xref: /qemu/accel/tcg/cpu-exec.c (revision 1b0578f5)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #include "exec/tb-lookup.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
38 
39 /* -icount align implementation. */
40 
41 typedef struct SyncClocks {
42     int64_t diff_clk;
43     int64_t last_cpu_icount;
44     int64_t realtime_clock;
45 } SyncClocks;
46 
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49  * The difference between the 2 clocks could therefore
50  * oscillate around 0.
51  */
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
56 
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
58 {
59     int64_t cpu_icount;
60 
61     if (!icount_align_option) {
62         return;
63     }
64 
65     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67     sc->last_cpu_icount = cpu_icount;
68 
69     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71         struct timespec sleep_delay, rem_delay;
72         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76         } else {
77             sc->diff_clk = 0;
78         }
79 #else
80         Sleep(sc->diff_clk / SCALE_MS);
81         sc->diff_clk = 0;
82 #endif
83     }
84 }
85 
86 static void print_delay(const SyncClocks *sc)
87 {
88     static float threshold_delay;
89     static int64_t last_realtime_clock;
90     static int nb_prints;
91 
92     if (icount_align_option &&
93         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94         nb_prints < MAX_NB_PRINTS) {
95         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96             (-sc->diff_clk / (float)1000000000LL <
97              (threshold_delay - THRESHOLD_REDUCE))) {
98             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100                    threshold_delay - 1,
101                    threshold_delay);
102             nb_prints++;
103             last_realtime_clock = sc->realtime_clock;
104         }
105     }
106 }
107 
108 static void init_delay_params(SyncClocks *sc,
109                               const CPUState *cpu)
110 {
111     if (!icount_align_option) {
112         return;
113     }
114     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117     if (sc->diff_clk < max_delay) {
118         max_delay = sc->diff_clk;
119     }
120     if (sc->diff_clk > max_advance) {
121         max_advance = sc->diff_clk;
122     }
123 
124     /* Print every 2s max if the guest is late. We limit the number
125        of printed messages to NB_PRINT_MAX(currently 100) */
126     print_delay(sc);
127 }
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
130 {
131 }
132 
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
134 {
135 }
136 #endif /* CONFIG USER ONLY */
137 
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
140 {
141     CPUArchState *env = cpu->env_ptr;
142     uintptr_t ret;
143     TranslationBlock *last_tb;
144     int tb_exit;
145     uint8_t *tb_ptr = itb->tc.ptr;
146 
147     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148                            "Trace %d: %p ["
149                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
150                            cpu->cpu_index, itb->tc.ptr,
151                            itb->cs_base, itb->pc, itb->flags,
152                            lookup_symbol(itb->pc));
153 
154 #if defined(DEBUG_DISAS)
155     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
156         && qemu_log_in_addr_range(itb->pc)) {
157         qemu_log_lock();
158         int flags = 0;
159         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
160             flags |= CPU_DUMP_FPU;
161         }
162 #if defined(TARGET_I386)
163         flags |= CPU_DUMP_CCOP;
164 #endif
165         log_cpu_state(cpu, flags);
166         qemu_log_unlock();
167     }
168 #endif /* DEBUG_DISAS */
169 
170     cpu->can_do_io = !use_icount;
171     ret = tcg_qemu_tb_exec(env, tb_ptr);
172     cpu->can_do_io = 1;
173     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
174     tb_exit = ret & TB_EXIT_MASK;
175     trace_exec_tb_exit(last_tb, tb_exit);
176 
177     if (tb_exit > TB_EXIT_IDX1) {
178         /* We didn't start executing this TB (eg because the instruction
179          * counter hit zero); we must restore the guest PC to the address
180          * of the start of the TB.
181          */
182         CPUClass *cc = CPU_GET_CLASS(cpu);
183         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
184                                "Stopped execution of TB chain before %p ["
185                                TARGET_FMT_lx "] %s\n",
186                                last_tb->tc.ptr, last_tb->pc,
187                                lookup_symbol(last_tb->pc));
188         if (cc->synchronize_from_tb) {
189             cc->synchronize_from_tb(cpu, last_tb);
190         } else {
191             assert(cc->set_pc);
192             cc->set_pc(cpu, last_tb->pc);
193         }
194     }
195     return ret;
196 }
197 
198 #ifndef CONFIG_USER_ONLY
199 /* Execute the code without caching the generated code. An interpreter
200    could be used if available. */
201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
202                              TranslationBlock *orig_tb, bool ignore_icount)
203 {
204     TranslationBlock *tb;
205     uint32_t cflags = curr_cflags() | CF_NOCACHE;
206 
207     if (ignore_icount) {
208         cflags &= ~CF_USE_ICOUNT;
209     }
210 
211     /* Should never happen.
212        We only end up here when an existing TB is too long.  */
213     cflags |= MIN(max_cycles, CF_COUNT_MASK);
214 
215     mmap_lock();
216     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
217                      orig_tb->flags, cflags);
218     tb->orig_tb = orig_tb;
219     mmap_unlock();
220 
221     /* execute the generated code */
222     trace_exec_tb_nocache(tb, tb->pc);
223     cpu_tb_exec(cpu, tb);
224 
225     mmap_lock();
226     tb_phys_invalidate(tb, -1);
227     mmap_unlock();
228     tcg_tb_remove(tb);
229 }
230 #endif
231 
232 void cpu_exec_step_atomic(CPUState *cpu)
233 {
234     CPUClass *cc = CPU_GET_CLASS(cpu);
235     TranslationBlock *tb;
236     target_ulong cs_base, pc;
237     uint32_t flags;
238     uint32_t cflags = 1;
239     uint32_t cf_mask = cflags & CF_HASH_MASK;
240     /* volatile because we modify it between setjmp and longjmp */
241     volatile bool in_exclusive_region = false;
242 
243     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
244         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
245         if (tb == NULL) {
246             mmap_lock();
247             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
248             mmap_unlock();
249         }
250 
251         start_exclusive();
252 
253         /* Since we got here, we know that parallel_cpus must be true.  */
254         parallel_cpus = false;
255         in_exclusive_region = true;
256         cc->cpu_exec_enter(cpu);
257         /* execute the generated code */
258         trace_exec_tb(tb, pc);
259         cpu_tb_exec(cpu, tb);
260         cc->cpu_exec_exit(cpu);
261     } else {
262         /*
263          * The mmap_lock is dropped by tb_gen_code if it runs out of
264          * memory.
265          */
266 #ifndef CONFIG_SOFTMMU
267         tcg_debug_assert(!have_mmap_lock());
268 #endif
269         assert_no_pages_locked();
270     }
271 
272     if (in_exclusive_region) {
273         /* We might longjump out of either the codegen or the
274          * execution, so must make sure we only end the exclusive
275          * region if we started it.
276          */
277         parallel_cpus = true;
278         end_exclusive();
279     }
280 }
281 
282 struct tb_desc {
283     target_ulong pc;
284     target_ulong cs_base;
285     CPUArchState *env;
286     tb_page_addr_t phys_page1;
287     uint32_t flags;
288     uint32_t cf_mask;
289     uint32_t trace_vcpu_dstate;
290 };
291 
292 static bool tb_lookup_cmp(const void *p, const void *d)
293 {
294     const TranslationBlock *tb = p;
295     const struct tb_desc *desc = d;
296 
297     if (tb->pc == desc->pc &&
298         tb->page_addr[0] == desc->phys_page1 &&
299         tb->cs_base == desc->cs_base &&
300         tb->flags == desc->flags &&
301         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
302         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
303         /* check next page if needed */
304         if (tb->page_addr[1] == -1) {
305             return true;
306         } else {
307             tb_page_addr_t phys_page2;
308             target_ulong virt_page2;
309 
310             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
311             phys_page2 = get_page_addr_code(desc->env, virt_page2);
312             if (tb->page_addr[1] == phys_page2) {
313                 return true;
314             }
315         }
316     }
317     return false;
318 }
319 
320 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
321                                    target_ulong cs_base, uint32_t flags,
322                                    uint32_t cf_mask)
323 {
324     tb_page_addr_t phys_pc;
325     struct tb_desc desc;
326     uint32_t h;
327 
328     desc.env = (CPUArchState *)cpu->env_ptr;
329     desc.cs_base = cs_base;
330     desc.flags = flags;
331     desc.cf_mask = cf_mask;
332     desc.trace_vcpu_dstate = *cpu->trace_dstate;
333     desc.pc = pc;
334     phys_pc = get_page_addr_code(desc.env, pc);
335     if (phys_pc == -1) {
336         return NULL;
337     }
338     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
339     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
340     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
341 }
342 
343 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
344 {
345     if (TCG_TARGET_HAS_direct_jump) {
346         uintptr_t offset = tb->jmp_target_arg[n];
347         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
348         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
349     } else {
350         tb->jmp_target_arg[n] = addr;
351     }
352 }
353 
354 static inline void tb_add_jump(TranslationBlock *tb, int n,
355                                TranslationBlock *tb_next)
356 {
357     uintptr_t old;
358 
359     assert(n < ARRAY_SIZE(tb->jmp_list_next));
360     qemu_spin_lock(&tb_next->jmp_lock);
361 
362     /* make sure the destination TB is valid */
363     if (tb_next->cflags & CF_INVALID) {
364         goto out_unlock_next;
365     }
366     /* Atomically claim the jump destination slot only if it was NULL */
367     old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next);
368     if (old) {
369         goto out_unlock_next;
370     }
371 
372     /* patch the native jump address */
373     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
374 
375     /* add in TB jmp list */
376     tb->jmp_list_next[n] = tb_next->jmp_list_head;
377     tb_next->jmp_list_head = (uintptr_t)tb | n;
378 
379     qemu_spin_unlock(&tb_next->jmp_lock);
380 
381     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
382                            "Linking TBs %p [" TARGET_FMT_lx
383                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
384                            tb->tc.ptr, tb->pc, n,
385                            tb_next->tc.ptr, tb_next->pc);
386     return;
387 
388  out_unlock_next:
389     qemu_spin_unlock(&tb_next->jmp_lock);
390     return;
391 }
392 
393 static inline TranslationBlock *tb_find(CPUState *cpu,
394                                         TranslationBlock *last_tb,
395                                         int tb_exit, uint32_t cf_mask)
396 {
397     TranslationBlock *tb;
398     target_ulong cs_base, pc;
399     uint32_t flags;
400 
401     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
402     if (tb == NULL) {
403         mmap_lock();
404         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
405         mmap_unlock();
406         /* We add the TB in the virtual pc hash table for the fast lookup */
407         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
408     }
409 #ifndef CONFIG_USER_ONLY
410     /* We don't take care of direct jumps when address mapping changes in
411      * system emulation. So it's not safe to make a direct jump to a TB
412      * spanning two pages because the mapping for the second page can change.
413      */
414     if (tb->page_addr[1] != -1) {
415         last_tb = NULL;
416     }
417 #endif
418     /* See if we can patch the calling TB. */
419     if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
420         tb_add_jump(last_tb, tb_exit, tb);
421     }
422     return tb;
423 }
424 
425 static inline bool cpu_handle_halt(CPUState *cpu)
426 {
427     if (cpu->halted) {
428 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
429         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
430             && replay_interrupt()) {
431             X86CPU *x86_cpu = X86_CPU(cpu);
432             qemu_mutex_lock_iothread();
433             apic_poll_irq(x86_cpu->apic_state);
434             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
435             qemu_mutex_unlock_iothread();
436         }
437 #endif
438         if (!cpu_has_work(cpu)) {
439             return true;
440         }
441 
442         cpu->halted = 0;
443     }
444 
445     return false;
446 }
447 
448 static inline void cpu_handle_debug_exception(CPUState *cpu)
449 {
450     CPUClass *cc = CPU_GET_CLASS(cpu);
451     CPUWatchpoint *wp;
452 
453     if (!cpu->watchpoint_hit) {
454         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
455             wp->flags &= ~BP_WATCHPOINT_HIT;
456         }
457     }
458 
459     cc->debug_excp_handler(cpu);
460 }
461 
462 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
463 {
464     if (cpu->exception_index < 0) {
465 #ifndef CONFIG_USER_ONLY
466         if (replay_has_exception()
467                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
468             /* try to cause an exception pending in the log */
469             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
470         }
471 #endif
472         if (cpu->exception_index < 0) {
473             return false;
474         }
475     }
476 
477     if (cpu->exception_index >= EXCP_INTERRUPT) {
478         /* exit request from the cpu execution loop */
479         *ret = cpu->exception_index;
480         if (*ret == EXCP_DEBUG) {
481             cpu_handle_debug_exception(cpu);
482         }
483         cpu->exception_index = -1;
484         return true;
485     } else {
486 #if defined(CONFIG_USER_ONLY)
487         /* if user mode only, we simulate a fake exception
488            which will be handled outside the cpu execution
489            loop */
490 #if defined(TARGET_I386)
491         CPUClass *cc = CPU_GET_CLASS(cpu);
492         cc->do_interrupt(cpu);
493 #endif
494         *ret = cpu->exception_index;
495         cpu->exception_index = -1;
496         return true;
497 #else
498         if (replay_exception()) {
499             CPUClass *cc = CPU_GET_CLASS(cpu);
500             qemu_mutex_lock_iothread();
501             cc->do_interrupt(cpu);
502             qemu_mutex_unlock_iothread();
503             cpu->exception_index = -1;
504         } else if (!replay_has_interrupt()) {
505             /* give a chance to iothread in replay mode */
506             *ret = EXCP_INTERRUPT;
507             return true;
508         }
509 #endif
510     }
511 
512     return false;
513 }
514 
515 static inline bool cpu_handle_interrupt(CPUState *cpu,
516                                         TranslationBlock **last_tb)
517 {
518     CPUClass *cc = CPU_GET_CLASS(cpu);
519 
520     /* Clear the interrupt flag now since we're processing
521      * cpu->interrupt_request and cpu->exit_request.
522      * Ensure zeroing happens before reading cpu->exit_request or
523      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
524      */
525     atomic_mb_set(&cpu->icount_decr.u16.high, 0);
526 
527     if (unlikely(atomic_read(&cpu->interrupt_request))) {
528         int interrupt_request;
529         qemu_mutex_lock_iothread();
530         interrupt_request = cpu->interrupt_request;
531         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
532             /* Mask out external interrupts for this step. */
533             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
534         }
535         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
536             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
537             cpu->exception_index = EXCP_DEBUG;
538             qemu_mutex_unlock_iothread();
539             return true;
540         }
541         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
542             /* Do nothing */
543         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
544             replay_interrupt();
545             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
546             cpu->halted = 1;
547             cpu->exception_index = EXCP_HLT;
548             qemu_mutex_unlock_iothread();
549             return true;
550         }
551 #if defined(TARGET_I386)
552         else if (interrupt_request & CPU_INTERRUPT_INIT) {
553             X86CPU *x86_cpu = X86_CPU(cpu);
554             CPUArchState *env = &x86_cpu->env;
555             replay_interrupt();
556             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
557             do_cpu_init(x86_cpu);
558             cpu->exception_index = EXCP_HALTED;
559             qemu_mutex_unlock_iothread();
560             return true;
561         }
562 #else
563         else if (interrupt_request & CPU_INTERRUPT_RESET) {
564             replay_interrupt();
565             cpu_reset(cpu);
566             qemu_mutex_unlock_iothread();
567             return true;
568         }
569 #endif
570         /* The target hook has 3 exit conditions:
571            False when the interrupt isn't processed,
572            True when it is, and we should restart on a new TB,
573            and via longjmp via cpu_loop_exit.  */
574         else {
575             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
576                 replay_interrupt();
577                 cpu->exception_index = -1;
578                 *last_tb = NULL;
579             }
580             /* The target hook may have updated the 'cpu->interrupt_request';
581              * reload the 'interrupt_request' value */
582             interrupt_request = cpu->interrupt_request;
583         }
584         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
585             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
586             /* ensure that no TB jump will be modified as
587                the program flow was changed */
588             *last_tb = NULL;
589         }
590 
591         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
592         qemu_mutex_unlock_iothread();
593     }
594 
595     /* Finally, check if we need to exit to the main loop.  */
596     if (unlikely(atomic_read(&cpu->exit_request)
597         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
598         atomic_set(&cpu->exit_request, 0);
599         if (cpu->exception_index == -1) {
600             cpu->exception_index = EXCP_INTERRUPT;
601         }
602         return true;
603     }
604 
605     return false;
606 }
607 
608 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
609                                     TranslationBlock **last_tb, int *tb_exit)
610 {
611     uintptr_t ret;
612     int32_t insns_left;
613 
614     trace_exec_tb(tb, tb->pc);
615     ret = cpu_tb_exec(cpu, tb);
616     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
617     *tb_exit = ret & TB_EXIT_MASK;
618     if (*tb_exit != TB_EXIT_REQUESTED) {
619         *last_tb = tb;
620         return;
621     }
622 
623     *last_tb = NULL;
624     insns_left = atomic_read(&cpu->icount_decr.u32);
625     if (insns_left < 0) {
626         /* Something asked us to stop executing chained TBs; just
627          * continue round the main loop. Whatever requested the exit
628          * will also have set something else (eg exit_request or
629          * interrupt_request) which will be handled by
630          * cpu_handle_interrupt.  cpu_handle_interrupt will also
631          * clear cpu->icount_decr.u16.high.
632          */
633         return;
634     }
635 
636     /* Instruction counter expired.  */
637     assert(use_icount);
638 #ifndef CONFIG_USER_ONLY
639     /* Ensure global icount has gone forward */
640     cpu_update_icount(cpu);
641     /* Refill decrementer and continue execution.  */
642     insns_left = MIN(0xffff, cpu->icount_budget);
643     cpu->icount_decr.u16.low = insns_left;
644     cpu->icount_extra = cpu->icount_budget - insns_left;
645     if (!cpu->icount_extra) {
646         /* Execute any remaining instructions, then let the main loop
647          * handle the next event.
648          */
649         if (insns_left > 0) {
650             cpu_exec_nocache(cpu, insns_left, tb, false);
651         }
652     }
653 #endif
654 }
655 
656 /* main execution loop */
657 
658 int cpu_exec(CPUState *cpu)
659 {
660     CPUClass *cc = CPU_GET_CLASS(cpu);
661     int ret;
662     SyncClocks sc = { 0 };
663 
664     /* replay_interrupt may need current_cpu */
665     current_cpu = cpu;
666 
667     if (cpu_handle_halt(cpu)) {
668         return EXCP_HALTED;
669     }
670 
671     rcu_read_lock();
672 
673     cc->cpu_exec_enter(cpu);
674 
675     /* Calculate difference between guest clock and host clock.
676      * This delay includes the delay of the last cycle, so
677      * what we have to do is sleep until it is 0. As for the
678      * advance/delay we gain here, we try to fix it next time.
679      */
680     init_delay_params(&sc, cpu);
681 
682     /* prepare setjmp context for exception handling */
683     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
684 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
685         /* Some compilers wrongly smash all local variables after
686          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
687          * Reload essential local variables here for those compilers.
688          * Newer versions of gcc would complain about this code (-Wclobbered). */
689         cpu = current_cpu;
690         cc = CPU_GET_CLASS(cpu);
691 #else /* buggy compiler */
692         /* Assert that the compiler does not smash local variables. */
693         g_assert(cpu == current_cpu);
694         g_assert(cc == CPU_GET_CLASS(cpu));
695 #endif /* buggy compiler */
696 #ifndef CONFIG_SOFTMMU
697         tcg_debug_assert(!have_mmap_lock());
698 #endif
699         if (qemu_mutex_iothread_locked()) {
700             qemu_mutex_unlock_iothread();
701         }
702     }
703 
704     /* if an exception is pending, we execute it here */
705     while (!cpu_handle_exception(cpu, &ret)) {
706         TranslationBlock *last_tb = NULL;
707         int tb_exit = 0;
708 
709         while (!cpu_handle_interrupt(cpu, &last_tb)) {
710             uint32_t cflags = cpu->cflags_next_tb;
711             TranslationBlock *tb;
712 
713             /* When requested, use an exact setting for cflags for the next
714                execution.  This is used for icount, precise smc, and stop-
715                after-access watchpoints.  Since this request should never
716                have CF_INVALID set, -1 is a convenient invalid value that
717                does not require tcg headers for cpu_common_reset.  */
718             if (cflags == -1) {
719                 cflags = curr_cflags();
720             } else {
721                 cpu->cflags_next_tb = -1;
722             }
723 
724             tb = tb_find(cpu, last_tb, tb_exit, cflags);
725             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
726             /* Try to align the host and virtual clocks
727                if the guest is in advance */
728             align_clocks(&sc, cpu);
729         }
730     }
731 
732     cc->cpu_exec_exit(cpu);
733     rcu_read_unlock();
734 
735     return ret;
736 }
737