xref: /qemu/accel/kvm/kvm-all.c (revision ebda3036)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
109 
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111     KVM_CAP_INFO(USER_MEMORY),
112     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114     KVM_CAP_LAST_INFO
115 };
116 
117 static NotifierList kvm_irqchip_change_notifiers =
118     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
119 
120 struct KVMResampleFd {
121     int gsi;
122     EventNotifier *resample_event;
123     QLIST_ENTRY(KVMResampleFd) node;
124 };
125 typedef struct KVMResampleFd KVMResampleFd;
126 
127 /*
128  * Only used with split irqchip where we need to do the resample fd
129  * kick for the kernel from userspace.
130  */
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
133 
134 static QemuMutex kml_slots_lock;
135 
136 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
138 
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
140 
141 static inline void kvm_resample_fd_remove(int gsi)
142 {
143     KVMResampleFd *rfd;
144 
145     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146         if (rfd->gsi == gsi) {
147             QLIST_REMOVE(rfd, node);
148             g_free(rfd);
149             break;
150         }
151     }
152 }
153 
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
155 {
156     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
157 
158     rfd->gsi = gsi;
159     rfd->resample_event = event;
160 
161     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162 }
163 
164 void kvm_resample_fd_notify(int gsi)
165 {
166     KVMResampleFd *rfd;
167 
168     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169         if (rfd->gsi == gsi) {
170             event_notifier_set(rfd->resample_event);
171             trace_kvm_resample_fd_notify(gsi);
172             return;
173         }
174     }
175 }
176 
177 int kvm_get_max_memslots(void)
178 {
179     KVMState *s = KVM_STATE(current_accel());
180 
181     return s->nr_slots;
182 }
183 
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
186 {
187     KVMState *s = kvm_state;
188     int i;
189 
190     for (i = 0; i < s->nr_slots; i++) {
191         if (kml->slots[i].memory_size == 0) {
192             return &kml->slots[i];
193         }
194     }
195 
196     return NULL;
197 }
198 
199 bool kvm_has_free_slot(MachineState *ms)
200 {
201     KVMState *s = KVM_STATE(ms->accelerator);
202     bool result;
203     KVMMemoryListener *kml = &s->memory_listener;
204 
205     kvm_slots_lock();
206     result = !!kvm_get_free_slot(kml);
207     kvm_slots_unlock();
208 
209     return result;
210 }
211 
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
214 {
215     KVMSlot *slot = kvm_get_free_slot(kml);
216 
217     if (slot) {
218         return slot;
219     }
220 
221     fprintf(stderr, "%s: no free slot available\n", __func__);
222     abort();
223 }
224 
225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226                                          hwaddr start_addr,
227                                          hwaddr size)
228 {
229     KVMState *s = kvm_state;
230     int i;
231 
232     for (i = 0; i < s->nr_slots; i++) {
233         KVMSlot *mem = &kml->slots[i];
234 
235         if (start_addr == mem->start_addr && size == mem->memory_size) {
236             return mem;
237         }
238     }
239 
240     return NULL;
241 }
242 
243 /*
244  * Calculate and align the start address and the size of the section.
245  * Return the size. If the size is 0, the aligned section is empty.
246  */
247 static hwaddr kvm_align_section(MemoryRegionSection *section,
248                                 hwaddr *start)
249 {
250     hwaddr size = int128_get64(section->size);
251     hwaddr delta, aligned;
252 
253     /* kvm works in page size chunks, but the function may be called
254        with sub-page size and unaligned start address. Pad the start
255        address to next and truncate size to previous page boundary. */
256     aligned = ROUND_UP(section->offset_within_address_space,
257                        qemu_real_host_page_size());
258     delta = aligned - section->offset_within_address_space;
259     *start = aligned;
260     if (delta > size) {
261         return 0;
262     }
263 
264     return (size - delta) & qemu_real_host_page_mask();
265 }
266 
267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268                                        hwaddr *phys_addr)
269 {
270     KVMMemoryListener *kml = &s->memory_listener;
271     int i, ret = 0;
272 
273     kvm_slots_lock();
274     for (i = 0; i < s->nr_slots; i++) {
275         KVMSlot *mem = &kml->slots[i];
276 
277         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278             *phys_addr = mem->start_addr + (ram - mem->ram);
279             ret = 1;
280             break;
281         }
282     }
283     kvm_slots_unlock();
284 
285     return ret;
286 }
287 
288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
289 {
290     KVMState *s = kvm_state;
291     struct kvm_userspace_memory_region mem;
292     int ret;
293 
294     mem.slot = slot->slot | (kml->as_id << 16);
295     mem.guest_phys_addr = slot->start_addr;
296     mem.userspace_addr = (unsigned long)slot->ram;
297     mem.flags = slot->flags;
298 
299     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300         /* Set the slot size to 0 before setting the slot to the desired
301          * value. This is needed based on KVM commit 75d61fbc. */
302         mem.memory_size = 0;
303         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304         if (ret < 0) {
305             goto err;
306         }
307     }
308     mem.memory_size = slot->memory_size;
309     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310     slot->old_flags = mem.flags;
311 err:
312     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313                               mem.memory_size, mem.userspace_addr, ret);
314     if (ret < 0) {
315         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317                      __func__, mem.slot, slot->start_addr,
318                      (uint64_t)mem.memory_size, strerror(errno));
319     }
320     return ret;
321 }
322 
323 static int do_kvm_destroy_vcpu(CPUState *cpu)
324 {
325     KVMState *s = kvm_state;
326     long mmap_size;
327     struct KVMParkedVcpu *vcpu = NULL;
328     int ret = 0;
329 
330     DPRINTF("kvm_destroy_vcpu\n");
331 
332     ret = kvm_arch_destroy_vcpu(cpu);
333     if (ret < 0) {
334         goto err;
335     }
336 
337     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338     if (mmap_size < 0) {
339         ret = mmap_size;
340         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341         goto err;
342     }
343 
344     ret = munmap(cpu->kvm_run, mmap_size);
345     if (ret < 0) {
346         goto err;
347     }
348 
349     if (cpu->kvm_dirty_gfns) {
350         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351         if (ret < 0) {
352             goto err;
353         }
354     }
355 
356     vcpu = g_malloc0(sizeof(*vcpu));
357     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358     vcpu->kvm_fd = cpu->kvm_fd;
359     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360 err:
361     return ret;
362 }
363 
364 void kvm_destroy_vcpu(CPUState *cpu)
365 {
366     if (do_kvm_destroy_vcpu(cpu) < 0) {
367         error_report("kvm_destroy_vcpu failed");
368         exit(EXIT_FAILURE);
369     }
370 }
371 
372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
373 {
374     struct KVMParkedVcpu *cpu;
375 
376     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377         if (cpu->vcpu_id == vcpu_id) {
378             int kvm_fd;
379 
380             QLIST_REMOVE(cpu, node);
381             kvm_fd = cpu->kvm_fd;
382             g_free(cpu);
383             return kvm_fd;
384         }
385     }
386 
387     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
388 }
389 
390 int kvm_init_vcpu(CPUState *cpu, Error **errp)
391 {
392     KVMState *s = kvm_state;
393     long mmap_size;
394     int ret;
395 
396     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
397 
398     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399     if (ret < 0) {
400         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401                          kvm_arch_vcpu_id(cpu));
402         goto err;
403     }
404 
405     cpu->kvm_fd = ret;
406     cpu->kvm_state = s;
407     cpu->vcpu_dirty = true;
408     cpu->dirty_pages = 0;
409     cpu->throttle_us_per_full = 0;
410 
411     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412     if (mmap_size < 0) {
413         ret = mmap_size;
414         error_setg_errno(errp, -mmap_size,
415                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416         goto err;
417     }
418 
419     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420                         cpu->kvm_fd, 0);
421     if (cpu->kvm_run == MAP_FAILED) {
422         ret = -errno;
423         error_setg_errno(errp, ret,
424                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425                          kvm_arch_vcpu_id(cpu));
426         goto err;
427     }
428 
429     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430         s->coalesced_mmio_ring =
431             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
432     }
433 
434     if (s->kvm_dirty_ring_size) {
435         /* Use MAP_SHARED to share pages with the kernel */
436         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437                                    PROT_READ | PROT_WRITE, MAP_SHARED,
438                                    cpu->kvm_fd,
439                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441             ret = -errno;
442             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443             goto err;
444         }
445     }
446 
447     ret = kvm_arch_init_vcpu(cpu);
448     if (ret < 0) {
449         error_setg_errno(errp, -ret,
450                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451                          kvm_arch_vcpu_id(cpu));
452     }
453     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
454 
455 err:
456     return ret;
457 }
458 
459 /*
460  * dirty pages logging control
461  */
462 
463 static int kvm_mem_flags(MemoryRegion *mr)
464 {
465     bool readonly = mr->readonly || memory_region_is_romd(mr);
466     int flags = 0;
467 
468     if (memory_region_get_dirty_log_mask(mr) != 0) {
469         flags |= KVM_MEM_LOG_DIRTY_PAGES;
470     }
471     if (readonly && kvm_readonly_mem_allowed) {
472         flags |= KVM_MEM_READONLY;
473     }
474     return flags;
475 }
476 
477 /* Called with KVMMemoryListener.slots_lock held */
478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
479                                  MemoryRegion *mr)
480 {
481     mem->flags = kvm_mem_flags(mr);
482 
483     /* If nothing changed effectively, no need to issue ioctl */
484     if (mem->flags == mem->old_flags) {
485         return 0;
486     }
487 
488     kvm_slot_init_dirty_bitmap(mem);
489     return kvm_set_user_memory_region(kml, mem, false);
490 }
491 
492 static int kvm_section_update_flags(KVMMemoryListener *kml,
493                                     MemoryRegionSection *section)
494 {
495     hwaddr start_addr, size, slot_size;
496     KVMSlot *mem;
497     int ret = 0;
498 
499     size = kvm_align_section(section, &start_addr);
500     if (!size) {
501         return 0;
502     }
503 
504     kvm_slots_lock();
505 
506     while (size && !ret) {
507         slot_size = MIN(kvm_max_slot_size, size);
508         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
509         if (!mem) {
510             /* We don't have a slot if we want to trap every access. */
511             goto out;
512         }
513 
514         ret = kvm_slot_update_flags(kml, mem, section->mr);
515         start_addr += slot_size;
516         size -= slot_size;
517     }
518 
519 out:
520     kvm_slots_unlock();
521     return ret;
522 }
523 
524 static void kvm_log_start(MemoryListener *listener,
525                           MemoryRegionSection *section,
526                           int old, int new)
527 {
528     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
529     int r;
530 
531     if (old != 0) {
532         return;
533     }
534 
535     r = kvm_section_update_flags(kml, section);
536     if (r < 0) {
537         abort();
538     }
539 }
540 
541 static void kvm_log_stop(MemoryListener *listener,
542                           MemoryRegionSection *section,
543                           int old, int new)
544 {
545     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
546     int r;
547 
548     if (new != 0) {
549         return;
550     }
551 
552     r = kvm_section_update_flags(kml, section);
553     if (r < 0) {
554         abort();
555     }
556 }
557 
558 /* get kvm's dirty pages bitmap and update qemu's */
559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
560 {
561     ram_addr_t start = slot->ram_start_offset;
562     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
563 
564     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
565 }
566 
567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
568 {
569     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
570 }
571 
572 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
573 
574 /* Allocate the dirty bitmap for a slot  */
575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
576 {
577     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
578         return;
579     }
580 
581     /*
582      * XXX bad kernel interface alert
583      * For dirty bitmap, kernel allocates array of size aligned to
584      * bits-per-long.  But for case when the kernel is 64bits and
585      * the userspace is 32bits, userspace can't align to the same
586      * bits-per-long, since sizeof(long) is different between kernel
587      * and user space.  This way, userspace will provide buffer which
588      * may be 4 bytes less than the kernel will use, resulting in
589      * userspace memory corruption (which is not detectable by valgrind
590      * too, in most cases).
591      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
592      * a hope that sizeof(long) won't become >8 any time soon.
593      *
594      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
595      * And mem->memory_size is aligned to it (otherwise this mem can't
596      * be registered to KVM).
597      */
598     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
599                                         /*HOST_LONG_BITS*/ 64) / 8;
600     mem->dirty_bmap = g_malloc0(bitmap_size);
601     mem->dirty_bmap_size = bitmap_size;
602 }
603 
604 /*
605  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
606  * succeeded, false otherwise
607  */
608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
609 {
610     struct kvm_dirty_log d = {};
611     int ret;
612 
613     d.dirty_bitmap = slot->dirty_bmap;
614     d.slot = slot->slot | (slot->as_id << 16);
615     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
616 
617     if (ret == -ENOENT) {
618         /* kernel does not have dirty bitmap in this slot */
619         ret = 0;
620     }
621     if (ret) {
622         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
623                           __func__, ret);
624     }
625     return ret == 0;
626 }
627 
628 /* Should be with all slots_lock held for the address spaces. */
629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
630                                      uint32_t slot_id, uint64_t offset)
631 {
632     KVMMemoryListener *kml;
633     KVMSlot *mem;
634 
635     if (as_id >= s->nr_as) {
636         return;
637     }
638 
639     kml = s->as[as_id].ml;
640     mem = &kml->slots[slot_id];
641 
642     if (!mem->memory_size || offset >=
643         (mem->memory_size / qemu_real_host_page_size())) {
644         return;
645     }
646 
647     set_bit(offset, mem->dirty_bmap);
648 }
649 
650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
651 {
652     /*
653      * Read the flags before the value.  Pairs with barrier in
654      * KVM's kvm_dirty_ring_push() function.
655      */
656     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
657 }
658 
659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
660 {
661     /*
662      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
663      * sees the full content of the ring:
664      *
665      * CPU0                     CPU1                         CPU2
666      * ------------------------------------------------------------------------------
667      *                                                       fill gfn0
668      *                                                       store-rel flags for gfn0
669      * load-acq flags for gfn0
670      * store-rel RESET for gfn0
671      *                          ioctl(RESET_RINGS)
672      *                            load-acq flags for gfn0
673      *                            check if flags have RESET
674      *
675      * The synchronization goes from CPU2 to CPU0 to CPU1.
676      */
677     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
678 }
679 
680 /*
681  * Should be with all slots_lock held for the address spaces.  It returns the
682  * dirty page we've collected on this dirty ring.
683  */
684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
685 {
686     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
687     uint32_t ring_size = s->kvm_dirty_ring_size;
688     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
689 
690     /*
691      * It's possible that we race with vcpu creation code where the vcpu is
692      * put onto the vcpus list but not yet initialized the dirty ring
693      * structures.  If so, skip it.
694      */
695     if (!cpu->created) {
696         return 0;
697     }
698 
699     assert(dirty_gfns && ring_size);
700     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
701 
702     while (true) {
703         cur = &dirty_gfns[fetch % ring_size];
704         if (!dirty_gfn_is_dirtied(cur)) {
705             break;
706         }
707         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
708                                  cur->offset);
709         dirty_gfn_set_collected(cur);
710         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
711         fetch++;
712         count++;
713     }
714     cpu->kvm_fetch_index = fetch;
715     cpu->dirty_pages += count;
716 
717     return count;
718 }
719 
720 /* Must be with slots_lock held */
721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
722 {
723     int ret;
724     uint64_t total = 0;
725     int64_t stamp;
726 
727     stamp = get_clock();
728 
729     if (cpu) {
730         total = kvm_dirty_ring_reap_one(s, cpu);
731     } else {
732         CPU_FOREACH(cpu) {
733             total += kvm_dirty_ring_reap_one(s, cpu);
734         }
735     }
736 
737     if (total) {
738         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
739         assert(ret == total);
740     }
741 
742     stamp = get_clock() - stamp;
743 
744     if (total) {
745         trace_kvm_dirty_ring_reap(total, stamp / 1000);
746     }
747 
748     return total;
749 }
750 
751 /*
752  * Currently for simplicity, we must hold BQL before calling this.  We can
753  * consider to drop the BQL if we're clear with all the race conditions.
754  */
755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
756 {
757     uint64_t total;
758 
759     /*
760      * We need to lock all kvm slots for all address spaces here,
761      * because:
762      *
763      * (1) We need to mark dirty for dirty bitmaps in multiple slots
764      *     and for tons of pages, so it's better to take the lock here
765      *     once rather than once per page.  And more importantly,
766      *
767      * (2) We must _NOT_ publish dirty bits to the other threads
768      *     (e.g., the migration thread) via the kvm memory slot dirty
769      *     bitmaps before correctly re-protect those dirtied pages.
770      *     Otherwise we can have potential risk of data corruption if
771      *     the page data is read in the other thread before we do
772      *     reset below.
773      */
774     kvm_slots_lock();
775     total = kvm_dirty_ring_reap_locked(s, cpu);
776     kvm_slots_unlock();
777 
778     return total;
779 }
780 
781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
782 {
783     /* No need to do anything */
784 }
785 
786 /*
787  * Kick all vcpus out in a synchronized way.  When returned, we
788  * guarantee that every vcpu has been kicked and at least returned to
789  * userspace once.
790  */
791 static void kvm_cpu_synchronize_kick_all(void)
792 {
793     CPUState *cpu;
794 
795     CPU_FOREACH(cpu) {
796         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
797     }
798 }
799 
800 /*
801  * Flush all the existing dirty pages to the KVM slot buffers.  When
802  * this call returns, we guarantee that all the touched dirty pages
803  * before calling this function have been put into the per-kvmslot
804  * dirty bitmap.
805  *
806  * This function must be called with BQL held.
807  */
808 static void kvm_dirty_ring_flush(void)
809 {
810     trace_kvm_dirty_ring_flush(0);
811     /*
812      * The function needs to be serialized.  Since this function
813      * should always be with BQL held, serialization is guaranteed.
814      * However, let's be sure of it.
815      */
816     assert(qemu_mutex_iothread_locked());
817     /*
818      * First make sure to flush the hardware buffers by kicking all
819      * vcpus out in a synchronous way.
820      */
821     kvm_cpu_synchronize_kick_all();
822     kvm_dirty_ring_reap(kvm_state, NULL);
823     trace_kvm_dirty_ring_flush(1);
824 }
825 
826 /**
827  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
828  *
829  * This function will first try to fetch dirty bitmap from the kernel,
830  * and then updates qemu's dirty bitmap.
831  *
832  * NOTE: caller must be with kml->slots_lock held.
833  *
834  * @kml: the KVM memory listener object
835  * @section: the memory section to sync the dirty bitmap with
836  */
837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
838                                            MemoryRegionSection *section)
839 {
840     KVMState *s = kvm_state;
841     KVMSlot *mem;
842     hwaddr start_addr, size;
843     hwaddr slot_size;
844 
845     size = kvm_align_section(section, &start_addr);
846     while (size) {
847         slot_size = MIN(kvm_max_slot_size, size);
848         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
849         if (!mem) {
850             /* We don't have a slot if we want to trap every access. */
851             return;
852         }
853         if (kvm_slot_get_dirty_log(s, mem)) {
854             kvm_slot_sync_dirty_pages(mem);
855         }
856         start_addr += slot_size;
857         size -= slot_size;
858     }
859 }
860 
861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
862 #define KVM_CLEAR_LOG_SHIFT  6
863 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
864 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
865 
866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
867                                   uint64_t size)
868 {
869     KVMState *s = kvm_state;
870     uint64_t end, bmap_start, start_delta, bmap_npages;
871     struct kvm_clear_dirty_log d;
872     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
873     int ret;
874 
875     /*
876      * We need to extend either the start or the size or both to
877      * satisfy the KVM interface requirement.  Firstly, do the start
878      * page alignment on 64 host pages
879      */
880     bmap_start = start & KVM_CLEAR_LOG_MASK;
881     start_delta = start - bmap_start;
882     bmap_start /= psize;
883 
884     /*
885      * The kernel interface has restriction on the size too, that either:
886      *
887      * (1) the size is 64 host pages aligned (just like the start), or
888      * (2) the size fills up until the end of the KVM memslot.
889      */
890     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
891         << KVM_CLEAR_LOG_SHIFT;
892     end = mem->memory_size / psize;
893     if (bmap_npages > end - bmap_start) {
894         bmap_npages = end - bmap_start;
895     }
896     start_delta /= psize;
897 
898     /*
899      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
900      * that we won't clear any unknown dirty bits otherwise we might
901      * accidentally clear some set bits which are not yet synced from
902      * the kernel into QEMU's bitmap, then we'll lose track of the
903      * guest modifications upon those pages (which can directly lead
904      * to guest data loss or panic after migration).
905      *
906      * Layout of the KVMSlot.dirty_bmap:
907      *
908      *                   |<-------- bmap_npages -----------..>|
909      *                                                     [1]
910      *                     start_delta         size
911      *  |----------------|-------------|------------------|------------|
912      *  ^                ^             ^                               ^
913      *  |                |             |                               |
914      * start          bmap_start     (start)                         end
915      * of memslot                                             of memslot
916      *
917      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
918      */
919 
920     assert(bmap_start % BITS_PER_LONG == 0);
921     /* We should never do log_clear before log_sync */
922     assert(mem->dirty_bmap);
923     if (start_delta || bmap_npages - size / psize) {
924         /* Slow path - we need to manipulate a temp bitmap */
925         bmap_clear = bitmap_new(bmap_npages);
926         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
927                                     bmap_start, start_delta + size / psize);
928         /*
929          * We need to fill the holes at start because that was not
930          * specified by the caller and we extended the bitmap only for
931          * 64 pages alignment
932          */
933         bitmap_clear(bmap_clear, 0, start_delta);
934         d.dirty_bitmap = bmap_clear;
935     } else {
936         /*
937          * Fast path - both start and size align well with BITS_PER_LONG
938          * (or the end of memory slot)
939          */
940         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
941     }
942 
943     d.first_page = bmap_start;
944     /* It should never overflow.  If it happens, say something */
945     assert(bmap_npages <= UINT32_MAX);
946     d.num_pages = bmap_npages;
947     d.slot = mem->slot | (as_id << 16);
948 
949     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
950     if (ret < 0 && ret != -ENOENT) {
951         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
952                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
953                      __func__, d.slot, (uint64_t)d.first_page,
954                      (uint32_t)d.num_pages, ret);
955     } else {
956         ret = 0;
957         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
958     }
959 
960     /*
961      * After we have updated the remote dirty bitmap, we update the
962      * cached bitmap as well for the memslot, then if another user
963      * clears the same region we know we shouldn't clear it again on
964      * the remote otherwise it's data loss as well.
965      */
966     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
967                  size / psize);
968     /* This handles the NULL case well */
969     g_free(bmap_clear);
970     return ret;
971 }
972 
973 
974 /**
975  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
976  *
977  * NOTE: this will be a no-op if we haven't enabled manual dirty log
978  * protection in the host kernel because in that case this operation
979  * will be done within log_sync().
980  *
981  * @kml:     the kvm memory listener
982  * @section: the memory range to clear dirty bitmap
983  */
984 static int kvm_physical_log_clear(KVMMemoryListener *kml,
985                                   MemoryRegionSection *section)
986 {
987     KVMState *s = kvm_state;
988     uint64_t start, size, offset, count;
989     KVMSlot *mem;
990     int ret = 0, i;
991 
992     if (!s->manual_dirty_log_protect) {
993         /* No need to do explicit clear */
994         return ret;
995     }
996 
997     start = section->offset_within_address_space;
998     size = int128_get64(section->size);
999 
1000     if (!size) {
1001         /* Nothing more we can do... */
1002         return ret;
1003     }
1004 
1005     kvm_slots_lock();
1006 
1007     for (i = 0; i < s->nr_slots; i++) {
1008         mem = &kml->slots[i];
1009         /* Discard slots that are empty or do not overlap the section */
1010         if (!mem->memory_size ||
1011             mem->start_addr > start + size - 1 ||
1012             start > mem->start_addr + mem->memory_size - 1) {
1013             continue;
1014         }
1015 
1016         if (start >= mem->start_addr) {
1017             /* The slot starts before section or is aligned to it.  */
1018             offset = start - mem->start_addr;
1019             count = MIN(mem->memory_size - offset, size);
1020         } else {
1021             /* The slot starts after section.  */
1022             offset = 0;
1023             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1024         }
1025         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1026         if (ret < 0) {
1027             break;
1028         }
1029     }
1030 
1031     kvm_slots_unlock();
1032 
1033     return ret;
1034 }
1035 
1036 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1037                                      MemoryRegionSection *secion,
1038                                      hwaddr start, hwaddr size)
1039 {
1040     KVMState *s = kvm_state;
1041 
1042     if (s->coalesced_mmio) {
1043         struct kvm_coalesced_mmio_zone zone;
1044 
1045         zone.addr = start;
1046         zone.size = size;
1047         zone.pad = 0;
1048 
1049         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1050     }
1051 }
1052 
1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1054                                        MemoryRegionSection *secion,
1055                                        hwaddr start, hwaddr size)
1056 {
1057     KVMState *s = kvm_state;
1058 
1059     if (s->coalesced_mmio) {
1060         struct kvm_coalesced_mmio_zone zone;
1061 
1062         zone.addr = start;
1063         zone.size = size;
1064         zone.pad = 0;
1065 
1066         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1067     }
1068 }
1069 
1070 static void kvm_coalesce_pio_add(MemoryListener *listener,
1071                                 MemoryRegionSection *section,
1072                                 hwaddr start, hwaddr size)
1073 {
1074     KVMState *s = kvm_state;
1075 
1076     if (s->coalesced_pio) {
1077         struct kvm_coalesced_mmio_zone zone;
1078 
1079         zone.addr = start;
1080         zone.size = size;
1081         zone.pio = 1;
1082 
1083         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1084     }
1085 }
1086 
1087 static void kvm_coalesce_pio_del(MemoryListener *listener,
1088                                 MemoryRegionSection *section,
1089                                 hwaddr start, hwaddr size)
1090 {
1091     KVMState *s = kvm_state;
1092 
1093     if (s->coalesced_pio) {
1094         struct kvm_coalesced_mmio_zone zone;
1095 
1096         zone.addr = start;
1097         zone.size = size;
1098         zone.pio = 1;
1099 
1100         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1101      }
1102 }
1103 
1104 static MemoryListener kvm_coalesced_pio_listener = {
1105     .name = "kvm-coalesced-pio",
1106     .coalesced_io_add = kvm_coalesce_pio_add,
1107     .coalesced_io_del = kvm_coalesce_pio_del,
1108     .priority = MEMORY_LISTENER_PRIORITY_MIN,
1109 };
1110 
1111 int kvm_check_extension(KVMState *s, unsigned int extension)
1112 {
1113     int ret;
1114 
1115     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1116     if (ret < 0) {
1117         ret = 0;
1118     }
1119 
1120     return ret;
1121 }
1122 
1123 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1124 {
1125     int ret;
1126 
1127     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1128     if (ret < 0) {
1129         /* VM wide version not implemented, use global one instead */
1130         ret = kvm_check_extension(s, extension);
1131     }
1132 
1133     return ret;
1134 }
1135 
1136 typedef struct HWPoisonPage {
1137     ram_addr_t ram_addr;
1138     QLIST_ENTRY(HWPoisonPage) list;
1139 } HWPoisonPage;
1140 
1141 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1142     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1143 
1144 static void kvm_unpoison_all(void *param)
1145 {
1146     HWPoisonPage *page, *next_page;
1147 
1148     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1149         QLIST_REMOVE(page, list);
1150         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1151         g_free(page);
1152     }
1153 }
1154 
1155 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1156 {
1157     HWPoisonPage *page;
1158 
1159     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1160         if (page->ram_addr == ram_addr) {
1161             return;
1162         }
1163     }
1164     page = g_new(HWPoisonPage, 1);
1165     page->ram_addr = ram_addr;
1166     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1167 }
1168 
1169 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1170 {
1171 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1172     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1173      * endianness, but the memory core hands them in target endianness.
1174      * For example, PPC is always treated as big-endian even if running
1175      * on KVM and on PPC64LE.  Correct here.
1176      */
1177     switch (size) {
1178     case 2:
1179         val = bswap16(val);
1180         break;
1181     case 4:
1182         val = bswap32(val);
1183         break;
1184     }
1185 #endif
1186     return val;
1187 }
1188 
1189 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1190                                   bool assign, uint32_t size, bool datamatch)
1191 {
1192     int ret;
1193     struct kvm_ioeventfd iofd = {
1194         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1195         .addr = addr,
1196         .len = size,
1197         .flags = 0,
1198         .fd = fd,
1199     };
1200 
1201     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1202                                  datamatch);
1203     if (!kvm_enabled()) {
1204         return -ENOSYS;
1205     }
1206 
1207     if (datamatch) {
1208         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1209     }
1210     if (!assign) {
1211         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1212     }
1213 
1214     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1215 
1216     if (ret < 0) {
1217         return -errno;
1218     }
1219 
1220     return 0;
1221 }
1222 
1223 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1224                                  bool assign, uint32_t size, bool datamatch)
1225 {
1226     struct kvm_ioeventfd kick = {
1227         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1228         .addr = addr,
1229         .flags = KVM_IOEVENTFD_FLAG_PIO,
1230         .len = size,
1231         .fd = fd,
1232     };
1233     int r;
1234     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1235     if (!kvm_enabled()) {
1236         return -ENOSYS;
1237     }
1238     if (datamatch) {
1239         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1240     }
1241     if (!assign) {
1242         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1243     }
1244     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1245     if (r < 0) {
1246         return r;
1247     }
1248     return 0;
1249 }
1250 
1251 
1252 static int kvm_check_many_ioeventfds(void)
1253 {
1254     /* Userspace can use ioeventfd for io notification.  This requires a host
1255      * that supports eventfd(2) and an I/O thread; since eventfd does not
1256      * support SIGIO it cannot interrupt the vcpu.
1257      *
1258      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1259      * can avoid creating too many ioeventfds.
1260      */
1261 #if defined(CONFIG_EVENTFD)
1262     int ioeventfds[7];
1263     int i, ret = 0;
1264     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1265         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1266         if (ioeventfds[i] < 0) {
1267             break;
1268         }
1269         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1270         if (ret < 0) {
1271             close(ioeventfds[i]);
1272             break;
1273         }
1274     }
1275 
1276     /* Decide whether many devices are supported or not */
1277     ret = i == ARRAY_SIZE(ioeventfds);
1278 
1279     while (i-- > 0) {
1280         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1281         close(ioeventfds[i]);
1282     }
1283     return ret;
1284 #else
1285     return 0;
1286 #endif
1287 }
1288 
1289 static const KVMCapabilityInfo *
1290 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1291 {
1292     while (list->name) {
1293         if (!kvm_check_extension(s, list->value)) {
1294             return list;
1295         }
1296         list++;
1297     }
1298     return NULL;
1299 }
1300 
1301 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1302 {
1303     g_assert(
1304         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1305     );
1306     kvm_max_slot_size = max_slot_size;
1307 }
1308 
1309 /* Called with KVMMemoryListener.slots_lock held */
1310 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1311                              MemoryRegionSection *section, bool add)
1312 {
1313     KVMSlot *mem;
1314     int err;
1315     MemoryRegion *mr = section->mr;
1316     bool writable = !mr->readonly && !mr->rom_device;
1317     hwaddr start_addr, size, slot_size, mr_offset;
1318     ram_addr_t ram_start_offset;
1319     void *ram;
1320 
1321     if (!memory_region_is_ram(mr)) {
1322         if (writable || !kvm_readonly_mem_allowed) {
1323             return;
1324         } else if (!mr->romd_mode) {
1325             /* If the memory device is not in romd_mode, then we actually want
1326              * to remove the kvm memory slot so all accesses will trap. */
1327             add = false;
1328         }
1329     }
1330 
1331     size = kvm_align_section(section, &start_addr);
1332     if (!size) {
1333         return;
1334     }
1335 
1336     /* The offset of the kvmslot within the memory region */
1337     mr_offset = section->offset_within_region + start_addr -
1338         section->offset_within_address_space;
1339 
1340     /* use aligned delta to align the ram address and offset */
1341     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1342     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1343 
1344     if (!add) {
1345         do {
1346             slot_size = MIN(kvm_max_slot_size, size);
1347             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1348             if (!mem) {
1349                 return;
1350             }
1351             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1352                 /*
1353                  * NOTE: We should be aware of the fact that here we're only
1354                  * doing a best effort to sync dirty bits.  No matter whether
1355                  * we're using dirty log or dirty ring, we ignored two facts:
1356                  *
1357                  * (1) dirty bits can reside in hardware buffers (PML)
1358                  *
1359                  * (2) after we collected dirty bits here, pages can be dirtied
1360                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1361                  * remove the slot.
1362                  *
1363                  * Not easy.  Let's cross the fingers until it's fixed.
1364                  */
1365                 if (kvm_state->kvm_dirty_ring_size) {
1366                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1367                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1368                         kvm_slot_sync_dirty_pages(mem);
1369                         kvm_slot_get_dirty_log(kvm_state, mem);
1370                     }
1371                 } else {
1372                     kvm_slot_get_dirty_log(kvm_state, mem);
1373                 }
1374                 kvm_slot_sync_dirty_pages(mem);
1375             }
1376 
1377             /* unregister the slot */
1378             g_free(mem->dirty_bmap);
1379             mem->dirty_bmap = NULL;
1380             mem->memory_size = 0;
1381             mem->flags = 0;
1382             err = kvm_set_user_memory_region(kml, mem, false);
1383             if (err) {
1384                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1385                         __func__, strerror(-err));
1386                 abort();
1387             }
1388             start_addr += slot_size;
1389             size -= slot_size;
1390         } while (size);
1391         return;
1392     }
1393 
1394     /* register the new slot */
1395     do {
1396         slot_size = MIN(kvm_max_slot_size, size);
1397         mem = kvm_alloc_slot(kml);
1398         mem->as_id = kml->as_id;
1399         mem->memory_size = slot_size;
1400         mem->start_addr = start_addr;
1401         mem->ram_start_offset = ram_start_offset;
1402         mem->ram = ram;
1403         mem->flags = kvm_mem_flags(mr);
1404         kvm_slot_init_dirty_bitmap(mem);
1405         err = kvm_set_user_memory_region(kml, mem, true);
1406         if (err) {
1407             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1408                     strerror(-err));
1409             abort();
1410         }
1411         start_addr += slot_size;
1412         ram_start_offset += slot_size;
1413         ram += slot_size;
1414         size -= slot_size;
1415     } while (size);
1416 }
1417 
1418 static void *kvm_dirty_ring_reaper_thread(void *data)
1419 {
1420     KVMState *s = data;
1421     struct KVMDirtyRingReaper *r = &s->reaper;
1422 
1423     rcu_register_thread();
1424 
1425     trace_kvm_dirty_ring_reaper("init");
1426 
1427     while (true) {
1428         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1429         trace_kvm_dirty_ring_reaper("wait");
1430         /*
1431          * TODO: provide a smarter timeout rather than a constant?
1432          */
1433         sleep(1);
1434 
1435         /* keep sleeping so that dirtylimit not be interfered by reaper */
1436         if (dirtylimit_in_service()) {
1437             continue;
1438         }
1439 
1440         trace_kvm_dirty_ring_reaper("wakeup");
1441         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1442 
1443         qemu_mutex_lock_iothread();
1444         kvm_dirty_ring_reap(s, NULL);
1445         qemu_mutex_unlock_iothread();
1446 
1447         r->reaper_iteration++;
1448     }
1449 
1450     trace_kvm_dirty_ring_reaper("exit");
1451 
1452     rcu_unregister_thread();
1453 
1454     return NULL;
1455 }
1456 
1457 static int kvm_dirty_ring_reaper_init(KVMState *s)
1458 {
1459     struct KVMDirtyRingReaper *r = &s->reaper;
1460 
1461     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1462                        kvm_dirty_ring_reaper_thread,
1463                        s, QEMU_THREAD_JOINABLE);
1464 
1465     return 0;
1466 }
1467 
1468 static int kvm_dirty_ring_init(KVMState *s)
1469 {
1470     uint32_t ring_size = s->kvm_dirty_ring_size;
1471     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1472     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1473     int ret;
1474 
1475     s->kvm_dirty_ring_size = 0;
1476     s->kvm_dirty_ring_bytes = 0;
1477 
1478     /* Bail if the dirty ring size isn't specified */
1479     if (!ring_size) {
1480         return 0;
1481     }
1482 
1483     /*
1484      * Read the max supported pages. Fall back to dirty logging mode
1485      * if the dirty ring isn't supported.
1486      */
1487     ret = kvm_vm_check_extension(s, capability);
1488     if (ret <= 0) {
1489         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1490         ret = kvm_vm_check_extension(s, capability);
1491     }
1492 
1493     if (ret <= 0) {
1494         warn_report("KVM dirty ring not available, using bitmap method");
1495         return 0;
1496     }
1497 
1498     if (ring_bytes > ret) {
1499         error_report("KVM dirty ring size %" PRIu32 " too big "
1500                      "(maximum is %ld).  Please use a smaller value.",
1501                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1502         return -EINVAL;
1503     }
1504 
1505     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1506     if (ret) {
1507         error_report("Enabling of KVM dirty ring failed: %s. "
1508                      "Suggested minimum value is 1024.", strerror(-ret));
1509         return -EIO;
1510     }
1511 
1512     /* Enable the backup bitmap if it is supported */
1513     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1514     if (ret > 0) {
1515         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1516         if (ret) {
1517             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1518                          "%s. ", strerror(-ret));
1519             return -EIO;
1520         }
1521 
1522         s->kvm_dirty_ring_with_bitmap = true;
1523     }
1524 
1525     s->kvm_dirty_ring_size = ring_size;
1526     s->kvm_dirty_ring_bytes = ring_bytes;
1527 
1528     return 0;
1529 }
1530 
1531 static void kvm_region_add(MemoryListener *listener,
1532                            MemoryRegionSection *section)
1533 {
1534     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1535     KVMMemoryUpdate *update;
1536 
1537     update = g_new0(KVMMemoryUpdate, 1);
1538     update->section = *section;
1539 
1540     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1541 }
1542 
1543 static void kvm_region_del(MemoryListener *listener,
1544                            MemoryRegionSection *section)
1545 {
1546     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1547     KVMMemoryUpdate *update;
1548 
1549     update = g_new0(KVMMemoryUpdate, 1);
1550     update->section = *section;
1551 
1552     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1553 }
1554 
1555 static void kvm_region_commit(MemoryListener *listener)
1556 {
1557     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1558                                           listener);
1559     KVMMemoryUpdate *u1, *u2;
1560     bool need_inhibit = false;
1561 
1562     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1563         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1564         return;
1565     }
1566 
1567     /*
1568      * We have to be careful when regions to add overlap with ranges to remove.
1569      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1570      * is currently active.
1571      *
1572      * The lists are order by addresses, so it's easy to find overlaps.
1573      */
1574     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1575     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1576     while (u1 && u2) {
1577         Range r1, r2;
1578 
1579         range_init_nofail(&r1, u1->section.offset_within_address_space,
1580                           int128_get64(u1->section.size));
1581         range_init_nofail(&r2, u2->section.offset_within_address_space,
1582                           int128_get64(u2->section.size));
1583 
1584         if (range_overlaps_range(&r1, &r2)) {
1585             need_inhibit = true;
1586             break;
1587         }
1588         if (range_lob(&r1) < range_lob(&r2)) {
1589             u1 = QSIMPLEQ_NEXT(u1, next);
1590         } else {
1591             u2 = QSIMPLEQ_NEXT(u2, next);
1592         }
1593     }
1594 
1595     kvm_slots_lock();
1596     if (need_inhibit) {
1597         accel_ioctl_inhibit_begin();
1598     }
1599 
1600     /* Remove all memslots before adding the new ones. */
1601     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1602         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1603         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1604 
1605         kvm_set_phys_mem(kml, &u1->section, false);
1606         memory_region_unref(u1->section.mr);
1607 
1608         g_free(u1);
1609     }
1610     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1611         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1612         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1613 
1614         memory_region_ref(u1->section.mr);
1615         kvm_set_phys_mem(kml, &u1->section, true);
1616 
1617         g_free(u1);
1618     }
1619 
1620     if (need_inhibit) {
1621         accel_ioctl_inhibit_end();
1622     }
1623     kvm_slots_unlock();
1624 }
1625 
1626 static void kvm_log_sync(MemoryListener *listener,
1627                          MemoryRegionSection *section)
1628 {
1629     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1630 
1631     kvm_slots_lock();
1632     kvm_physical_sync_dirty_bitmap(kml, section);
1633     kvm_slots_unlock();
1634 }
1635 
1636 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1637 {
1638     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1639     KVMState *s = kvm_state;
1640     KVMSlot *mem;
1641     int i;
1642 
1643     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1644     kvm_dirty_ring_flush();
1645 
1646     /*
1647      * TODO: make this faster when nr_slots is big while there are
1648      * only a few used slots (small VMs).
1649      */
1650     kvm_slots_lock();
1651     for (i = 0; i < s->nr_slots; i++) {
1652         mem = &kml->slots[i];
1653         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1654             kvm_slot_sync_dirty_pages(mem);
1655 
1656             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1657                 kvm_slot_get_dirty_log(s, mem)) {
1658                 kvm_slot_sync_dirty_pages(mem);
1659             }
1660 
1661             /*
1662              * This is not needed by KVM_GET_DIRTY_LOG because the
1663              * ioctl will unconditionally overwrite the whole region.
1664              * However kvm dirty ring has no such side effect.
1665              */
1666             kvm_slot_reset_dirty_pages(mem);
1667         }
1668     }
1669     kvm_slots_unlock();
1670 }
1671 
1672 static void kvm_log_clear(MemoryListener *listener,
1673                           MemoryRegionSection *section)
1674 {
1675     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1676     int r;
1677 
1678     r = kvm_physical_log_clear(kml, section);
1679     if (r < 0) {
1680         error_report_once("%s: kvm log clear failed: mr=%s "
1681                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1682                           section->mr->name, section->offset_within_region,
1683                           int128_get64(section->size));
1684         abort();
1685     }
1686 }
1687 
1688 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1689                                   MemoryRegionSection *section,
1690                                   bool match_data, uint64_t data,
1691                                   EventNotifier *e)
1692 {
1693     int fd = event_notifier_get_fd(e);
1694     int r;
1695 
1696     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1697                                data, true, int128_get64(section->size),
1698                                match_data);
1699     if (r < 0) {
1700         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1701                 __func__, strerror(-r), -r);
1702         abort();
1703     }
1704 }
1705 
1706 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1707                                   MemoryRegionSection *section,
1708                                   bool match_data, uint64_t data,
1709                                   EventNotifier *e)
1710 {
1711     int fd = event_notifier_get_fd(e);
1712     int r;
1713 
1714     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1715                                data, false, int128_get64(section->size),
1716                                match_data);
1717     if (r < 0) {
1718         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1719                 __func__, strerror(-r), -r);
1720         abort();
1721     }
1722 }
1723 
1724 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1725                                  MemoryRegionSection *section,
1726                                  bool match_data, uint64_t data,
1727                                  EventNotifier *e)
1728 {
1729     int fd = event_notifier_get_fd(e);
1730     int r;
1731 
1732     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1733                               data, true, int128_get64(section->size),
1734                               match_data);
1735     if (r < 0) {
1736         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1737                 __func__, strerror(-r), -r);
1738         abort();
1739     }
1740 }
1741 
1742 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1743                                  MemoryRegionSection *section,
1744                                  bool match_data, uint64_t data,
1745                                  EventNotifier *e)
1746 
1747 {
1748     int fd = event_notifier_get_fd(e);
1749     int r;
1750 
1751     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1752                               data, false, int128_get64(section->size),
1753                               match_data);
1754     if (r < 0) {
1755         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1756                 __func__, strerror(-r), -r);
1757         abort();
1758     }
1759 }
1760 
1761 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1762                                   AddressSpace *as, int as_id, const char *name)
1763 {
1764     int i;
1765 
1766     kml->slots = g_new0(KVMSlot, s->nr_slots);
1767     kml->as_id = as_id;
1768 
1769     for (i = 0; i < s->nr_slots; i++) {
1770         kml->slots[i].slot = i;
1771     }
1772 
1773     QSIMPLEQ_INIT(&kml->transaction_add);
1774     QSIMPLEQ_INIT(&kml->transaction_del);
1775 
1776     kml->listener.region_add = kvm_region_add;
1777     kml->listener.region_del = kvm_region_del;
1778     kml->listener.commit = kvm_region_commit;
1779     kml->listener.log_start = kvm_log_start;
1780     kml->listener.log_stop = kvm_log_stop;
1781     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1782     kml->listener.name = name;
1783 
1784     if (s->kvm_dirty_ring_size) {
1785         kml->listener.log_sync_global = kvm_log_sync_global;
1786     } else {
1787         kml->listener.log_sync = kvm_log_sync;
1788         kml->listener.log_clear = kvm_log_clear;
1789     }
1790 
1791     memory_listener_register(&kml->listener, as);
1792 
1793     for (i = 0; i < s->nr_as; ++i) {
1794         if (!s->as[i].as) {
1795             s->as[i].as = as;
1796             s->as[i].ml = kml;
1797             break;
1798         }
1799     }
1800 }
1801 
1802 static MemoryListener kvm_io_listener = {
1803     .name = "kvm-io",
1804     .eventfd_add = kvm_io_ioeventfd_add,
1805     .eventfd_del = kvm_io_ioeventfd_del,
1806     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1807 };
1808 
1809 int kvm_set_irq(KVMState *s, int irq, int level)
1810 {
1811     struct kvm_irq_level event;
1812     int ret;
1813 
1814     assert(kvm_async_interrupts_enabled());
1815 
1816     event.level = level;
1817     event.irq = irq;
1818     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1819     if (ret < 0) {
1820         perror("kvm_set_irq");
1821         abort();
1822     }
1823 
1824     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1825 }
1826 
1827 #ifdef KVM_CAP_IRQ_ROUTING
1828 typedef struct KVMMSIRoute {
1829     struct kvm_irq_routing_entry kroute;
1830     QTAILQ_ENTRY(KVMMSIRoute) entry;
1831 } KVMMSIRoute;
1832 
1833 static void set_gsi(KVMState *s, unsigned int gsi)
1834 {
1835     set_bit(gsi, s->used_gsi_bitmap);
1836 }
1837 
1838 static void clear_gsi(KVMState *s, unsigned int gsi)
1839 {
1840     clear_bit(gsi, s->used_gsi_bitmap);
1841 }
1842 
1843 void kvm_init_irq_routing(KVMState *s)
1844 {
1845     int gsi_count, i;
1846 
1847     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1848     if (gsi_count > 0) {
1849         /* Round up so we can search ints using ffs */
1850         s->used_gsi_bitmap = bitmap_new(gsi_count);
1851         s->gsi_count = gsi_count;
1852     }
1853 
1854     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1855     s->nr_allocated_irq_routes = 0;
1856 
1857     if (!kvm_direct_msi_allowed) {
1858         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1859             QTAILQ_INIT(&s->msi_hashtab[i]);
1860         }
1861     }
1862 
1863     kvm_arch_init_irq_routing(s);
1864 }
1865 
1866 void kvm_irqchip_commit_routes(KVMState *s)
1867 {
1868     int ret;
1869 
1870     if (kvm_gsi_direct_mapping()) {
1871         return;
1872     }
1873 
1874     if (!kvm_gsi_routing_enabled()) {
1875         return;
1876     }
1877 
1878     s->irq_routes->flags = 0;
1879     trace_kvm_irqchip_commit_routes();
1880     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1881     assert(ret == 0);
1882 }
1883 
1884 static void kvm_add_routing_entry(KVMState *s,
1885                                   struct kvm_irq_routing_entry *entry)
1886 {
1887     struct kvm_irq_routing_entry *new;
1888     int n, size;
1889 
1890     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1891         n = s->nr_allocated_irq_routes * 2;
1892         if (n < 64) {
1893             n = 64;
1894         }
1895         size = sizeof(struct kvm_irq_routing);
1896         size += n * sizeof(*new);
1897         s->irq_routes = g_realloc(s->irq_routes, size);
1898         s->nr_allocated_irq_routes = n;
1899     }
1900     n = s->irq_routes->nr++;
1901     new = &s->irq_routes->entries[n];
1902 
1903     *new = *entry;
1904 
1905     set_gsi(s, entry->gsi);
1906 }
1907 
1908 static int kvm_update_routing_entry(KVMState *s,
1909                                     struct kvm_irq_routing_entry *new_entry)
1910 {
1911     struct kvm_irq_routing_entry *entry;
1912     int n;
1913 
1914     for (n = 0; n < s->irq_routes->nr; n++) {
1915         entry = &s->irq_routes->entries[n];
1916         if (entry->gsi != new_entry->gsi) {
1917             continue;
1918         }
1919 
1920         if(!memcmp(entry, new_entry, sizeof *entry)) {
1921             return 0;
1922         }
1923 
1924         *entry = *new_entry;
1925 
1926         return 0;
1927     }
1928 
1929     return -ESRCH;
1930 }
1931 
1932 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1933 {
1934     struct kvm_irq_routing_entry e = {};
1935 
1936     assert(pin < s->gsi_count);
1937 
1938     e.gsi = irq;
1939     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1940     e.flags = 0;
1941     e.u.irqchip.irqchip = irqchip;
1942     e.u.irqchip.pin = pin;
1943     kvm_add_routing_entry(s, &e);
1944 }
1945 
1946 void kvm_irqchip_release_virq(KVMState *s, int virq)
1947 {
1948     struct kvm_irq_routing_entry *e;
1949     int i;
1950 
1951     if (kvm_gsi_direct_mapping()) {
1952         return;
1953     }
1954 
1955     for (i = 0; i < s->irq_routes->nr; i++) {
1956         e = &s->irq_routes->entries[i];
1957         if (e->gsi == virq) {
1958             s->irq_routes->nr--;
1959             *e = s->irq_routes->entries[s->irq_routes->nr];
1960         }
1961     }
1962     clear_gsi(s, virq);
1963     kvm_arch_release_virq_post(virq);
1964     trace_kvm_irqchip_release_virq(virq);
1965 }
1966 
1967 void kvm_irqchip_add_change_notifier(Notifier *n)
1968 {
1969     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1970 }
1971 
1972 void kvm_irqchip_remove_change_notifier(Notifier *n)
1973 {
1974     notifier_remove(n);
1975 }
1976 
1977 void kvm_irqchip_change_notify(void)
1978 {
1979     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1980 }
1981 
1982 static unsigned int kvm_hash_msi(uint32_t data)
1983 {
1984     /* This is optimized for IA32 MSI layout. However, no other arch shall
1985      * repeat the mistake of not providing a direct MSI injection API. */
1986     return data & 0xff;
1987 }
1988 
1989 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1990 {
1991     KVMMSIRoute *route, *next;
1992     unsigned int hash;
1993 
1994     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1995         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1996             kvm_irqchip_release_virq(s, route->kroute.gsi);
1997             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1998             g_free(route);
1999         }
2000     }
2001 }
2002 
2003 static int kvm_irqchip_get_virq(KVMState *s)
2004 {
2005     int next_virq;
2006 
2007     /*
2008      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
2009      * GSI numbers are more than the number of IRQ route. Allocating a GSI
2010      * number can succeed even though a new route entry cannot be added.
2011      * When this happens, flush dynamic MSI entries to free IRQ route entries.
2012      */
2013     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
2014         kvm_flush_dynamic_msi_routes(s);
2015     }
2016 
2017     /* Return the lowest unused GSI in the bitmap */
2018     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2019     if (next_virq >= s->gsi_count) {
2020         return -ENOSPC;
2021     } else {
2022         return next_virq;
2023     }
2024 }
2025 
2026 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
2027 {
2028     unsigned int hash = kvm_hash_msi(msg.data);
2029     KVMMSIRoute *route;
2030 
2031     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
2032         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
2033             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
2034             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
2035             return route;
2036         }
2037     }
2038     return NULL;
2039 }
2040 
2041 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2042 {
2043     struct kvm_msi msi;
2044     KVMMSIRoute *route;
2045 
2046     if (kvm_direct_msi_allowed) {
2047         msi.address_lo = (uint32_t)msg.address;
2048         msi.address_hi = msg.address >> 32;
2049         msi.data = le32_to_cpu(msg.data);
2050         msi.flags = 0;
2051         memset(msi.pad, 0, sizeof(msi.pad));
2052 
2053         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2054     }
2055 
2056     route = kvm_lookup_msi_route(s, msg);
2057     if (!route) {
2058         int virq;
2059 
2060         virq = kvm_irqchip_get_virq(s);
2061         if (virq < 0) {
2062             return virq;
2063         }
2064 
2065         route = g_new0(KVMMSIRoute, 1);
2066         route->kroute.gsi = virq;
2067         route->kroute.type = KVM_IRQ_ROUTING_MSI;
2068         route->kroute.flags = 0;
2069         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
2070         route->kroute.u.msi.address_hi = msg.address >> 32;
2071         route->kroute.u.msi.data = le32_to_cpu(msg.data);
2072 
2073         kvm_add_routing_entry(s, &route->kroute);
2074         kvm_irqchip_commit_routes(s);
2075 
2076         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
2077                            entry);
2078     }
2079 
2080     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
2081 
2082     return kvm_set_irq(s, route->kroute.gsi, 1);
2083 }
2084 
2085 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2086 {
2087     struct kvm_irq_routing_entry kroute = {};
2088     int virq;
2089     KVMState *s = c->s;
2090     MSIMessage msg = {0, 0};
2091 
2092     if (pci_available && dev) {
2093         msg = pci_get_msi_message(dev, vector);
2094     }
2095 
2096     if (kvm_gsi_direct_mapping()) {
2097         return kvm_arch_msi_data_to_gsi(msg.data);
2098     }
2099 
2100     if (!kvm_gsi_routing_enabled()) {
2101         return -ENOSYS;
2102     }
2103 
2104     virq = kvm_irqchip_get_virq(s);
2105     if (virq < 0) {
2106         return virq;
2107     }
2108 
2109     kroute.gsi = virq;
2110     kroute.type = KVM_IRQ_ROUTING_MSI;
2111     kroute.flags = 0;
2112     kroute.u.msi.address_lo = (uint32_t)msg.address;
2113     kroute.u.msi.address_hi = msg.address >> 32;
2114     kroute.u.msi.data = le32_to_cpu(msg.data);
2115     if (pci_available && kvm_msi_devid_required()) {
2116         kroute.flags = KVM_MSI_VALID_DEVID;
2117         kroute.u.msi.devid = pci_requester_id(dev);
2118     }
2119     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2120         kvm_irqchip_release_virq(s, virq);
2121         return -EINVAL;
2122     }
2123 
2124     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2125                                     vector, virq);
2126 
2127     kvm_add_routing_entry(s, &kroute);
2128     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2129     c->changes++;
2130 
2131     return virq;
2132 }
2133 
2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2135                                  PCIDevice *dev)
2136 {
2137     struct kvm_irq_routing_entry kroute = {};
2138 
2139     if (kvm_gsi_direct_mapping()) {
2140         return 0;
2141     }
2142 
2143     if (!kvm_irqchip_in_kernel()) {
2144         return -ENOSYS;
2145     }
2146 
2147     kroute.gsi = virq;
2148     kroute.type = KVM_IRQ_ROUTING_MSI;
2149     kroute.flags = 0;
2150     kroute.u.msi.address_lo = (uint32_t)msg.address;
2151     kroute.u.msi.address_hi = msg.address >> 32;
2152     kroute.u.msi.data = le32_to_cpu(msg.data);
2153     if (pci_available && kvm_msi_devid_required()) {
2154         kroute.flags = KVM_MSI_VALID_DEVID;
2155         kroute.u.msi.devid = pci_requester_id(dev);
2156     }
2157     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2158         return -EINVAL;
2159     }
2160 
2161     trace_kvm_irqchip_update_msi_route(virq);
2162 
2163     return kvm_update_routing_entry(s, &kroute);
2164 }
2165 
2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167                                     EventNotifier *resample, int virq,
2168                                     bool assign)
2169 {
2170     int fd = event_notifier_get_fd(event);
2171     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2172 
2173     struct kvm_irqfd irqfd = {
2174         .fd = fd,
2175         .gsi = virq,
2176         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2177     };
2178 
2179     if (rfd != -1) {
2180         assert(assign);
2181         if (kvm_irqchip_is_split()) {
2182             /*
2183              * When the slow irqchip (e.g. IOAPIC) is in the
2184              * userspace, KVM kernel resamplefd will not work because
2185              * the EOI of the interrupt will be delivered to userspace
2186              * instead, so the KVM kernel resamplefd kick will be
2187              * skipped.  The userspace here mimics what the kernel
2188              * provides with resamplefd, remember the resamplefd and
2189              * kick it when we receive EOI of this IRQ.
2190              *
2191              * This is hackery because IOAPIC is mostly bypassed
2192              * (except EOI broadcasts) when irqfd is used.  However
2193              * this can bring much performance back for split irqchip
2194              * with INTx IRQs (for VFIO, this gives 93% perf of the
2195              * full fast path, which is 46% perf boost comparing to
2196              * the INTx slow path).
2197              */
2198             kvm_resample_fd_insert(virq, resample);
2199         } else {
2200             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2201             irqfd.resamplefd = rfd;
2202         }
2203     } else if (!assign) {
2204         if (kvm_irqchip_is_split()) {
2205             kvm_resample_fd_remove(virq);
2206         }
2207     }
2208 
2209     if (!kvm_irqfds_enabled()) {
2210         return -ENOSYS;
2211     }
2212 
2213     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2214 }
2215 
2216 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2217 {
2218     struct kvm_irq_routing_entry kroute = {};
2219     int virq;
2220 
2221     if (!kvm_gsi_routing_enabled()) {
2222         return -ENOSYS;
2223     }
2224 
2225     virq = kvm_irqchip_get_virq(s);
2226     if (virq < 0) {
2227         return virq;
2228     }
2229 
2230     kroute.gsi = virq;
2231     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2232     kroute.flags = 0;
2233     kroute.u.adapter.summary_addr = adapter->summary_addr;
2234     kroute.u.adapter.ind_addr = adapter->ind_addr;
2235     kroute.u.adapter.summary_offset = adapter->summary_offset;
2236     kroute.u.adapter.ind_offset = adapter->ind_offset;
2237     kroute.u.adapter.adapter_id = adapter->adapter_id;
2238 
2239     kvm_add_routing_entry(s, &kroute);
2240 
2241     return virq;
2242 }
2243 
2244 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2245 {
2246     struct kvm_irq_routing_entry kroute = {};
2247     int virq;
2248 
2249     if (!kvm_gsi_routing_enabled()) {
2250         return -ENOSYS;
2251     }
2252     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2253         return -ENOSYS;
2254     }
2255     virq = kvm_irqchip_get_virq(s);
2256     if (virq < 0) {
2257         return virq;
2258     }
2259 
2260     kroute.gsi = virq;
2261     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2262     kroute.flags = 0;
2263     kroute.u.hv_sint.vcpu = vcpu;
2264     kroute.u.hv_sint.sint = sint;
2265 
2266     kvm_add_routing_entry(s, &kroute);
2267     kvm_irqchip_commit_routes(s);
2268 
2269     return virq;
2270 }
2271 
2272 #else /* !KVM_CAP_IRQ_ROUTING */
2273 
2274 void kvm_init_irq_routing(KVMState *s)
2275 {
2276 }
2277 
2278 void kvm_irqchip_release_virq(KVMState *s, int virq)
2279 {
2280 }
2281 
2282 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2283 {
2284     abort();
2285 }
2286 
2287 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2288 {
2289     return -ENOSYS;
2290 }
2291 
2292 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2293 {
2294     return -ENOSYS;
2295 }
2296 
2297 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2298 {
2299     return -ENOSYS;
2300 }
2301 
2302 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2303                                     EventNotifier *resample, int virq,
2304                                     bool assign)
2305 {
2306     abort();
2307 }
2308 
2309 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2310 {
2311     return -ENOSYS;
2312 }
2313 #endif /* !KVM_CAP_IRQ_ROUTING */
2314 
2315 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2316                                        EventNotifier *rn, int virq)
2317 {
2318     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2319 }
2320 
2321 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2322                                           int virq)
2323 {
2324     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2325 }
2326 
2327 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2328                                    EventNotifier *rn, qemu_irq irq)
2329 {
2330     gpointer key, gsi;
2331     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2332 
2333     if (!found) {
2334         return -ENXIO;
2335     }
2336     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2337 }
2338 
2339 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2340                                       qemu_irq irq)
2341 {
2342     gpointer key, gsi;
2343     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2344 
2345     if (!found) {
2346         return -ENXIO;
2347     }
2348     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2349 }
2350 
2351 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2352 {
2353     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2354 }
2355 
2356 static void kvm_irqchip_create(KVMState *s)
2357 {
2358     int ret;
2359 
2360     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2361     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2362         ;
2363     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2364         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2365         if (ret < 0) {
2366             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2367             exit(1);
2368         }
2369     } else {
2370         return;
2371     }
2372 
2373     /* First probe and see if there's a arch-specific hook to create the
2374      * in-kernel irqchip for us */
2375     ret = kvm_arch_irqchip_create(s);
2376     if (ret == 0) {
2377         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2378             error_report("Split IRQ chip mode not supported.");
2379             exit(1);
2380         } else {
2381             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2382         }
2383     }
2384     if (ret < 0) {
2385         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2386         exit(1);
2387     }
2388 
2389     kvm_kernel_irqchip = true;
2390     /* If we have an in-kernel IRQ chip then we must have asynchronous
2391      * interrupt delivery (though the reverse is not necessarily true)
2392      */
2393     kvm_async_interrupts_allowed = true;
2394     kvm_halt_in_kernel_allowed = true;
2395 
2396     kvm_init_irq_routing(s);
2397 
2398     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2399 }
2400 
2401 /* Find number of supported CPUs using the recommended
2402  * procedure from the kernel API documentation to cope with
2403  * older kernels that may be missing capabilities.
2404  */
2405 static int kvm_recommended_vcpus(KVMState *s)
2406 {
2407     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2408     return (ret) ? ret : 4;
2409 }
2410 
2411 static int kvm_max_vcpus(KVMState *s)
2412 {
2413     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2414     return (ret) ? ret : kvm_recommended_vcpus(s);
2415 }
2416 
2417 static int kvm_max_vcpu_id(KVMState *s)
2418 {
2419     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2420     return (ret) ? ret : kvm_max_vcpus(s);
2421 }
2422 
2423 bool kvm_vcpu_id_is_valid(int vcpu_id)
2424 {
2425     KVMState *s = KVM_STATE(current_accel());
2426     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2427 }
2428 
2429 bool kvm_dirty_ring_enabled(void)
2430 {
2431     return kvm_state->kvm_dirty_ring_size ? true : false;
2432 }
2433 
2434 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2435                            strList *names, strList *targets, Error **errp);
2436 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2437 
2438 uint32_t kvm_dirty_ring_size(void)
2439 {
2440     return kvm_state->kvm_dirty_ring_size;
2441 }
2442 
2443 static int kvm_init(MachineState *ms)
2444 {
2445     MachineClass *mc = MACHINE_GET_CLASS(ms);
2446     static const char upgrade_note[] =
2447         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2448         "(see http://sourceforge.net/projects/kvm).\n";
2449     const struct {
2450         const char *name;
2451         int num;
2452     } num_cpus[] = {
2453         { "SMP",          ms->smp.cpus },
2454         { "hotpluggable", ms->smp.max_cpus },
2455         { /* end of list */ }
2456     }, *nc = num_cpus;
2457     int soft_vcpus_limit, hard_vcpus_limit;
2458     KVMState *s;
2459     const KVMCapabilityInfo *missing_cap;
2460     int ret;
2461     int type = 0;
2462     uint64_t dirty_log_manual_caps;
2463 
2464     qemu_mutex_init(&kml_slots_lock);
2465 
2466     s = KVM_STATE(ms->accelerator);
2467 
2468     /*
2469      * On systems where the kernel can support different base page
2470      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2471      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2472      * page size for the system though.
2473      */
2474     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2475 
2476     s->sigmask_len = 8;
2477     accel_blocker_init();
2478 
2479 #ifdef KVM_CAP_SET_GUEST_DEBUG
2480     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2481 #endif
2482     QLIST_INIT(&s->kvm_parked_vcpus);
2483     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2484     if (s->fd == -1) {
2485         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2486         ret = -errno;
2487         goto err;
2488     }
2489 
2490     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2491     if (ret < KVM_API_VERSION) {
2492         if (ret >= 0) {
2493             ret = -EINVAL;
2494         }
2495         fprintf(stderr, "kvm version too old\n");
2496         goto err;
2497     }
2498 
2499     if (ret > KVM_API_VERSION) {
2500         ret = -EINVAL;
2501         fprintf(stderr, "kvm version not supported\n");
2502         goto err;
2503     }
2504 
2505     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2506     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2507 
2508     /* If unspecified, use the default value */
2509     if (!s->nr_slots) {
2510         s->nr_slots = 32;
2511     }
2512 
2513     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2514     if (s->nr_as <= 1) {
2515         s->nr_as = 1;
2516     }
2517     s->as = g_new0(struct KVMAs, s->nr_as);
2518 
2519     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2520         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2521                                                             "kvm-type",
2522                                                             &error_abort);
2523         type = mc->kvm_type(ms, kvm_type);
2524     } else if (mc->kvm_type) {
2525         type = mc->kvm_type(ms, NULL);
2526     }
2527 
2528     do {
2529         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2530     } while (ret == -EINTR);
2531 
2532     if (ret < 0) {
2533         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2534                 strerror(-ret));
2535 
2536 #ifdef TARGET_S390X
2537         if (ret == -EINVAL) {
2538             fprintf(stderr,
2539                     "Host kernel setup problem detected. Please verify:\n");
2540             fprintf(stderr, "- for kernels supporting the switch_amode or"
2541                     " user_mode parameters, whether\n");
2542             fprintf(stderr,
2543                     "  user space is running in primary address space\n");
2544             fprintf(stderr,
2545                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2546                     "whether it is enabled\n");
2547         }
2548 #elif defined(TARGET_PPC)
2549         if (ret == -EINVAL) {
2550             fprintf(stderr,
2551                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2552                     (type == 2) ? "pr" : "hv");
2553         }
2554 #endif
2555         goto err;
2556     }
2557 
2558     s->vmfd = ret;
2559 
2560     /* check the vcpu limits */
2561     soft_vcpus_limit = kvm_recommended_vcpus(s);
2562     hard_vcpus_limit = kvm_max_vcpus(s);
2563 
2564     while (nc->name) {
2565         if (nc->num > soft_vcpus_limit) {
2566             warn_report("Number of %s cpus requested (%d) exceeds "
2567                         "the recommended cpus supported by KVM (%d)",
2568                         nc->name, nc->num, soft_vcpus_limit);
2569 
2570             if (nc->num > hard_vcpus_limit) {
2571                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2572                         "the maximum cpus supported by KVM (%d)\n",
2573                         nc->name, nc->num, hard_vcpus_limit);
2574                 exit(1);
2575             }
2576         }
2577         nc++;
2578     }
2579 
2580     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2581     if (!missing_cap) {
2582         missing_cap =
2583             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2584     }
2585     if (missing_cap) {
2586         ret = -EINVAL;
2587         fprintf(stderr, "kvm does not support %s\n%s",
2588                 missing_cap->name, upgrade_note);
2589         goto err;
2590     }
2591 
2592     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2593     s->coalesced_pio = s->coalesced_mmio &&
2594                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2595 
2596     /*
2597      * Enable KVM dirty ring if supported, otherwise fall back to
2598      * dirty logging mode
2599      */
2600     ret = kvm_dirty_ring_init(s);
2601     if (ret < 0) {
2602         goto err;
2603     }
2604 
2605     /*
2606      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2607      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2608      * page is wr-protected initially, which is against how kvm dirty ring is
2609      * usage - kvm dirty ring requires all pages are wr-protected at the very
2610      * beginning.  Enabling this feature for dirty ring causes data corruption.
2611      *
2612      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2613      * we may expect a higher stall time when starting the migration.  In the
2614      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2615      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2616      * guest pages.
2617      */
2618     if (!s->kvm_dirty_ring_size) {
2619         dirty_log_manual_caps =
2620             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2621         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2622                                   KVM_DIRTY_LOG_INITIALLY_SET);
2623         s->manual_dirty_log_protect = dirty_log_manual_caps;
2624         if (dirty_log_manual_caps) {
2625             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2626                                     dirty_log_manual_caps);
2627             if (ret) {
2628                 warn_report("Trying to enable capability %"PRIu64" of "
2629                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2630                             "Falling back to the legacy mode. ",
2631                             dirty_log_manual_caps);
2632                 s->manual_dirty_log_protect = 0;
2633             }
2634         }
2635     }
2636 
2637 #ifdef KVM_CAP_VCPU_EVENTS
2638     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2639 #endif
2640 
2641     s->robust_singlestep =
2642         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2643 
2644 #ifdef KVM_CAP_DEBUGREGS
2645     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2646 #endif
2647 
2648     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2649 
2650 #ifdef KVM_CAP_IRQ_ROUTING
2651     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2652 #endif
2653 
2654     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2655 
2656     s->irq_set_ioctl = KVM_IRQ_LINE;
2657     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2658         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2659     }
2660 
2661     kvm_readonly_mem_allowed =
2662         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2663 
2664     kvm_eventfds_allowed =
2665         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2666 
2667     kvm_irqfds_allowed =
2668         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2669 
2670     kvm_resamplefds_allowed =
2671         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2672 
2673     kvm_vm_attributes_allowed =
2674         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2675 
2676     kvm_ioeventfd_any_length_allowed =
2677         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2678 
2679 #ifdef KVM_CAP_SET_GUEST_DEBUG
2680     kvm_has_guest_debug =
2681         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2682 #endif
2683 
2684     kvm_sstep_flags = 0;
2685     if (kvm_has_guest_debug) {
2686         kvm_sstep_flags = SSTEP_ENABLE;
2687 
2688 #if defined KVM_CAP_SET_GUEST_DEBUG2
2689         int guest_debug_flags =
2690             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2691 
2692         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2693             kvm_sstep_flags |= SSTEP_NOIRQ;
2694         }
2695 #endif
2696     }
2697 
2698     kvm_state = s;
2699 
2700     ret = kvm_arch_init(ms, s);
2701     if (ret < 0) {
2702         goto err;
2703     }
2704 
2705     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2706         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2707     }
2708 
2709     qemu_register_reset(kvm_unpoison_all, NULL);
2710 
2711     if (s->kernel_irqchip_allowed) {
2712         kvm_irqchip_create(s);
2713     }
2714 
2715     if (kvm_eventfds_allowed) {
2716         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2717         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2718     }
2719     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2720     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2721 
2722     kvm_memory_listener_register(s, &s->memory_listener,
2723                                  &address_space_memory, 0, "kvm-memory");
2724     if (kvm_eventfds_allowed) {
2725         memory_listener_register(&kvm_io_listener,
2726                                  &address_space_io);
2727     }
2728     memory_listener_register(&kvm_coalesced_pio_listener,
2729                              &address_space_io);
2730 
2731     s->many_ioeventfds = kvm_check_many_ioeventfds();
2732 
2733     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2734     if (!s->sync_mmu) {
2735         ret = ram_block_discard_disable(true);
2736         assert(!ret);
2737     }
2738 
2739     if (s->kvm_dirty_ring_size) {
2740         ret = kvm_dirty_ring_reaper_init(s);
2741         if (ret) {
2742             goto err;
2743         }
2744     }
2745 
2746     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2747         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2748                             query_stats_schemas_cb);
2749     }
2750 
2751     return 0;
2752 
2753 err:
2754     assert(ret < 0);
2755     if (s->vmfd >= 0) {
2756         close(s->vmfd);
2757     }
2758     if (s->fd != -1) {
2759         close(s->fd);
2760     }
2761     g_free(s->memory_listener.slots);
2762 
2763     return ret;
2764 }
2765 
2766 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2767 {
2768     s->sigmask_len = sigmask_len;
2769 }
2770 
2771 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2772                           int size, uint32_t count)
2773 {
2774     int i;
2775     uint8_t *ptr = data;
2776 
2777     for (i = 0; i < count; i++) {
2778         address_space_rw(&address_space_io, port, attrs,
2779                          ptr, size,
2780                          direction == KVM_EXIT_IO_OUT);
2781         ptr += size;
2782     }
2783 }
2784 
2785 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2786 {
2787     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2788             run->internal.suberror);
2789 
2790     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2791         int i;
2792 
2793         for (i = 0; i < run->internal.ndata; ++i) {
2794             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2795                     i, (uint64_t)run->internal.data[i]);
2796         }
2797     }
2798     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2799         fprintf(stderr, "emulation failure\n");
2800         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2801             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2802             return EXCP_INTERRUPT;
2803         }
2804     }
2805     /* FIXME: Should trigger a qmp message to let management know
2806      * something went wrong.
2807      */
2808     return -1;
2809 }
2810 
2811 void kvm_flush_coalesced_mmio_buffer(void)
2812 {
2813     KVMState *s = kvm_state;
2814 
2815     if (!s || s->coalesced_flush_in_progress) {
2816         return;
2817     }
2818 
2819     s->coalesced_flush_in_progress = true;
2820 
2821     if (s->coalesced_mmio_ring) {
2822         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2823         while (ring->first != ring->last) {
2824             struct kvm_coalesced_mmio *ent;
2825 
2826             ent = &ring->coalesced_mmio[ring->first];
2827 
2828             if (ent->pio == 1) {
2829                 address_space_write(&address_space_io, ent->phys_addr,
2830                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2831                                     ent->len);
2832             } else {
2833                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2834             }
2835             smp_wmb();
2836             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2837         }
2838     }
2839 
2840     s->coalesced_flush_in_progress = false;
2841 }
2842 
2843 bool kvm_cpu_check_are_resettable(void)
2844 {
2845     return kvm_arch_cpu_check_are_resettable();
2846 }
2847 
2848 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2849 {
2850     if (!cpu->vcpu_dirty) {
2851         kvm_arch_get_registers(cpu);
2852         cpu->vcpu_dirty = true;
2853     }
2854 }
2855 
2856 void kvm_cpu_synchronize_state(CPUState *cpu)
2857 {
2858     if (!cpu->vcpu_dirty) {
2859         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2860     }
2861 }
2862 
2863 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2864 {
2865     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2866     cpu->vcpu_dirty = false;
2867 }
2868 
2869 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2870 {
2871     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2872 }
2873 
2874 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2875 {
2876     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2877     cpu->vcpu_dirty = false;
2878 }
2879 
2880 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2881 {
2882     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2883 }
2884 
2885 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2886 {
2887     cpu->vcpu_dirty = true;
2888 }
2889 
2890 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2891 {
2892     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2893 }
2894 
2895 #ifdef KVM_HAVE_MCE_INJECTION
2896 static __thread void *pending_sigbus_addr;
2897 static __thread int pending_sigbus_code;
2898 static __thread bool have_sigbus_pending;
2899 #endif
2900 
2901 static void kvm_cpu_kick(CPUState *cpu)
2902 {
2903     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2904 }
2905 
2906 static void kvm_cpu_kick_self(void)
2907 {
2908     if (kvm_immediate_exit) {
2909         kvm_cpu_kick(current_cpu);
2910     } else {
2911         qemu_cpu_kick_self();
2912     }
2913 }
2914 
2915 static void kvm_eat_signals(CPUState *cpu)
2916 {
2917     struct timespec ts = { 0, 0 };
2918     siginfo_t siginfo;
2919     sigset_t waitset;
2920     sigset_t chkset;
2921     int r;
2922 
2923     if (kvm_immediate_exit) {
2924         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2925         /* Write kvm_run->immediate_exit before the cpu->exit_request
2926          * write in kvm_cpu_exec.
2927          */
2928         smp_wmb();
2929         return;
2930     }
2931 
2932     sigemptyset(&waitset);
2933     sigaddset(&waitset, SIG_IPI);
2934 
2935     do {
2936         r = sigtimedwait(&waitset, &siginfo, &ts);
2937         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2938             perror("sigtimedwait");
2939             exit(1);
2940         }
2941 
2942         r = sigpending(&chkset);
2943         if (r == -1) {
2944             perror("sigpending");
2945             exit(1);
2946         }
2947     } while (sigismember(&chkset, SIG_IPI));
2948 }
2949 
2950 int kvm_cpu_exec(CPUState *cpu)
2951 {
2952     struct kvm_run *run = cpu->kvm_run;
2953     int ret, run_ret;
2954 
2955     DPRINTF("kvm_cpu_exec()\n");
2956 
2957     if (kvm_arch_process_async_events(cpu)) {
2958         qatomic_set(&cpu->exit_request, 0);
2959         return EXCP_HLT;
2960     }
2961 
2962     qemu_mutex_unlock_iothread();
2963     cpu_exec_start(cpu);
2964 
2965     do {
2966         MemTxAttrs attrs;
2967 
2968         if (cpu->vcpu_dirty) {
2969             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2970             cpu->vcpu_dirty = false;
2971         }
2972 
2973         kvm_arch_pre_run(cpu, run);
2974         if (qatomic_read(&cpu->exit_request)) {
2975             DPRINTF("interrupt exit requested\n");
2976             /*
2977              * KVM requires us to reenter the kernel after IO exits to complete
2978              * instruction emulation. This self-signal will ensure that we
2979              * leave ASAP again.
2980              */
2981             kvm_cpu_kick_self();
2982         }
2983 
2984         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2985          * Matching barrier in kvm_eat_signals.
2986          */
2987         smp_rmb();
2988 
2989         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2990 
2991         attrs = kvm_arch_post_run(cpu, run);
2992 
2993 #ifdef KVM_HAVE_MCE_INJECTION
2994         if (unlikely(have_sigbus_pending)) {
2995             qemu_mutex_lock_iothread();
2996             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2997                                     pending_sigbus_addr);
2998             have_sigbus_pending = false;
2999             qemu_mutex_unlock_iothread();
3000         }
3001 #endif
3002 
3003         if (run_ret < 0) {
3004             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3005                 DPRINTF("io window exit\n");
3006                 kvm_eat_signals(cpu);
3007                 ret = EXCP_INTERRUPT;
3008                 break;
3009             }
3010             fprintf(stderr, "error: kvm run failed %s\n",
3011                     strerror(-run_ret));
3012 #ifdef TARGET_PPC
3013             if (run_ret == -EBUSY) {
3014                 fprintf(stderr,
3015                         "This is probably because your SMT is enabled.\n"
3016                         "VCPU can only run on primary threads with all "
3017                         "secondary threads offline.\n");
3018             }
3019 #endif
3020             ret = -1;
3021             break;
3022         }
3023 
3024         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3025         switch (run->exit_reason) {
3026         case KVM_EXIT_IO:
3027             DPRINTF("handle_io\n");
3028             /* Called outside BQL */
3029             kvm_handle_io(run->io.port, attrs,
3030                           (uint8_t *)run + run->io.data_offset,
3031                           run->io.direction,
3032                           run->io.size,
3033                           run->io.count);
3034             ret = 0;
3035             break;
3036         case KVM_EXIT_MMIO:
3037             DPRINTF("handle_mmio\n");
3038             /* Called outside BQL */
3039             address_space_rw(&address_space_memory,
3040                              run->mmio.phys_addr, attrs,
3041                              run->mmio.data,
3042                              run->mmio.len,
3043                              run->mmio.is_write);
3044             ret = 0;
3045             break;
3046         case KVM_EXIT_IRQ_WINDOW_OPEN:
3047             DPRINTF("irq_window_open\n");
3048             ret = EXCP_INTERRUPT;
3049             break;
3050         case KVM_EXIT_SHUTDOWN:
3051             DPRINTF("shutdown\n");
3052             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3053             ret = EXCP_INTERRUPT;
3054             break;
3055         case KVM_EXIT_UNKNOWN:
3056             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3057                     (uint64_t)run->hw.hardware_exit_reason);
3058             ret = -1;
3059             break;
3060         case KVM_EXIT_INTERNAL_ERROR:
3061             ret = kvm_handle_internal_error(cpu, run);
3062             break;
3063         case KVM_EXIT_DIRTY_RING_FULL:
3064             /*
3065              * We shouldn't continue if the dirty ring of this vcpu is
3066              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3067              */
3068             trace_kvm_dirty_ring_full(cpu->cpu_index);
3069             qemu_mutex_lock_iothread();
3070             /*
3071              * We throttle vCPU by making it sleep once it exit from kernel
3072              * due to dirty ring full. In the dirtylimit scenario, reaping
3073              * all vCPUs after a single vCPU dirty ring get full result in
3074              * the miss of sleep, so just reap the ring-fulled vCPU.
3075              */
3076             if (dirtylimit_in_service()) {
3077                 kvm_dirty_ring_reap(kvm_state, cpu);
3078             } else {
3079                 kvm_dirty_ring_reap(kvm_state, NULL);
3080             }
3081             qemu_mutex_unlock_iothread();
3082             dirtylimit_vcpu_execute(cpu);
3083             ret = 0;
3084             break;
3085         case KVM_EXIT_SYSTEM_EVENT:
3086             switch (run->system_event.type) {
3087             case KVM_SYSTEM_EVENT_SHUTDOWN:
3088                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3089                 ret = EXCP_INTERRUPT;
3090                 break;
3091             case KVM_SYSTEM_EVENT_RESET:
3092                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3093                 ret = EXCP_INTERRUPT;
3094                 break;
3095             case KVM_SYSTEM_EVENT_CRASH:
3096                 kvm_cpu_synchronize_state(cpu);
3097                 qemu_mutex_lock_iothread();
3098                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3099                 qemu_mutex_unlock_iothread();
3100                 ret = 0;
3101                 break;
3102             default:
3103                 DPRINTF("kvm_arch_handle_exit\n");
3104                 ret = kvm_arch_handle_exit(cpu, run);
3105                 break;
3106             }
3107             break;
3108         default:
3109             DPRINTF("kvm_arch_handle_exit\n");
3110             ret = kvm_arch_handle_exit(cpu, run);
3111             break;
3112         }
3113     } while (ret == 0);
3114 
3115     cpu_exec_end(cpu);
3116     qemu_mutex_lock_iothread();
3117 
3118     if (ret < 0) {
3119         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3120         vm_stop(RUN_STATE_INTERNAL_ERROR);
3121     }
3122 
3123     qatomic_set(&cpu->exit_request, 0);
3124     return ret;
3125 }
3126 
3127 int kvm_ioctl(KVMState *s, int type, ...)
3128 {
3129     int ret;
3130     void *arg;
3131     va_list ap;
3132 
3133     va_start(ap, type);
3134     arg = va_arg(ap, void *);
3135     va_end(ap);
3136 
3137     trace_kvm_ioctl(type, arg);
3138     ret = ioctl(s->fd, type, arg);
3139     if (ret == -1) {
3140         ret = -errno;
3141     }
3142     return ret;
3143 }
3144 
3145 int kvm_vm_ioctl(KVMState *s, int type, ...)
3146 {
3147     int ret;
3148     void *arg;
3149     va_list ap;
3150 
3151     va_start(ap, type);
3152     arg = va_arg(ap, void *);
3153     va_end(ap);
3154 
3155     trace_kvm_vm_ioctl(type, arg);
3156     accel_ioctl_begin();
3157     ret = ioctl(s->vmfd, type, arg);
3158     accel_ioctl_end();
3159     if (ret == -1) {
3160         ret = -errno;
3161     }
3162     return ret;
3163 }
3164 
3165 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3166 {
3167     int ret;
3168     void *arg;
3169     va_list ap;
3170 
3171     va_start(ap, type);
3172     arg = va_arg(ap, void *);
3173     va_end(ap);
3174 
3175     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3176     accel_cpu_ioctl_begin(cpu);
3177     ret = ioctl(cpu->kvm_fd, type, arg);
3178     accel_cpu_ioctl_end(cpu);
3179     if (ret == -1) {
3180         ret = -errno;
3181     }
3182     return ret;
3183 }
3184 
3185 int kvm_device_ioctl(int fd, int type, ...)
3186 {
3187     int ret;
3188     void *arg;
3189     va_list ap;
3190 
3191     va_start(ap, type);
3192     arg = va_arg(ap, void *);
3193     va_end(ap);
3194 
3195     trace_kvm_device_ioctl(fd, type, arg);
3196     accel_ioctl_begin();
3197     ret = ioctl(fd, type, arg);
3198     accel_ioctl_end();
3199     if (ret == -1) {
3200         ret = -errno;
3201     }
3202     return ret;
3203 }
3204 
3205 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3206 {
3207     int ret;
3208     struct kvm_device_attr attribute = {
3209         .group = group,
3210         .attr = attr,
3211     };
3212 
3213     if (!kvm_vm_attributes_allowed) {
3214         return 0;
3215     }
3216 
3217     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3218     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3219     return ret ? 0 : 1;
3220 }
3221 
3222 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3223 {
3224     struct kvm_device_attr attribute = {
3225         .group = group,
3226         .attr = attr,
3227         .flags = 0,
3228     };
3229 
3230     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3231 }
3232 
3233 int kvm_device_access(int fd, int group, uint64_t attr,
3234                       void *val, bool write, Error **errp)
3235 {
3236     struct kvm_device_attr kvmattr;
3237     int err;
3238 
3239     kvmattr.flags = 0;
3240     kvmattr.group = group;
3241     kvmattr.attr = attr;
3242     kvmattr.addr = (uintptr_t)val;
3243 
3244     err = kvm_device_ioctl(fd,
3245                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3246                            &kvmattr);
3247     if (err < 0) {
3248         error_setg_errno(errp, -err,
3249                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3250                          "attr 0x%016" PRIx64,
3251                          write ? "SET" : "GET", group, attr);
3252     }
3253     return err;
3254 }
3255 
3256 bool kvm_has_sync_mmu(void)
3257 {
3258     return kvm_state->sync_mmu;
3259 }
3260 
3261 int kvm_has_vcpu_events(void)
3262 {
3263     return kvm_state->vcpu_events;
3264 }
3265 
3266 int kvm_has_robust_singlestep(void)
3267 {
3268     return kvm_state->robust_singlestep;
3269 }
3270 
3271 int kvm_has_debugregs(void)
3272 {
3273     return kvm_state->debugregs;
3274 }
3275 
3276 int kvm_max_nested_state_length(void)
3277 {
3278     return kvm_state->max_nested_state_len;
3279 }
3280 
3281 int kvm_has_many_ioeventfds(void)
3282 {
3283     if (!kvm_enabled()) {
3284         return 0;
3285     }
3286     return kvm_state->many_ioeventfds;
3287 }
3288 
3289 int kvm_has_gsi_routing(void)
3290 {
3291 #ifdef KVM_CAP_IRQ_ROUTING
3292     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3293 #else
3294     return false;
3295 #endif
3296 }
3297 
3298 int kvm_has_intx_set_mask(void)
3299 {
3300     return kvm_state->intx_set_mask;
3301 }
3302 
3303 bool kvm_arm_supports_user_irq(void)
3304 {
3305     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3306 }
3307 
3308 #ifdef KVM_CAP_SET_GUEST_DEBUG
3309 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3310                                                  target_ulong pc)
3311 {
3312     struct kvm_sw_breakpoint *bp;
3313 
3314     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3315         if (bp->pc == pc) {
3316             return bp;
3317         }
3318     }
3319     return NULL;
3320 }
3321 
3322 int kvm_sw_breakpoints_active(CPUState *cpu)
3323 {
3324     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3325 }
3326 
3327 struct kvm_set_guest_debug_data {
3328     struct kvm_guest_debug dbg;
3329     int err;
3330 };
3331 
3332 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3333 {
3334     struct kvm_set_guest_debug_data *dbg_data =
3335         (struct kvm_set_guest_debug_data *) data.host_ptr;
3336 
3337     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3338                                    &dbg_data->dbg);
3339 }
3340 
3341 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3342 {
3343     struct kvm_set_guest_debug_data data;
3344 
3345     data.dbg.control = reinject_trap;
3346 
3347     if (cpu->singlestep_enabled) {
3348         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3349 
3350         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3351             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3352         }
3353     }
3354     kvm_arch_update_guest_debug(cpu, &data.dbg);
3355 
3356     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3357                RUN_ON_CPU_HOST_PTR(&data));
3358     return data.err;
3359 }
3360 
3361 bool kvm_supports_guest_debug(void)
3362 {
3363     /* probed during kvm_init() */
3364     return kvm_has_guest_debug;
3365 }
3366 
3367 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3368 {
3369     struct kvm_sw_breakpoint *bp;
3370     int err;
3371 
3372     if (type == GDB_BREAKPOINT_SW) {
3373         bp = kvm_find_sw_breakpoint(cpu, addr);
3374         if (bp) {
3375             bp->use_count++;
3376             return 0;
3377         }
3378 
3379         bp = g_new(struct kvm_sw_breakpoint, 1);
3380         bp->pc = addr;
3381         bp->use_count = 1;
3382         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3383         if (err) {
3384             g_free(bp);
3385             return err;
3386         }
3387 
3388         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3389     } else {
3390         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3391         if (err) {
3392             return err;
3393         }
3394     }
3395 
3396     CPU_FOREACH(cpu) {
3397         err = kvm_update_guest_debug(cpu, 0);
3398         if (err) {
3399             return err;
3400         }
3401     }
3402     return 0;
3403 }
3404 
3405 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3406 {
3407     struct kvm_sw_breakpoint *bp;
3408     int err;
3409 
3410     if (type == GDB_BREAKPOINT_SW) {
3411         bp = kvm_find_sw_breakpoint(cpu, addr);
3412         if (!bp) {
3413             return -ENOENT;
3414         }
3415 
3416         if (bp->use_count > 1) {
3417             bp->use_count--;
3418             return 0;
3419         }
3420 
3421         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3422         if (err) {
3423             return err;
3424         }
3425 
3426         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3427         g_free(bp);
3428     } else {
3429         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3430         if (err) {
3431             return err;
3432         }
3433     }
3434 
3435     CPU_FOREACH(cpu) {
3436         err = kvm_update_guest_debug(cpu, 0);
3437         if (err) {
3438             return err;
3439         }
3440     }
3441     return 0;
3442 }
3443 
3444 void kvm_remove_all_breakpoints(CPUState *cpu)
3445 {
3446     struct kvm_sw_breakpoint *bp, *next;
3447     KVMState *s = cpu->kvm_state;
3448     CPUState *tmpcpu;
3449 
3450     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3451         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3452             /* Try harder to find a CPU that currently sees the breakpoint. */
3453             CPU_FOREACH(tmpcpu) {
3454                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3455                     break;
3456                 }
3457             }
3458         }
3459         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3460         g_free(bp);
3461     }
3462     kvm_arch_remove_all_hw_breakpoints();
3463 
3464     CPU_FOREACH(cpu) {
3465         kvm_update_guest_debug(cpu, 0);
3466     }
3467 }
3468 
3469 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3470 
3471 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3472 {
3473     KVMState *s = kvm_state;
3474     struct kvm_signal_mask *sigmask;
3475     int r;
3476 
3477     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3478 
3479     sigmask->len = s->sigmask_len;
3480     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3481     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3482     g_free(sigmask);
3483 
3484     return r;
3485 }
3486 
3487 static void kvm_ipi_signal(int sig)
3488 {
3489     if (current_cpu) {
3490         assert(kvm_immediate_exit);
3491         kvm_cpu_kick(current_cpu);
3492     }
3493 }
3494 
3495 void kvm_init_cpu_signals(CPUState *cpu)
3496 {
3497     int r;
3498     sigset_t set;
3499     struct sigaction sigact;
3500 
3501     memset(&sigact, 0, sizeof(sigact));
3502     sigact.sa_handler = kvm_ipi_signal;
3503     sigaction(SIG_IPI, &sigact, NULL);
3504 
3505     pthread_sigmask(SIG_BLOCK, NULL, &set);
3506 #if defined KVM_HAVE_MCE_INJECTION
3507     sigdelset(&set, SIGBUS);
3508     pthread_sigmask(SIG_SETMASK, &set, NULL);
3509 #endif
3510     sigdelset(&set, SIG_IPI);
3511     if (kvm_immediate_exit) {
3512         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3513     } else {
3514         r = kvm_set_signal_mask(cpu, &set);
3515     }
3516     if (r) {
3517         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3518         exit(1);
3519     }
3520 }
3521 
3522 /* Called asynchronously in VCPU thread.  */
3523 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3524 {
3525 #ifdef KVM_HAVE_MCE_INJECTION
3526     if (have_sigbus_pending) {
3527         return 1;
3528     }
3529     have_sigbus_pending = true;
3530     pending_sigbus_addr = addr;
3531     pending_sigbus_code = code;
3532     qatomic_set(&cpu->exit_request, 1);
3533     return 0;
3534 #else
3535     return 1;
3536 #endif
3537 }
3538 
3539 /* Called synchronously (via signalfd) in main thread.  */
3540 int kvm_on_sigbus(int code, void *addr)
3541 {
3542 #ifdef KVM_HAVE_MCE_INJECTION
3543     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3544      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3545      * we can only get action optional here.
3546      */
3547     assert(code != BUS_MCEERR_AR);
3548     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3549     return 0;
3550 #else
3551     return 1;
3552 #endif
3553 }
3554 
3555 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3556 {
3557     int ret;
3558     struct kvm_create_device create_dev;
3559 
3560     create_dev.type = type;
3561     create_dev.fd = -1;
3562     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3563 
3564     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3565         return -ENOTSUP;
3566     }
3567 
3568     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3569     if (ret) {
3570         return ret;
3571     }
3572 
3573     return test ? 0 : create_dev.fd;
3574 }
3575 
3576 bool kvm_device_supported(int vmfd, uint64_t type)
3577 {
3578     struct kvm_create_device create_dev = {
3579         .type = type,
3580         .fd = -1,
3581         .flags = KVM_CREATE_DEVICE_TEST,
3582     };
3583 
3584     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3585         return false;
3586     }
3587 
3588     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3589 }
3590 
3591 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3592 {
3593     struct kvm_one_reg reg;
3594     int r;
3595 
3596     reg.id = id;
3597     reg.addr = (uintptr_t) source;
3598     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3599     if (r) {
3600         trace_kvm_failed_reg_set(id, strerror(-r));
3601     }
3602     return r;
3603 }
3604 
3605 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3606 {
3607     struct kvm_one_reg reg;
3608     int r;
3609 
3610     reg.id = id;
3611     reg.addr = (uintptr_t) target;
3612     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3613     if (r) {
3614         trace_kvm_failed_reg_get(id, strerror(-r));
3615     }
3616     return r;
3617 }
3618 
3619 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3620                                  hwaddr start_addr, hwaddr size)
3621 {
3622     KVMState *kvm = KVM_STATE(ms->accelerator);
3623     int i;
3624 
3625     for (i = 0; i < kvm->nr_as; ++i) {
3626         if (kvm->as[i].as == as && kvm->as[i].ml) {
3627             size = MIN(kvm_max_slot_size, size);
3628             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3629                                                     start_addr, size);
3630         }
3631     }
3632 
3633     return false;
3634 }
3635 
3636 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3637                                    const char *name, void *opaque,
3638                                    Error **errp)
3639 {
3640     KVMState *s = KVM_STATE(obj);
3641     int64_t value = s->kvm_shadow_mem;
3642 
3643     visit_type_int(v, name, &value, errp);
3644 }
3645 
3646 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3647                                    const char *name, void *opaque,
3648                                    Error **errp)
3649 {
3650     KVMState *s = KVM_STATE(obj);
3651     int64_t value;
3652 
3653     if (s->fd != -1) {
3654         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3655         return;
3656     }
3657 
3658     if (!visit_type_int(v, name, &value, errp)) {
3659         return;
3660     }
3661 
3662     s->kvm_shadow_mem = value;
3663 }
3664 
3665 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3666                                    const char *name, void *opaque,
3667                                    Error **errp)
3668 {
3669     KVMState *s = KVM_STATE(obj);
3670     OnOffSplit mode;
3671 
3672     if (s->fd != -1) {
3673         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3674         return;
3675     }
3676 
3677     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3678         return;
3679     }
3680     switch (mode) {
3681     case ON_OFF_SPLIT_ON:
3682         s->kernel_irqchip_allowed = true;
3683         s->kernel_irqchip_required = true;
3684         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3685         break;
3686     case ON_OFF_SPLIT_OFF:
3687         s->kernel_irqchip_allowed = false;
3688         s->kernel_irqchip_required = false;
3689         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3690         break;
3691     case ON_OFF_SPLIT_SPLIT:
3692         s->kernel_irqchip_allowed = true;
3693         s->kernel_irqchip_required = true;
3694         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3695         break;
3696     default:
3697         /* The value was checked in visit_type_OnOffSplit() above. If
3698          * we get here, then something is wrong in QEMU.
3699          */
3700         abort();
3701     }
3702 }
3703 
3704 bool kvm_kernel_irqchip_allowed(void)
3705 {
3706     return kvm_state->kernel_irqchip_allowed;
3707 }
3708 
3709 bool kvm_kernel_irqchip_required(void)
3710 {
3711     return kvm_state->kernel_irqchip_required;
3712 }
3713 
3714 bool kvm_kernel_irqchip_split(void)
3715 {
3716     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3717 }
3718 
3719 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3720                                     const char *name, void *opaque,
3721                                     Error **errp)
3722 {
3723     KVMState *s = KVM_STATE(obj);
3724     uint32_t value = s->kvm_dirty_ring_size;
3725 
3726     visit_type_uint32(v, name, &value, errp);
3727 }
3728 
3729 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3730                                     const char *name, void *opaque,
3731                                     Error **errp)
3732 {
3733     KVMState *s = KVM_STATE(obj);
3734     uint32_t value;
3735 
3736     if (s->fd != -1) {
3737         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3738         return;
3739     }
3740 
3741     if (!visit_type_uint32(v, name, &value, errp)) {
3742         return;
3743     }
3744     if (value & (value - 1)) {
3745         error_setg(errp, "dirty-ring-size must be a power of two.");
3746         return;
3747     }
3748 
3749     s->kvm_dirty_ring_size = value;
3750 }
3751 
3752 static void kvm_accel_instance_init(Object *obj)
3753 {
3754     KVMState *s = KVM_STATE(obj);
3755 
3756     s->fd = -1;
3757     s->vmfd = -1;
3758     s->kvm_shadow_mem = -1;
3759     s->kernel_irqchip_allowed = true;
3760     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3761     /* KVM dirty ring is by default off */
3762     s->kvm_dirty_ring_size = 0;
3763     s->kvm_dirty_ring_with_bitmap = false;
3764     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3765     s->notify_window = 0;
3766     s->xen_version = 0;
3767     s->xen_gnttab_max_frames = 64;
3768     s->xen_evtchn_max_pirq = 256;
3769 }
3770 
3771 /**
3772  * kvm_gdbstub_sstep_flags():
3773  *
3774  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3775  * support is probed during kvm_init()
3776  */
3777 static int kvm_gdbstub_sstep_flags(void)
3778 {
3779     return kvm_sstep_flags;
3780 }
3781 
3782 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3783 {
3784     AccelClass *ac = ACCEL_CLASS(oc);
3785     ac->name = "KVM";
3786     ac->init_machine = kvm_init;
3787     ac->has_memory = kvm_accel_has_memory;
3788     ac->allowed = &kvm_allowed;
3789     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3790 
3791     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3792         NULL, kvm_set_kernel_irqchip,
3793         NULL, NULL);
3794     object_class_property_set_description(oc, "kernel-irqchip",
3795         "Configure KVM in-kernel irqchip");
3796 
3797     object_class_property_add(oc, "kvm-shadow-mem", "int",
3798         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3799         NULL, NULL);
3800     object_class_property_set_description(oc, "kvm-shadow-mem",
3801         "KVM shadow MMU size");
3802 
3803     object_class_property_add(oc, "dirty-ring-size", "uint32",
3804         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3805         NULL, NULL);
3806     object_class_property_set_description(oc, "dirty-ring-size",
3807         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3808 
3809     kvm_arch_accel_class_init(oc);
3810 }
3811 
3812 static const TypeInfo kvm_accel_type = {
3813     .name = TYPE_KVM_ACCEL,
3814     .parent = TYPE_ACCEL,
3815     .instance_init = kvm_accel_instance_init,
3816     .class_init = kvm_accel_class_init,
3817     .instance_size = sizeof(KVMState),
3818 };
3819 
3820 static void kvm_type_init(void)
3821 {
3822     type_register_static(&kvm_accel_type);
3823 }
3824 
3825 type_init(kvm_type_init);
3826 
3827 typedef struct StatsArgs {
3828     union StatsResultsType {
3829         StatsResultList **stats;
3830         StatsSchemaList **schema;
3831     } result;
3832     strList *names;
3833     Error **errp;
3834 } StatsArgs;
3835 
3836 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3837                                     uint64_t *stats_data,
3838                                     StatsList *stats_list,
3839                                     Error **errp)
3840 {
3841 
3842     Stats *stats;
3843     uint64List *val_list = NULL;
3844 
3845     /* Only add stats that we understand.  */
3846     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3847     case KVM_STATS_TYPE_CUMULATIVE:
3848     case KVM_STATS_TYPE_INSTANT:
3849     case KVM_STATS_TYPE_PEAK:
3850     case KVM_STATS_TYPE_LINEAR_HIST:
3851     case KVM_STATS_TYPE_LOG_HIST:
3852         break;
3853     default:
3854         return stats_list;
3855     }
3856 
3857     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3858     case KVM_STATS_UNIT_NONE:
3859     case KVM_STATS_UNIT_BYTES:
3860     case KVM_STATS_UNIT_CYCLES:
3861     case KVM_STATS_UNIT_SECONDS:
3862     case KVM_STATS_UNIT_BOOLEAN:
3863         break;
3864     default:
3865         return stats_list;
3866     }
3867 
3868     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3869     case KVM_STATS_BASE_POW10:
3870     case KVM_STATS_BASE_POW2:
3871         break;
3872     default:
3873         return stats_list;
3874     }
3875 
3876     /* Alloc and populate data list */
3877     stats = g_new0(Stats, 1);
3878     stats->name = g_strdup(pdesc->name);
3879     stats->value = g_new0(StatsValue, 1);;
3880 
3881     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3882         stats->value->u.boolean = *stats_data;
3883         stats->value->type = QTYPE_QBOOL;
3884     } else if (pdesc->size == 1) {
3885         stats->value->u.scalar = *stats_data;
3886         stats->value->type = QTYPE_QNUM;
3887     } else {
3888         int i;
3889         for (i = 0; i < pdesc->size; i++) {
3890             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3891         }
3892         stats->value->u.list = val_list;
3893         stats->value->type = QTYPE_QLIST;
3894     }
3895 
3896     QAPI_LIST_PREPEND(stats_list, stats);
3897     return stats_list;
3898 }
3899 
3900 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3901                                                  StatsSchemaValueList *list,
3902                                                  Error **errp)
3903 {
3904     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3905     schema_entry->value = g_new0(StatsSchemaValue, 1);
3906 
3907     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3908     case KVM_STATS_TYPE_CUMULATIVE:
3909         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3910         break;
3911     case KVM_STATS_TYPE_INSTANT:
3912         schema_entry->value->type = STATS_TYPE_INSTANT;
3913         break;
3914     case KVM_STATS_TYPE_PEAK:
3915         schema_entry->value->type = STATS_TYPE_PEAK;
3916         break;
3917     case KVM_STATS_TYPE_LINEAR_HIST:
3918         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3919         schema_entry->value->bucket_size = pdesc->bucket_size;
3920         schema_entry->value->has_bucket_size = true;
3921         break;
3922     case KVM_STATS_TYPE_LOG_HIST:
3923         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3924         break;
3925     default:
3926         goto exit;
3927     }
3928 
3929     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3930     case KVM_STATS_UNIT_NONE:
3931         break;
3932     case KVM_STATS_UNIT_BOOLEAN:
3933         schema_entry->value->has_unit = true;
3934         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3935         break;
3936     case KVM_STATS_UNIT_BYTES:
3937         schema_entry->value->has_unit = true;
3938         schema_entry->value->unit = STATS_UNIT_BYTES;
3939         break;
3940     case KVM_STATS_UNIT_CYCLES:
3941         schema_entry->value->has_unit = true;
3942         schema_entry->value->unit = STATS_UNIT_CYCLES;
3943         break;
3944     case KVM_STATS_UNIT_SECONDS:
3945         schema_entry->value->has_unit = true;
3946         schema_entry->value->unit = STATS_UNIT_SECONDS;
3947         break;
3948     default:
3949         goto exit;
3950     }
3951 
3952     schema_entry->value->exponent = pdesc->exponent;
3953     if (pdesc->exponent) {
3954         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3955         case KVM_STATS_BASE_POW10:
3956             schema_entry->value->has_base = true;
3957             schema_entry->value->base = 10;
3958             break;
3959         case KVM_STATS_BASE_POW2:
3960             schema_entry->value->has_base = true;
3961             schema_entry->value->base = 2;
3962             break;
3963         default:
3964             goto exit;
3965         }
3966     }
3967 
3968     schema_entry->value->name = g_strdup(pdesc->name);
3969     schema_entry->next = list;
3970     return schema_entry;
3971 exit:
3972     g_free(schema_entry->value);
3973     g_free(schema_entry);
3974     return list;
3975 }
3976 
3977 /* Cached stats descriptors */
3978 typedef struct StatsDescriptors {
3979     const char *ident; /* cache key, currently the StatsTarget */
3980     struct kvm_stats_desc *kvm_stats_desc;
3981     struct kvm_stats_header kvm_stats_header;
3982     QTAILQ_ENTRY(StatsDescriptors) next;
3983 } StatsDescriptors;
3984 
3985 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3986     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3987 
3988 /*
3989  * Return the descriptors for 'target', that either have already been read
3990  * or are retrieved from 'stats_fd'.
3991  */
3992 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3993                                                 Error **errp)
3994 {
3995     StatsDescriptors *descriptors;
3996     const char *ident;
3997     struct kvm_stats_desc *kvm_stats_desc;
3998     struct kvm_stats_header *kvm_stats_header;
3999     size_t size_desc;
4000     ssize_t ret;
4001 
4002     ident = StatsTarget_str(target);
4003     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4004         if (g_str_equal(descriptors->ident, ident)) {
4005             return descriptors;
4006         }
4007     }
4008 
4009     descriptors = g_new0(StatsDescriptors, 1);
4010 
4011     /* Read stats header */
4012     kvm_stats_header = &descriptors->kvm_stats_header;
4013     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4014     if (ret != sizeof(*kvm_stats_header)) {
4015         error_setg(errp, "KVM stats: failed to read stats header: "
4016                    "expected %zu actual %zu",
4017                    sizeof(*kvm_stats_header), ret);
4018         g_free(descriptors);
4019         return NULL;
4020     }
4021     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4022 
4023     /* Read stats descriptors */
4024     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4025     ret = pread(stats_fd, kvm_stats_desc,
4026                 size_desc * kvm_stats_header->num_desc,
4027                 kvm_stats_header->desc_offset);
4028 
4029     if (ret != size_desc * kvm_stats_header->num_desc) {
4030         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4031                    "expected %zu actual %zu",
4032                    size_desc * kvm_stats_header->num_desc, ret);
4033         g_free(descriptors);
4034         g_free(kvm_stats_desc);
4035         return NULL;
4036     }
4037     descriptors->kvm_stats_desc = kvm_stats_desc;
4038     descriptors->ident = ident;
4039     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4040     return descriptors;
4041 }
4042 
4043 static void query_stats(StatsResultList **result, StatsTarget target,
4044                         strList *names, int stats_fd, CPUState *cpu,
4045                         Error **errp)
4046 {
4047     struct kvm_stats_desc *kvm_stats_desc;
4048     struct kvm_stats_header *kvm_stats_header;
4049     StatsDescriptors *descriptors;
4050     g_autofree uint64_t *stats_data = NULL;
4051     struct kvm_stats_desc *pdesc;
4052     StatsList *stats_list = NULL;
4053     size_t size_desc, size_data = 0;
4054     ssize_t ret;
4055     int i;
4056 
4057     descriptors = find_stats_descriptors(target, stats_fd, errp);
4058     if (!descriptors) {
4059         return;
4060     }
4061 
4062     kvm_stats_header = &descriptors->kvm_stats_header;
4063     kvm_stats_desc = descriptors->kvm_stats_desc;
4064     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4065 
4066     /* Tally the total data size; read schema data */
4067     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4068         pdesc = (void *)kvm_stats_desc + i * size_desc;
4069         size_data += pdesc->size * sizeof(*stats_data);
4070     }
4071 
4072     stats_data = g_malloc0(size_data);
4073     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4074 
4075     if (ret != size_data) {
4076         error_setg(errp, "KVM stats: failed to read data: "
4077                    "expected %zu actual %zu", size_data, ret);
4078         return;
4079     }
4080 
4081     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4082         uint64_t *stats;
4083         pdesc = (void *)kvm_stats_desc + i * size_desc;
4084 
4085         /* Add entry to the list */
4086         stats = (void *)stats_data + pdesc->offset;
4087         if (!apply_str_list_filter(pdesc->name, names)) {
4088             continue;
4089         }
4090         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4091     }
4092 
4093     if (!stats_list) {
4094         return;
4095     }
4096 
4097     switch (target) {
4098     case STATS_TARGET_VM:
4099         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4100         break;
4101     case STATS_TARGET_VCPU:
4102         add_stats_entry(result, STATS_PROVIDER_KVM,
4103                         cpu->parent_obj.canonical_path,
4104                         stats_list);
4105         break;
4106     default:
4107         g_assert_not_reached();
4108     }
4109 }
4110 
4111 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4112                                int stats_fd, Error **errp)
4113 {
4114     struct kvm_stats_desc *kvm_stats_desc;
4115     struct kvm_stats_header *kvm_stats_header;
4116     StatsDescriptors *descriptors;
4117     struct kvm_stats_desc *pdesc;
4118     StatsSchemaValueList *stats_list = NULL;
4119     size_t size_desc;
4120     int i;
4121 
4122     descriptors = find_stats_descriptors(target, stats_fd, errp);
4123     if (!descriptors) {
4124         return;
4125     }
4126 
4127     kvm_stats_header = &descriptors->kvm_stats_header;
4128     kvm_stats_desc = descriptors->kvm_stats_desc;
4129     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4130 
4131     /* Tally the total data size; read schema data */
4132     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4133         pdesc = (void *)kvm_stats_desc + i * size_desc;
4134         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4135     }
4136 
4137     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4138 }
4139 
4140 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4141 {
4142     int stats_fd = cpu->kvm_vcpu_stats_fd;
4143     Error *local_err = NULL;
4144 
4145     if (stats_fd == -1) {
4146         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4147         error_propagate(kvm_stats_args->errp, local_err);
4148         return;
4149     }
4150     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4151                 kvm_stats_args->names, stats_fd, cpu,
4152                 kvm_stats_args->errp);
4153 }
4154 
4155 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4156 {
4157     int stats_fd = cpu->kvm_vcpu_stats_fd;
4158     Error *local_err = NULL;
4159 
4160     if (stats_fd == -1) {
4161         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4162         error_propagate(kvm_stats_args->errp, local_err);
4163         return;
4164     }
4165     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4166                        kvm_stats_args->errp);
4167 }
4168 
4169 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4170                            strList *names, strList *targets, Error **errp)
4171 {
4172     KVMState *s = kvm_state;
4173     CPUState *cpu;
4174     int stats_fd;
4175 
4176     switch (target) {
4177     case STATS_TARGET_VM:
4178     {
4179         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4180         if (stats_fd == -1) {
4181             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4182             return;
4183         }
4184         query_stats(result, target, names, stats_fd, NULL, errp);
4185         close(stats_fd);
4186         break;
4187     }
4188     case STATS_TARGET_VCPU:
4189     {
4190         StatsArgs stats_args;
4191         stats_args.result.stats = result;
4192         stats_args.names = names;
4193         stats_args.errp = errp;
4194         CPU_FOREACH(cpu) {
4195             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4196                 continue;
4197             }
4198             query_stats_vcpu(cpu, &stats_args);
4199         }
4200         break;
4201     }
4202     default:
4203         break;
4204     }
4205 }
4206 
4207 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4208 {
4209     StatsArgs stats_args;
4210     KVMState *s = kvm_state;
4211     int stats_fd;
4212 
4213     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4214     if (stats_fd == -1) {
4215         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4216         return;
4217     }
4218     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4219     close(stats_fd);
4220 
4221     if (first_cpu) {
4222         stats_args.result.schema = result;
4223         stats_args.errp = errp;
4224         query_stats_schema_vcpu(first_cpu, &stats_args);
4225     }
4226 }
4227