xref: /qemu/accel/tcg/cpu-exec.c (revision 55f01e76)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-jmp-cache.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49 
50 /* -icount align implementation. */
51 
52 typedef struct SyncClocks {
53     int64_t diff_clk;
54     int64_t last_cpu_icount;
55     int64_t realtime_clock;
56 } SyncClocks;
57 
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60  * The difference between the 2 clocks could therefore
61  * oscillate around 0.
62  */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67 
68 static int64_t max_delay;
69 static int64_t max_advance;
70 
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73     int64_t cpu_icount;
74 
75     if (!icount_align_option) {
76         return;
77     }
78 
79     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81     sc->last_cpu_icount = cpu_icount;
82 
83     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85         struct timespec sleep_delay, rem_delay;
86         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90         } else {
91             sc->diff_clk = 0;
92         }
93 #else
94         Sleep(sc->diff_clk / SCALE_MS);
95         sc->diff_clk = 0;
96 #endif
97     }
98 }
99 
100 static void print_delay(const SyncClocks *sc)
101 {
102     static float threshold_delay;
103     static int64_t last_realtime_clock;
104     static int nb_prints;
105 
106     if (icount_align_option &&
107         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108         nb_prints < MAX_NB_PRINTS) {
109         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110             (-sc->diff_clk / (float)1000000000LL <
111              (threshold_delay - THRESHOLD_REDUCE))) {
112             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114                         threshold_delay - 1,
115                         threshold_delay);
116             nb_prints++;
117             last_realtime_clock = sc->realtime_clock;
118         }
119     }
120 }
121 
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124     if (!icount_align_option) {
125         return;
126     }
127     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129     sc->last_cpu_icount
130         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131     if (sc->diff_clk < max_delay) {
132         max_delay = sc->diff_clk;
133     }
134     if (sc->diff_clk > max_advance) {
135         max_advance = sc->diff_clk;
136     }
137 
138     /* Print every 2s max if the guest is late. We limit the number
139        of printed messages to NB_PRINT_MAX(currently 100) */
140     print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151 
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154     uint32_t cflags = cpu->tcg_cflags;
155 
156     /*
157      * Record gdb single-step.  We should be exiting the TB by raising
158      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159      *
160      * For singlestep and -d nochain, suppress goto_tb so that
161      * we can log -d cpu,exec after every TB.
162      */
163     if (unlikely(cpu->singlestep_enabled)) {
164         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165     } else if (singlestep) {
166         cflags |= CF_NO_GOTO_TB | 1;
167     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168         cflags |= CF_NO_GOTO_TB;
169     }
170 
171     return cflags;
172 }
173 
174 struct tb_desc {
175     target_ulong pc;
176     target_ulong cs_base;
177     CPUArchState *env;
178     tb_page_addr_t page_addr0;
179     uint32_t flags;
180     uint32_t cflags;
181     uint32_t trace_vcpu_dstate;
182 };
183 
184 static bool tb_lookup_cmp(const void *p, const void *d)
185 {
186     const TranslationBlock *tb = p;
187     const struct tb_desc *desc = d;
188 
189     if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
190         tb->page_addr[0] == desc->page_addr0 &&
191         tb->cs_base == desc->cs_base &&
192         tb->flags == desc->flags &&
193         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
194         tb_cflags(tb) == desc->cflags) {
195         /* check next page if needed */
196         if (tb->page_addr[1] == -1) {
197             return true;
198         } else {
199             tb_page_addr_t phys_page1;
200             target_ulong virt_page1;
201 
202             /*
203              * We know that the first page matched, and an otherwise valid TB
204              * encountered an incomplete instruction at the end of that page,
205              * therefore we know that generating a new TB from the current PC
206              * must also require reading from the next page -- even if the
207              * second pages do not match, and therefore the resulting insn
208              * is different for the new TB.  Therefore any exception raised
209              * here by the faulting lookup is not premature.
210              */
211             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
212             phys_page1 = get_page_addr_code(desc->env, virt_page1);
213             if (tb->page_addr[1] == phys_page1) {
214                 return true;
215             }
216         }
217     }
218     return false;
219 }
220 
221 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
222                                           target_ulong cs_base, uint32_t flags,
223                                           uint32_t cflags)
224 {
225     tb_page_addr_t phys_pc;
226     struct tb_desc desc;
227     uint32_t h;
228 
229     desc.env = cpu->env_ptr;
230     desc.cs_base = cs_base;
231     desc.flags = flags;
232     desc.cflags = cflags;
233     desc.trace_vcpu_dstate = *cpu->trace_dstate;
234     desc.pc = pc;
235     phys_pc = get_page_addr_code(desc.env, pc);
236     if (phys_pc == -1) {
237         return NULL;
238     }
239     desc.page_addr0 = phys_pc;
240     h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
241                      flags, cflags, *cpu->trace_dstate);
242     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
243 }
244 
245 /* Might cause an exception, so have a longjmp destination ready */
246 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
247                                           target_ulong cs_base,
248                                           uint32_t flags, uint32_t cflags)
249 {
250     TranslationBlock *tb;
251     CPUJumpCache *jc;
252     uint32_t hash;
253 
254     /* we should never be trying to look up an INVALID tb */
255     tcg_debug_assert(!(cflags & CF_INVALID));
256 
257     hash = tb_jmp_cache_hash_func(pc);
258     jc = cpu->tb_jmp_cache;
259     tb = tb_jmp_cache_get_tb(jc, hash);
260 
261     if (likely(tb &&
262                tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
263                tb->cs_base == cs_base &&
264                tb->flags == flags &&
265                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
266                tb_cflags(tb) == cflags)) {
267         return tb;
268     }
269     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
270     if (tb == NULL) {
271         return NULL;
272     }
273     tb_jmp_cache_set(jc, hash, tb, pc);
274     return tb;
275 }
276 
277 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
278                          const TranslationBlock *tb)
279 {
280     if (qemu_log_in_addr_range(pc)) {
281         qemu_log_mask(CPU_LOG_EXEC,
282                       "Trace %d: %p [" TARGET_FMT_lx
283                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
284                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
285                       tb->flags, tb->cflags, lookup_symbol(pc));
286 
287 #if defined(DEBUG_DISAS)
288         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
289             FILE *logfile = qemu_log_trylock();
290             if (logfile) {
291                 int flags = 0;
292 
293                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
294                     flags |= CPU_DUMP_FPU;
295                 }
296 #if defined(TARGET_I386)
297                 flags |= CPU_DUMP_CCOP;
298 #endif
299                 cpu_dump_state(cpu, logfile, flags);
300                 qemu_log_unlock(logfile);
301             }
302         }
303 #endif /* DEBUG_DISAS */
304     }
305 }
306 
307 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
308                                   uint32_t *cflags)
309 {
310     CPUBreakpoint *bp;
311     bool match_page = false;
312 
313     if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
314         return false;
315     }
316 
317     /*
318      * Singlestep overrides breakpoints.
319      * This requirement is visible in the record-replay tests, where
320      * we would fail to make forward progress in reverse-continue.
321      *
322      * TODO: gdb singlestep should only override gdb breakpoints,
323      * so that one could (gdb) singlestep into the guest kernel's
324      * architectural breakpoint handler.
325      */
326     if (cpu->singlestep_enabled) {
327         return false;
328     }
329 
330     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
331         /*
332          * If we have an exact pc match, trigger the breakpoint.
333          * Otherwise, note matches within the page.
334          */
335         if (pc == bp->pc) {
336             bool match_bp = false;
337 
338             if (bp->flags & BP_GDB) {
339                 match_bp = true;
340             } else if (bp->flags & BP_CPU) {
341 #ifdef CONFIG_USER_ONLY
342                 g_assert_not_reached();
343 #else
344                 CPUClass *cc = CPU_GET_CLASS(cpu);
345                 assert(cc->tcg_ops->debug_check_breakpoint);
346                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
347 #endif
348             }
349 
350             if (match_bp) {
351                 cpu->exception_index = EXCP_DEBUG;
352                 return true;
353             }
354         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
355             match_page = true;
356         }
357     }
358 
359     /*
360      * Within the same page as a breakpoint, single-step,
361      * returning to helper_lookup_tb_ptr after each insn looking
362      * for the actual breakpoint.
363      *
364      * TODO: Perhaps better to record all of the TBs associated
365      * with a given virtual page that contains a breakpoint, and
366      * then invalidate them when a new overlapping breakpoint is
367      * set on the page.  Non-overlapping TBs would not be
368      * invalidated, nor would any TB need to be invalidated as
369      * breakpoints are removed.
370      */
371     if (match_page) {
372         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
373     }
374     return false;
375 }
376 
377 /**
378  * helper_lookup_tb_ptr: quick check for next tb
379  * @env: current cpu state
380  *
381  * Look for an existing TB matching the current cpu state.
382  * If found, return the code pointer.  If not found, return
383  * the tcg epilogue so that we return into cpu_tb_exec.
384  */
385 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
386 {
387     CPUState *cpu = env_cpu(env);
388     TranslationBlock *tb;
389     target_ulong cs_base, pc;
390     uint32_t flags, cflags;
391 
392     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
393 
394     cflags = curr_cflags(cpu);
395     if (check_for_breakpoints(cpu, pc, &cflags)) {
396         cpu_loop_exit(cpu);
397     }
398 
399     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
400     if (tb == NULL) {
401         return tcg_code_gen_epilogue;
402     }
403 
404     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
405         log_cpu_exec(pc, cpu, tb);
406     }
407 
408     return tb->tc.ptr;
409 }
410 
411 /* Execute a TB, and fix up the CPU state afterwards if necessary */
412 /*
413  * Disable CFI checks.
414  * TCG creates binary blobs at runtime, with the transformed code.
415  * A TB is a blob of binary code, created at runtime and called with an
416  * indirect function call. Since such function did not exist at compile time,
417  * the CFI runtime has no way to verify its signature and would fail.
418  * TCG is not considered a security-sensitive part of QEMU so this does not
419  * affect the impact of CFI in environment with high security requirements
420  */
421 static inline TranslationBlock * QEMU_DISABLE_CFI
422 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
423 {
424     CPUArchState *env = cpu->env_ptr;
425     uintptr_t ret;
426     TranslationBlock *last_tb;
427     const void *tb_ptr = itb->tc.ptr;
428 
429     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
430         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
431     }
432 
433     qemu_thread_jit_execute();
434     ret = tcg_qemu_tb_exec(env, tb_ptr);
435     cpu->can_do_io = 1;
436     /*
437      * TODO: Delay swapping back to the read-write region of the TB
438      * until we actually need to modify the TB.  The read-only copy,
439      * coming from the rx region, shares the same host TLB entry as
440      * the code that executed the exit_tb opcode that arrived here.
441      * If we insist on touching both the RX and the RW pages, we
442      * double the host TLB pressure.
443      */
444     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
445     *tb_exit = ret & TB_EXIT_MASK;
446 
447     trace_exec_tb_exit(last_tb, *tb_exit);
448 
449     if (*tb_exit > TB_EXIT_IDX1) {
450         /* We didn't start executing this TB (eg because the instruction
451          * counter hit zero); we must restore the guest PC to the address
452          * of the start of the TB.
453          */
454         CPUClass *cc = CPU_GET_CLASS(cpu);
455 
456         if (cc->tcg_ops->synchronize_from_tb) {
457             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
458         } else {
459             assert(!TARGET_TB_PCREL);
460             assert(cc->set_pc);
461             cc->set_pc(cpu, tb_pc(last_tb));
462         }
463         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
464             target_ulong pc = log_pc(cpu, last_tb);
465             if (qemu_log_in_addr_range(pc)) {
466                 qemu_log("Stopped execution of TB chain before %p ["
467                          TARGET_FMT_lx "] %s\n",
468                          last_tb->tc.ptr, pc, lookup_symbol(pc));
469             }
470         }
471     }
472 
473     /*
474      * If gdb single-step, and we haven't raised another exception,
475      * raise a debug exception.  Single-step with another exception
476      * is handled in cpu_handle_exception.
477      */
478     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
479         cpu->exception_index = EXCP_DEBUG;
480         cpu_loop_exit(cpu);
481     }
482 
483     return last_tb;
484 }
485 
486 
487 static void cpu_exec_enter(CPUState *cpu)
488 {
489     CPUClass *cc = CPU_GET_CLASS(cpu);
490 
491     if (cc->tcg_ops->cpu_exec_enter) {
492         cc->tcg_ops->cpu_exec_enter(cpu);
493     }
494 }
495 
496 static void cpu_exec_exit(CPUState *cpu)
497 {
498     CPUClass *cc = CPU_GET_CLASS(cpu);
499 
500     if (cc->tcg_ops->cpu_exec_exit) {
501         cc->tcg_ops->cpu_exec_exit(cpu);
502     }
503 }
504 
505 void cpu_exec_step_atomic(CPUState *cpu)
506 {
507     CPUArchState *env = cpu->env_ptr;
508     TranslationBlock *tb;
509     target_ulong cs_base, pc;
510     uint32_t flags, cflags;
511     int tb_exit;
512 
513     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
514         start_exclusive();
515         g_assert(cpu == current_cpu);
516         g_assert(!cpu->running);
517         cpu->running = true;
518 
519         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
520 
521         cflags = curr_cflags(cpu);
522         /* Execute in a serial context. */
523         cflags &= ~CF_PARALLEL;
524         /* After 1 insn, return and release the exclusive lock. */
525         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
526         /*
527          * No need to check_for_breakpoints here.
528          * We only arrive in cpu_exec_step_atomic after beginning execution
529          * of an insn that includes an atomic operation we can't handle.
530          * Any breakpoint for this insn will have been recognized earlier.
531          */
532 
533         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
534         if (tb == NULL) {
535             mmap_lock();
536             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
537             mmap_unlock();
538         }
539 
540         cpu_exec_enter(cpu);
541         /* execute the generated code */
542         trace_exec_tb(tb, pc);
543         cpu_tb_exec(cpu, tb, &tb_exit);
544         cpu_exec_exit(cpu);
545     } else {
546 #ifndef CONFIG_SOFTMMU
547         clear_helper_retaddr();
548         if (have_mmap_lock()) {
549             mmap_unlock();
550         }
551 #endif
552         if (qemu_mutex_iothread_locked()) {
553             qemu_mutex_unlock_iothread();
554         }
555         assert_no_pages_locked();
556         qemu_plugin_disable_mem_helpers(cpu);
557     }
558 
559     /*
560      * As we start the exclusive region before codegen we must still
561      * be in the region if we longjump out of either the codegen or
562      * the execution.
563      */
564     g_assert(cpu_in_exclusive_context(cpu));
565     cpu->running = false;
566     end_exclusive();
567 }
568 
569 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
570 {
571     if (TCG_TARGET_HAS_direct_jump) {
572         uintptr_t offset = tb->jmp_target_arg[n];
573         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
574         uintptr_t jmp_rx = tc_ptr + offset;
575         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
576         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
577     } else {
578         tb->jmp_target_arg[n] = addr;
579     }
580 }
581 
582 static inline void tb_add_jump(TranslationBlock *tb, int n,
583                                TranslationBlock *tb_next)
584 {
585     uintptr_t old;
586 
587     qemu_thread_jit_write();
588     assert(n < ARRAY_SIZE(tb->jmp_list_next));
589     qemu_spin_lock(&tb_next->jmp_lock);
590 
591     /* make sure the destination TB is valid */
592     if (tb_next->cflags & CF_INVALID) {
593         goto out_unlock_next;
594     }
595     /* Atomically claim the jump destination slot only if it was NULL */
596     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
597                           (uintptr_t)tb_next);
598     if (old) {
599         goto out_unlock_next;
600     }
601 
602     /* patch the native jump address */
603     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
604 
605     /* add in TB jmp list */
606     tb->jmp_list_next[n] = tb_next->jmp_list_head;
607     tb_next->jmp_list_head = (uintptr_t)tb | n;
608 
609     qemu_spin_unlock(&tb_next->jmp_lock);
610 
611     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
612                   tb->tc.ptr, n, tb_next->tc.ptr);
613     return;
614 
615  out_unlock_next:
616     qemu_spin_unlock(&tb_next->jmp_lock);
617     return;
618 }
619 
620 static inline bool cpu_handle_halt(CPUState *cpu)
621 {
622 #ifndef CONFIG_USER_ONLY
623     if (cpu->halted) {
624 #if defined(TARGET_I386)
625         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
626             X86CPU *x86_cpu = X86_CPU(cpu);
627             qemu_mutex_lock_iothread();
628             apic_poll_irq(x86_cpu->apic_state);
629             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
630             qemu_mutex_unlock_iothread();
631         }
632 #endif /* TARGET_I386 */
633         if (!cpu_has_work(cpu)) {
634             return true;
635         }
636 
637         cpu->halted = 0;
638     }
639 #endif /* !CONFIG_USER_ONLY */
640 
641     return false;
642 }
643 
644 static inline void cpu_handle_debug_exception(CPUState *cpu)
645 {
646     CPUClass *cc = CPU_GET_CLASS(cpu);
647     CPUWatchpoint *wp;
648 
649     if (!cpu->watchpoint_hit) {
650         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
651             wp->flags &= ~BP_WATCHPOINT_HIT;
652         }
653     }
654 
655     if (cc->tcg_ops->debug_excp_handler) {
656         cc->tcg_ops->debug_excp_handler(cpu);
657     }
658 }
659 
660 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
661 {
662     if (cpu->exception_index < 0) {
663 #ifndef CONFIG_USER_ONLY
664         if (replay_has_exception()
665             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
666             /* Execute just one insn to trigger exception pending in the log */
667             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
668                 | CF_NOIRQ | 1;
669         }
670 #endif
671         return false;
672     }
673     if (cpu->exception_index >= EXCP_INTERRUPT) {
674         /* exit request from the cpu execution loop */
675         *ret = cpu->exception_index;
676         if (*ret == EXCP_DEBUG) {
677             cpu_handle_debug_exception(cpu);
678         }
679         cpu->exception_index = -1;
680         return true;
681     } else {
682 #if defined(CONFIG_USER_ONLY)
683         /* if user mode only, we simulate a fake exception
684            which will be handled outside the cpu execution
685            loop */
686 #if defined(TARGET_I386)
687         CPUClass *cc = CPU_GET_CLASS(cpu);
688         cc->tcg_ops->fake_user_interrupt(cpu);
689 #endif /* TARGET_I386 */
690         *ret = cpu->exception_index;
691         cpu->exception_index = -1;
692         return true;
693 #else
694         if (replay_exception()) {
695             CPUClass *cc = CPU_GET_CLASS(cpu);
696             qemu_mutex_lock_iothread();
697             cc->tcg_ops->do_interrupt(cpu);
698             qemu_mutex_unlock_iothread();
699             cpu->exception_index = -1;
700 
701             if (unlikely(cpu->singlestep_enabled)) {
702                 /*
703                  * After processing the exception, ensure an EXCP_DEBUG is
704                  * raised when single-stepping so that GDB doesn't miss the
705                  * next instruction.
706                  */
707                 *ret = EXCP_DEBUG;
708                 cpu_handle_debug_exception(cpu);
709                 return true;
710             }
711         } else if (!replay_has_interrupt()) {
712             /* give a chance to iothread in replay mode */
713             *ret = EXCP_INTERRUPT;
714             return true;
715         }
716 #endif
717     }
718 
719     return false;
720 }
721 
722 #ifndef CONFIG_USER_ONLY
723 /*
724  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
725  * "real" interrupt event later. It does not need to be recorded for
726  * replay purposes.
727  */
728 static inline bool need_replay_interrupt(int interrupt_request)
729 {
730 #if defined(TARGET_I386)
731     return !(interrupt_request & CPU_INTERRUPT_POLL);
732 #else
733     return true;
734 #endif
735 }
736 #endif /* !CONFIG_USER_ONLY */
737 
738 static inline bool cpu_handle_interrupt(CPUState *cpu,
739                                         TranslationBlock **last_tb)
740 {
741     /*
742      * If we have requested custom cflags with CF_NOIRQ we should
743      * skip checking here. Any pending interrupts will get picked up
744      * by the next TB we execute under normal cflags.
745      */
746     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
747         return false;
748     }
749 
750     /* Clear the interrupt flag now since we're processing
751      * cpu->interrupt_request and cpu->exit_request.
752      * Ensure zeroing happens before reading cpu->exit_request or
753      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
754      */
755     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
756 
757     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
758         int interrupt_request;
759         qemu_mutex_lock_iothread();
760         interrupt_request = cpu->interrupt_request;
761         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
762             /* Mask out external interrupts for this step. */
763             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
764         }
765         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
766             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
767             cpu->exception_index = EXCP_DEBUG;
768             qemu_mutex_unlock_iothread();
769             return true;
770         }
771 #if !defined(CONFIG_USER_ONLY)
772         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
773             /* Do nothing */
774         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
775             replay_interrupt();
776             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
777             cpu->halted = 1;
778             cpu->exception_index = EXCP_HLT;
779             qemu_mutex_unlock_iothread();
780             return true;
781         }
782 #if defined(TARGET_I386)
783         else if (interrupt_request & CPU_INTERRUPT_INIT) {
784             X86CPU *x86_cpu = X86_CPU(cpu);
785             CPUArchState *env = &x86_cpu->env;
786             replay_interrupt();
787             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
788             do_cpu_init(x86_cpu);
789             cpu->exception_index = EXCP_HALTED;
790             qemu_mutex_unlock_iothread();
791             return true;
792         }
793 #else
794         else if (interrupt_request & CPU_INTERRUPT_RESET) {
795             replay_interrupt();
796             cpu_reset(cpu);
797             qemu_mutex_unlock_iothread();
798             return true;
799         }
800 #endif /* !TARGET_I386 */
801         /* The target hook has 3 exit conditions:
802            False when the interrupt isn't processed,
803            True when it is, and we should restart on a new TB,
804            and via longjmp via cpu_loop_exit.  */
805         else {
806             CPUClass *cc = CPU_GET_CLASS(cpu);
807 
808             if (cc->tcg_ops->cpu_exec_interrupt &&
809                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
810                 if (need_replay_interrupt(interrupt_request)) {
811                     replay_interrupt();
812                 }
813                 /*
814                  * After processing the interrupt, ensure an EXCP_DEBUG is
815                  * raised when single-stepping so that GDB doesn't miss the
816                  * next instruction.
817                  */
818                 if (unlikely(cpu->singlestep_enabled)) {
819                     cpu->exception_index = EXCP_DEBUG;
820                     qemu_mutex_unlock_iothread();
821                     return true;
822                 }
823                 cpu->exception_index = -1;
824                 *last_tb = NULL;
825             }
826             /* The target hook may have updated the 'cpu->interrupt_request';
827              * reload the 'interrupt_request' value */
828             interrupt_request = cpu->interrupt_request;
829         }
830 #endif /* !CONFIG_USER_ONLY */
831         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
832             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
833             /* ensure that no TB jump will be modified as
834                the program flow was changed */
835             *last_tb = NULL;
836         }
837 
838         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
839         qemu_mutex_unlock_iothread();
840     }
841 
842     /* Finally, check if we need to exit to the main loop.  */
843     if (unlikely(qatomic_read(&cpu->exit_request))
844         || (icount_enabled()
845             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
846             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
847         qatomic_set(&cpu->exit_request, 0);
848         if (cpu->exception_index == -1) {
849             cpu->exception_index = EXCP_INTERRUPT;
850         }
851         return true;
852     }
853 
854     return false;
855 }
856 
857 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
858                                     target_ulong pc,
859                                     TranslationBlock **last_tb, int *tb_exit)
860 {
861     int32_t insns_left;
862 
863     trace_exec_tb(tb, pc);
864     tb = cpu_tb_exec(cpu, tb, tb_exit);
865     if (*tb_exit != TB_EXIT_REQUESTED) {
866         *last_tb = tb;
867         return;
868     }
869 
870     *last_tb = NULL;
871     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
872     if (insns_left < 0) {
873         /* Something asked us to stop executing chained TBs; just
874          * continue round the main loop. Whatever requested the exit
875          * will also have set something else (eg exit_request or
876          * interrupt_request) which will be handled by
877          * cpu_handle_interrupt.  cpu_handle_interrupt will also
878          * clear cpu->icount_decr.u16.high.
879          */
880         return;
881     }
882 
883     /* Instruction counter expired.  */
884     assert(icount_enabled());
885 #ifndef CONFIG_USER_ONLY
886     /* Ensure global icount has gone forward */
887     icount_update(cpu);
888     /* Refill decrementer and continue execution.  */
889     insns_left = MIN(0xffff, cpu->icount_budget);
890     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
891     cpu->icount_extra = cpu->icount_budget - insns_left;
892 
893     /*
894      * If the next tb has more instructions than we have left to
895      * execute we need to ensure we find/generate a TB with exactly
896      * insns_left instructions in it.
897      */
898     if (insns_left > 0 && insns_left < tb->icount)  {
899         assert(insns_left <= CF_COUNT_MASK);
900         assert(cpu->icount_extra == 0);
901         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
902     }
903 #endif
904 }
905 
906 /* main execution loop */
907 
908 int cpu_exec(CPUState *cpu)
909 {
910     int ret;
911     SyncClocks sc = { 0 };
912 
913     /* replay_interrupt may need current_cpu */
914     current_cpu = cpu;
915 
916     if (cpu_handle_halt(cpu)) {
917         return EXCP_HALTED;
918     }
919 
920     rcu_read_lock();
921 
922     cpu_exec_enter(cpu);
923 
924     /* Calculate difference between guest clock and host clock.
925      * This delay includes the delay of the last cycle, so
926      * what we have to do is sleep until it is 0. As for the
927      * advance/delay we gain here, we try to fix it next time.
928      */
929     init_delay_params(&sc, cpu);
930 
931     /* prepare setjmp context for exception handling */
932     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
933 #if defined(__clang__)
934         /*
935          * Some compilers wrongly smash all local variables after
936          * siglongjmp (the spec requires that only non-volatile locals
937          * which are changed between the sigsetjmp and siglongjmp are
938          * permitted to be trashed). There were bug reports for gcc
939          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
940          * that we support, but is still unfixed in clang:
941          *   https://bugs.llvm.org/show_bug.cgi?id=21183
942          *
943          * Reload an essential local variable here for those compilers.
944          * Newer versions of gcc would complain about this code (-Wclobbered),
945          * so we only perform the workaround for clang.
946          */
947         cpu = current_cpu;
948 #else
949         /* Non-buggy compilers preserve this; assert the correct value. */
950         g_assert(cpu == current_cpu);
951 #endif
952 
953 #ifndef CONFIG_SOFTMMU
954         clear_helper_retaddr();
955         if (have_mmap_lock()) {
956             mmap_unlock();
957         }
958 #endif
959         if (qemu_mutex_iothread_locked()) {
960             qemu_mutex_unlock_iothread();
961         }
962         qemu_plugin_disable_mem_helpers(cpu);
963 
964         assert_no_pages_locked();
965     }
966 
967     /* if an exception is pending, we execute it here */
968     while (!cpu_handle_exception(cpu, &ret)) {
969         TranslationBlock *last_tb = NULL;
970         int tb_exit = 0;
971 
972         while (!cpu_handle_interrupt(cpu, &last_tb)) {
973             TranslationBlock *tb;
974             target_ulong cs_base, pc;
975             uint32_t flags, cflags;
976 
977             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
978 
979             /*
980              * When requested, use an exact setting for cflags for the next
981              * execution.  This is used for icount, precise smc, and stop-
982              * after-access watchpoints.  Since this request should never
983              * have CF_INVALID set, -1 is a convenient invalid value that
984              * does not require tcg headers for cpu_common_reset.
985              */
986             cflags = cpu->cflags_next_tb;
987             if (cflags == -1) {
988                 cflags = curr_cflags(cpu);
989             } else {
990                 cpu->cflags_next_tb = -1;
991             }
992 
993             if (check_for_breakpoints(cpu, pc, &cflags)) {
994                 break;
995             }
996 
997             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
998             if (tb == NULL) {
999                 uint32_t h;
1000 
1001                 mmap_lock();
1002                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
1003                 mmap_unlock();
1004                 /*
1005                  * We add the TB in the virtual pc hash table
1006                  * for the fast lookup
1007                  */
1008                 h = tb_jmp_cache_hash_func(pc);
1009                 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
1010             }
1011 
1012 #ifndef CONFIG_USER_ONLY
1013             /*
1014              * We don't take care of direct jumps when address mapping
1015              * changes in system emulation.  So it's not safe to make a
1016              * direct jump to a TB spanning two pages because the mapping
1017              * for the second page can change.
1018              */
1019             if (tb->page_addr[1] != -1) {
1020                 last_tb = NULL;
1021             }
1022 #endif
1023             /* See if we can patch the calling TB. */
1024             if (last_tb) {
1025                 tb_add_jump(last_tb, tb_exit, tb);
1026             }
1027 
1028             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1029 
1030             /* Try to align the host and virtual clocks
1031                if the guest is in advance */
1032             align_clocks(&sc, cpu);
1033         }
1034     }
1035 
1036     cpu_exec_exit(cpu);
1037     rcu_read_unlock();
1038 
1039     return ret;
1040 }
1041 
1042 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1043 {
1044     static bool tcg_target_initialized;
1045     CPUClass *cc = CPU_GET_CLASS(cpu);
1046 
1047     if (!tcg_target_initialized) {
1048         cc->tcg_ops->initialize();
1049         tcg_target_initialized = true;
1050     }
1051     tlb_init(cpu);
1052     qemu_plugin_vcpu_init_hook(cpu);
1053 
1054 #ifndef CONFIG_USER_ONLY
1055     tcg_iommu_init_notifier_list(cpu);
1056 #endif /* !CONFIG_USER_ONLY */
1057 }
1058 
1059 /* undo the initializations in reverse order */
1060 void tcg_exec_unrealizefn(CPUState *cpu)
1061 {
1062 #ifndef CONFIG_USER_ONLY
1063     tcg_iommu_free_notifier_list(cpu);
1064 #endif /* !CONFIG_USER_ONLY */
1065 
1066     qemu_plugin_vcpu_exit_hook(cpu);
1067     tlb_destroy(cpu);
1068 }
1069 
1070 #ifndef CONFIG_USER_ONLY
1071 
1072 static void dump_drift_info(GString *buf)
1073 {
1074     if (!icount_enabled()) {
1075         return;
1076     }
1077 
1078     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
1079                            (cpu_get_clock() - icount_get()) / SCALE_MS);
1080     if (icount_align_option) {
1081         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
1082                                -max_delay / SCALE_MS);
1083         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
1084                                max_advance / SCALE_MS);
1085     } else {
1086         g_string_append_printf(buf, "Max guest delay     NA\n");
1087         g_string_append_printf(buf, "Max guest advance   NA\n");
1088     }
1089 }
1090 
1091 HumanReadableText *qmp_x_query_jit(Error **errp)
1092 {
1093     g_autoptr(GString) buf = g_string_new("");
1094 
1095     if (!tcg_enabled()) {
1096         error_setg(errp, "JIT information is only available with accel=tcg");
1097         return NULL;
1098     }
1099 
1100     dump_exec_info(buf);
1101     dump_drift_info(buf);
1102 
1103     return human_readable_text_from_str(buf);
1104 }
1105 
1106 HumanReadableText *qmp_x_query_opcount(Error **errp)
1107 {
1108     g_autoptr(GString) buf = g_string_new("");
1109 
1110     if (!tcg_enabled()) {
1111         error_setg(errp, "Opcode count information is only available with accel=tcg");
1112         return NULL;
1113     }
1114 
1115     tcg_dump_op_count(buf);
1116 
1117     return human_readable_text_from_str(buf);
1118 }
1119 
1120 #ifdef CONFIG_PROFILER
1121 
1122 int64_t dev_time;
1123 
1124 HumanReadableText *qmp_x_query_profile(Error **errp)
1125 {
1126     g_autoptr(GString) buf = g_string_new("");
1127     static int64_t last_cpu_exec_time;
1128     int64_t cpu_exec_time;
1129     int64_t delta;
1130 
1131     cpu_exec_time = tcg_cpu_exec_time();
1132     delta = cpu_exec_time - last_cpu_exec_time;
1133 
1134     g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
1135                            dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1136     g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
1137                            delta, delta / (double)NANOSECONDS_PER_SECOND);
1138     last_cpu_exec_time = cpu_exec_time;
1139     dev_time = 0;
1140 
1141     return human_readable_text_from_str(buf);
1142 }
1143 #else
1144 HumanReadableText *qmp_x_query_profile(Error **errp)
1145 {
1146     error_setg(errp, "Internal profiler not compiled");
1147     return NULL;
1148 }
1149 #endif
1150 
1151 #endif /* !CONFIG_USER_ONLY */
1152