xref: /qemu/accel/tcg/cpu-exec.c (revision 2e8f72ac)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "cpu.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "qemu/atomic.h"
29 #include "qemu/compiler.h"
30 #include "sysemu/qtest.h"
31 #include "qemu/timer.h"
32 #include "qemu/rcu.h"
33 #include "exec/tb-hash.h"
34 #include "exec/tb-lookup.h"
35 #include "exec/log.h"
36 #include "qemu/main-loop.h"
37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
38 #include "hw/i386/apic.h"
39 #endif
40 #include "sysemu/cpus.h"
41 #include "exec/cpu-all.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/replay.h"
44 
45 /* -icount align implementation. */
46 
47 typedef struct SyncClocks {
48     int64_t diff_clk;
49     int64_t last_cpu_icount;
50     int64_t realtime_clock;
51 } SyncClocks;
52 
53 #if !defined(CONFIG_USER_ONLY)
54 /* Allow the guest to have a max 3ms advance.
55  * The difference between the 2 clocks could therefore
56  * oscillate around 0.
57  */
58 #define VM_CLOCK_ADVANCE 3000000
59 #define THRESHOLD_REDUCE 1.5
60 #define MAX_DELAY_PRINT_RATE 2000000000LL
61 #define MAX_NB_PRINTS 100
62 
63 static int64_t max_delay;
64 static int64_t max_advance;
65 
66 static void align_clocks(SyncClocks *sc, CPUState *cpu)
67 {
68     int64_t cpu_icount;
69 
70     if (!icount_align_option) {
71         return;
72     }
73 
74     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
75     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
76     sc->last_cpu_icount = cpu_icount;
77 
78     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
79 #ifndef _WIN32
80         struct timespec sleep_delay, rem_delay;
81         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
82         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
83         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
84             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
85         } else {
86             sc->diff_clk = 0;
87         }
88 #else
89         Sleep(sc->diff_clk / SCALE_MS);
90         sc->diff_clk = 0;
91 #endif
92     }
93 }
94 
95 static void print_delay(const SyncClocks *sc)
96 {
97     static float threshold_delay;
98     static int64_t last_realtime_clock;
99     static int nb_prints;
100 
101     if (icount_align_option &&
102         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
103         nb_prints < MAX_NB_PRINTS) {
104         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
105             (-sc->diff_clk / (float)1000000000LL <
106              (threshold_delay - THRESHOLD_REDUCE))) {
107             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
108             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
109                         threshold_delay - 1,
110                         threshold_delay);
111             nb_prints++;
112             last_realtime_clock = sc->realtime_clock;
113         }
114     }
115 }
116 
117 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
118 {
119     if (!icount_align_option) {
120         return;
121     }
122     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
123     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
124     sc->last_cpu_icount
125         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
126     if (sc->diff_clk < max_delay) {
127         max_delay = sc->diff_clk;
128     }
129     if (sc->diff_clk > max_advance) {
130         max_advance = sc->diff_clk;
131     }
132 
133     /* Print every 2s max if the guest is late. We limit the number
134        of printed messages to NB_PRINT_MAX(currently 100) */
135     print_delay(sc);
136 }
137 #else
138 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
139 {
140 }
141 
142 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
143 {
144 }
145 #endif /* CONFIG USER ONLY */
146 
147 /* Execute a TB, and fix up the CPU state afterwards if necessary */
148 /*
149  * Disable CFI checks.
150  * TCG creates binary blobs at runtime, with the transformed code.
151  * A TB is a blob of binary code, created at runtime and called with an
152  * indirect function call. Since such function did not exist at compile time,
153  * the CFI runtime has no way to verify its signature and would fail.
154  * TCG is not considered a security-sensitive part of QEMU so this does not
155  * affect the impact of CFI in environment with high security requirements
156  */
157 static inline TranslationBlock * QEMU_DISABLE_CFI
158 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
159 {
160     CPUArchState *env = cpu->env_ptr;
161     uintptr_t ret;
162     TranslationBlock *last_tb;
163     const void *tb_ptr = itb->tc.ptr;
164 
165     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
166                            "Trace %d: %p ["
167                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
168                            cpu->cpu_index, itb->tc.ptr,
169                            itb->cs_base, itb->pc, itb->flags,
170                            lookup_symbol(itb->pc));
171 
172 #if defined(DEBUG_DISAS)
173     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
174         && qemu_log_in_addr_range(itb->pc)) {
175         FILE *logfile = qemu_log_lock();
176         int flags = 0;
177         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
178             flags |= CPU_DUMP_FPU;
179         }
180 #if defined(TARGET_I386)
181         flags |= CPU_DUMP_CCOP;
182 #endif
183         log_cpu_state(cpu, flags);
184         qemu_log_unlock(logfile);
185     }
186 #endif /* DEBUG_DISAS */
187 
188     ret = tcg_qemu_tb_exec(env, tb_ptr);
189     cpu->can_do_io = 1;
190     /*
191      * TODO: Delay swapping back to the read-write region of the TB
192      * until we actually need to modify the TB.  The read-only copy,
193      * coming from the rx region, shares the same host TLB entry as
194      * the code that executed the exit_tb opcode that arrived here.
195      * If we insist on touching both the RX and the RW pages, we
196      * double the host TLB pressure.
197      */
198     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
199     *tb_exit = ret & TB_EXIT_MASK;
200 
201     trace_exec_tb_exit(last_tb, *tb_exit);
202 
203     if (*tb_exit > TB_EXIT_IDX1) {
204         /* We didn't start executing this TB (eg because the instruction
205          * counter hit zero); we must restore the guest PC to the address
206          * of the start of the TB.
207          */
208         CPUClass *cc = CPU_GET_CLASS(cpu);
209         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
210                                "Stopped execution of TB chain before %p ["
211                                TARGET_FMT_lx "] %s\n",
212                                last_tb->tc.ptr, last_tb->pc,
213                                lookup_symbol(last_tb->pc));
214         if (cc->synchronize_from_tb) {
215             cc->synchronize_from_tb(cpu, last_tb);
216         } else {
217             assert(cc->set_pc);
218             cc->set_pc(cpu, last_tb->pc);
219         }
220     }
221     return last_tb;
222 }
223 
224 #ifndef CONFIG_USER_ONLY
225 /* Execute the code without caching the generated code. An interpreter
226    could be used if available. */
227 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
228                              TranslationBlock *orig_tb, bool ignore_icount)
229 {
230     TranslationBlock *tb;
231     uint32_t cflags = curr_cflags() | CF_NOCACHE;
232     int tb_exit;
233 
234     if (ignore_icount) {
235         cflags &= ~CF_USE_ICOUNT;
236     }
237 
238     /* Should never happen.
239        We only end up here when an existing TB is too long.  */
240     cflags |= MIN(max_cycles, CF_COUNT_MASK);
241 
242     mmap_lock();
243     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
244                      orig_tb->flags, cflags);
245     tb->orig_tb = orig_tb;
246     mmap_unlock();
247 
248     /* execute the generated code */
249     trace_exec_tb_nocache(tb, tb->pc);
250     cpu_tb_exec(cpu, tb, &tb_exit);
251 
252     mmap_lock();
253     tb_phys_invalidate(tb, -1);
254     mmap_unlock();
255     tcg_tb_remove(tb);
256 }
257 #endif
258 
259 static void cpu_exec_enter(CPUState *cpu)
260 {
261     CPUClass *cc = CPU_GET_CLASS(cpu);
262 
263     if (cc->cpu_exec_enter) {
264         cc->cpu_exec_enter(cpu);
265     }
266 }
267 
268 static void cpu_exec_exit(CPUState *cpu)
269 {
270     CPUClass *cc = CPU_GET_CLASS(cpu);
271 
272     if (cc->cpu_exec_exit) {
273         cc->cpu_exec_exit(cpu);
274     }
275 }
276 
277 void cpu_exec_step_atomic(CPUState *cpu)
278 {
279     TranslationBlock *tb;
280     target_ulong cs_base, pc;
281     uint32_t flags;
282     uint32_t cflags = 1;
283     uint32_t cf_mask = cflags & CF_HASH_MASK;
284     int tb_exit;
285 
286     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
287         start_exclusive();
288 
289         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
290         if (tb == NULL) {
291             mmap_lock();
292             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
293             mmap_unlock();
294         }
295 
296         /* Since we got here, we know that parallel_cpus must be true.  */
297         parallel_cpus = false;
298         cpu_exec_enter(cpu);
299         /* execute the generated code */
300         trace_exec_tb(tb, pc);
301         cpu_tb_exec(cpu, tb, &tb_exit);
302         cpu_exec_exit(cpu);
303     } else {
304         /*
305          * The mmap_lock is dropped by tb_gen_code if it runs out of
306          * memory.
307          */
308 #ifndef CONFIG_SOFTMMU
309         tcg_debug_assert(!have_mmap_lock());
310 #endif
311         if (qemu_mutex_iothread_locked()) {
312             qemu_mutex_unlock_iothread();
313         }
314         assert_no_pages_locked();
315         qemu_plugin_disable_mem_helpers(cpu);
316     }
317 
318 
319     /*
320      * As we start the exclusive region before codegen we must still
321      * be in the region if we longjump out of either the codegen or
322      * the execution.
323      */
324     g_assert(cpu_in_exclusive_context(cpu));
325     parallel_cpus = true;
326     end_exclusive();
327 }
328 
329 struct tb_desc {
330     target_ulong pc;
331     target_ulong cs_base;
332     CPUArchState *env;
333     tb_page_addr_t phys_page1;
334     uint32_t flags;
335     uint32_t cf_mask;
336     uint32_t trace_vcpu_dstate;
337 };
338 
339 static bool tb_lookup_cmp(const void *p, const void *d)
340 {
341     const TranslationBlock *tb = p;
342     const struct tb_desc *desc = d;
343 
344     if (tb->pc == desc->pc &&
345         tb->page_addr[0] == desc->phys_page1 &&
346         tb->cs_base == desc->cs_base &&
347         tb->flags == desc->flags &&
348         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
349         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
350         /* check next page if needed */
351         if (tb->page_addr[1] == -1) {
352             return true;
353         } else {
354             tb_page_addr_t phys_page2;
355             target_ulong virt_page2;
356 
357             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
358             phys_page2 = get_page_addr_code(desc->env, virt_page2);
359             if (tb->page_addr[1] == phys_page2) {
360                 return true;
361             }
362         }
363     }
364     return false;
365 }
366 
367 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
368                                    target_ulong cs_base, uint32_t flags,
369                                    uint32_t cf_mask)
370 {
371     tb_page_addr_t phys_pc;
372     struct tb_desc desc;
373     uint32_t h;
374 
375     desc.env = (CPUArchState *)cpu->env_ptr;
376     desc.cs_base = cs_base;
377     desc.flags = flags;
378     desc.cf_mask = cf_mask;
379     desc.trace_vcpu_dstate = *cpu->trace_dstate;
380     desc.pc = pc;
381     phys_pc = get_page_addr_code(desc.env, pc);
382     if (phys_pc == -1) {
383         return NULL;
384     }
385     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
386     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
387     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
388 }
389 
390 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
391 {
392     if (TCG_TARGET_HAS_direct_jump) {
393         uintptr_t offset = tb->jmp_target_arg[n];
394         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
395         uintptr_t jmp_rx = tc_ptr + offset;
396         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
397         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
398     } else {
399         tb->jmp_target_arg[n] = addr;
400     }
401 }
402 
403 static inline void tb_add_jump(TranslationBlock *tb, int n,
404                                TranslationBlock *tb_next)
405 {
406     uintptr_t old;
407 
408     assert(n < ARRAY_SIZE(tb->jmp_list_next));
409     qemu_spin_lock(&tb_next->jmp_lock);
410 
411     /* make sure the destination TB is valid */
412     if (tb_next->cflags & CF_INVALID) {
413         goto out_unlock_next;
414     }
415     /* Atomically claim the jump destination slot only if it was NULL */
416     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
417                           (uintptr_t)tb_next);
418     if (old) {
419         goto out_unlock_next;
420     }
421 
422     /* patch the native jump address */
423     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
424 
425     /* add in TB jmp list */
426     tb->jmp_list_next[n] = tb_next->jmp_list_head;
427     tb_next->jmp_list_head = (uintptr_t)tb | n;
428 
429     qemu_spin_unlock(&tb_next->jmp_lock);
430 
431     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
432                            "Linking TBs %p [" TARGET_FMT_lx
433                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
434                            tb->tc.ptr, tb->pc, n,
435                            tb_next->tc.ptr, tb_next->pc);
436     return;
437 
438  out_unlock_next:
439     qemu_spin_unlock(&tb_next->jmp_lock);
440     return;
441 }
442 
443 static inline TranslationBlock *tb_find(CPUState *cpu,
444                                         TranslationBlock *last_tb,
445                                         int tb_exit, uint32_t cf_mask)
446 {
447     TranslationBlock *tb;
448     target_ulong cs_base, pc;
449     uint32_t flags;
450 
451     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
452     if (tb == NULL) {
453         mmap_lock();
454         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
455         mmap_unlock();
456         /* We add the TB in the virtual pc hash table for the fast lookup */
457         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
458     }
459 #ifndef CONFIG_USER_ONLY
460     /* We don't take care of direct jumps when address mapping changes in
461      * system emulation. So it's not safe to make a direct jump to a TB
462      * spanning two pages because the mapping for the second page can change.
463      */
464     if (tb->page_addr[1] != -1) {
465         last_tb = NULL;
466     }
467 #endif
468     /* See if we can patch the calling TB. */
469     if (last_tb) {
470         tb_add_jump(last_tb, tb_exit, tb);
471     }
472     return tb;
473 }
474 
475 static inline bool cpu_handle_halt(CPUState *cpu)
476 {
477     if (cpu->halted) {
478 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
479         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
480             X86CPU *x86_cpu = X86_CPU(cpu);
481             qemu_mutex_lock_iothread();
482             apic_poll_irq(x86_cpu->apic_state);
483             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
484             qemu_mutex_unlock_iothread();
485         }
486 #endif
487         if (!cpu_has_work(cpu)) {
488             return true;
489         }
490 
491         cpu->halted = 0;
492     }
493 
494     return false;
495 }
496 
497 static inline void cpu_handle_debug_exception(CPUState *cpu)
498 {
499     CPUClass *cc = CPU_GET_CLASS(cpu);
500     CPUWatchpoint *wp;
501 
502     if (!cpu->watchpoint_hit) {
503         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
504             wp->flags &= ~BP_WATCHPOINT_HIT;
505         }
506     }
507 
508     if (cc->debug_excp_handler) {
509         cc->debug_excp_handler(cpu);
510     }
511 }
512 
513 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
514 {
515     if (cpu->exception_index < 0) {
516 #ifndef CONFIG_USER_ONLY
517         if (replay_has_exception()
518             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
519             /* try to cause an exception pending in the log */
520             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
521         }
522 #endif
523         if (cpu->exception_index < 0) {
524             return false;
525         }
526     }
527 
528     if (cpu->exception_index >= EXCP_INTERRUPT) {
529         /* exit request from the cpu execution loop */
530         *ret = cpu->exception_index;
531         if (*ret == EXCP_DEBUG) {
532             cpu_handle_debug_exception(cpu);
533         }
534         cpu->exception_index = -1;
535         return true;
536     } else {
537 #if defined(CONFIG_USER_ONLY)
538         /* if user mode only, we simulate a fake exception
539            which will be handled outside the cpu execution
540            loop */
541 #if defined(TARGET_I386)
542         CPUClass *cc = CPU_GET_CLASS(cpu);
543         cc->do_interrupt(cpu);
544 #endif
545         *ret = cpu->exception_index;
546         cpu->exception_index = -1;
547         return true;
548 #else
549         if (replay_exception()) {
550             CPUClass *cc = CPU_GET_CLASS(cpu);
551             qemu_mutex_lock_iothread();
552             cc->do_interrupt(cpu);
553             qemu_mutex_unlock_iothread();
554             cpu->exception_index = -1;
555 
556             if (unlikely(cpu->singlestep_enabled)) {
557                 /*
558                  * After processing the exception, ensure an EXCP_DEBUG is
559                  * raised when single-stepping so that GDB doesn't miss the
560                  * next instruction.
561                  */
562                 *ret = EXCP_DEBUG;
563                 cpu_handle_debug_exception(cpu);
564                 return true;
565             }
566         } else if (!replay_has_interrupt()) {
567             /* give a chance to iothread in replay mode */
568             *ret = EXCP_INTERRUPT;
569             return true;
570         }
571 #endif
572     }
573 
574     return false;
575 }
576 
577 /*
578  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
579  * "real" interrupt event later. It does not need to be recorded for
580  * replay purposes.
581  */
582 static inline bool need_replay_interrupt(int interrupt_request)
583 {
584 #if defined(TARGET_I386)
585     return !(interrupt_request & CPU_INTERRUPT_POLL);
586 #else
587     return true;
588 #endif
589 }
590 
591 static inline bool cpu_handle_interrupt(CPUState *cpu,
592                                         TranslationBlock **last_tb)
593 {
594     CPUClass *cc = CPU_GET_CLASS(cpu);
595 
596     /* Clear the interrupt flag now since we're processing
597      * cpu->interrupt_request and cpu->exit_request.
598      * Ensure zeroing happens before reading cpu->exit_request or
599      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
600      */
601     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
602 
603     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
604         int interrupt_request;
605         qemu_mutex_lock_iothread();
606         interrupt_request = cpu->interrupt_request;
607         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
608             /* Mask out external interrupts for this step. */
609             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
610         }
611         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
612             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
613             cpu->exception_index = EXCP_DEBUG;
614             qemu_mutex_unlock_iothread();
615             return true;
616         }
617         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
618             /* Do nothing */
619         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
620             replay_interrupt();
621             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
622             cpu->halted = 1;
623             cpu->exception_index = EXCP_HLT;
624             qemu_mutex_unlock_iothread();
625             return true;
626         }
627 #if defined(TARGET_I386)
628         else if (interrupt_request & CPU_INTERRUPT_INIT) {
629             X86CPU *x86_cpu = X86_CPU(cpu);
630             CPUArchState *env = &x86_cpu->env;
631             replay_interrupt();
632             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
633             do_cpu_init(x86_cpu);
634             cpu->exception_index = EXCP_HALTED;
635             qemu_mutex_unlock_iothread();
636             return true;
637         }
638 #else
639         else if (interrupt_request & CPU_INTERRUPT_RESET) {
640             replay_interrupt();
641             cpu_reset(cpu);
642             qemu_mutex_unlock_iothread();
643             return true;
644         }
645 #endif
646         /* The target hook has 3 exit conditions:
647            False when the interrupt isn't processed,
648            True when it is, and we should restart on a new TB,
649            and via longjmp via cpu_loop_exit.  */
650         else {
651             if (cc->cpu_exec_interrupt &&
652                 cc->cpu_exec_interrupt(cpu, interrupt_request)) {
653                 if (need_replay_interrupt(interrupt_request)) {
654                     replay_interrupt();
655                 }
656                 /*
657                  * After processing the interrupt, ensure an EXCP_DEBUG is
658                  * raised when single-stepping so that GDB doesn't miss the
659                  * next instruction.
660                  */
661                 cpu->exception_index =
662                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
663                 *last_tb = NULL;
664             }
665             /* The target hook may have updated the 'cpu->interrupt_request';
666              * reload the 'interrupt_request' value */
667             interrupt_request = cpu->interrupt_request;
668         }
669         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
670             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
671             /* ensure that no TB jump will be modified as
672                the program flow was changed */
673             *last_tb = NULL;
674         }
675 
676         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
677         qemu_mutex_unlock_iothread();
678     }
679 
680     /* Finally, check if we need to exit to the main loop.  */
681     if (unlikely(qatomic_read(&cpu->exit_request))
682         || (icount_enabled()
683             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
684         qatomic_set(&cpu->exit_request, 0);
685         if (cpu->exception_index == -1) {
686             cpu->exception_index = EXCP_INTERRUPT;
687         }
688         return true;
689     }
690 
691     return false;
692 }
693 
694 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
695                                     TranslationBlock **last_tb, int *tb_exit)
696 {
697     int32_t insns_left;
698 
699     trace_exec_tb(tb, tb->pc);
700     tb = cpu_tb_exec(cpu, tb, tb_exit);
701     if (*tb_exit != TB_EXIT_REQUESTED) {
702         *last_tb = tb;
703         return;
704     }
705 
706     *last_tb = NULL;
707     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
708     if (insns_left < 0) {
709         /* Something asked us to stop executing chained TBs; just
710          * continue round the main loop. Whatever requested the exit
711          * will also have set something else (eg exit_request or
712          * interrupt_request) which will be handled by
713          * cpu_handle_interrupt.  cpu_handle_interrupt will also
714          * clear cpu->icount_decr.u16.high.
715          */
716         return;
717     }
718 
719     /* Instruction counter expired.  */
720     assert(icount_enabled());
721 #ifndef CONFIG_USER_ONLY
722     /* Ensure global icount has gone forward */
723     icount_update(cpu);
724     /* Refill decrementer and continue execution.  */
725     insns_left = MIN(0xffff, cpu->icount_budget);
726     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
727     cpu->icount_extra = cpu->icount_budget - insns_left;
728     if (!cpu->icount_extra && insns_left < tb->icount) {
729         /* Execute any remaining instructions, then let the main loop
730          * handle the next event.
731          */
732         if (insns_left > 0) {
733             cpu_exec_nocache(cpu, insns_left, tb, false);
734         }
735     }
736 #endif
737 }
738 
739 /* main execution loop */
740 
741 int cpu_exec(CPUState *cpu)
742 {
743     CPUClass *cc = CPU_GET_CLASS(cpu);
744     int ret;
745     SyncClocks sc = { 0 };
746 
747     /* replay_interrupt may need current_cpu */
748     current_cpu = cpu;
749 
750     if (cpu_handle_halt(cpu)) {
751         return EXCP_HALTED;
752     }
753 
754     rcu_read_lock();
755 
756     cpu_exec_enter(cpu);
757 
758     /* Calculate difference between guest clock and host clock.
759      * This delay includes the delay of the last cycle, so
760      * what we have to do is sleep until it is 0. As for the
761      * advance/delay we gain here, we try to fix it next time.
762      */
763     init_delay_params(&sc, cpu);
764 
765     /* prepare setjmp context for exception handling */
766     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
767 #if defined(__clang__)
768         /* Some compilers wrongly smash all local variables after
769          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
770          * Reload essential local variables here for those compilers.
771          * Newer versions of gcc would complain about this code (-Wclobbered). */
772         cpu = current_cpu;
773         cc = CPU_GET_CLASS(cpu);
774 #else /* buggy compiler */
775         /* Assert that the compiler does not smash local variables. */
776         g_assert(cpu == current_cpu);
777         g_assert(cc == CPU_GET_CLASS(cpu));
778 #endif /* buggy compiler */
779 #ifndef CONFIG_SOFTMMU
780         tcg_debug_assert(!have_mmap_lock());
781 #endif
782         if (qemu_mutex_iothread_locked()) {
783             qemu_mutex_unlock_iothread();
784         }
785         qemu_plugin_disable_mem_helpers(cpu);
786 
787         assert_no_pages_locked();
788     }
789 
790     /* if an exception is pending, we execute it here */
791     while (!cpu_handle_exception(cpu, &ret)) {
792         TranslationBlock *last_tb = NULL;
793         int tb_exit = 0;
794 
795         while (!cpu_handle_interrupt(cpu, &last_tb)) {
796             uint32_t cflags = cpu->cflags_next_tb;
797             TranslationBlock *tb;
798 
799             /* When requested, use an exact setting for cflags for the next
800                execution.  This is used for icount, precise smc, and stop-
801                after-access watchpoints.  Since this request should never
802                have CF_INVALID set, -1 is a convenient invalid value that
803                does not require tcg headers for cpu_common_reset.  */
804             if (cflags == -1) {
805                 cflags = curr_cflags();
806             } else {
807                 cpu->cflags_next_tb = -1;
808             }
809 
810             tb = tb_find(cpu, last_tb, tb_exit, cflags);
811             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
812             /* Try to align the host and virtual clocks
813                if the guest is in advance */
814             align_clocks(&sc, cpu);
815         }
816     }
817 
818     cpu_exec_exit(cpu);
819     rcu_read_unlock();
820 
821     return ret;
822 }
823 
824 #ifndef CONFIG_USER_ONLY
825 
826 void dump_drift_info(void)
827 {
828     if (!icount_enabled()) {
829         return;
830     }
831 
832     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
833                 (cpu_get_clock() - icount_get()) / SCALE_MS);
834     if (icount_align_option) {
835         qemu_printf("Max guest delay     %"PRIi64" ms\n",
836                     -max_delay / SCALE_MS);
837         qemu_printf("Max guest advance   %"PRIi64" ms\n",
838                     max_advance / SCALE_MS);
839     } else {
840         qemu_printf("Max guest delay     NA\n");
841         qemu_printf("Max guest advance   NA\n");
842     }
843 }
844 
845 #endif /* !CONFIG_USER_ONLY */
846