xref: /qemu/accel/tcg/cpu-exec.c (revision 6b40847a)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46 
47 /* -icount align implementation. */
48 
49 typedef struct SyncClocks {
50     int64_t diff_clk;
51     int64_t last_cpu_icount;
52     int64_t realtime_clock;
53 } SyncClocks;
54 
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57  * The difference between the 2 clocks could therefore
58  * oscillate around 0.
59  */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64 
65 int64_t max_delay;
66 int64_t max_advance;
67 
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70     int64_t cpu_icount;
71 
72     if (!icount_align_option) {
73         return;
74     }
75 
76     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78     sc->last_cpu_icount = cpu_icount;
79 
80     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82         struct timespec sleep_delay, rem_delay;
83         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87         } else {
88             sc->diff_clk = 0;
89         }
90 #else
91         Sleep(sc->diff_clk / SCALE_MS);
92         sc->diff_clk = 0;
93 #endif
94     }
95 }
96 
97 static void print_delay(const SyncClocks *sc)
98 {
99     static float threshold_delay;
100     static int64_t last_realtime_clock;
101     static int nb_prints;
102 
103     if (icount_align_option &&
104         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105         nb_prints < MAX_NB_PRINTS) {
106         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107             (-sc->diff_clk / (float)1000000000LL <
108              (threshold_delay - THRESHOLD_REDUCE))) {
109             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111                         threshold_delay - 1,
112                         threshold_delay);
113             nb_prints++;
114             last_realtime_clock = sc->realtime_clock;
115         }
116     }
117 }
118 
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121     if (!icount_align_option) {
122         return;
123     }
124     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126     sc->last_cpu_icount
127         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128     if (sc->diff_clk < max_delay) {
129         max_delay = sc->diff_clk;
130     }
131     if (sc->diff_clk > max_advance) {
132         max_advance = sc->diff_clk;
133     }
134 
135     /* Print every 2s max if the guest is late. We limit the number
136        of printed messages to NB_PRINT_MAX(currently 100) */
137     print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143 
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148 
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151     uint32_t cflags = cpu->tcg_cflags;
152 
153     /*
154      * Record gdb single-step.  We should be exiting the TB by raising
155      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156      *
157      * For singlestep and -d nochain, suppress goto_tb so that
158      * we can log -d cpu,exec after every TB.
159      */
160     if (unlikely(cpu->singlestep_enabled)) {
161         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162     } else if (qatomic_read(&one_insn_per_tb)) {
163         cflags |= CF_NO_GOTO_TB | 1;
164     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165         cflags |= CF_NO_GOTO_TB;
166     }
167 
168     return cflags;
169 }
170 
171 struct tb_desc {
172     target_ulong pc;
173     target_ulong cs_base;
174     CPUArchState *env;
175     tb_page_addr_t page_addr0;
176     uint32_t flags;
177     uint32_t cflags;
178 };
179 
180 static bool tb_lookup_cmp(const void *p, const void *d)
181 {
182     const TranslationBlock *tb = p;
183     const struct tb_desc *desc = d;
184 
185     if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
186         tb_page_addr0(tb) == desc->page_addr0 &&
187         tb->cs_base == desc->cs_base &&
188         tb->flags == desc->flags &&
189         tb_cflags(tb) == desc->cflags) {
190         /* check next page if needed */
191         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
192         if (tb_phys_page1 == -1) {
193             return true;
194         } else {
195             tb_page_addr_t phys_page1;
196             target_ulong virt_page1;
197 
198             /*
199              * We know that the first page matched, and an otherwise valid TB
200              * encountered an incomplete instruction at the end of that page,
201              * therefore we know that generating a new TB from the current PC
202              * must also require reading from the next page -- even if the
203              * second pages do not match, and therefore the resulting insn
204              * is different for the new TB.  Therefore any exception raised
205              * here by the faulting lookup is not premature.
206              */
207             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
208             phys_page1 = get_page_addr_code(desc->env, virt_page1);
209             if (tb_phys_page1 == phys_page1) {
210                 return true;
211             }
212         }
213     }
214     return false;
215 }
216 
217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
218                                           target_ulong cs_base, uint32_t flags,
219                                           uint32_t cflags)
220 {
221     tb_page_addr_t phys_pc;
222     struct tb_desc desc;
223     uint32_t h;
224 
225     desc.env = cpu->env_ptr;
226     desc.cs_base = cs_base;
227     desc.flags = flags;
228     desc.cflags = cflags;
229     desc.pc = pc;
230     phys_pc = get_page_addr_code(desc.env, pc);
231     if (phys_pc == -1) {
232         return NULL;
233     }
234     desc.page_addr0 = phys_pc;
235     h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
236                      flags, cs_base, cflags);
237     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
238 }
239 
240 /* Might cause an exception, so have a longjmp destination ready */
241 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
242                                           target_ulong cs_base,
243                                           uint32_t flags, uint32_t cflags)
244 {
245     TranslationBlock *tb;
246     CPUJumpCache *jc;
247     uint32_t hash;
248 
249     /* we should never be trying to look up an INVALID tb */
250     tcg_debug_assert(!(cflags & CF_INVALID));
251 
252     hash = tb_jmp_cache_hash_func(pc);
253     jc = cpu->tb_jmp_cache;
254 
255     if (cflags & CF_PCREL) {
256         /* Use acquire to ensure current load of pc from jc. */
257         tb = qatomic_load_acquire(&jc->array[hash].tb);
258 
259         if (likely(tb &&
260                    jc->array[hash].pc == pc &&
261                    tb->cs_base == cs_base &&
262                    tb->flags == flags &&
263                    tb_cflags(tb) == cflags)) {
264             return tb;
265         }
266         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
267         if (tb == NULL) {
268             return NULL;
269         }
270         jc->array[hash].pc = pc;
271         /* Ensure pc is written first. */
272         qatomic_store_release(&jc->array[hash].tb, tb);
273     } else {
274         /* Use rcu_read to ensure current load of pc from *tb. */
275         tb = qatomic_rcu_read(&jc->array[hash].tb);
276 
277         if (likely(tb &&
278                    tb->pc == pc &&
279                    tb->cs_base == cs_base &&
280                    tb->flags == flags &&
281                    tb_cflags(tb) == cflags)) {
282             return tb;
283         }
284         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
285         if (tb == NULL) {
286             return NULL;
287         }
288         /* Use the pc value already stored in tb->pc. */
289         qatomic_set(&jc->array[hash].tb, tb);
290     }
291 
292     return tb;
293 }
294 
295 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
296                          const TranslationBlock *tb)
297 {
298     if (qemu_log_in_addr_range(pc)) {
299         qemu_log_mask(CPU_LOG_EXEC,
300                       "Trace %d: %p [%08" PRIx64
301                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
302                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
303                       tb->flags, tb->cflags, lookup_symbol(pc));
304 
305         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
306             FILE *logfile = qemu_log_trylock();
307             if (logfile) {
308                 int flags = 0;
309 
310                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
311                     flags |= CPU_DUMP_FPU;
312                 }
313 #if defined(TARGET_I386)
314                 flags |= CPU_DUMP_CCOP;
315 #endif
316                 cpu_dump_state(cpu, logfile, flags);
317                 qemu_log_unlock(logfile);
318             }
319         }
320     }
321 }
322 
323 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
324                                        uint32_t *cflags)
325 {
326     CPUBreakpoint *bp;
327     bool match_page = false;
328 
329     /*
330      * Singlestep overrides breakpoints.
331      * This requirement is visible in the record-replay tests, where
332      * we would fail to make forward progress in reverse-continue.
333      *
334      * TODO: gdb singlestep should only override gdb breakpoints,
335      * so that one could (gdb) singlestep into the guest kernel's
336      * architectural breakpoint handler.
337      */
338     if (cpu->singlestep_enabled) {
339         return false;
340     }
341 
342     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
343         /*
344          * If we have an exact pc match, trigger the breakpoint.
345          * Otherwise, note matches within the page.
346          */
347         if (pc == bp->pc) {
348             bool match_bp = false;
349 
350             if (bp->flags & BP_GDB) {
351                 match_bp = true;
352             } else if (bp->flags & BP_CPU) {
353 #ifdef CONFIG_USER_ONLY
354                 g_assert_not_reached();
355 #else
356                 CPUClass *cc = CPU_GET_CLASS(cpu);
357                 assert(cc->tcg_ops->debug_check_breakpoint);
358                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
359 #endif
360             }
361 
362             if (match_bp) {
363                 cpu->exception_index = EXCP_DEBUG;
364                 return true;
365             }
366         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
367             match_page = true;
368         }
369     }
370 
371     /*
372      * Within the same page as a breakpoint, single-step,
373      * returning to helper_lookup_tb_ptr after each insn looking
374      * for the actual breakpoint.
375      *
376      * TODO: Perhaps better to record all of the TBs associated
377      * with a given virtual page that contains a breakpoint, and
378      * then invalidate them when a new overlapping breakpoint is
379      * set on the page.  Non-overlapping TBs would not be
380      * invalidated, nor would any TB need to be invalidated as
381      * breakpoints are removed.
382      */
383     if (match_page) {
384         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
385     }
386     return false;
387 }
388 
389 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
390                                          uint32_t *cflags)
391 {
392     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
393         check_for_breakpoints_slow(cpu, pc, cflags);
394 }
395 
396 /**
397  * helper_lookup_tb_ptr: quick check for next tb
398  * @env: current cpu state
399  *
400  * Look for an existing TB matching the current cpu state.
401  * If found, return the code pointer.  If not found, return
402  * the tcg epilogue so that we return into cpu_tb_exec.
403  */
404 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
405 {
406     CPUState *cpu = env_cpu(env);
407     TranslationBlock *tb;
408     target_ulong cs_base, pc;
409     uint32_t flags, cflags;
410 
411     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
412 
413     cflags = curr_cflags(cpu);
414     if (check_for_breakpoints(cpu, pc, &cflags)) {
415         cpu_loop_exit(cpu);
416     }
417 
418     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
419     if (tb == NULL) {
420         return tcg_code_gen_epilogue;
421     }
422 
423     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
424         log_cpu_exec(pc, cpu, tb);
425     }
426 
427     return tb->tc.ptr;
428 }
429 
430 /* Execute a TB, and fix up the CPU state afterwards if necessary */
431 /*
432  * Disable CFI checks.
433  * TCG creates binary blobs at runtime, with the transformed code.
434  * A TB is a blob of binary code, created at runtime and called with an
435  * indirect function call. Since such function did not exist at compile time,
436  * the CFI runtime has no way to verify its signature and would fail.
437  * TCG is not considered a security-sensitive part of QEMU so this does not
438  * affect the impact of CFI in environment with high security requirements
439  */
440 static inline TranslationBlock * QEMU_DISABLE_CFI
441 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
442 {
443     CPUArchState *env = cpu->env_ptr;
444     uintptr_t ret;
445     TranslationBlock *last_tb;
446     const void *tb_ptr = itb->tc.ptr;
447 
448     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
449         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
450     }
451 
452     qemu_thread_jit_execute();
453     ret = tcg_qemu_tb_exec(env, tb_ptr);
454     cpu->can_do_io = 1;
455     qemu_plugin_disable_mem_helpers(cpu);
456     /*
457      * TODO: Delay swapping back to the read-write region of the TB
458      * until we actually need to modify the TB.  The read-only copy,
459      * coming from the rx region, shares the same host TLB entry as
460      * the code that executed the exit_tb opcode that arrived here.
461      * If we insist on touching both the RX and the RW pages, we
462      * double the host TLB pressure.
463      */
464     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
465     *tb_exit = ret & TB_EXIT_MASK;
466 
467     trace_exec_tb_exit(last_tb, *tb_exit);
468 
469     if (*tb_exit > TB_EXIT_IDX1) {
470         /* We didn't start executing this TB (eg because the instruction
471          * counter hit zero); we must restore the guest PC to the address
472          * of the start of the TB.
473          */
474         CPUClass *cc = CPU_GET_CLASS(cpu);
475 
476         if (cc->tcg_ops->synchronize_from_tb) {
477             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
478         } else {
479             tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
480             assert(cc->set_pc);
481             cc->set_pc(cpu, last_tb->pc);
482         }
483         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
484             target_ulong pc = log_pc(cpu, last_tb);
485             if (qemu_log_in_addr_range(pc)) {
486                 qemu_log("Stopped execution of TB chain before %p ["
487                          TARGET_FMT_lx "] %s\n",
488                          last_tb->tc.ptr, pc, lookup_symbol(pc));
489             }
490         }
491     }
492 
493     /*
494      * If gdb single-step, and we haven't raised another exception,
495      * raise a debug exception.  Single-step with another exception
496      * is handled in cpu_handle_exception.
497      */
498     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
499         cpu->exception_index = EXCP_DEBUG;
500         cpu_loop_exit(cpu);
501     }
502 
503     return last_tb;
504 }
505 
506 
507 static void cpu_exec_enter(CPUState *cpu)
508 {
509     CPUClass *cc = CPU_GET_CLASS(cpu);
510 
511     if (cc->tcg_ops->cpu_exec_enter) {
512         cc->tcg_ops->cpu_exec_enter(cpu);
513     }
514 }
515 
516 static void cpu_exec_exit(CPUState *cpu)
517 {
518     CPUClass *cc = CPU_GET_CLASS(cpu);
519 
520     if (cc->tcg_ops->cpu_exec_exit) {
521         cc->tcg_ops->cpu_exec_exit(cpu);
522     }
523 }
524 
525 void cpu_exec_step_atomic(CPUState *cpu)
526 {
527     CPUArchState *env = cpu->env_ptr;
528     TranslationBlock *tb;
529     target_ulong cs_base, pc;
530     uint32_t flags, cflags;
531     int tb_exit;
532 
533     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
534         start_exclusive();
535         g_assert(cpu == current_cpu);
536         g_assert(!cpu->running);
537         cpu->running = true;
538 
539         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
540 
541         cflags = curr_cflags(cpu);
542         /* Execute in a serial context. */
543         cflags &= ~CF_PARALLEL;
544         /* After 1 insn, return and release the exclusive lock. */
545         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
546         /*
547          * No need to check_for_breakpoints here.
548          * We only arrive in cpu_exec_step_atomic after beginning execution
549          * of an insn that includes an atomic operation we can't handle.
550          * Any breakpoint for this insn will have been recognized earlier.
551          */
552 
553         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
554         if (tb == NULL) {
555             mmap_lock();
556             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
557             mmap_unlock();
558         }
559 
560         cpu_exec_enter(cpu);
561         /* execute the generated code */
562         trace_exec_tb(tb, pc);
563         cpu_tb_exec(cpu, tb, &tb_exit);
564         cpu_exec_exit(cpu);
565     } else {
566 #ifndef CONFIG_SOFTMMU
567         clear_helper_retaddr();
568         if (have_mmap_lock()) {
569             mmap_unlock();
570         }
571 #endif
572         if (qemu_mutex_iothread_locked()) {
573             qemu_mutex_unlock_iothread();
574         }
575         assert_no_pages_locked();
576     }
577 
578     /*
579      * As we start the exclusive region before codegen we must still
580      * be in the region if we longjump out of either the codegen or
581      * the execution.
582      */
583     g_assert(cpu_in_exclusive_context(cpu));
584     cpu->running = false;
585     end_exclusive();
586 }
587 
588 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
589 {
590     /*
591      * Get the rx view of the structure, from which we find the
592      * executable code address, and tb_target_set_jmp_target can
593      * produce a pc-relative displacement to jmp_target_addr[n].
594      */
595     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
596     uintptr_t offset = tb->jmp_insn_offset[n];
597     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
598     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
599 
600     tb->jmp_target_addr[n] = addr;
601     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
602 }
603 
604 static inline void tb_add_jump(TranslationBlock *tb, int n,
605                                TranslationBlock *tb_next)
606 {
607     uintptr_t old;
608 
609     qemu_thread_jit_write();
610     assert(n < ARRAY_SIZE(tb->jmp_list_next));
611     qemu_spin_lock(&tb_next->jmp_lock);
612 
613     /* make sure the destination TB is valid */
614     if (tb_next->cflags & CF_INVALID) {
615         goto out_unlock_next;
616     }
617     /* Atomically claim the jump destination slot only if it was NULL */
618     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
619                           (uintptr_t)tb_next);
620     if (old) {
621         goto out_unlock_next;
622     }
623 
624     /* patch the native jump address */
625     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
626 
627     /* add in TB jmp list */
628     tb->jmp_list_next[n] = tb_next->jmp_list_head;
629     tb_next->jmp_list_head = (uintptr_t)tb | n;
630 
631     qemu_spin_unlock(&tb_next->jmp_lock);
632 
633     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
634                   tb->tc.ptr, n, tb_next->tc.ptr);
635     return;
636 
637  out_unlock_next:
638     qemu_spin_unlock(&tb_next->jmp_lock);
639     return;
640 }
641 
642 static inline bool cpu_handle_halt(CPUState *cpu)
643 {
644 #ifndef CONFIG_USER_ONLY
645     if (cpu->halted) {
646 #if defined(TARGET_I386)
647         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
648             X86CPU *x86_cpu = X86_CPU(cpu);
649             qemu_mutex_lock_iothread();
650             apic_poll_irq(x86_cpu->apic_state);
651             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
652             qemu_mutex_unlock_iothread();
653         }
654 #endif /* TARGET_I386 */
655         if (!cpu_has_work(cpu)) {
656             return true;
657         }
658 
659         cpu->halted = 0;
660     }
661 #endif /* !CONFIG_USER_ONLY */
662 
663     return false;
664 }
665 
666 static inline void cpu_handle_debug_exception(CPUState *cpu)
667 {
668     CPUClass *cc = CPU_GET_CLASS(cpu);
669     CPUWatchpoint *wp;
670 
671     if (!cpu->watchpoint_hit) {
672         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
673             wp->flags &= ~BP_WATCHPOINT_HIT;
674         }
675     }
676 
677     if (cc->tcg_ops->debug_excp_handler) {
678         cc->tcg_ops->debug_excp_handler(cpu);
679     }
680 }
681 
682 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
683 {
684     if (cpu->exception_index < 0) {
685 #ifndef CONFIG_USER_ONLY
686         if (replay_has_exception()
687             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
688             /* Execute just one insn to trigger exception pending in the log */
689             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
690                 | CF_NOIRQ | 1;
691         }
692 #endif
693         return false;
694     }
695     if (cpu->exception_index >= EXCP_INTERRUPT) {
696         /* exit request from the cpu execution loop */
697         *ret = cpu->exception_index;
698         if (*ret == EXCP_DEBUG) {
699             cpu_handle_debug_exception(cpu);
700         }
701         cpu->exception_index = -1;
702         return true;
703     } else {
704 #if defined(CONFIG_USER_ONLY)
705         /* if user mode only, we simulate a fake exception
706            which will be handled outside the cpu execution
707            loop */
708 #if defined(TARGET_I386)
709         CPUClass *cc = CPU_GET_CLASS(cpu);
710         cc->tcg_ops->fake_user_interrupt(cpu);
711 #endif /* TARGET_I386 */
712         *ret = cpu->exception_index;
713         cpu->exception_index = -1;
714         return true;
715 #else
716         if (replay_exception()) {
717             CPUClass *cc = CPU_GET_CLASS(cpu);
718             qemu_mutex_lock_iothread();
719             cc->tcg_ops->do_interrupt(cpu);
720             qemu_mutex_unlock_iothread();
721             cpu->exception_index = -1;
722 
723             if (unlikely(cpu->singlestep_enabled)) {
724                 /*
725                  * After processing the exception, ensure an EXCP_DEBUG is
726                  * raised when single-stepping so that GDB doesn't miss the
727                  * next instruction.
728                  */
729                 *ret = EXCP_DEBUG;
730                 cpu_handle_debug_exception(cpu);
731                 return true;
732             }
733         } else if (!replay_has_interrupt()) {
734             /* give a chance to iothread in replay mode */
735             *ret = EXCP_INTERRUPT;
736             return true;
737         }
738 #endif
739     }
740 
741     return false;
742 }
743 
744 #ifndef CONFIG_USER_ONLY
745 /*
746  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
747  * "real" interrupt event later. It does not need to be recorded for
748  * replay purposes.
749  */
750 static inline bool need_replay_interrupt(int interrupt_request)
751 {
752 #if defined(TARGET_I386)
753     return !(interrupt_request & CPU_INTERRUPT_POLL);
754 #else
755     return true;
756 #endif
757 }
758 #endif /* !CONFIG_USER_ONLY */
759 
760 static inline bool cpu_handle_interrupt(CPUState *cpu,
761                                         TranslationBlock **last_tb)
762 {
763     /*
764      * If we have requested custom cflags with CF_NOIRQ we should
765      * skip checking here. Any pending interrupts will get picked up
766      * by the next TB we execute under normal cflags.
767      */
768     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
769         return false;
770     }
771 
772     /* Clear the interrupt flag now since we're processing
773      * cpu->interrupt_request and cpu->exit_request.
774      * Ensure zeroing happens before reading cpu->exit_request or
775      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
776      */
777     qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0);
778 
779     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
780         int interrupt_request;
781         qemu_mutex_lock_iothread();
782         interrupt_request = cpu->interrupt_request;
783         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
784             /* Mask out external interrupts for this step. */
785             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
786         }
787         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
788             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
789             cpu->exception_index = EXCP_DEBUG;
790             qemu_mutex_unlock_iothread();
791             return true;
792         }
793 #if !defined(CONFIG_USER_ONLY)
794         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
795             /* Do nothing */
796         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
797             replay_interrupt();
798             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
799             cpu->halted = 1;
800             cpu->exception_index = EXCP_HLT;
801             qemu_mutex_unlock_iothread();
802             return true;
803         }
804 #if defined(TARGET_I386)
805         else if (interrupt_request & CPU_INTERRUPT_INIT) {
806             X86CPU *x86_cpu = X86_CPU(cpu);
807             CPUArchState *env = &x86_cpu->env;
808             replay_interrupt();
809             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
810             do_cpu_init(x86_cpu);
811             cpu->exception_index = EXCP_HALTED;
812             qemu_mutex_unlock_iothread();
813             return true;
814         }
815 #else
816         else if (interrupt_request & CPU_INTERRUPT_RESET) {
817             replay_interrupt();
818             cpu_reset(cpu);
819             qemu_mutex_unlock_iothread();
820             return true;
821         }
822 #endif /* !TARGET_I386 */
823         /* The target hook has 3 exit conditions:
824            False when the interrupt isn't processed,
825            True when it is, and we should restart on a new TB,
826            and via longjmp via cpu_loop_exit.  */
827         else {
828             CPUClass *cc = CPU_GET_CLASS(cpu);
829 
830             if (cc->tcg_ops->cpu_exec_interrupt &&
831                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
832                 if (need_replay_interrupt(interrupt_request)) {
833                     replay_interrupt();
834                 }
835                 /*
836                  * After processing the interrupt, ensure an EXCP_DEBUG is
837                  * raised when single-stepping so that GDB doesn't miss the
838                  * next instruction.
839                  */
840                 if (unlikely(cpu->singlestep_enabled)) {
841                     cpu->exception_index = EXCP_DEBUG;
842                     qemu_mutex_unlock_iothread();
843                     return true;
844                 }
845                 cpu->exception_index = -1;
846                 *last_tb = NULL;
847             }
848             /* The target hook may have updated the 'cpu->interrupt_request';
849              * reload the 'interrupt_request' value */
850             interrupt_request = cpu->interrupt_request;
851         }
852 #endif /* !CONFIG_USER_ONLY */
853         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
854             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
855             /* ensure that no TB jump will be modified as
856                the program flow was changed */
857             *last_tb = NULL;
858         }
859 
860         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
861         qemu_mutex_unlock_iothread();
862     }
863 
864     /* Finally, check if we need to exit to the main loop.  */
865     if (unlikely(qatomic_read(&cpu->exit_request))
866         || (icount_enabled()
867             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
868             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
869         qatomic_set(&cpu->exit_request, 0);
870         if (cpu->exception_index == -1) {
871             cpu->exception_index = EXCP_INTERRUPT;
872         }
873         return true;
874     }
875 
876     return false;
877 }
878 
879 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
880                                     target_ulong pc,
881                                     TranslationBlock **last_tb, int *tb_exit)
882 {
883     int32_t insns_left;
884 
885     trace_exec_tb(tb, pc);
886     tb = cpu_tb_exec(cpu, tb, tb_exit);
887     if (*tb_exit != TB_EXIT_REQUESTED) {
888         *last_tb = tb;
889         return;
890     }
891 
892     *last_tb = NULL;
893     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
894     if (insns_left < 0) {
895         /* Something asked us to stop executing chained TBs; just
896          * continue round the main loop. Whatever requested the exit
897          * will also have set something else (eg exit_request or
898          * interrupt_request) which will be handled by
899          * cpu_handle_interrupt.  cpu_handle_interrupt will also
900          * clear cpu->icount_decr.u16.high.
901          */
902         return;
903     }
904 
905     /* Instruction counter expired.  */
906     assert(icount_enabled());
907 #ifndef CONFIG_USER_ONLY
908     /* Ensure global icount has gone forward */
909     icount_update(cpu);
910     /* Refill decrementer and continue execution.  */
911     insns_left = MIN(0xffff, cpu->icount_budget);
912     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
913     cpu->icount_extra = cpu->icount_budget - insns_left;
914 
915     /*
916      * If the next tb has more instructions than we have left to
917      * execute we need to ensure we find/generate a TB with exactly
918      * insns_left instructions in it.
919      */
920     if (insns_left > 0 && insns_left < tb->icount)  {
921         assert(insns_left <= CF_COUNT_MASK);
922         assert(cpu->icount_extra == 0);
923         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
924     }
925 #endif
926 }
927 
928 /* main execution loop */
929 
930 static int __attribute__((noinline))
931 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
932 {
933     int ret;
934 
935     /* if an exception is pending, we execute it here */
936     while (!cpu_handle_exception(cpu, &ret)) {
937         TranslationBlock *last_tb = NULL;
938         int tb_exit = 0;
939 
940         while (!cpu_handle_interrupt(cpu, &last_tb)) {
941             TranslationBlock *tb;
942             target_ulong cs_base, pc;
943             uint32_t flags, cflags;
944 
945             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
946 
947             /*
948              * When requested, use an exact setting for cflags for the next
949              * execution.  This is used for icount, precise smc, and stop-
950              * after-access watchpoints.  Since this request should never
951              * have CF_INVALID set, -1 is a convenient invalid value that
952              * does not require tcg headers for cpu_common_reset.
953              */
954             cflags = cpu->cflags_next_tb;
955             if (cflags == -1) {
956                 cflags = curr_cflags(cpu);
957             } else {
958                 cpu->cflags_next_tb = -1;
959             }
960 
961             if (check_for_breakpoints(cpu, pc, &cflags)) {
962                 break;
963             }
964 
965             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
966             if (tb == NULL) {
967                 CPUJumpCache *jc;
968                 uint32_t h;
969 
970                 mmap_lock();
971                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
972                 mmap_unlock();
973 
974                 /*
975                  * We add the TB in the virtual pc hash table
976                  * for the fast lookup
977                  */
978                 h = tb_jmp_cache_hash_func(pc);
979                 jc = cpu->tb_jmp_cache;
980                 if (cflags & CF_PCREL) {
981                     jc->array[h].pc = pc;
982                     /* Ensure pc is written first. */
983                     qatomic_store_release(&jc->array[h].tb, tb);
984                 } else {
985                     /* Use the pc value already stored in tb->pc. */
986                     qatomic_set(&jc->array[h].tb, tb);
987                 }
988             }
989 
990 #ifndef CONFIG_USER_ONLY
991             /*
992              * We don't take care of direct jumps when address mapping
993              * changes in system emulation.  So it's not safe to make a
994              * direct jump to a TB spanning two pages because the mapping
995              * for the second page can change.
996              */
997             if (tb_page_addr1(tb) != -1) {
998                 last_tb = NULL;
999             }
1000 #endif
1001             /* See if we can patch the calling TB. */
1002             if (last_tb) {
1003                 tb_add_jump(last_tb, tb_exit, tb);
1004             }
1005 
1006             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1007 
1008             /* Try to align the host and virtual clocks
1009                if the guest is in advance */
1010             align_clocks(sc, cpu);
1011         }
1012     }
1013     return ret;
1014 }
1015 
1016 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1017 {
1018     /* Prepare setjmp context for exception handling. */
1019     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1020         /* Non-buggy compilers preserve this; assert the correct value. */
1021         g_assert(cpu == current_cpu);
1022 
1023 #ifndef CONFIG_SOFTMMU
1024         clear_helper_retaddr();
1025         if (have_mmap_lock()) {
1026             mmap_unlock();
1027         }
1028 #endif
1029         if (qemu_mutex_iothread_locked()) {
1030             qemu_mutex_unlock_iothread();
1031         }
1032 
1033         assert_no_pages_locked();
1034     }
1035 
1036     return cpu_exec_loop(cpu, sc);
1037 }
1038 
1039 int cpu_exec(CPUState *cpu)
1040 {
1041     int ret;
1042     SyncClocks sc = { 0 };
1043 
1044     /* replay_interrupt may need current_cpu */
1045     current_cpu = cpu;
1046 
1047     if (cpu_handle_halt(cpu)) {
1048         return EXCP_HALTED;
1049     }
1050 
1051     rcu_read_lock();
1052     cpu_exec_enter(cpu);
1053 
1054     /*
1055      * Calculate difference between guest clock and host clock.
1056      * This delay includes the delay of the last cycle, so
1057      * what we have to do is sleep until it is 0. As for the
1058      * advance/delay we gain here, we try to fix it next time.
1059      */
1060     init_delay_params(&sc, cpu);
1061 
1062     ret = cpu_exec_setjmp(cpu, &sc);
1063 
1064     cpu_exec_exit(cpu);
1065     rcu_read_unlock();
1066 
1067     return ret;
1068 }
1069 
1070 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1071 {
1072     static bool tcg_target_initialized;
1073     CPUClass *cc = CPU_GET_CLASS(cpu);
1074 
1075     if (!tcg_target_initialized) {
1076         cc->tcg_ops->initialize();
1077         tcg_target_initialized = true;
1078     }
1079 
1080     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1081     tlb_init(cpu);
1082 #ifndef CONFIG_USER_ONLY
1083     tcg_iommu_init_notifier_list(cpu);
1084 #endif /* !CONFIG_USER_ONLY */
1085     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1086 }
1087 
1088 /* undo the initializations in reverse order */
1089 void tcg_exec_unrealizefn(CPUState *cpu)
1090 {
1091 #ifndef CONFIG_USER_ONLY
1092     tcg_iommu_free_notifier_list(cpu);
1093 #endif /* !CONFIG_USER_ONLY */
1094 
1095     tlb_destroy(cpu);
1096     g_free_rcu(cpu->tb_jmp_cache, rcu);
1097 }
1098