvm_section_update_flags(kml, section);
550     if (r < 0) {
551         abort();
552     }
553 }
554 
555 static void kvm_log_stop(MemoryListener *listener,
556                           MemoryRegionSection *section,
557                           int old, int new)
558 {
559     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
560     int r;
561 
562     if (new != 0) {
563         return;
564     }
565 
566     r = kvm_section_update_flags(kml, section);
567     if (r < 0) {
568         abort();
569     }
570 }
571 
572 /* get kvm's dirty pages bitmap and update qemu's */
573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
574                                          unsigned long *bitmap)
575 {
576     ram_addr_t start = section->offset_within_region +
577                        memory_region_get_ram_addr(section->mr);
578     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
579 
580     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
581     return 0;
582 }
583 
584 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
585 
586 /* Allocate the dirty bitmap for a slot  */
587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
588 {
589     /*
590      * XXX bad kernel interface alert
591      * For dirty bitmap, kernel allocates array of size aligned to
592      * bits-per-long.  But for case when the kernel is 64bits and
593      * the userspace is 32bits, userspace can't align to the same
594      * bits-per-long, since sizeof(long) is different between kernel
595      * and user space.  This way, userspace will provide buffer which
596      * may be 4 bytes less than the kernel will use, resulting in
597      * userspace memory corruption (which is not detectable by valgrind
598      * too, in most cases).
599      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
600      * a hope that sizeof(long) won't become >8 any time soon.
601      *
602      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
603      * And mem->memory_size is aligned to it (otherwise this mem can't
604      * be registered to KVM).
605      */
606     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
607                                         /*HOST_LONG_BITS*/ 64) / 8;
608     mem->dirty_bmap = g_malloc0(bitmap_size);
609 }
610 
611 /**
612  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
613  *
614  * This function will first try to fetch dirty bitmap from the kernel,
615  * and then updates qemu's dirty bitmap.
616  *
617  * NOTE: caller must be with kml->slots_lock held.
618  *
619  * @kml: the KVM memory listener object
620  * @section: the memory section to sync the dirty bitmap with
621  */
622 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
623                                           MemoryRegionSection *section)
624 {
625     KVMState *s = kvm_state;
626     struct kvm_dirty_log d = {};
627     KVMSlot *mem;
628     hwaddr start_addr, size;
629     hwaddr slot_size, slot_offset = 0;
630     int ret = 0;
631 
632     size = kvm_align_section(section, &start_addr);
633     while (size) {
634         MemoryRegionSection subsection = *section;
635 
636         slot_size = MIN(kvm_max_slot_size, size);
637         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
638         if (!mem) {
639             /* We don't have a slot if we want to trap every access. */
640             goto out;
641         }
642 
643         if (!mem->dirty_bmap) {
644             /* Allocate on the first log_sync, once and for all */
645             kvm_memslot_init_dirty_bitmap(mem);
646         }
647 
648         d.dirty_bitmap = mem->dirty_bmap;
649         d.slot = mem->slot | (kml->as_id << 16);
650         ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
651         if (ret == -ENOENT) {
652             /* kernel does not have dirty bitmap in this slot */
653             ret = 0;
654         } else if (ret < 0) {
655             error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
656             goto out;
657         } else {
658             subsection.offset_within_region += slot_offset;
659             subsection.size = int128_make64(slot_size);
660             kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
661         }
662 
663         slot_offset += slot_size;
664         start_addr += slot_size;
665         size -= slot_size;
666     }
667 out:
668     return ret;
669 }
670 
671 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
672 #define KVM_CLEAR_LOG_SHIFT  6
673 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
674 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
675 
676 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
677                                   uint64_t size)
678 {
679     KVMState *s = kvm_state;
680     uint64_t end, bmap_start, start_delta, bmap_npages;
681     struct kvm_clear_dirty_log d;
682     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
683     int ret;
684 
685     /*
686      * We need to extend either the start or the size or both to
687      * satisfy the KVM interface requirement.  Firstly, do the start
688      * page alignment on 64 host pages
689      */
690     bmap_start = start & KVM_CLEAR_LOG_MASK;
691     start_delta = start - bmap_start;
692     bmap_start /= psize;
693 
694     /*
695      * The kernel interface has restriction on the size too, that either:
696      *
697      * (1) the size is 64 host pages aligned (just like the start), or
698      * (2) the size fills up until the end of the KVM memslot.
699      */
700     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
701         << KVM_CLEAR_LOG_SHIFT;
702     end = mem->memory_size / psize;
703     if (bmap_npages > end - bmap_start) {
704         bmap_npages = end - bmap_start;
705     }
706     start_delta /= psize;
707 
708     /*
709      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
710      * that we won't clear any unknown dirty bits otherwise we might
711      * accidentally clear some set bits which are not yet synced from
712      * the kernel into QEMU's bitmap, then we'll lose track of the
713      * guest modifications upon those pages (which can directly lead
714      * to guest data loss or panic after migration).
715      *
716      * Layout of the KVMSlot.dirty_bmap:
717      *
718      *                   |<-------- bmap_npages -----------..>|
719      *                                                     [1]
720      *                     start_delta         size
721      *  |----------------|-------------|------------------|------------|
722      *  ^                ^             ^                               ^
723      *  |                |             |                               |
724      * start          bmap_start     (start)                         end
725      * of memslot                                             of memslot
726      *
727      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
728      */
729 
730     assert(bmap_start % BITS_PER_LONG == 0);
731     /* We should never do log_clear before log_sync */
732     assert(mem->dirty_bmap);
733     if (start_delta || bmap_npages - size / psize) {
734         /* Slow path - we need to manipulate a temp bitmap */
735         bmap_clear = bitmap_new(bmap_npages);
736         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
737                                     bmap_start, start_delta + size / psize);
738         /*
739          * We need to fill the holes at start because that was not
740          * specified by the caller and we extended the bitmap only for
741          * 64 pages alignment
742          */
743         bitmap_clear(bmap_clear, 0, start_delta);
744         d.dirty_bitmap = bmap_clear;
745     } else {
746         /*
747          * Fast path - both start and size align well with BITS_PER_LONG
748          * (or the end of memory slot)
749          */
750         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
751     }
752 
753     d.first_page = bmap_start;
754     /* It should never overflow.  If it happens, say something */
755     assert(bmap_npages <= UINT32_MAX);
756     d.num_pages = bmap_npages;
757     d.slot = mem->slot | (as_id << 16);
758 
759     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
760     if (ret < 0 && ret != -ENOENT) {
761         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
762                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
763                      __func__, d.slot, (uint64_t)d.first_page,
764                      (uint32_t)d.num_pages, ret);
765     } else {
766         ret = 0;
767         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
768     }
769 
770     /*
771      * After we have updated the remote dirty bitmap, we update the
772      * cached bitmap as well for the memslot, then if another user
773      * clears the same region we know we shouldn't clear it again on
774      * the remote otherwise it's data loss as well.
775      */
776     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
777                  size / psize);
778     /* This handles the NULL case well */
779     g_free(bmap_clear);
780     return ret;
781 }
782 
783 
784 /**
785  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
786  *
787  * NOTE: this will be a no-op if we haven't enabled manual dirty log
788  * protection in the host kernel because in that case this operation
789  * will be done within log_sync().
790  *
791  * @kml:     the kvm memory listener
792  * @section: the memory range to clear dirty bitmap
793  */
794 static int kvm_physical_log_clear(KVMMemoryListener *kml,
795                                   MemoryRegionSection *section)
796 {
797     KVMState *s = kvm_state;
798     uint64_t start, size, offset, count;
799     KVMSlot *mem;
800     int ret = 0, i;
801 
802     if (!s->manual_dirty_log_protect) {
803         /* No need to do explicit clear */
804         return ret;
805     }
806 
807     start = section->offset_within_address_space;
808     size = int128_get64(section->size);
809 
810     if (!size) {
811         /* Nothing more we can do... */
812         return ret;
813     }
814 
815     kvm_slots_lock(kml);
816 
817     for (i = 0; i < s->nr_slots; i++) {
818         mem = &kml->slots[i];
819         /* Discard slots that are empty or do not overlap the section */
820         if (!mem->memory_size ||
821             mem->start_addr > start + size - 1 ||
822             start > mem->start_addr + mem->memory_size - 1) {
823             continue;
824         }
825 
826         if (start >= mem->start_addr) {
827             /* The slot starts before section or is aligned to it.  */
828             offset = start - mem->start_addr;
829             count = MIN(mem->memory_size - offset, size);
830         } else {
831             /* The slot starts after section.  */
832             offset = 0;
833             count = MIN(mem->memory_size, size - (mem->start_addr - start));
834         }
835         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
836         if (ret < 0) {
837             break;
838         }
839     }
840 
841     kvm_slots_unlock(kml);
842 
843     return ret;
844 }
845 
846 static void kvm_coalesce_mmio_region(MemoryListener *listener,
847                                      MemoryRegionSection *secion,
848                                      hwaddr start, hwaddr size)
849 {
850     KVMState *s = kvm_state;
851 
852     if (s->coalesced_mmio) {
853         struct kvm_coalesced_mmio_zone zone;
854 
855         zone.addr = start;
856         zone.size = size;
857         zone.pad = 0;
858 
859         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
860     }
861 }
862 
863 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
864                                        MemoryRegionSection *secion,
865                                        hwaddr start, hwaddr size)
866 {
867     KVMState *s = kvm_state;
868 
869     if (s->coalesced_mmio) {
870         struct kvm_coalesced_mmio_zone zone;
871 
872         zone.addr = start;
873         zone.size = size;
874         zone.pad = 0;
875 
876         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
877     }
878 }
879 
880 static void kvm_coalesce_pio_add(MemoryListener *listener,
881                                 MemoryRegionSection *section,
882                                 hwaddr start, hwaddr size)
883 {
884     KVMState *s = kvm_state;
885 
886     if (s->coalesced_pio) {
887         struct kvm_coalesced_mmio_zone zone;
888 
889         zone.addr = start;
890         zone.size = size;
891         zone.pio = 1;
892 
893         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
894     }
895 }
896 
897 static void kvm_coalesce_pio_del(MemoryListener *listener,
898                                 MemoryRegionSection *section,
899                                 hwaddr start, hwaddr size)
900 {
901     KVMState *s = kvm_state;
902 
903     if (s->coalesced_pio) {
904         struct kvm_coalesced_mmio_zone zone;
905 
906         zone.addr = start;
907         zone.size = size;
908         zone.pio = 1;
909 
910         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
911      }
912 }
913 
914 static MemoryListener kvm_coalesced_pio_listener = {
915     .coalesced_io_add = kvm_coalesce_pio_add,
916     .coalesced_io_del = kvm_coalesce_pio_del,
917 };
918 
919 int kvm_check_extension(KVMState *s, unsigned int extension)
920 {
921     int ret;
922 
923     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
924     if (ret < 0) {
925         ret = 0;
926     }
927 
928     return ret;
929 }
930 
931 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
932 {
933     int ret;
934 
935     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
936     if (ret < 0) {
937         /* VM wide version not implemented, use global one instead */
938         ret = kvm_check_extension(s, extension);
939     }
940 
941     return ret;
942 }
943 
944 typedef struct HWPoisonPage {
945     ram_addr_t ram_addr;
946     QLIST_ENTRY(HWPoisonPage) list;
947 } HWPoisonPage;
948 
949 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
950     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
951 
952 static void kvm_unpoison_all(void *param)
953 {
954     HWPoisonPage *page, *next_page;
955 
956     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
957         QLIST_REMOVE(page, list);
958         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
959         g_free(page);
960     }
961 }
962 
963 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
964 {
965     HWPoisonPage *page;
966 
967     QLIST_FOREACH(page, &hwpoison_page_list, list) {
968         if (page->ram_addr == ram_addr) {
969             return;
970         }
971     }
972     page = g_new(HWPoisonPage, 1);
973     page->ram_addr = ram_addr;
974     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
975 }
976 
977 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
978 {
979 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
980     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
981      * endianness, but the memory core hands them in target endianness.
982      * For example, PPC is always treated as big-endian even if running
983      * on KVM and on PPC64LE.  Correct here.
984      */
985     switch (size) {
986     case 2:
987         val = bswap16(val);
988         break;
989     case 4:
990         val = bswap32(val);
991         break;
992     }
993 #endif
994     return val;
995 }
996 
997 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
998                                   bool assign, uint32_t size, bool datamatch)
999 {
1000     int ret;
1001     struct kvm_ioeventfd iofd = {
1002         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1003         .addr = addr,
1004         .len = size,
1005         .flags = 0,
1006         .fd = fd,
1007     };
1008 
1009     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1010                                  datamatch);
1011     if (!kvm_enabled()) {
1012         return -ENOSYS;
1013     }
1014 
1015     if (datamatch) {
1016         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1017     }
1018     if (!assign) {
1019         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1020     }
1021 
1022     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1023 
1024     if (ret < 0) {
1025         return -errno;
1026     }
1027 
1028     return 0;
1029 }
1030 
1031 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1032                                  bool assign, uint32_t size, bool datamatch)
1033 {
1034     struct kvm_ioeventfd kick = {
1035         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1036         .addr = addr,
1037         .flags = KVM_IOEVENTFD_FLAG_PIO,
1038         .len = size,
1039         .fd = fd,
1040     };
1041     int r;
1042     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1043     if (!kvm_enabled()) {
1044         return -ENOSYS;
1045     }
1046     if (datamatch) {
1047         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1048     }
1049     if (!assign) {
1050         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1051     }
1052     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1053     if (r < 0) {
1054         return r;
1055     }
1056     return 0;
1057 }
1058 
1059 
1060 static int kvm_check_many_ioeventfds(void)
1061 {
1062     /* Userspace can use ioeventfd for io notification.  This requires a host
1063      * that supports eventfd(2) and an I/O thread; since eventfd does not
1064      * support SIGIO it cannot interrupt the vcpu.
1065      *
1066      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1067      * can avoid creating too many ioeventfds.
1068      */
1069 #if defined(CONFIG_EVENTFD)
1070     int ioeventfds[7];
1071     int i, ret = 0;
1072     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1073         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1074         if (ioeventfds[i] < 0) {
1075             break;
1076         }
1077         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1078         if (ret < 0) {
1079             close(ioeventfds[i]);
1080             break;
1081         }
1082     }
1083 
1084     /* Decide whether many devices are supported or not */
1085     ret = i == ARRAY_SIZE(ioeventfds);
1086 
1087     while (i-- > 0) {
1088         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1089         close(ioeventfds[i]);
1090     }
1091     return ret;
1092 #else
1093     return 0;
1094 #endif
1095 }
1096 
1097 static const KVMCapabilityInfo *
1098 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1099 {
1100     while (list->name) {
1101         if (!kvm_check_extension(s, list->value)) {
1102             return list;
1103         }
1104         list++;
1105     }
1106     return NULL;
1107 }
1108 
1109 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1110 {
1111     g_assert(
1112         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1113     );
1114     kvm_max_slot_size = max_slot_size;
1115 }
1116 
1117 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1118                              MemoryRegionSection *section, bool add)
1119 {
1120     KVMSlot *mem;
1121     int err;
1122     MemoryRegion *mr = section->mr;
1123     bool writeable = !mr->readonly && !mr->rom_device;
1124     hwaddr start_addr, size, slot_size;
1125     void *ram;
1126 
1127     if (!memory_region_is_ram(mr)) {
1128         if (writeable || !kvm_readonly_mem_allowed) {
1129             return;
1130         } else if (!mr->romd_mode) {
1131             /* If the memory device is not in romd_mode, then we actually want
1132              * to remove the kvm memory slot so all accesses will trap. */
1133             add = false;
1134         }
1135     }
1136 
1137     size = kvm_align_section(section, &start_addr);
1138     if (!size) {
1139         return;
1140     }
1141 
1142     /* use aligned delta to align the ram address */
1143     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1144           (start_addr - section->offset_within_address_space);
1145 
1146     kvm_slots_lock(kml);
1147 
1148     if (!add) {
1149         do {
1150             slot_size = MIN(kvm_max_slot_size, size);
1151             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1152             if (!mem) {
1153                 goto out;
1154             }
1155             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1156                 kvm_physical_sync_dirty_bitmap(kml, section);
1157             }
1158 
1159             /* unregister the slot */
1160             g_free(mem->dirty_bmap);
1161             mem->dirty_bmap = NULL;
1162             mem->memory_size = 0;
1163             mem->flags = 0;
1164             err = kvm_set_user_memory_region(kml, mem, false);
1165             if (err) {
1166                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1167                         __func__, strerror(-err));
1168                 abort();
1169             }
1170             start_addr += slot_size;
1171             size -= slot_size;
1172         } while (size);
1173         goto out;
1174     }
1175 
1176     /* register the new slot */
1177     do {
1178         slot_size = MIN(kvm_max_slot_size, size);
1179         mem = kvm_alloc_slot(kml);
1180         mem->memory_size = slot_size;
1181         mem->start_addr = start_addr;
1182         mem->ram = ram;
1183         mem->flags = kvm_mem_flags(mr);
1184 
1185         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1186             /*
1187              * Reallocate the bmap; it means it doesn't disappear in
1188              * middle of a migrate.
1189              */
1190             kvm_memslot_init_dirty_bitmap(mem);
1191         }
1192         err = kvm_set_user_memory_region(kml, mem, true);
1193         if (err) {
1194             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1195                     strerror(-err));
1196             abort();
1197         }
1198         start_addr += slot_size;
1199         ram += slot_size;
1200         size -= slot_size;
1201     } while (size);
1202 
1203 out:
1204     kvm_slots_unlock(kml);
1205 }
1206 
1207 static void kvm_region_add(MemoryListener *listener,
1208                            MemoryRegionSection *section)
1209 {
1210     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1211 
1212     memory_region_ref(section->mr);
1213     kvm_set_phys_mem(kml, section, true);
1214 }
1215 
1216 static void kvm_region_del(MemoryListener *listener,
1217                            MemoryRegionSection *section)
1218 {
1219     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1220 
1221     kvm_set_phys_mem(kml, section, false);
1222     memory_region_unref(section->mr);
1223 }
1224 
1225 static void kvm_log_sync(MemoryListener *listener,
1226                          MemoryRegionSection *section)
1227 {
1228     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1229     int r;
1230 
1231     kvm_slots_lock(kml);
1232     r = kvm_physical_sync_dirty_bitmap(kml, section);
1233     kvm_slots_unlock(kml);
1234     if (r < 0) {
1235         abort();
1236     }
1237 }
1238 
1239 static void kvm_log_clear(MemoryListener *listener,
1240                           MemoryRegionSection *section)
1241 {
1242     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1243     int r;
1244 
1245     r = kvm_physical_log_clear(kml, section);
1246     if (r < 0) {
1247         error_report_once("%s: kvm log clear failed: mr=%s "
1248                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1249                           section->mr->name, section->offset_within_region,
1250                           int128_get64(section->size));
1251         abort();
1252     }
1253 }
1254 
1255 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1256                                   MemoryRegionSection *section,
1257                                   bool match_data, uint64_t data,
1258                                   EventNotifier *e)
1259 {
1260     int fd = event_notifier_get_fd(e);
1261     int r;
1262 
1263     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1264                                data, true, int128_get64(section->size),
1265                                match_data);
1266     if (r < 0) {
1267         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1268                 __func__, strerror(-r), -r);
1269         abort();
1270     }
1271 }
1272 
1273 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1274                                   MemoryRegionSection *section,
1275                                   bool match_data, uint64_t data,
1276                                   EventNotifier *e)
1277 {
1278     int fd = event_notifier_get_fd(e);
1279     int r;
1280 
1281     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1282                                data, false, int128_get64(section->size),
1283                                match_data);
1284     if (r < 0) {
1285         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1286                 __func__, strerror(-r), -r);
1287         abort();
1288     }
1289 }
1290 
1291 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1292                                  MemoryRegionSection *section,
1293                                  bool match_data, uint64_t data,
1294                                  EventNotifier *e)
1295 {
1296     int fd = event_notifier_get_fd(e);
1297     int r;
1298 
1299     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1300                               data, true, int128_get64(section->size),
1301                               match_data);
1302     if (r < 0) {
1303         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1304                 __func__, strerror(-r), -r);
1305         abort();
1306     }
1307 }
1308 
1309 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1310                                  MemoryRegionSection *section,
1311                                  bool match_data, uint64_t data,
1312                                  EventNotifier *e)
1313 
1314 {
1315     int fd = event_notifier_get_fd(e);
1316     int r;
1317 
1318     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1319                               data, false, int128_get64(section->size),
1320                               match_data);
1321     if (r < 0) {
1322         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1323                 __func__, strerror(-r), -r);
1324         abort();
1325     }
1326 }
1327 
1328 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1329                                   AddressSpace *as, int as_id)
1330 {
1331     int i;
1332 
1333     qemu_mutex_init(&kml->slots_lock);
1334     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1335     kml->as_id = as_id;
1336 
1337     for (i = 0; i < s->nr_slots; i++) {
1338         kml->slots[i].slot = i;
1339     }
1340 
1341     kml->listener.region_add = kvm_region_add;
1342     kml->listener.region_del = kvm_region_del;
1343     kml->listener.log_start = kvm_log_start;
1344     kml->listener.log_stop = kvm_log_stop;
1345     kml->listener.log_sync = kvm_log_sync;
1346     kml->listener.log_clear = kvm_log_clear;
1347     kml->listener.priority = 10;
1348 
1349     memory_listener_register(&kml->listener, as);
1350 
1351     for (i = 0; i < s->nr_as; ++i) {
1352         if (!s->as[i].as) {
1353             s->as[i].as = as;
1354             s->as[i].ml = kml;
1355             break;
1356         }
1357     }
1358 }
1359 
1360 static MemoryListener kvm_io_listener = {
1361     .eventfd_add = kvm_io_ioeventfd_add,
1362     .eventfd_del = kvm_io_ioeventfd_del,
1363     .priority = 10,
1364 };
1365 
1366 int kvm_set_irq(KVMState *s, int irq, int level)
1367 {
1368     struct kvm_irq_level event;
1369     int ret;
1370 
1371     assert(kvm_async_interrupts_enabled());
1372 
1373     event.level = level;
1374     event.irq = irq;
1375     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1376     if (ret < 0) {
1377         perror("kvm_set_irq");
1378         abort();
1379     }
1380 
1381     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1382 }
1383 
1384 #ifdef KVM_CAP_IRQ_ROUTING
1385 typedef struct KVMMSIRoute {
1386     struct kvm_irq_routing_entry kroute;
1387     QTAILQ_ENTRY(KVMMSIRoute) entry;
1388 } KVMMSIRoute;
1389 
1390 static void set_gsi(KVMState *s, unsigned int gsi)
1391 {
1392     set_bit(gsi, s->used_gsi_bitmap);
1393 }
1394 
1395 static void clear_gsi(KVMState *s, unsigned int gsi)
1396 {
1397     clear_bit(gsi, s->used_gsi_bitmap);
1398 }
1399 
1400 void kvm_init_irq_routing(KVMState *s)
1401 {
1402     int gsi_count, i;
1403 
1404     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1405     if (gsi_count > 0) {
1406         /* Round up so we can search ints using ffs */
1407         s->used_gsi_bitmap = bitmap_new(gsi_count);
1408         s->gsi_count = gsi_count;
1409     }
1410 
1411     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1412     s->nr_allocated_irq_routes = 0;
1413 
1414     if (!kvm_direct_msi_allowed) {
1415         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1416             QTAILQ_INIT(&s->msi_hashtab[i]);
1417         }
1418     }
1419 
1420     kvm_arch_init_irq_routing(s);
1421 }
1422 
1423 void kvm_irqchip_commit_routes(KVMState *s)
1424 {
1425     int ret;
1426 
1427     if (kvm_gsi_direct_mapping()) {
1428         return;
1429     }
1430 
1431     if (!kvm_gsi_routing_enabled()) {
1432         return;
1433     }
1434 
1435     s->irq_routes->flags = 0;
1436     trace_kvm_irqchip_commit_routes();
1437     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1438     assert(ret == 0);
1439 }
1440 
1441 static void kvm_add_routing_entry(KVMState *s,
1442                                   struct kvm_irq_routing_entry *entry)
1443 {
1444     struct kvm_irq_routing_entry *new;
1445     int n, size;
1446 
1447     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1448         n = s->nr_allocated_irq_routes * 2;
1449         if (n < 64) {
1450             n = 64;
1451         }
1452         size = sizeof(struct kvm_irq_routing);
1453         size += n * sizeof(*new);
1454         s->irq_routes = g_realloc(s->irq_routes, size);
1455         s->nr_allocated_irq_routes = n;
1456     }
1457     n = s->irq_routes->nr++;
1458     new = &s->irq_routes->entries[n];
1459 
1460     *new = *entry;
1461 
1462     set_gsi(s, entry->gsi);
1463 }
1464 
1465 static int kvm_update_routing_entry(KVMState *s,
1466                                     struct kvm_irq_routing_entry *new_entry)
1467 {
1468     struct kvm_irq_routing_entry *entry;
1469     int n;
1470 
1471     for (n = 0; n < s->irq_routes->nr; n++) {
1472         entry = &s->irq_routes->entries[n];
1473         if (entry->gsi != new_entry->gsi) {
1474             continue;
1475         }
1476 
1477         if(!memcmp(entry, new_entry, sizeof *entry)) {
1478             return 0;
1479         }
1480 
1481         *entry = *new_entry;
1482 
1483         return 0;
1484     }
1485 
1486     return -ESRCH;
1487 }
1488 
1489 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1490 {
1491     struct kvm_irq_routing_entry e = {};
1492 
1493     assert(pin < s->gsi_count);
1494 
1495     e.gsi = irq;
1496     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1497     e.flags = 0;
1498     e.u.irqchip.irqchip = irqchip;
1499     e.u.irqchip.pin = pin;
1500     kvm_add_routing_entry(s, &e);
1501 }
1502 
1503 void kvm_irqchip_release_virq(KVMState *s, int virq)
1504 {
1505     struct kvm_irq_routing_entry *e;
1506     int i;
1507 
1508     if (kvm_gsi_direct_mapping()) {
1509         return;
1510     }
1511 
1512     for (i = 0; i < s->irq_routes->nr; i++) {
1513         e = &s->irq_routes->entries[i];
1514         if (e->gsi == virq) {
1515             s->irq_routes->nr--;
1516             *e = s->irq_routes->entries[s->irq_routes->nr];
1517         }
1518     }
1519     clear_gsi(s, virq);
1520     kvm_arch_release_virq_post(virq);
1521     trace_kvm_irqchip_release_virq(virq);
1522 }
1523 
1524 void kvm_irqchip_add_change_notifier(Notifier *n)
1525 {
1526     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1527 }
1528 
1529 void kvm_irqchip_remove_change_notifier(Notifier *n)
1530 {
1531     notifier_remove(n);
1532 }
1533 
1534 void kvm_irqchip_change_notify(void)
1535 {
1536     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1537 }
1538 
1539 static unsigned int kvm_hash_msi(uint32_t data)
1540 {
1541     /* This is optimized for IA32 MSI layout. However, no other arch shall
1542      * repeat the mistake of not providing a direct MSI injection API. */
1543     return data & 0xff;
1544 }
1545 
1546 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1547 {
1548     KVMMSIRoute *route, *next;
1549     unsigned int hash;
1550 
1551     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1552         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1553             kvm_irqchip_release_virq(s, route->kroute.gsi);
1554             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1555             g_free(route);
1556         }
1557     }
1558 }
1559 
1560 static int kvm_irqchip_get_virq(KVMState *s)
1561 {
1562     int next_virq;
1563 
1564     /*
1565      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1566      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1567      * number can succeed even though a new route entry cannot be added.
1568      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1569      */
1570     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1571         kvm_flush_dynamic_msi_routes(s);
1572     }
1573 
1574     /* Return the lowest unused GSI in the bitmap */
1575     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1576     if (next_virq >= s->gsi_count) {
1577         return -ENOSPC;
1578     } else {
1579         return next_virq;
1580     }
1581 }
1582 
1583 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1584 {
1585     unsigned int hash = kvm_hash_msi(msg.data);
1586     KVMMSIRoute *route;
1587 
1588     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1589         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1590             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1591             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1592             return route;
1593         }
1594     }
1595     return NULL;
1596 }
1597 
1598 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1599 {
1600     struct kvm_msi msi;
1601     KVMMSIRoute *route;
1602 
1603     if (kvm_direct_msi_allowed) {
1604         msi.address_lo = (uint32_t)msg.address;
1605         msi.address_hi = msg.address >> 32;
1606         msi.data = le32_to_cpu(msg.data);
1607         msi.flags = 0;
1608         memset(msi.pad, 0, sizeof(msi.pad));
1609 
1610         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1611     }
1612 
1613     route = kvm_lookup_msi_route(s, msg);
1614     if (!route) {
1615         int virq;
1616 
1617         virq = kvm_irqchip_get_virq(s);
1618         if (virq < 0) {
1619             return virq;
1620         }
1621 
1622         route = g_malloc0(sizeof(KVMMSIRoute));
1623         route->kroute.gsi = virq;
1624         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1625         route->kroute.flags = 0;
1626         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1627         route->kroute.u.msi.address_hi = msg.address >> 32;
1628         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1629 
1630         kvm_add_routing_entry(s, &route->kroute);
1631         kvm_irqchip_commit_routes(s);
1632 
1633         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1634                            entry);
1635     }
1636 
1637     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1638 
1639     return kvm_set_irq(s, route->kroute.gsi, 1);
1640 }
1641 
1642 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1643 {
1644     struct kvm_irq_routing_entry kroute = {};
1645     int virq;
1646     MSIMessage msg = {0, 0};
1647 
1648     if (pci_available && dev) {
1649         msg = pci_get_msi_message(dev, vector);
1650     }
1651 
1652     if (kvm_gsi_direct_mapping()) {
1653         return kvm_arch_msi_data_to_gsi(msg.data);
1654     }
1655 
1656     if (!kvm_gsi_routing_enabled()) {
1657         return -ENOSYS;
1658     }
1659 
1660     virq = kvm_irqchip_get_virq(s);
1661     if (virq < 0) {
1662         return virq;
1663     }
1664 
1665     kroute.gsi = virq;
1666     kroute.type = KVM_IRQ_ROUTING_MSI;
1667     kroute.flags = 0;
1668     kroute.u.msi.address_lo = (uint32_t)msg.address;
1669     kroute.u.msi.address_hi = msg.address >> 32;
1670     kroute.u.msi.data = le32_to_cpu(msg.data);
1671     if (pci_available && kvm_msi_devid_required()) {
1672         kroute.flags = KVM_MSI_VALID_DEVID;
1673         kroute.u.msi.devid = pci_requester_id(dev);
1674     }
1675     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1676         kvm_irqchip_release_virq(s, virq);
1677         return -EINVAL;
1678     }
1679 
1680     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1681                                     vector, virq);
1682 
1683     kvm_add_routing_entry(s, &kroute);
1684     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1685     kvm_irqchip_commit_routes(s);
1686 
1687     return virq;
1688 }
1689 
1690 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1691                                  PCIDevice *dev)
1692 {
1693     struct kvm_irq_routing_entry kroute = {};
1694 
1695     if (kvm_gsi_direct_mapping()) {
1696         return 0;
1697     }
1698 
1699     if (!kvm_irqchip_in_kernel()) {
1700         return -ENOSYS;
1701     }
1702 
1703     kroute.gsi = virq;
1704     kroute.type = KVM_IRQ_ROUTING_MSI;
1705     kroute.flags = 0;
1706     kroute.u.msi.address_lo = (uint32_t)msg.address;
1707     kroute.u.msi.address_hi = msg.address >> 32;
1708     kroute.u.msi.data = le32_to_cpu(msg.data);
1709     if (pci_available && kvm_msi_devid_required()) {
1710         kroute.flags = KVM_MSI_VALID_DEVID;
1711         kroute.u.msi.devid = pci_requester_id(dev);
1712     }
1713     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1714         return -EINVAL;
1715     }
1716 
1717     trace_kvm_irqchip_update_msi_route(virq);
1718 
1719     return kvm_update_routing_entry(s, &kroute);
1720 }
1721 
1722 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1723                                     EventNotifier *resample, int virq,
1724                                     bool assign)
1725 {
1726     int fd = event_notifier_get_fd(event);
1727     int rfd = resample ? event_notifier_get_fd(resample) : -1;
1728 
1729     struct kvm_irqfd irqfd = {
1730         .fd = fd,
1731         .gsi = virq,
1732         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1733     };
1734 
1735     if (rfd != -1) {
1736         assert(assign);
1737         if (kvm_irqchip_is_split()) {
1738             /*
1739              * When the slow irqchip (e.g. IOAPIC) is in the
1740              * userspace, KVM kernel resamplefd will not work because
1741              * the EOI of the interrupt will be delivered to userspace
1742              * instead, so the KVM kernel resamplefd kick will be
1743              * skipped.  The userspace here mimics what the kernel
1744              * provides with resamplefd, remember the resamplefd and
1745              * kick it when we receive EOI of this IRQ.
1746              *
1747              * This is hackery because IOAPIC is mostly bypassed
1748              * (except EOI broadcasts) when irqfd is used.  However
1749              * this can bring much performance back for split irqchip
1750              * with INTx IRQs (for VFIO, this gives 93% perf of the
1751              * full fast path, which is 46% perf boost comparing to
1752              * the INTx slow path).
1753              */
1754             kvm_resample_fd_insert(virq, resample);
1755         } else {
1756             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1757             irqfd.resamplefd = rfd;
1758         }
1759     } else if (!assign) {
1760         if (kvm_irqchip_is_split()) {
1761             kvm_resample_fd_remove(virq);
1762         }
1763     }
1764 
1765     if (!kvm_irqfds_enabled()) {
1766         return -ENOSYS;
1767     }
1768 
1769     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1770 }
1771 
1772 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1773 {
1774     struct kvm_irq_routing_entry kroute = {};
1775     int virq;
1776 
1777     if (!kvm_gsi_routing_enabled()) {
1778         return -ENOSYS;
1779     }
1780 
1781     virq = kvm_irqchip_get_virq(s);
1782     if (virq < 0) {
1783         return virq;
1784     }
1785 
1786     kroute.gsi = virq;
1787     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1788     kroute.flags = 0;
1789     kroute.u.adapter.summary_addr = adapter->summary_addr;
1790     kroute.u.adapter.ind_addr = adapter->ind_addr;
1791     kroute.u.adapter.summary_offset = adapter->summary_offset;
1792     kroute.u.adapter.ind_offset = adapter->ind_offset;
1793     kroute.u.adapter.adapter_id = adapter->adapter_id;
1794 
1795     kvm_add_routing_entry(s, &kroute);
1796 
1797     return virq;
1798 }
1799 
1800 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1801 {
1802     struct kvm_irq_routing_entry kroute = {};
1803     int virq;
1804 
1805     if (!kvm_gsi_routing_enabled()) {
1806         return -ENOSYS;
1807     }
1808     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1809         return -ENOSYS;
1810     }
1811     virq = kvm_irqchip_get_virq(s);
1812     if (virq < 0) {
1813         return virq;
1814     }
1815 
1816     kroute.gsi = virq;
1817     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1818     kroute.flags = 0;
1819     kroute.u.hv_sint.vcpu = vcpu;
1820     kroute.u.hv_sint.sint = sint;
1821 
1822     kvm_add_routing_entry(s, &kroute);
1823     kvm_irqchip_commit_routes(s);
1824 
1825     return virq;
1826 }
1827 
1828 #else /* !KVM_CAP_IRQ_ROUTING */
1829 
1830 void kvm_init_irq_routing(KVMState *s)
1831 {
1832 }
1833 
1834 void kvm_irqchip_release_virq(KVMState *s, int virq)
1835 {
1836 }
1837 
1838 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1839 {
1840     abort();
1841 }
1842 
1843 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1844 {
1845     return -ENOSYS;
1846 }
1847 
1848 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1849 {
1850     return -ENOSYS;
1851 }
1852 
1853 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1854 {
1855     return -ENOSYS;
1856 }
1857 
1858 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1859                                     EventNotifier *resample, int virq,
1860                                     bool assign)
1861 {
1862     abort();
1863 }
1864 
1865 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1866 {
1867     return -ENOSYS;
1868 }
1869 #endif /* !KVM_CAP_IRQ_ROUTING */
1870 
1871 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1872                                        EventNotifier *rn, int virq)
1873 {
1874     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1875 }
1876 
1877 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1878                                           int virq)
1879 {
1880     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1881 }
1882 
1883 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1884                                    EventNotifier *rn, qemu_irq irq)
1885 {
1886     gpointer key, gsi;
1887     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1888 
1889     if (!found) {
1890         return -ENXIO;
1891     }
1892     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1893 }
1894 
1895 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1896                                       qemu_irq irq)
1897 {
1898     gpointer key, gsi;
1899     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1900 
1901     if (!found) {
1902         return -ENXIO;
1903     }
1904     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1905 }
1906 
1907 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1908 {
1909     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1910 }
1911 
1912 static void kvm_irqchip_create(KVMState *s)
1913 {
1914     int ret;
1915 
1916     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1917     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1918         ;
1919     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1920         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1921         if (ret < 0) {
1922             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1923             exit(1);
1924         }
1925     } else {
1926         return;
1927     }
1928 
1929     /* First probe and see if there's a arch-specific hook to create the
1930      * in-kernel irqchip for us */
1931     ret = kvm_arch_irqchip_create(s);
1932     if (ret == 0) {
1933         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1934             perror("Split IRQ chip mode not supported.");
1935             exit(1);
1936         } else {
1937             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1938         }
1939     }
1940     if (ret < 0) {
1941         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1942         exit(1);
1943     }
1944 
1945     kvm_kernel_irqchip = true;
1946     /* If we have an in-kernel IRQ chip then we must have asynchronous
1947      * interrupt delivery (though the reverse is not necessarily true)
1948      */
1949     kvm_async_interrupts_allowed = true;
1950     kvm_halt_in_kernel_allowed = true;
1951 
1952     kvm_init_irq_routing(s);
1953 
1954     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1955 }
1956 
1957 /* Find number of supported CPUs using the recommended
1958  * procedure from the kernel API documentation to cope with
1959  * older kernels that may be missing capabilities.
1960  */
1961 static int kvm_recommended_vcpus(KVMState *s)
1962 {
1963     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1964     return (ret) ? ret : 4;
1965 }
1966 
1967 static int kvm_max_vcpus(KVMState *s)
1968 {
1969     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1970     return (ret) ? ret : kvm_recommended_vcpus(s);
1971 }
1972 
1973 static int kvm_max_vcpu_id(KVMState *s)
1974 {
1975     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1976     return (ret) ? ret : kvm_max_vcpus(s);
1977 }
1978 
1979 bool kvm_vcpu_id_is_valid(int vcpu_id)
1980 {
1981     KVMState *s = KVM_STATE(current_accel());
1982     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1983 }
1984 
1985 static int kvm_init(MachineState *ms)
1986 {
1987     MachineClass *mc = MACHINE_GET_CLASS(ms);
1988     static const char upgrade_note[] =
1989         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1990         "(see http://sourceforge.net/projects/kvm).\n";
1991     struct {
1992         const char *name;
1993         int num;
1994     } num_cpus[] = {
1995         { "SMP",          ms->smp.cpus },
1996         { "hotpluggable", ms->smp.max_cpus },
1997         { NULL, }
1998     }, *nc = num_cpus;
1999     int soft_vcpus_limit, hard_vcpus_limit;
2000     KVMState *s;
2001     const KVMCapabilityInfo *missing_cap;
2002     int ret;
2003     int type = 0;
2004     uint64_t dirty_log_manual_caps;
2005 
2006     s = KVM_STATE(ms->accelerator);
2007 
2008     /*
2009      * On systems where the kernel can support different base page
2010      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2011      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2012      * page size for the system though.
2013      */
2014     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2015 
2016     s->sigmask_len = 8;
2017 
2018 #ifdef KVM_CAP_SET_GUEST_DEBUG
2019     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2020 #endif
2021     QLIST_INIT(&s->kvm_parked_vcpus);
2022     s->vmfd = -1;
2023     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2024     if (s->fd == -1) {
2025         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2026         ret = -errno;
2027         goto err;
2028     }
2029 
2030     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2031     if (ret < KVM_API_VERSION) {
2032         if (ret >= 0) {
2033             ret = -EINVAL;
2034         }
2035         fprintf(stderr, "kvm version too old\n");
2036         goto err;
2037     }
2038 
2039     if (ret > KVM_API_VERSION) {
2040         ret = -EINVAL;
2041         fprintf(stderr, "kvm version not supported\n");
2042         goto err;
2043     }
2044 
2045     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2046     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2047 
2048     /* If unspecified, use the default value */
2049     if (!s->nr_slots) {
2050         s->nr_slots = 32;
2051     }
2052 
2053     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2054     if (s->nr_as <= 1) {
2055         s->nr_as = 1;
2056     }
2057     s->as = g_new0(struct KVMAs, s->nr_as);
2058 
2059     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2060         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2061                                                             "kvm-type",
2062                                                             &error_abort);
2063         type = mc->kvm_type(ms, kvm_type);
2064     } else if (mc->kvm_type) {
2065         type = mc->kvm_type(ms, NULL);
2066     }
2067 
2068     do {
2069         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2070     } while (ret == -EINTR);
2071 
2072     if (ret < 0) {
2073         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2074                 strerror(-ret));
2075 
2076 #ifdef TARGET_S390X
2077         if (ret == -EINVAL) {
2078             fprintf(stderr,
2079                     "Host kernel setup problem detected. Please verify:\n");
2080             fprintf(stderr, "- for kernels supporting the switch_amode or"
2081                     " user_mode parameters, whether\n");
2082             fprintf(stderr,
2083                     "  user space is running in primary address space\n");
2084             fprintf(stderr,
2085                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2086                     "whether it is enabled\n");
2087         }
2088 #endif
2089         goto err;
2090     }
2091 
2092     s->vmfd = ret;
2093 
2094     /* check the vcpu limits */
2095     soft_vcpus_limit = kvm_recommended_vcpus(s);
2096     hard_vcpus_limit = kvm_max_vcpus(s);
2097 
2098     while (nc->name) {
2099         if (nc->num > soft_vcpus_limit) {
2100             warn_report("Number of %s cpus requested (%d) exceeds "
2101                         "the recommended cpus supported by KVM (%d)",
2102                         nc->name, nc->num, soft_vcpus_limit);
2103 
2104             if (nc->num > hard_vcpus_limit) {
2105                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2106                         "the maximum cpus supported by KVM (%d)\n",
2107                         nc->name, nc->num, hard_vcpus_limit);
2108                 exit(1);
2109             }
2110         }
2111         nc++;
2112     }
2113 
2114     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2115     if (!missing_cap) {
2116         missing_cap =
2117             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2118     }
2119     if (missing_cap) {
2120         ret = -EINVAL;
2121         fprintf(stderr, "kvm does not support %s\n%s",
2122                 missing_cap->name, upgrade_note);
2123         goto err;
2124     }
2125 
2126     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2127     s->coalesced_pio = s->coalesced_mmio &&
2128                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2129 
2130     dirty_log_manual_caps =
2131         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2132     dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2133                               KVM_DIRTY_LOG_INITIALLY_SET);
2134     s->manual_dirty_log_protect = dirty_log_manual_caps;
2135     if (dirty_log_manual_caps) {
2136         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2137                                    dirty_log_manual_caps);
2138         if (ret) {
2139             warn_report("Trying to enable capability %"PRIu64" of "
2140                         "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2141                         "Falling back to the legacy mode. ",
2142                         dirty_log_manual_caps);
2143             s->manual_dirty_log_protect = 0;
2144         }
2145     }
2146 
2147 #ifdef KVM_CAP_VCPU_EVENTS
2148     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2149 #endif
2150 
2151     s->robust_singlestep =
2152         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2153 
2154 #ifdef KVM_CAP_DEBUGREGS
2155     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2156 #endif
2157 
2158     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2159 
2160 #ifdef KVM_CAP_IRQ_ROUTING
2161     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2162 #endif
2163 
2164     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2165 
2166     s->irq_set_ioctl = KVM_IRQ_LINE;
2167     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2168         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2169     }
2170 
2171     kvm_readonly_mem_allowed =
2172         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2173 
2174     kvm_eventfds_allowed =
2175         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2176 
2177     kvm_irqfds_allowed =
2178         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2179 
2180     kvm_resamplefds_allowed =
2181         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2182 
2183     kvm_vm_attributes_allowed =
2184         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2185 
2186     kvm_ioeventfd_any_length_allowed =
2187         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2188 
2189     kvm_state = s;
2190 
2191     ret = kvm_arch_init(ms, s);
2192     if (ret < 0) {
2193         goto err;
2194     }
2195 
2196     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2197         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2198     }
2199 
2200     qemu_register_reset(kvm_unpoison_all, NULL);
2201 
2202     if (s->kernel_irqchip_allowed) {
2203         kvm_irqchip_create(s);
2204     }
2205 
2206     if (kvm_eventfds_allowed) {
2207         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2208         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2209     }
2210     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2211     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2212 
2213     kvm_memory_listener_register(s, &s->memory_listener,
2214                                  &address_space_memory, 0);
2215     if (kvm_eventfds_allowed) {
2216         memory_listener_register(&kvm_io_listener,
2217                                  &address_space_io);
2218     }
2219     memory_listener_register(&kvm_coalesced_pio_listener,
2220                              &address_space_io);
2221 
2222     s->many_ioeventfds = kvm_check_many_ioeventfds();
2223 
2224     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2225     if (!s->sync_mmu) {
2226         ret = ram_block_discard_disable(true);
2227         assert(!ret);
2228     }
2229     return 0;
2230 
2231 err:
2232     assert(ret < 0);
2233     if (s->vmfd >= 0) {
2234         close(s->vmfd);
2235     }
2236     if (s->fd != -1) {
2237         close(s->fd);
2238     }
2239     g_free(s->memory_listener.slots);
2240 
2241     return ret;
2242 }
2243 
2244 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2245 {
2246     s->sigmask_len = sigmask_len;
2247 }
2248 
2249 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2250                           int size, uint32_t count)
2251 {
2252     int i;
2253     uint8_t *ptr = data;
2254 
2255     for (i = 0; i < count; i++) {
2256         address_space_rw(&address_space_io, port, attrs,
2257                          ptr, size,
2258                          direction == KVM_EXIT_IO_OUT);
2259         ptr += size;
2260     }
2261 }
2262 
2263 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2264 {
2265     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2266             run->internal.suberror);
2267 
2268     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2269         int i;
2270 
2271         for (i = 0; i < run->internal.ndata; ++i) {
2272             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2273                     i, (uint64_t)run->internal.data[i]);
2274         }
2275     }
2276     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2277         fprintf(stderr, "emulation failure\n");
2278         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2279             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2280             return EXCP_INTERRUPT;
2281         }
2282     }
2283     /* FIXME: Should trigger a qmp message to let management know
2284      * something went wrong.
2285      */
2286     return -1;
2287 }
2288 
2289 void kvm_flush_coalesced_mmio_buffer(void)
2290 {
2291     KVMState *s = kvm_state;
2292 
2293     if (s->coalesced_flush_in_progress) {
2294         return;
2295     }
2296 
2297     s->coalesced_flush_in_progress = true;
2298 
2299     if (s->coalesced_mmio_ring) {
2300         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2301         while (ring->first != ring->last) {
2302             struct kvm_coalesced_mmio *ent;
2303 
2304             ent = &ring->coalesced_mmio[ring->first];
2305 
2306             if (ent->pio == 1) {
2307                 address_space_write(&address_space_io, ent->phys_addr,
2308                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2309                                     ent->len);
2310             } else {
2311                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2312             }
2313             smp_wmb();
2314             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2315         }
2316     }
2317 
2318     s->coalesced_flush_in_progress = false;
2319 }
2320 
2321 bool kvm_cpu_check_are_resettable(void)
2322 {
2323     return kvm_arch_cpu_check_are_resettable();
2324 }
2325 
2326 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2327 {
2328     if (!cpu->vcpu_dirty) {
2329         kvm_arch_get_registers(cpu);
2330         cpu->vcpu_dirty = true;
2331     }
2332 }
2333 
2334 void kvm_cpu_synchronize_state(CPUState *cpu)
2335 {
2336     if (!cpu->vcpu_dirty) {
2337         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2338     }
2339 }
2340 
2341 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2342 {
2343     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2344     cpu->vcpu_dirty = false;
2345 }
2346 
2347 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2348 {
2349     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2350 }
2351 
2352 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2353 {
2354     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2355     cpu->vcpu_dirty = false;
2356 }
2357 
2358 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2359 {
2360     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2361 }
2362 
2363 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2364 {
2365     cpu->vcpu_dirty = true;
2366 }
2367 
2368 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2369 {
2370     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2371 }
2372 
2373 #ifdef KVM_HAVE_MCE_INJECTION
2374 static __thread void *pending_sigbus_addr;
2375 static __thread int pending_sigbus_code;
2376 static __thread bool have_sigbus_pending;
2377 #endif
2378 
2379 static void kvm_cpu_kick(CPUState *cpu)
2380 {
2381     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2382 }
2383 
2384 static void kvm_cpu_kick_self(void)
2385 {
2386     if (kvm_immediate_exit) {
2387         kvm_cpu_kick(current_cpu);
2388     } else {
2389         qemu_cpu_kick_self();
2390     }
2391 }
2392 
2393 static void kvm_eat_signals(CPUState *cpu)
2394 {
2395     struct timespec ts = { 0, 0 };
2396     siginfo_t siginfo;
2397     sigset_t waitset;
2398     sigset_t chkset;
2399     int r;
2400 
2401     if (kvm_immediate_exit) {
2402         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2403         /* Write kvm_run->immediate_exit before the cpu->exit_request
2404          * write in kvm_cpu_exec.
2405          */
2406         smp_wmb();
2407         return;
2408     }
2409 
2410     sigemptyset(&waitset);
2411     sigaddset(&waitset, SIG_IPI);
2412 
2413     do {
2414         r = sigtimedwait(&waitset, &siginfo, &ts);
2415         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2416             perror("sigtimedwait");
2417             exit(1);
2418         }
2419 
2420         r = sigpending(&chkset);
2421         if (r == -1) {
2422             perror("sigpending");
2423             exit(1);
2424         }
2425     } while (sigismember(&chkset, SIG_IPI));
2426 }
2427 
2428 int kvm_cpu_exec(CPUState *cpu)
2429 {
2430     struct kvm_run *run = cpu->kvm_run;
2431     int ret, run_ret;
2432 
2433     DPRINTF("kvm_cpu_exec()\n");
2434 
2435     if (kvm_arch_process_async_events(cpu)) {
2436         qatomic_set(&cpu->exit_request, 0);
2437         return EXCP_HLT;
2438     }
2439 
2440     qemu_mutex_unlock_iothread();
2441     cpu_exec_start(cpu);
2442 
2443     do {
2444         MemTxAttrs attrs;
2445 
2446         if (cpu->vcpu_dirty) {
2447             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2448             cpu->vcpu_dirty = false;
2449         }
2450 
2451         kvm_arch_pre_run(cpu, run);
2452         if (qatomic_read(&cpu->exit_request)) {
2453             DPRINTF("interrupt exit requested\n");
2454             /*
2455              * KVM requires us to reenter the kernel after IO exits to complete
2456              * instruction emulation. This self-signal will ensure that we
2457              * leave ASAP again.
2458              */
2459             kvm_cpu_kick_self();
2460         }
2461 
2462         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2463          * Matching barrier in kvm_eat_signals.
2464          */
2465         smp_rmb();
2466 
2467         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2468 
2469         attrs = kvm_arch_post_run(cpu, run);
2470 
2471 #ifdef KVM_HAVE_MCE_INJECTION
2472         if (unlikely(have_sigbus_pending)) {
2473             qemu_mutex_lock_iothread();
2474             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2475                                     pending_sigbus_addr);
2476             have_sigbus_pending = false;
2477             qemu_mutex_unlock_iothread();
2478         }
2479 #endif
2480 
2481         if (run_ret < 0) {
2482             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2483                 DPRINTF("io window exit\n");
2484                 kvm_eat_signals(cpu);
2485                 ret = EXCP_INTERRUPT;
2486                 break;
2487             }
2488             fprintf(stderr, "error: kvm run failed %s\n",
2489                     strerror(-run_ret));
2490 #ifdef TARGET_PPC
2491             if (run_ret == -EBUSY) {
2492                 fprintf(stderr,
2493                         "This is probably because your SMT is enabled.\n"
2494                         "VCPU can only run on primary threads with all "
2495                         "secondary threads offline.\n");
2496             }
2497 #endif
2498             ret = -1;
2499             break;
2500         }
2501 
2502         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2503         switch (run->exit_reason) {
2504         case KVM_EXIT_IO:
2505             DPRINTF("handle_io\n");
2506             /* Called outside BQL */
2507             kvm_handle_io(run->io.port, attrs,
2508                           (uint8_t *)run + run->io.data_offset,
2509                           run->io.direction,
2510                           run->io.size,
2511                           run->io.count);
2512             ret = 0;
2513             break;
2514         case KVM_EXIT_MMIO:
2515             DPRINTF("handle_mmio\n");
2516             /* Called outside BQL */
2517             address_space_rw(&address_space_memory,
2518                              run->mmio.phys_addr, attrs,
2519                              run->mmio.data,
2520                              run->mmio.len,
2521                              run->mmio.is_write);
2522             ret = 0;
2523             break;
2524         case KVM_EXIT_IRQ_WINDOW_OPEN:
2525             DPRINTF("irq_window_open\n");
2526             ret = EXCP_INTERRUPT;
2527             break;
2528         case KVM_EXIT_SHUTDOWN:
2529             DPRINTF("shutdown\n");
2530             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2531             ret = EXCP_INTERRUPT;
2532             break;
2533         case KVM_EXIT_UNKNOWN:
2534             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2535                     (uint64_t)run->hw.hardware_exit_reason);
2536             ret = -1;
2537             break;
2538         case KVM_EXIT_INTERNAL_ERROR:
2539             ret = kvm_handle_internal_error(cpu, run);
2540             break;
2541         case KVM_EXIT_SYSTEM_EVENT:
2542             switch (run->system_event.type) {
2543             case KVM_SYSTEM_EVENT_SHUTDOWN:
2544                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2545                 ret = EXCP_INTERRUPT;
2546                 break;
2547             case KVM_SYSTEM_EVENT_RESET:
2548                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2549                 ret = EXCP_INTERRUPT;
2550                 break;
2551             case KVM_SYSTEM_EVENT_CRASH:
2552                 kvm_cpu_synchronize_state(cpu);
2553                 qemu_mutex_lock_iothread();
2554                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2555                 qemu_mutex_unlock_iothread();
2556                 ret = 0;
2557                 break;
2558             default:
2559                 DPRINTF("kvm_arch_handle_exit\n");
2560                 ret = kvm_arch_handle_exit(cpu, run);
2561                 break;
2562             }
2563             break;
2564         default:
2565             DPRINTF("kvm_arch_handle_exit\n");
2566             ret = kvm_arch_handle_exit(cpu, run);
2567             break;
2568         }
2569     } while (ret == 0);
2570 
2571     cpu_exec_end(cpu);
2572     qemu_mutex_lock_iothread();
2573 
2574     if (ret < 0) {
2575         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2576         vm_stop(RUN_STATE_INTERNAL_ERROR);
2577     }
2578 
2579     qatomic_set(&cpu->exit_request, 0);
2580     return ret;
2581 }
2582 
2583 int kvm_ioctl(KVMState *s, int type, ...)
2584 {
2585     int ret;
2586     void *arg;
2587     va_list ap;
2588 
2589     va_start(ap, type);
2590     arg = va_arg(ap, void *);
2591     va_end(ap);
2592 
2593     trace_kvm_ioctl(type, arg);
2594     ret = ioctl(s->fd, type, arg);
2595     if (ret == -1) {
2596         ret = -errno;
2597     }
2598     return ret;
2599 }
2600 
2601 int kvm_vm_ioctl(KVMState *s, int type, ...)
2602 {
2603     int ret;
2604     void *arg;
2605     va_list ap;
2606 
2607     va_start(ap, type);
2608     arg = va_arg(ap, void *);
2609     va_end(ap);
2610 
2611     trace_kvm_vm_ioctl(type, arg);
2612     ret = ioctl(s->vmfd, type, arg);
2613     if (ret == -1) {
2614         ret = -errno;
2615     }
2616     return ret;
2617 }
2618 
2619 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2620 {
2621     int ret;
2622     void *arg;
2623     va_list ap;
2624 
2625     va_start(ap, type);
2626     arg = va_arg(ap, void *);
2627     va_end(ap);
2628 
2629     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2630     ret = ioctl(cpu->kvm_fd, type, arg);
2631     if (ret == -1) {
2632         ret = -errno;
2633     }
2634     return ret;
2635 }
2636 
2637 int kvm_device_ioctl(int fd, int type, ...)
2638 {
2639     int ret;
2640     void *arg;
2641     va_list ap;
2642 
2643     va_start(ap, type);
2644     arg = va_arg(ap, void *);
2645     va_end(ap);
2646 
2647     trace_kvm_device_ioctl(fd, type, arg);
2648     ret = ioctl(fd, type, arg);
2649     if (ret == -1) {
2650         ret = -errno;
2651     }
2652     return ret;
2653 }
2654 
2655 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2656 {
2657     int ret;
2658     struct kvm_device_attr attribute = {
2659         .group = group,
2660         .attr = attr,
2661     };
2662 
2663     if (!kvm_vm_attributes_allowed) {
2664         return 0;
2665     }
2666 
2667     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2668     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2669     return ret ? 0 : 1;
2670 }
2671 
2672 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2673 {
2674     struct kvm_device_attr attribute = {
2675         .group = group,
2676         .attr = attr,
2677         .flags = 0,
2678     };
2679 
2680     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2681 }
2682 
2683 int kvm_device_access(int fd, int group, uint64_t attr,
2684                       void *val, bool write, Error **errp)
2685 {
2686     struct kvm_device_attr kvmattr;
2687     int err;
2688 
2689     kvmattr.flags = 0;
2690     kvmattr.group = group;
2691     kvmattr.attr = attr;
2692     kvmattr.addr = (uintptr_t)val;
2693 
2694     err = kvm_device_ioctl(fd,
2695                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2696                            &kvmattr);
2697     if (err < 0) {
2698         error_setg_errno(errp, -err,
2699                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2700                          "attr 0x%016" PRIx64,
2701                          write ? "SET" : "GET", group, attr);
2702     }
2703     return err;
2704 }
2705 
2706 bool kvm_has_sync_mmu(void)
2707 {
2708     return kvm_state->sync_mmu;
2709 }
2710 
2711 int kvm_has_vcpu_events(void)
2712 {
2713     return kvm_state->vcpu_events;
2714 }
2715 
2716 int kvm_has_robust_singlestep(void)
2717 {
2718     return kvm_state->robust_singlestep;
2719 }
2720 
2721 int kvm_has_debugregs(void)
2722 {
2723     return kvm_state->debugregs;
2724 }
2725 
2726 int kvm_max_nested_state_length(void)
2727 {
2728     return kvm_state->max_nested_state_len;
2729 }
2730 
2731 int kvm_has_many_ioeventfds(void)
2732 {
2733     if (!kvm_enabled()) {
2734         return 0;
2735     }
2736     return kvm_state->many_ioeventfds;
2737 }
2738 
2739 int kvm_has_gsi_routing(void)
2740 {
2741 #ifdef KVM_CAP_IRQ_ROUTING
2742     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2743 #else
2744     return false;
2745 #endif
2746 }
2747 
2748 int kvm_has_intx_set_mask(void)
2749 {
2750     return kvm_state->intx_set_mask;
2751 }
2752 
2753 bool kvm_arm_supports_user_irq(void)
2754 {
2755     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2756 }
2757 
2758 #ifdef KVM_CAP_SET_GUEST_DEBUG
2759 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2760                                                  target_ulong pc)
2761 {
2762     struct kvm_sw_breakpoint *bp;
2763 
2764     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2765         if (bp->pc == pc) {
2766             return bp;
2767         }
2768     }
2769     return NULL;
2770 }
2771 
2772 int kvm_sw_breakpoints_active(CPUState *cpu)
2773 {
2774     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2775 }
2776 
2777 struct kvm_set_guest_debug_data {
2778     struct kvm_guest_debug dbg;
2779     int err;
2780 };
2781 
2782 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2783 {
2784     struct kvm_set_guest_debug_data *dbg_data =
2785         (struct kvm_set_guest_debug_data *) data.host_ptr;
2786 
2787     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2788                                    &dbg_data->dbg);
2789 }
2790 
2791 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2792 {
2793     struct kvm_set_guest_debug_data data;
2794 
2795     data.dbg.control = reinject_trap;
2796 
2797     if (cpu->singlestep_enabled) {
2798         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2799     }
2800     kvm_arch_update_guest_debug(cpu, &data.dbg);
2801 
2802     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2803                RUN_ON_CPU_HOST_PTR(&data));
2804     return data.err;
2805 }
2806 
2807 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2808                           target_ulong len, int type)
2809 {
2810     struct kvm_sw_breakpoint *bp;
2811     int err;
2812 
2813     if (type == GDB_BREAKPOINT_SW) {
2814         bp = kvm_find_sw_breakpoint(cpu, addr);
2815         if (bp) {
2816             bp->use_count++;
2817             return 0;
2818         }
2819 
2820         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2821         bp->pc = addr;
2822         bp->use_count = 1;
2823         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2824         if (err) {
2825             g_free(bp);
2826             return err;
2827         }
2828 
2829         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2830     } else {
2831         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2832         if (err) {
2833             return err;
2834         }
2835     }
2836 
2837     CPU_FOREACH(cpu) {
2838         err = kvm_update_guest_debug(cpu, 0);
2839         if (err) {
2840             return err;
2841         }
2842     }
2843     return 0;
2844 }
2845 
2846 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2847                           target_ulong len, int type)
2848 {
2849     struct kvm_sw_breakpoint *bp;
2850     int err;
2851 
2852     if (type == GDB_BREAKPOINT_SW) {
2853         bp = kvm_find_sw_breakpoint(cpu, addr);
2854         if (!bp) {
2855             return -ENOENT;
2856         }
2857 
2858         if (bp->use_count > 1) {
2859             bp->use_count--;
2860             return 0;
2861         }
2862 
2863         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2864         if (err) {
2865             return err;
2866         }
2867 
2868         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2869         g_free(bp);
2870     } else {
2871         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2872         if (err) {
2873             return err;
2874         }
2875     }
2876 
2877     CPU_FOREACH(cpu) {
2878         err = kvm_update_guest_debug(cpu, 0);
2879         if (err) {
2880             return err;
2881         }
2882     }
2883     return 0;
2884 }
2885 
2886 void kvm_remove_all_breakpoints(CPUState *cpu)
2887 {
2888     struct kvm_sw_breakpoint *bp, *next;
2889     KVMState *s = cpu->kvm_state;
2890     CPUState *tmpcpu;
2891 
2892     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2893         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2894             /* Try harder to find a CPU that currently sees the breakpoint. */
2895             CPU_FOREACH(tmpcpu) {
2896                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2897                     break;
2898                 }
2899             }
2900         }
2901         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2902         g_free(bp);
2903     }
2904     kvm_arch_remove_all_hw_breakpoints();
2905 
2906     CPU_FOREACH(cpu) {
2907         kvm_update_guest_debug(cpu, 0);
2908     }
2909 }
2910 
2911 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2912 
2913 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2914 {
2915     return -EINVAL;
2916 }
2917 
2918 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2919                           target_ulong len, int type)
2920 {
2921     return -EINVAL;
2922 }
2923 
2924 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2925                           target_ulong len, int type)
2926 {
2927     return -EINVAL;
2928 }
2929 
2930 void kvm_remove_all_breakpoints(CPUState *cpu)
2931 {
2932 }
2933 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2934 
2935 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2936 {
2937     KVMState *s = kvm_state;
2938     struct kvm_signal_mask *sigmask;
2939     int r;
2940 
2941     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2942 
2943     sigmask->len = s->sigmask_len;
2944     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2945     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2946     g_free(sigmask);
2947 
2948     return r;
2949 }
2950 
2951 static void kvm_ipi_signal(int sig)
2952 {
2953     if (current_cpu) {
2954         assert(kvm_immediate_exit);
2955         kvm_cpu_kick(current_cpu);
2956     }
2957 }
2958 
2959 void kvm_init_cpu_signals(CPUState *cpu)
2960 {
2961     int r;
2962     sigset_t set;
2963     struct sigaction sigact;
2964 
2965     memset(&sigact, 0, sizeof(sigact));
2966     sigact.sa_handler = kvm_ipi_signal;
2967     sigaction(SIG_IPI, &sigact, NULL);
2968 
2969     pthread_sigmask(SIG_BLOCK, NULL, &set);
2970 #if defined KVM_HAVE_MCE_INJECTION
2971     sigdelset(&set, SIGBUS);
2972     pthread_sigmask(SIG_SETMASK, &set, NULL);
2973 #endif
2974     sigdelset(&set, SIG_IPI);
2975     if (kvm_immediate_exit) {
2976         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2977     } else {
2978         r = kvm_set_signal_mask(cpu, &set);
2979     }
2980     if (r) {
2981         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2982         exit(1);
2983     }
2984 }
2985 
2986 /* Called asynchronously in VCPU thread.  */
2987 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2988 {
2989 #ifdef KVM_HAVE_MCE_INJECTION
2990     if (have_sigbus_pending) {
2991         return 1;
2992     }
2993     have_sigbus_pending = true;
2994     pending_sigbus_addr = addr;
2995     pending_sigbus_code = code;
2996     qatomic_set(&cpu->exit_request, 1);
2997     return 0;
2998 #else
2999     return 1;
3000 #endif
3001 }
3002 
3003 /* Called synchronously (via signalfd) in main thread.  */
3004 int kvm_on_sigbus(int code, void *addr)
3005 {
3006 #ifdef KVM_HAVE_MCE_INJECTION
3007     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3008      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3009      * we can only get action optional here.
3010      */
3011     assert(code != BUS_MCEERR_AR);
3012     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3013     return 0;
3014 #else
3015     return 1;
3016 #endif
3017 }
3018 
3019 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3020 {
3021     int ret;
3022     struct kvm_create_device create_dev;
3023 
3024     create_dev.type = type;
3025     create_dev.fd = -1;
3026     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3027 
3028     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3029         return -ENOTSUP;
3030     }
3031 
3032     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3033     if (ret) {
3034         return ret;
3035     }
3036 
3037     return test ? 0 : create_dev.fd;
3038 }
3039 
3040 bool kvm_device_supported(int vmfd, uint64_t type)
3041 {
3042     struct kvm_create_device create_dev = {
3043         .type = type,
3044         .fd = -1,
3045         .flags = KVM_CREATE_DEVICE_TEST,
3046     };
3047 
3048     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3049         return false;
3050     }
3051 
3052     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3053 }
3054 
3055 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3056 {
3057     struct kvm_one_reg reg;
3058     int r;
3059 
3060     reg.id = id;
3061     reg.addr = (uintptr_t) source;
3062     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3063     if (r) {
3064         trace_kvm_failed_reg_set(id, strerror(-r));
3065     }
3066     return r;
3067 }
3068 
3069 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3070 {
3071     struct kvm_one_reg reg;
3072     int r;
3073 
3074     reg.id = id;
3075     reg.addr = (uintptr_t) target;
3076     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3077     if (r) {
3078         trace_kvm_failed_reg_get(id, strerror(-r));
3079     }
3080     return r;
3081 }
3082 
3083 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3084                                  hwaddr start_addr, hwaddr size)
3085 {
3086     KVMState *kvm = KVM_STATE(ms->accelerator);
3087     int i;
3088 
3089     for (i = 0; i < kvm->nr_as; ++i) {
3090         if (kvm->as[i].as == as && kvm->as[i].ml) {
3091             size = MIN(kvm_max_slot_size, size);
3092             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3093                                                     start_addr, size);
3094         }
3095     }
3096 
3097     return false;
3098 }
3099 
3100 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3101                                    const char *name, void *opaque,
3102                                    Error **errp)
3103 {
3104     KVMState *s = KVM_STATE(obj);
3105     int64_t value = s->kvm_shadow_mem;
3106 
3107     visit_type_int(v, name, &value, errp);
3108 }
3109 
3110 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3111                                    const char *name, void *opaque,
3112                                    Error **errp)
3113 {
3114     KVMState *s = KVM_STATE(obj);
3115     int64_t value;
3116 
3117     if (!visit_type_int(v, name, &value, errp)) {
3118         return;
3119     }
3120 
3121     s->kvm_shadow_mem = value;
3122 }
3123 
3124 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3125                                    const char *name, void *opaque,
3126                                    Error **errp)
3127 {
3128     KVMState *s = KVM_STATE(obj);
3129     OnOffSplit mode;
3130 
3131     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3132         return;
3133     }
3134     switch (mode) {
3135     case ON_OFF_SPLIT_ON:
3136         s->kernel_irqchip_allowed = true;
3137         s->kernel_irqchip_required = true;
3138         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3139         break;
3140     case ON_OFF_SPLIT_OFF:
3141         s->kernel_irqchip_allowed = false;
3142         s->kernel_irqchip_required = false;
3143         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3144         break;
3145     case ON_OFF_SPLIT_SPLIT:
3146         s->kernel_irqchip_allowed = true;
3147         s->kernel_irqchip_required = true;
3148         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3149         break;
3150     default:
3151         /* The value was checked in visit_type_OnOffSplit() above. If
3152          * we get here, then something is wrong in QEMU.
3153          */
3154         abort();
3155     }
3156 }
3157 
3158 bool kvm_kernel_irqchip_allowed(void)
3159 {
3160     return kvm_state->kernel_irqchip_allowed;
3161 }
3162 
3163 bool kvm_kernel_irqchip_required(void)
3164 {
3165     return kvm_state->kernel_irqchip_required;
3166 }
3167 
3168 bool kvm_kernel_irqchip_split(void)
3169 {
3170     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3171 }
3172 
3173 static void kvm_accel_instance_init(Object *obj)
3174 {
3175     KVMState *s = KVM_STATE(obj);
3176 
3177     s->kvm_shadow_mem = -1;
3178     s->kernel_irqchip_allowed = true;
3179     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3180 }
3181 
3182 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3183 {
3184     AccelClass *ac = ACCEL_CLASS(oc);
3185     ac->name = "KVM";
3186     ac->init_machine = kvm_init;
3187     ac->has_memory = kvm_accel_has_memory;
3188     ac->allowed = &kvm_allowed;
3189 
3190     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3191         NULL, kvm_set_kernel_irqchip,
3192         NULL, NULL);
3193     object_class_property_set_description(oc, "kernel-irqchip",
3194         "Configure KVM in-kernel irqchip");
3195 
3196     object_class_property_add(oc, "kvm-shadow-mem", "int",
3197         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3198         NULL, NULL);
3199     object_class_property_set_description(oc, "kvm-shadow-mem",
3200         "KVM shadow MMU size");
3201 }
3202 
3203 static const TypeInfo kvm_accel_type = {
3204     .name = TYPE_KVM_ACCEL,
3205     .parent = TYPE_ACCEL,
3206     .instance_init = kvm_accel_instance_init,
3207     .class_init = kvm_accel_class_init,
3208     .instance_size = sizeof(KVMState),
3209 };
3210 
3211 static void kvm_type_init(void)
3212 {
3213     type_register_static(&kvm_accel_type);
3214 }
3215 
3216 type_init(kvm_type_init);
3217