xref: /qemu/accel/tcg/cpu-exec.c (revision 159c5d17)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "hw/core/tcg-cpu-ops.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "qemu/atomic.h"
29 #include "qemu/compiler.h"
30 #include "qemu/timer.h"
31 #include "qemu/rcu.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "exec/cpu-all.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/replay.h"
41 #include "exec/helper-proto.h"
42 #include "tb-hash.h"
43 #include "tb-context.h"
44 #include "internal.h"
45 
46 /* -icount align implementation. */
47 
48 typedef struct SyncClocks {
49     int64_t diff_clk;
50     int64_t last_cpu_icount;
51     int64_t realtime_clock;
52 } SyncClocks;
53 
54 #if !defined(CONFIG_USER_ONLY)
55 /* Allow the guest to have a max 3ms advance.
56  * The difference between the 2 clocks could therefore
57  * oscillate around 0.
58  */
59 #define VM_CLOCK_ADVANCE 3000000
60 #define THRESHOLD_REDUCE 1.5
61 #define MAX_DELAY_PRINT_RATE 2000000000LL
62 #define MAX_NB_PRINTS 100
63 
64 static int64_t max_delay;
65 static int64_t max_advance;
66 
67 static void align_clocks(SyncClocks *sc, CPUState *cpu)
68 {
69     int64_t cpu_icount;
70 
71     if (!icount_align_option) {
72         return;
73     }
74 
75     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
76     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
77     sc->last_cpu_icount = cpu_icount;
78 
79     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
80 #ifndef _WIN32
81         struct timespec sleep_delay, rem_delay;
82         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
83         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
84         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
85             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
86         } else {
87             sc->diff_clk = 0;
88         }
89 #else
90         Sleep(sc->diff_clk / SCALE_MS);
91         sc->diff_clk = 0;
92 #endif
93     }
94 }
95 
96 static void print_delay(const SyncClocks *sc)
97 {
98     static float threshold_delay;
99     static int64_t last_realtime_clock;
100     static int nb_prints;
101 
102     if (icount_align_option &&
103         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
104         nb_prints < MAX_NB_PRINTS) {
105         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
106             (-sc->diff_clk / (float)1000000000LL <
107              (threshold_delay - THRESHOLD_REDUCE))) {
108             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
109             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
110                         threshold_delay - 1,
111                         threshold_delay);
112             nb_prints++;
113             last_realtime_clock = sc->realtime_clock;
114         }
115     }
116 }
117 
118 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
119 {
120     if (!icount_align_option) {
121         return;
122     }
123     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
124     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
125     sc->last_cpu_icount
126         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
127     if (sc->diff_clk < max_delay) {
128         max_delay = sc->diff_clk;
129     }
130     if (sc->diff_clk > max_advance) {
131         max_advance = sc->diff_clk;
132     }
133 
134     /* Print every 2s max if the guest is late. We limit the number
135        of printed messages to NB_PRINT_MAX(currently 100) */
136     print_delay(sc);
137 }
138 #else
139 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
140 {
141 }
142 
143 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 #endif /* CONFIG USER ONLY */
147 
148 /* Might cause an exception, so have a longjmp destination ready */
149 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
150                                           target_ulong cs_base,
151                                           uint32_t flags, uint32_t cflags)
152 {
153     TranslationBlock *tb;
154     uint32_t hash;
155 
156     /* we should never be trying to look up an INVALID tb */
157     tcg_debug_assert(!(cflags & CF_INVALID));
158 
159     hash = tb_jmp_cache_hash_func(pc);
160     tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
161 
162     if (likely(tb &&
163                tb->pc == pc &&
164                tb->cs_base == cs_base &&
165                tb->flags == flags &&
166                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
167                tb_cflags(tb) == cflags)) {
168         return tb;
169     }
170     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
171     if (tb == NULL) {
172         return NULL;
173     }
174     qatomic_set(&cpu->tb_jmp_cache[hash], tb);
175     return tb;
176 }
177 
178 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
179                                 const TranslationBlock *tb)
180 {
181     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
182         && qemu_log_in_addr_range(pc)) {
183 
184         qemu_log_mask(CPU_LOG_EXEC,
185                       "Trace %d: %p [" TARGET_FMT_lx
186                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
187                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
188                       tb->flags, tb->cflags, lookup_symbol(pc));
189 
190 #if defined(DEBUG_DISAS)
191         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
192             FILE *logfile = qemu_log_lock();
193             int flags = 0;
194 
195             if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
196                 flags |= CPU_DUMP_FPU;
197             }
198 #if defined(TARGET_I386)
199             flags |= CPU_DUMP_CCOP;
200 #endif
201             log_cpu_state(cpu, flags);
202             qemu_log_unlock(logfile);
203         }
204 #endif /* DEBUG_DISAS */
205     }
206 }
207 
208 /**
209  * helper_lookup_tb_ptr: quick check for next tb
210  * @env: current cpu state
211  *
212  * Look for an existing TB matching the current cpu state.
213  * If found, return the code pointer.  If not found, return
214  * the tcg epilogue so that we return into cpu_tb_exec.
215  */
216 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
217 {
218     CPUState *cpu = env_cpu(env);
219     TranslationBlock *tb;
220     target_ulong cs_base, pc;
221     uint32_t flags;
222 
223     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
224 
225     tb = tb_lookup(cpu, pc, cs_base, flags, curr_cflags(cpu));
226     if (tb == NULL) {
227         return tcg_code_gen_epilogue;
228     }
229 
230     log_cpu_exec(pc, cpu, tb);
231 
232     return tb->tc.ptr;
233 }
234 
235 /* Execute a TB, and fix up the CPU state afterwards if necessary */
236 /*
237  * Disable CFI checks.
238  * TCG creates binary blobs at runtime, with the transformed code.
239  * A TB is a blob of binary code, created at runtime and called with an
240  * indirect function call. Since such function did not exist at compile time,
241  * the CFI runtime has no way to verify its signature and would fail.
242  * TCG is not considered a security-sensitive part of QEMU so this does not
243  * affect the impact of CFI in environment with high security requirements
244  */
245 static inline TranslationBlock * QEMU_DISABLE_CFI
246 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
247 {
248     CPUArchState *env = cpu->env_ptr;
249     uintptr_t ret;
250     TranslationBlock *last_tb;
251     const void *tb_ptr = itb->tc.ptr;
252 
253     log_cpu_exec(itb->pc, cpu, itb);
254 
255     qemu_thread_jit_execute();
256     ret = tcg_qemu_tb_exec(env, tb_ptr);
257     cpu->can_do_io = 1;
258     /*
259      * TODO: Delay swapping back to the read-write region of the TB
260      * until we actually need to modify the TB.  The read-only copy,
261      * coming from the rx region, shares the same host TLB entry as
262      * the code that executed the exit_tb opcode that arrived here.
263      * If we insist on touching both the RX and the RW pages, we
264      * double the host TLB pressure.
265      */
266     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
267     *tb_exit = ret & TB_EXIT_MASK;
268 
269     trace_exec_tb_exit(last_tb, *tb_exit);
270 
271     if (*tb_exit > TB_EXIT_IDX1) {
272         /* We didn't start executing this TB (eg because the instruction
273          * counter hit zero); we must restore the guest PC to the address
274          * of the start of the TB.
275          */
276         CPUClass *cc = CPU_GET_CLASS(cpu);
277         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
278                                "Stopped execution of TB chain before %p ["
279                                TARGET_FMT_lx "] %s\n",
280                                last_tb->tc.ptr, last_tb->pc,
281                                lookup_symbol(last_tb->pc));
282         if (cc->tcg_ops->synchronize_from_tb) {
283             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
284         } else {
285             assert(cc->set_pc);
286             cc->set_pc(cpu, last_tb->pc);
287         }
288     }
289     return last_tb;
290 }
291 
292 
293 static void cpu_exec_enter(CPUState *cpu)
294 {
295     CPUClass *cc = CPU_GET_CLASS(cpu);
296 
297     if (cc->tcg_ops->cpu_exec_enter) {
298         cc->tcg_ops->cpu_exec_enter(cpu);
299     }
300 }
301 
302 static void cpu_exec_exit(CPUState *cpu)
303 {
304     CPUClass *cc = CPU_GET_CLASS(cpu);
305 
306     if (cc->tcg_ops->cpu_exec_exit) {
307         cc->tcg_ops->cpu_exec_exit(cpu);
308     }
309 }
310 
311 void cpu_exec_step_atomic(CPUState *cpu)
312 {
313     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
314     TranslationBlock *tb;
315     target_ulong cs_base, pc;
316     uint32_t flags;
317     uint32_t cflags = (curr_cflags(cpu) & ~CF_PARALLEL) | 1;
318     int tb_exit;
319 
320     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
321         start_exclusive();
322         g_assert(cpu == current_cpu);
323         g_assert(!cpu->running);
324         cpu->running = true;
325 
326         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
327         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
328 
329         if (tb == NULL) {
330             mmap_lock();
331             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
332             mmap_unlock();
333         }
334 
335         cpu_exec_enter(cpu);
336         /* execute the generated code */
337         trace_exec_tb(tb, pc);
338         cpu_tb_exec(cpu, tb, &tb_exit);
339         cpu_exec_exit(cpu);
340     } else {
341         /*
342          * The mmap_lock is dropped by tb_gen_code if it runs out of
343          * memory.
344          */
345 #ifndef CONFIG_SOFTMMU
346         tcg_debug_assert(!have_mmap_lock());
347 #endif
348         if (qemu_mutex_iothread_locked()) {
349             qemu_mutex_unlock_iothread();
350         }
351         assert_no_pages_locked();
352         qemu_plugin_disable_mem_helpers(cpu);
353     }
354 
355 
356     /*
357      * As we start the exclusive region before codegen we must still
358      * be in the region if we longjump out of either the codegen or
359      * the execution.
360      */
361     g_assert(cpu_in_exclusive_context(cpu));
362     cpu->running = false;
363     end_exclusive();
364 }
365 
366 struct tb_desc {
367     target_ulong pc;
368     target_ulong cs_base;
369     CPUArchState *env;
370     tb_page_addr_t phys_page1;
371     uint32_t flags;
372     uint32_t cflags;
373     uint32_t trace_vcpu_dstate;
374 };
375 
376 static bool tb_lookup_cmp(const void *p, const void *d)
377 {
378     const TranslationBlock *tb = p;
379     const struct tb_desc *desc = d;
380 
381     if (tb->pc == desc->pc &&
382         tb->page_addr[0] == desc->phys_page1 &&
383         tb->cs_base == desc->cs_base &&
384         tb->flags == desc->flags &&
385         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
386         tb_cflags(tb) == desc->cflags) {
387         /* check next page if needed */
388         if (tb->page_addr[1] == -1) {
389             return true;
390         } else {
391             tb_page_addr_t phys_page2;
392             target_ulong virt_page2;
393 
394             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
395             phys_page2 = get_page_addr_code(desc->env, virt_page2);
396             if (tb->page_addr[1] == phys_page2) {
397                 return true;
398             }
399         }
400     }
401     return false;
402 }
403 
404 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
405                                    target_ulong cs_base, uint32_t flags,
406                                    uint32_t cflags)
407 {
408     tb_page_addr_t phys_pc;
409     struct tb_desc desc;
410     uint32_t h;
411 
412     desc.env = (CPUArchState *)cpu->env_ptr;
413     desc.cs_base = cs_base;
414     desc.flags = flags;
415     desc.cflags = cflags;
416     desc.trace_vcpu_dstate = *cpu->trace_dstate;
417     desc.pc = pc;
418     phys_pc = get_page_addr_code(desc.env, pc);
419     if (phys_pc == -1) {
420         return NULL;
421     }
422     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
423     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
424     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
425 }
426 
427 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
428 {
429     if (TCG_TARGET_HAS_direct_jump) {
430         uintptr_t offset = tb->jmp_target_arg[n];
431         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
432         uintptr_t jmp_rx = tc_ptr + offset;
433         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
434         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
435     } else {
436         tb->jmp_target_arg[n] = addr;
437     }
438 }
439 
440 static inline void tb_add_jump(TranslationBlock *tb, int n,
441                                TranslationBlock *tb_next)
442 {
443     uintptr_t old;
444 
445     qemu_thread_jit_write();
446     assert(n < ARRAY_SIZE(tb->jmp_list_next));
447     qemu_spin_lock(&tb_next->jmp_lock);
448 
449     /* make sure the destination TB is valid */
450     if (tb_next->cflags & CF_INVALID) {
451         goto out_unlock_next;
452     }
453     /* Atomically claim the jump destination slot only if it was NULL */
454     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
455                           (uintptr_t)tb_next);
456     if (old) {
457         goto out_unlock_next;
458     }
459 
460     /* patch the native jump address */
461     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
462 
463     /* add in TB jmp list */
464     tb->jmp_list_next[n] = tb_next->jmp_list_head;
465     tb_next->jmp_list_head = (uintptr_t)tb | n;
466 
467     qemu_spin_unlock(&tb_next->jmp_lock);
468 
469     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
470                            "Linking TBs %p [" TARGET_FMT_lx
471                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
472                            tb->tc.ptr, tb->pc, n,
473                            tb_next->tc.ptr, tb_next->pc);
474     return;
475 
476  out_unlock_next:
477     qemu_spin_unlock(&tb_next->jmp_lock);
478     return;
479 }
480 
481 static inline TranslationBlock *tb_find(CPUState *cpu,
482                                         TranslationBlock *last_tb,
483                                         int tb_exit, uint32_t cflags)
484 {
485     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
486     TranslationBlock *tb;
487     target_ulong cs_base, pc;
488     uint32_t flags;
489 
490     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
491 
492     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
493     if (tb == NULL) {
494         mmap_lock();
495         tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
496         mmap_unlock();
497         /* We add the TB in the virtual pc hash table for the fast lookup */
498         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
499     }
500 #ifndef CONFIG_USER_ONLY
501     /* We don't take care of direct jumps when address mapping changes in
502      * system emulation. So it's not safe to make a direct jump to a TB
503      * spanning two pages because the mapping for the second page can change.
504      */
505     if (tb->page_addr[1] != -1) {
506         last_tb = NULL;
507     }
508 #endif
509     /* See if we can patch the calling TB. */
510     if (last_tb) {
511         tb_add_jump(last_tb, tb_exit, tb);
512     }
513     return tb;
514 }
515 
516 static inline bool cpu_handle_halt(CPUState *cpu)
517 {
518     if (cpu->halted) {
519 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
520         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
521             X86CPU *x86_cpu = X86_CPU(cpu);
522             qemu_mutex_lock_iothread();
523             apic_poll_irq(x86_cpu->apic_state);
524             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
525             qemu_mutex_unlock_iothread();
526         }
527 #endif
528         if (!cpu_has_work(cpu)) {
529             return true;
530         }
531 
532         cpu->halted = 0;
533     }
534 
535     return false;
536 }
537 
538 static inline void cpu_handle_debug_exception(CPUState *cpu)
539 {
540     CPUClass *cc = CPU_GET_CLASS(cpu);
541     CPUWatchpoint *wp;
542 
543     if (!cpu->watchpoint_hit) {
544         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
545             wp->flags &= ~BP_WATCHPOINT_HIT;
546         }
547     }
548 
549     if (cc->tcg_ops->debug_excp_handler) {
550         cc->tcg_ops->debug_excp_handler(cpu);
551     }
552 }
553 
554 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
555 {
556     if (cpu->exception_index < 0) {
557 #ifndef CONFIG_USER_ONLY
558         if (replay_has_exception()
559             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
560             /* Execute just one insn to trigger exception pending in the log */
561             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1;
562         }
563 #endif
564         return false;
565     }
566     if (cpu->exception_index >= EXCP_INTERRUPT) {
567         /* exit request from the cpu execution loop */
568         *ret = cpu->exception_index;
569         if (*ret == EXCP_DEBUG) {
570             cpu_handle_debug_exception(cpu);
571         }
572         cpu->exception_index = -1;
573         return true;
574     } else {
575 #if defined(CONFIG_USER_ONLY)
576         /* if user mode only, we simulate a fake exception
577            which will be handled outside the cpu execution
578            loop */
579 #if defined(TARGET_I386)
580         CPUClass *cc = CPU_GET_CLASS(cpu);
581         cc->tcg_ops->do_interrupt(cpu);
582 #endif
583         *ret = cpu->exception_index;
584         cpu->exception_index = -1;
585         return true;
586 #else
587         if (replay_exception()) {
588             CPUClass *cc = CPU_GET_CLASS(cpu);
589             qemu_mutex_lock_iothread();
590             cc->tcg_ops->do_interrupt(cpu);
591             qemu_mutex_unlock_iothread();
592             cpu->exception_index = -1;
593 
594             if (unlikely(cpu->singlestep_enabled)) {
595                 /*
596                  * After processing the exception, ensure an EXCP_DEBUG is
597                  * raised when single-stepping so that GDB doesn't miss the
598                  * next instruction.
599                  */
600                 *ret = EXCP_DEBUG;
601                 cpu_handle_debug_exception(cpu);
602                 return true;
603             }
604         } else if (!replay_has_interrupt()) {
605             /* give a chance to iothread in replay mode */
606             *ret = EXCP_INTERRUPT;
607             return true;
608         }
609 #endif
610     }
611 
612     return false;
613 }
614 
615 /*
616  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
617  * "real" interrupt event later. It does not need to be recorded for
618  * replay purposes.
619  */
620 static inline bool need_replay_interrupt(int interrupt_request)
621 {
622 #if defined(TARGET_I386)
623     return !(interrupt_request & CPU_INTERRUPT_POLL);
624 #else
625     return true;
626 #endif
627 }
628 
629 static inline bool cpu_handle_interrupt(CPUState *cpu,
630                                         TranslationBlock **last_tb)
631 {
632     CPUClass *cc = CPU_GET_CLASS(cpu);
633 
634     /* Clear the interrupt flag now since we're processing
635      * cpu->interrupt_request and cpu->exit_request.
636      * Ensure zeroing happens before reading cpu->exit_request or
637      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
638      */
639     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
640 
641     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
642         int interrupt_request;
643         qemu_mutex_lock_iothread();
644         interrupt_request = cpu->interrupt_request;
645         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
646             /* Mask out external interrupts for this step. */
647             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
648         }
649         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
650             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
651             cpu->exception_index = EXCP_DEBUG;
652             qemu_mutex_unlock_iothread();
653             return true;
654         }
655         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
656             /* Do nothing */
657         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
658             replay_interrupt();
659             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
660             cpu->halted = 1;
661             cpu->exception_index = EXCP_HLT;
662             qemu_mutex_unlock_iothread();
663             return true;
664         }
665 #if defined(TARGET_I386)
666         else if (interrupt_request & CPU_INTERRUPT_INIT) {
667             X86CPU *x86_cpu = X86_CPU(cpu);
668             CPUArchState *env = &x86_cpu->env;
669             replay_interrupt();
670             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
671             do_cpu_init(x86_cpu);
672             cpu->exception_index = EXCP_HALTED;
673             qemu_mutex_unlock_iothread();
674             return true;
675         }
676 #else
677         else if (interrupt_request & CPU_INTERRUPT_RESET) {
678             replay_interrupt();
679             cpu_reset(cpu);
680             qemu_mutex_unlock_iothread();
681             return true;
682         }
683 #endif
684         /* The target hook has 3 exit conditions:
685            False when the interrupt isn't processed,
686            True when it is, and we should restart on a new TB,
687            and via longjmp via cpu_loop_exit.  */
688         else {
689             if (cc->tcg_ops->cpu_exec_interrupt &&
690                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
691                 if (need_replay_interrupt(interrupt_request)) {
692                     replay_interrupt();
693                 }
694                 /*
695                  * After processing the interrupt, ensure an EXCP_DEBUG is
696                  * raised when single-stepping so that GDB doesn't miss the
697                  * next instruction.
698                  */
699                 cpu->exception_index =
700                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
701                 *last_tb = NULL;
702             }
703             /* The target hook may have updated the 'cpu->interrupt_request';
704              * reload the 'interrupt_request' value */
705             interrupt_request = cpu->interrupt_request;
706         }
707         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
708             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
709             /* ensure that no TB jump will be modified as
710                the program flow was changed */
711             *last_tb = NULL;
712         }
713 
714         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
715         qemu_mutex_unlock_iothread();
716     }
717 
718     /* Finally, check if we need to exit to the main loop.  */
719     if (unlikely(qatomic_read(&cpu->exit_request))
720         || (icount_enabled()
721             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
722             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
723         qatomic_set(&cpu->exit_request, 0);
724         if (cpu->exception_index == -1) {
725             cpu->exception_index = EXCP_INTERRUPT;
726         }
727         return true;
728     }
729 
730     return false;
731 }
732 
733 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
734                                     TranslationBlock **last_tb, int *tb_exit)
735 {
736     int32_t insns_left;
737 
738     trace_exec_tb(tb, tb->pc);
739     tb = cpu_tb_exec(cpu, tb, tb_exit);
740     if (*tb_exit != TB_EXIT_REQUESTED) {
741         *last_tb = tb;
742         return;
743     }
744 
745     *last_tb = NULL;
746     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
747     if (insns_left < 0) {
748         /* Something asked us to stop executing chained TBs; just
749          * continue round the main loop. Whatever requested the exit
750          * will also have set something else (eg exit_request or
751          * interrupt_request) which will be handled by
752          * cpu_handle_interrupt.  cpu_handle_interrupt will also
753          * clear cpu->icount_decr.u16.high.
754          */
755         return;
756     }
757 
758     /* Instruction counter expired.  */
759     assert(icount_enabled());
760 #ifndef CONFIG_USER_ONLY
761     /* Ensure global icount has gone forward */
762     icount_update(cpu);
763     /* Refill decrementer and continue execution.  */
764     insns_left = MIN(CF_COUNT_MASK, cpu->icount_budget);
765     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
766     cpu->icount_extra = cpu->icount_budget - insns_left;
767 
768     /*
769      * If the next tb has more instructions than we have left to
770      * execute we need to ensure we find/generate a TB with exactly
771      * insns_left instructions in it.
772      */
773     if (!cpu->icount_extra && insns_left > 0 && insns_left < tb->icount)  {
774         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
775     }
776 #endif
777 }
778 
779 /* main execution loop */
780 
781 int cpu_exec(CPUState *cpu)
782 {
783     CPUClass *cc = CPU_GET_CLASS(cpu);
784     int ret;
785     SyncClocks sc = { 0 };
786 
787     /* replay_interrupt may need current_cpu */
788     current_cpu = cpu;
789 
790     if (cpu_handle_halt(cpu)) {
791         return EXCP_HALTED;
792     }
793 
794     rcu_read_lock();
795 
796     cpu_exec_enter(cpu);
797 
798     /* Calculate difference between guest clock and host clock.
799      * This delay includes the delay of the last cycle, so
800      * what we have to do is sleep until it is 0. As for the
801      * advance/delay we gain here, we try to fix it next time.
802      */
803     init_delay_params(&sc, cpu);
804 
805     /* prepare setjmp context for exception handling */
806     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
807 #if defined(__clang__)
808         /*
809          * Some compilers wrongly smash all local variables after
810          * siglongjmp (the spec requires that only non-volatile locals
811          * which are changed between the sigsetjmp and siglongjmp are
812          * permitted to be trashed). There were bug reports for gcc
813          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
814          * that we support, but is still unfixed in clang:
815          *   https://bugs.llvm.org/show_bug.cgi?id=21183
816          *
817          * Reload essential local variables here for those compilers.
818          * Newer versions of gcc would complain about this code (-Wclobbered),
819          * so we only perform the workaround for clang.
820          */
821         cpu = current_cpu;
822         cc = CPU_GET_CLASS(cpu);
823 #else
824         /*
825          * Non-buggy compilers preserve these locals; assert that
826          * they have the correct value.
827          */
828         g_assert(cpu == current_cpu);
829         g_assert(cc == CPU_GET_CLASS(cpu));
830 #endif
831 
832 #ifndef CONFIG_SOFTMMU
833         tcg_debug_assert(!have_mmap_lock());
834 #endif
835         if (qemu_mutex_iothread_locked()) {
836             qemu_mutex_unlock_iothread();
837         }
838         qemu_plugin_disable_mem_helpers(cpu);
839 
840         assert_no_pages_locked();
841     }
842 
843     /* if an exception is pending, we execute it here */
844     while (!cpu_handle_exception(cpu, &ret)) {
845         TranslationBlock *last_tb = NULL;
846         int tb_exit = 0;
847 
848         while (!cpu_handle_interrupt(cpu, &last_tb)) {
849             uint32_t cflags = cpu->cflags_next_tb;
850             TranslationBlock *tb;
851 
852             /* When requested, use an exact setting for cflags for the next
853                execution.  This is used for icount, precise smc, and stop-
854                after-access watchpoints.  Since this request should never
855                have CF_INVALID set, -1 is a convenient invalid value that
856                does not require tcg headers for cpu_common_reset.  */
857             if (cflags == -1) {
858                 cflags = curr_cflags(cpu);
859             } else {
860                 cpu->cflags_next_tb = -1;
861             }
862 
863             tb = tb_find(cpu, last_tb, tb_exit, cflags);
864             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
865             /* Try to align the host and virtual clocks
866                if the guest is in advance */
867             align_clocks(&sc, cpu);
868         }
869     }
870 
871     cpu_exec_exit(cpu);
872     rcu_read_unlock();
873 
874     return ret;
875 }
876 
877 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
878 {
879     static bool tcg_target_initialized;
880     CPUClass *cc = CPU_GET_CLASS(cpu);
881 
882     if (!tcg_target_initialized) {
883         cc->tcg_ops->initialize();
884         tcg_target_initialized = true;
885     }
886     tlb_init(cpu);
887     qemu_plugin_vcpu_init_hook(cpu);
888 
889 #ifndef CONFIG_USER_ONLY
890     tcg_iommu_init_notifier_list(cpu);
891 #endif /* !CONFIG_USER_ONLY */
892 }
893 
894 /* undo the initializations in reverse order */
895 void tcg_exec_unrealizefn(CPUState *cpu)
896 {
897 #ifndef CONFIG_USER_ONLY
898     tcg_iommu_free_notifier_list(cpu);
899 #endif /* !CONFIG_USER_ONLY */
900 
901     qemu_plugin_vcpu_exit_hook(cpu);
902     tlb_destroy(cpu);
903 }
904 
905 #ifndef CONFIG_USER_ONLY
906 
907 void dump_drift_info(void)
908 {
909     if (!icount_enabled()) {
910         return;
911     }
912 
913     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
914                 (cpu_get_clock() - icount_get()) / SCALE_MS);
915     if (icount_align_option) {
916         qemu_printf("Max guest delay     %"PRIi64" ms\n",
917                     -max_delay / SCALE_MS);
918         qemu_printf("Max guest advance   %"PRIi64" ms\n",
919                     max_advance / SCALE_MS);
920     } else {
921         qemu_printf("Max guest delay     NA\n");
922         qemu_printf("Max guest advance   NA\n");
923     }
924 }
925 
926 #endif /* !CONFIG_USER_ONLY */
927