xref: /qemu/accel/tcg/cpu-exec.c (revision 84615a19)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-jmp-cache.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49 
50 /* -icount align implementation. */
51 
52 typedef struct SyncClocks {
53     int64_t diff_clk;
54     int64_t last_cpu_icount;
55     int64_t realtime_clock;
56 } SyncClocks;
57 
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60  * The difference between the 2 clocks could therefore
61  * oscillate around 0.
62  */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67 
68 static int64_t max_delay;
69 static int64_t max_advance;
70 
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73     int64_t cpu_icount;
74 
75     if (!icount_align_option) {
76         return;
77     }
78 
79     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81     sc->last_cpu_icount = cpu_icount;
82 
83     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85         struct timespec sleep_delay, rem_delay;
86         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90         } else {
91             sc->diff_clk = 0;
92         }
93 #else
94         Sleep(sc->diff_clk / SCALE_MS);
95         sc->diff_clk = 0;
96 #endif
97     }
98 }
99 
100 static void print_delay(const SyncClocks *sc)
101 {
102     static float threshold_delay;
103     static int64_t last_realtime_clock;
104     static int nb_prints;
105 
106     if (icount_align_option &&
107         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108         nb_prints < MAX_NB_PRINTS) {
109         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110             (-sc->diff_clk / (float)1000000000LL <
111              (threshold_delay - THRESHOLD_REDUCE))) {
112             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114                         threshold_delay - 1,
115                         threshold_delay);
116             nb_prints++;
117             last_realtime_clock = sc->realtime_clock;
118         }
119     }
120 }
121 
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124     if (!icount_align_option) {
125         return;
126     }
127     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129     sc->last_cpu_icount
130         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131     if (sc->diff_clk < max_delay) {
132         max_delay = sc->diff_clk;
133     }
134     if (sc->diff_clk > max_advance) {
135         max_advance = sc->diff_clk;
136     }
137 
138     /* Print every 2s max if the guest is late. We limit the number
139        of printed messages to NB_PRINT_MAX(currently 100) */
140     print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151 
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154     uint32_t cflags = cpu->tcg_cflags;
155 
156     /*
157      * Record gdb single-step.  We should be exiting the TB by raising
158      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159      *
160      * For singlestep and -d nochain, suppress goto_tb so that
161      * we can log -d cpu,exec after every TB.
162      */
163     if (unlikely(cpu->singlestep_enabled)) {
164         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165     } else if (singlestep) {
166         cflags |= CF_NO_GOTO_TB | 1;
167     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168         cflags |= CF_NO_GOTO_TB;
169     }
170 
171     return cflags;
172 }
173 
174 struct tb_desc {
175     target_ulong pc;
176     target_ulong cs_base;
177     CPUArchState *env;
178     tb_page_addr_t page_addr0;
179     uint32_t flags;
180     uint32_t cflags;
181     uint32_t trace_vcpu_dstate;
182 };
183 
184 static bool tb_lookup_cmp(const void *p, const void *d)
185 {
186     const TranslationBlock *tb = p;
187     const struct tb_desc *desc = d;
188 
189     if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
190         tb_page_addr0(tb) == desc->page_addr0 &&
191         tb->cs_base == desc->cs_base &&
192         tb->flags == desc->flags &&
193         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
194         tb_cflags(tb) == desc->cflags) {
195         /* check next page if needed */
196         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
197         if (tb_phys_page1 == -1) {
198             return true;
199         } else {
200             tb_page_addr_t phys_page1;
201             target_ulong virt_page1;
202 
203             /*
204              * We know that the first page matched, and an otherwise valid TB
205              * encountered an incomplete instruction at the end of that page,
206              * therefore we know that generating a new TB from the current PC
207              * must also require reading from the next page -- even if the
208              * second pages do not match, and therefore the resulting insn
209              * is different for the new TB.  Therefore any exception raised
210              * here by the faulting lookup is not premature.
211              */
212             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
213             phys_page1 = get_page_addr_code(desc->env, virt_page1);
214             if (tb_phys_page1 == phys_page1) {
215                 return true;
216             }
217         }
218     }
219     return false;
220 }
221 
222 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
223                                           target_ulong cs_base, uint32_t flags,
224                                           uint32_t cflags)
225 {
226     tb_page_addr_t phys_pc;
227     struct tb_desc desc;
228     uint32_t h;
229 
230     desc.env = cpu->env_ptr;
231     desc.cs_base = cs_base;
232     desc.flags = flags;
233     desc.cflags = cflags;
234     desc.trace_vcpu_dstate = *cpu->trace_dstate;
235     desc.pc = pc;
236     phys_pc = get_page_addr_code(desc.env, pc);
237     if (phys_pc == -1) {
238         return NULL;
239     }
240     desc.page_addr0 = phys_pc;
241     h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
242                      flags, cflags, *cpu->trace_dstate);
243     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
244 }
245 
246 /* Might cause an exception, so have a longjmp destination ready */
247 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
248                                           target_ulong cs_base,
249                                           uint32_t flags, uint32_t cflags)
250 {
251     TranslationBlock *tb;
252     CPUJumpCache *jc;
253     uint32_t hash;
254 
255     /* we should never be trying to look up an INVALID tb */
256     tcg_debug_assert(!(cflags & CF_INVALID));
257 
258     hash = tb_jmp_cache_hash_func(pc);
259     jc = cpu->tb_jmp_cache;
260     tb = tb_jmp_cache_get_tb(jc, hash);
261 
262     if (likely(tb &&
263                tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
264                tb->cs_base == cs_base &&
265                tb->flags == flags &&
266                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
267                tb_cflags(tb) == cflags)) {
268         return tb;
269     }
270     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
271     if (tb == NULL) {
272         return NULL;
273     }
274     tb_jmp_cache_set(jc, hash, tb, pc);
275     return tb;
276 }
277 
278 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
279                          const TranslationBlock *tb)
280 {
281     if (qemu_log_in_addr_range(pc)) {
282         qemu_log_mask(CPU_LOG_EXEC,
283                       "Trace %d: %p [" TARGET_FMT_lx
284                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
285                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
286                       tb->flags, tb->cflags, lookup_symbol(pc));
287 
288 #if defined(DEBUG_DISAS)
289         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
290             FILE *logfile = qemu_log_trylock();
291             if (logfile) {
292                 int flags = 0;
293 
294                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
295                     flags |= CPU_DUMP_FPU;
296                 }
297 #if defined(TARGET_I386)
298                 flags |= CPU_DUMP_CCOP;
299 #endif
300                 cpu_dump_state(cpu, logfile, flags);
301                 qemu_log_unlock(logfile);
302             }
303         }
304 #endif /* DEBUG_DISAS */
305     }
306 }
307 
308 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
309                                        uint32_t *cflags)
310 {
311     CPUBreakpoint *bp;
312     bool match_page = false;
313 
314     /*
315      * Singlestep overrides breakpoints.
316      * This requirement is visible in the record-replay tests, where
317      * we would fail to make forward progress in reverse-continue.
318      *
319      * TODO: gdb singlestep should only override gdb breakpoints,
320      * so that one could (gdb) singlestep into the guest kernel's
321      * architectural breakpoint handler.
322      */
323     if (cpu->singlestep_enabled) {
324         return false;
325     }
326 
327     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
328         /*
329          * If we have an exact pc match, trigger the breakpoint.
330          * Otherwise, note matches within the page.
331          */
332         if (pc == bp->pc) {
333             bool match_bp = false;
334 
335             if (bp->flags & BP_GDB) {
336                 match_bp = true;
337             } else if (bp->flags & BP_CPU) {
338 #ifdef CONFIG_USER_ONLY
339                 g_assert_not_reached();
340 #else
341                 CPUClass *cc = CPU_GET_CLASS(cpu);
342                 assert(cc->tcg_ops->debug_check_breakpoint);
343                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
344 #endif
345             }
346 
347             if (match_bp) {
348                 cpu->exception_index = EXCP_DEBUG;
349                 return true;
350             }
351         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
352             match_page = true;
353         }
354     }
355 
356     /*
357      * Within the same page as a breakpoint, single-step,
358      * returning to helper_lookup_tb_ptr after each insn looking
359      * for the actual breakpoint.
360      *
361      * TODO: Perhaps better to record all of the TBs associated
362      * with a given virtual page that contains a breakpoint, and
363      * then invalidate them when a new overlapping breakpoint is
364      * set on the page.  Non-overlapping TBs would not be
365      * invalidated, nor would any TB need to be invalidated as
366      * breakpoints are removed.
367      */
368     if (match_page) {
369         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
370     }
371     return false;
372 }
373 
374 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
375                                          uint32_t *cflags)
376 {
377     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
378         check_for_breakpoints_slow(cpu, pc, cflags);
379 }
380 
381 /**
382  * helper_lookup_tb_ptr: quick check for next tb
383  * @env: current cpu state
384  *
385  * Look for an existing TB matching the current cpu state.
386  * If found, return the code pointer.  If not found, return
387  * the tcg epilogue so that we return into cpu_tb_exec.
388  */
389 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
390 {
391     CPUState *cpu = env_cpu(env);
392     TranslationBlock *tb;
393     target_ulong cs_base, pc;
394     uint32_t flags, cflags;
395 
396     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
397 
398     cflags = curr_cflags(cpu);
399     if (check_for_breakpoints(cpu, pc, &cflags)) {
400         cpu_loop_exit(cpu);
401     }
402 
403     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
404     if (tb == NULL) {
405         return tcg_code_gen_epilogue;
406     }
407 
408     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
409         log_cpu_exec(pc, cpu, tb);
410     }
411 
412     return tb->tc.ptr;
413 }
414 
415 /* Execute a TB, and fix up the CPU state afterwards if necessary */
416 /*
417  * Disable CFI checks.
418  * TCG creates binary blobs at runtime, with the transformed code.
419  * A TB is a blob of binary code, created at runtime and called with an
420  * indirect function call. Since such function did not exist at compile time,
421  * the CFI runtime has no way to verify its signature and would fail.
422  * TCG is not considered a security-sensitive part of QEMU so this does not
423  * affect the impact of CFI in environment with high security requirements
424  */
425 static inline TranslationBlock * QEMU_DISABLE_CFI
426 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
427 {
428     CPUArchState *env = cpu->env_ptr;
429     uintptr_t ret;
430     TranslationBlock *last_tb;
431     const void *tb_ptr = itb->tc.ptr;
432 
433     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
434         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
435     }
436 
437     qemu_thread_jit_execute();
438     ret = tcg_qemu_tb_exec(env, tb_ptr);
439     cpu->can_do_io = 1;
440     /*
441      * TODO: Delay swapping back to the read-write region of the TB
442      * until we actually need to modify the TB.  The read-only copy,
443      * coming from the rx region, shares the same host TLB entry as
444      * the code that executed the exit_tb opcode that arrived here.
445      * If we insist on touching both the RX and the RW pages, we
446      * double the host TLB pressure.
447      */
448     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
449     *tb_exit = ret & TB_EXIT_MASK;
450 
451     trace_exec_tb_exit(last_tb, *tb_exit);
452 
453     if (*tb_exit > TB_EXIT_IDX1) {
454         /* We didn't start executing this TB (eg because the instruction
455          * counter hit zero); we must restore the guest PC to the address
456          * of the start of the TB.
457          */
458         CPUClass *cc = CPU_GET_CLASS(cpu);
459 
460         if (cc->tcg_ops->synchronize_from_tb) {
461             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
462         } else {
463             assert(!TARGET_TB_PCREL);
464             assert(cc->set_pc);
465             cc->set_pc(cpu, tb_pc(last_tb));
466         }
467         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
468             target_ulong pc = log_pc(cpu, last_tb);
469             if (qemu_log_in_addr_range(pc)) {
470                 qemu_log("Stopped execution of TB chain before %p ["
471                          TARGET_FMT_lx "] %s\n",
472                          last_tb->tc.ptr, pc, lookup_symbol(pc));
473             }
474         }
475     }
476 
477     /*
478      * If gdb single-step, and we haven't raised another exception,
479      * raise a debug exception.  Single-step with another exception
480      * is handled in cpu_handle_exception.
481      */
482     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
483         cpu->exception_index = EXCP_DEBUG;
484         cpu_loop_exit(cpu);
485     }
486 
487     return last_tb;
488 }
489 
490 
491 static void cpu_exec_enter(CPUState *cpu)
492 {
493     CPUClass *cc = CPU_GET_CLASS(cpu);
494 
495     if (cc->tcg_ops->cpu_exec_enter) {
496         cc->tcg_ops->cpu_exec_enter(cpu);
497     }
498 }
499 
500 static void cpu_exec_exit(CPUState *cpu)
501 {
502     CPUClass *cc = CPU_GET_CLASS(cpu);
503 
504     if (cc->tcg_ops->cpu_exec_exit) {
505         cc->tcg_ops->cpu_exec_exit(cpu);
506     }
507     QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
508 }
509 
510 void cpu_exec_step_atomic(CPUState *cpu)
511 {
512     CPUArchState *env = cpu->env_ptr;
513     TranslationBlock *tb;
514     target_ulong cs_base, pc;
515     uint32_t flags, cflags;
516     int tb_exit;
517 
518     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
519         start_exclusive();
520         g_assert(cpu == current_cpu);
521         g_assert(!cpu->running);
522         cpu->running = true;
523 
524         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
525 
526         cflags = curr_cflags(cpu);
527         /* Execute in a serial context. */
528         cflags &= ~CF_PARALLEL;
529         /* After 1 insn, return and release the exclusive lock. */
530         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
531         /*
532          * No need to check_for_breakpoints here.
533          * We only arrive in cpu_exec_step_atomic after beginning execution
534          * of an insn that includes an atomic operation we can't handle.
535          * Any breakpoint for this insn will have been recognized earlier.
536          */
537 
538         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
539         if (tb == NULL) {
540             mmap_lock();
541             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
542             mmap_unlock();
543         }
544 
545         cpu_exec_enter(cpu);
546         /* execute the generated code */
547         trace_exec_tb(tb, pc);
548         cpu_tb_exec(cpu, tb, &tb_exit);
549         cpu_exec_exit(cpu);
550     } else {
551 #ifndef CONFIG_SOFTMMU
552         clear_helper_retaddr();
553         if (have_mmap_lock()) {
554             mmap_unlock();
555         }
556 #endif
557         if (qemu_mutex_iothread_locked()) {
558             qemu_mutex_unlock_iothread();
559         }
560         assert_no_pages_locked();
561         qemu_plugin_disable_mem_helpers(cpu);
562     }
563 
564     /*
565      * As we start the exclusive region before codegen we must still
566      * be in the region if we longjump out of either the codegen or
567      * the execution.
568      */
569     g_assert(cpu_in_exclusive_context(cpu));
570     cpu->running = false;
571     end_exclusive();
572 }
573 
574 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
575 {
576     /*
577      * Get the rx view of the structure, from which we find the
578      * executable code address, and tb_target_set_jmp_target can
579      * produce a pc-relative displacement to jmp_target_addr[n].
580      */
581     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
582     uintptr_t offset = tb->jmp_insn_offset[n];
583     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
584     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
585 
586     tb->jmp_target_addr[n] = addr;
587     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
588 }
589 
590 static inline void tb_add_jump(TranslationBlock *tb, int n,
591                                TranslationBlock *tb_next)
592 {
593     uintptr_t old;
594 
595     qemu_thread_jit_write();
596     assert(n < ARRAY_SIZE(tb->jmp_list_next));
597     qemu_spin_lock(&tb_next->jmp_lock);
598 
599     /* make sure the destination TB is valid */
600     if (tb_next->cflags & CF_INVALID) {
601         goto out_unlock_next;
602     }
603     /* Atomically claim the jump destination slot only if it was NULL */
604     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
605                           (uintptr_t)tb_next);
606     if (old) {
607         goto out_unlock_next;
608     }
609 
610     /* patch the native jump address */
611     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
612 
613     /* add in TB jmp list */
614     tb->jmp_list_next[n] = tb_next->jmp_list_head;
615     tb_next->jmp_list_head = (uintptr_t)tb | n;
616 
617     qemu_spin_unlock(&tb_next->jmp_lock);
618 
619     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
620                   tb->tc.ptr, n, tb_next->tc.ptr);
621     return;
622 
623  out_unlock_next:
624     qemu_spin_unlock(&tb_next->jmp_lock);
625     return;
626 }
627 
628 static inline bool cpu_handle_halt(CPUState *cpu)
629 {
630 #ifndef CONFIG_USER_ONLY
631     if (cpu->halted) {
632 #if defined(TARGET_I386)
633         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
634             X86CPU *x86_cpu = X86_CPU(cpu);
635             qemu_mutex_lock_iothread();
636             apic_poll_irq(x86_cpu->apic_state);
637             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
638             qemu_mutex_unlock_iothread();
639         }
640 #endif /* TARGET_I386 */
641         if (!cpu_has_work(cpu)) {
642             return true;
643         }
644 
645         cpu->halted = 0;
646     }
647 #endif /* !CONFIG_USER_ONLY */
648 
649     return false;
650 }
651 
652 static inline void cpu_handle_debug_exception(CPUState *cpu)
653 {
654     CPUClass *cc = CPU_GET_CLASS(cpu);
655     CPUWatchpoint *wp;
656 
657     if (!cpu->watchpoint_hit) {
658         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
659             wp->flags &= ~BP_WATCHPOINT_HIT;
660         }
661     }
662 
663     if (cc->tcg_ops->debug_excp_handler) {
664         cc->tcg_ops->debug_excp_handler(cpu);
665     }
666 }
667 
668 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
669 {
670     if (cpu->exception_index < 0) {
671 #ifndef CONFIG_USER_ONLY
672         if (replay_has_exception()
673             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
674             /* Execute just one insn to trigger exception pending in the log */
675             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
676                 | CF_NOIRQ | 1;
677         }
678 #endif
679         return false;
680     }
681     if (cpu->exception_index >= EXCP_INTERRUPT) {
682         /* exit request from the cpu execution loop */
683         *ret = cpu->exception_index;
684         if (*ret == EXCP_DEBUG) {
685             cpu_handle_debug_exception(cpu);
686         }
687         cpu->exception_index = -1;
688         return true;
689     } else {
690 #if defined(CONFIG_USER_ONLY)
691         /* if user mode only, we simulate a fake exception
692            which will be handled outside the cpu execution
693            loop */
694 #if defined(TARGET_I386)
695         CPUClass *cc = CPU_GET_CLASS(cpu);
696         cc->tcg_ops->fake_user_interrupt(cpu);
697 #endif /* TARGET_I386 */
698         *ret = cpu->exception_index;
699         cpu->exception_index = -1;
700         return true;
701 #else
702         if (replay_exception()) {
703             CPUClass *cc = CPU_GET_CLASS(cpu);
704             qemu_mutex_lock_iothread();
705             cc->tcg_ops->do_interrupt(cpu);
706             qemu_mutex_unlock_iothread();
707             cpu->exception_index = -1;
708 
709             if (unlikely(cpu->singlestep_enabled)) {
710                 /*
711                  * After processing the exception, ensure an EXCP_DEBUG is
712                  * raised when single-stepping so that GDB doesn't miss the
713                  * next instruction.
714                  */
715                 *ret = EXCP_DEBUG;
716                 cpu_handle_debug_exception(cpu);
717                 return true;
718             }
719         } else if (!replay_has_interrupt()) {
720             /* give a chance to iothread in replay mode */
721             *ret = EXCP_INTERRUPT;
722             return true;
723         }
724 #endif
725     }
726 
727     return false;
728 }
729 
730 #ifndef CONFIG_USER_ONLY
731 /*
732  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
733  * "real" interrupt event later. It does not need to be recorded for
734  * replay purposes.
735  */
736 static inline bool need_replay_interrupt(int interrupt_request)
737 {
738 #if defined(TARGET_I386)
739     return !(interrupt_request & CPU_INTERRUPT_POLL);
740 #else
741     return true;
742 #endif
743 }
744 #endif /* !CONFIG_USER_ONLY */
745 
746 static inline bool cpu_handle_interrupt(CPUState *cpu,
747                                         TranslationBlock **last_tb)
748 {
749     /*
750      * If we have requested custom cflags with CF_NOIRQ we should
751      * skip checking here. Any pending interrupts will get picked up
752      * by the next TB we execute under normal cflags.
753      */
754     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
755         return false;
756     }
757 
758     /* Clear the interrupt flag now since we're processing
759      * cpu->interrupt_request and cpu->exit_request.
760      * Ensure zeroing happens before reading cpu->exit_request or
761      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
762      */
763     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
764 
765     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
766         int interrupt_request;
767         qemu_mutex_lock_iothread();
768         interrupt_request = cpu->interrupt_request;
769         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
770             /* Mask out external interrupts for this step. */
771             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
772         }
773         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
774             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
775             cpu->exception_index = EXCP_DEBUG;
776             qemu_mutex_unlock_iothread();
777             return true;
778         }
779 #if !defined(CONFIG_USER_ONLY)
780         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
781             /* Do nothing */
782         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
783             replay_interrupt();
784             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
785             cpu->halted = 1;
786             cpu->exception_index = EXCP_HLT;
787             qemu_mutex_unlock_iothread();
788             return true;
789         }
790 #if defined(TARGET_I386)
791         else if (interrupt_request & CPU_INTERRUPT_INIT) {
792             X86CPU *x86_cpu = X86_CPU(cpu);
793             CPUArchState *env = &x86_cpu->env;
794             replay_interrupt();
795             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
796             do_cpu_init(x86_cpu);
797             cpu->exception_index = EXCP_HALTED;
798             qemu_mutex_unlock_iothread();
799             return true;
800         }
801 #else
802         else if (interrupt_request & CPU_INTERRUPT_RESET) {
803             replay_interrupt();
804             cpu_reset(cpu);
805             qemu_mutex_unlock_iothread();
806             return true;
807         }
808 #endif /* !TARGET_I386 */
809         /* The target hook has 3 exit conditions:
810            False when the interrupt isn't processed,
811            True when it is, and we should restart on a new TB,
812            and via longjmp via cpu_loop_exit.  */
813         else {
814             CPUClass *cc = CPU_GET_CLASS(cpu);
815 
816             if (cc->tcg_ops->cpu_exec_interrupt &&
817                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
818                 if (need_replay_interrupt(interrupt_request)) {
819                     replay_interrupt();
820                 }
821                 /*
822                  * After processing the interrupt, ensure an EXCP_DEBUG is
823                  * raised when single-stepping so that GDB doesn't miss the
824                  * next instruction.
825                  */
826                 if (unlikely(cpu->singlestep_enabled)) {
827                     cpu->exception_index = EXCP_DEBUG;
828                     qemu_mutex_unlock_iothread();
829                     return true;
830                 }
831                 cpu->exception_index = -1;
832                 *last_tb = NULL;
833             }
834             /* The target hook may have updated the 'cpu->interrupt_request';
835              * reload the 'interrupt_request' value */
836             interrupt_request = cpu->interrupt_request;
837         }
838 #endif /* !CONFIG_USER_ONLY */
839         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
840             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
841             /* ensure that no TB jump will be modified as
842                the program flow was changed */
843             *last_tb = NULL;
844         }
845 
846         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
847         qemu_mutex_unlock_iothread();
848     }
849 
850     /* Finally, check if we need to exit to the main loop.  */
851     if (unlikely(qatomic_read(&cpu->exit_request))
852         || (icount_enabled()
853             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
854             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
855         qatomic_set(&cpu->exit_request, 0);
856         if (cpu->exception_index == -1) {
857             cpu->exception_index = EXCP_INTERRUPT;
858         }
859         return true;
860     }
861 
862     return false;
863 }
864 
865 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
866                                     target_ulong pc,
867                                     TranslationBlock **last_tb, int *tb_exit)
868 {
869     int32_t insns_left;
870 
871     trace_exec_tb(tb, pc);
872     tb = cpu_tb_exec(cpu, tb, tb_exit);
873     if (*tb_exit != TB_EXIT_REQUESTED) {
874         *last_tb = tb;
875         return;
876     }
877 
878     *last_tb = NULL;
879     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
880     if (insns_left < 0) {
881         /* Something asked us to stop executing chained TBs; just
882          * continue round the main loop. Whatever requested the exit
883          * will also have set something else (eg exit_request or
884          * interrupt_request) which will be handled by
885          * cpu_handle_interrupt.  cpu_handle_interrupt will also
886          * clear cpu->icount_decr.u16.high.
887          */
888         return;
889     }
890 
891     /* Instruction counter expired.  */
892     assert(icount_enabled());
893 #ifndef CONFIG_USER_ONLY
894     /* Ensure global icount has gone forward */
895     icount_update(cpu);
896     /* Refill decrementer and continue execution.  */
897     insns_left = MIN(0xffff, cpu->icount_budget);
898     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
899     cpu->icount_extra = cpu->icount_budget - insns_left;
900 
901     /*
902      * If the next tb has more instructions than we have left to
903      * execute we need to ensure we find/generate a TB with exactly
904      * insns_left instructions in it.
905      */
906     if (insns_left > 0 && insns_left < tb->icount)  {
907         assert(insns_left <= CF_COUNT_MASK);
908         assert(cpu->icount_extra == 0);
909         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
910     }
911 #endif
912 }
913 
914 /* main execution loop */
915 
916 static int __attribute__((noinline))
917 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
918 {
919     int ret;
920 
921     /* if an exception is pending, we execute it here */
922     while (!cpu_handle_exception(cpu, &ret)) {
923         TranslationBlock *last_tb = NULL;
924         int tb_exit = 0;
925 
926         while (!cpu_handle_interrupt(cpu, &last_tb)) {
927             TranslationBlock *tb;
928             target_ulong cs_base, pc;
929             uint32_t flags, cflags;
930 
931             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
932 
933             /*
934              * When requested, use an exact setting for cflags for the next
935              * execution.  This is used for icount, precise smc, and stop-
936              * after-access watchpoints.  Since this request should never
937              * have CF_INVALID set, -1 is a convenient invalid value that
938              * does not require tcg headers for cpu_common_reset.
939              */
940             cflags = cpu->cflags_next_tb;
941             if (cflags == -1) {
942                 cflags = curr_cflags(cpu);
943             } else {
944                 cpu->cflags_next_tb = -1;
945             }
946 
947             if (check_for_breakpoints(cpu, pc, &cflags)) {
948                 break;
949             }
950 
951             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
952             if (tb == NULL) {
953                 uint32_t h;
954 
955                 mmap_lock();
956                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
957                 mmap_unlock();
958                 /*
959                  * We add the TB in the virtual pc hash table
960                  * for the fast lookup
961                  */
962                 h = tb_jmp_cache_hash_func(pc);
963                 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
964             }
965 
966 #ifndef CONFIG_USER_ONLY
967             /*
968              * We don't take care of direct jumps when address mapping
969              * changes in system emulation.  So it's not safe to make a
970              * direct jump to a TB spanning two pages because the mapping
971              * for the second page can change.
972              */
973             if (tb_page_addr1(tb) != -1) {
974                 last_tb = NULL;
975             }
976 #endif
977             /* See if we can patch the calling TB. */
978             if (last_tb) {
979                 tb_add_jump(last_tb, tb_exit, tb);
980             }
981 
982             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
983 
984             QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
985             /* Try to align the host and virtual clocks
986                if the guest is in advance */
987             align_clocks(sc, cpu);
988         }
989     }
990     return ret;
991 }
992 
993 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
994 {
995     /* Prepare setjmp context for exception handling. */
996     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
997         /* Non-buggy compilers preserve this; assert the correct value. */
998         g_assert(cpu == current_cpu);
999 
1000 #ifndef CONFIG_SOFTMMU
1001         clear_helper_retaddr();
1002         if (have_mmap_lock()) {
1003             mmap_unlock();
1004         }
1005 #endif
1006         if (qemu_mutex_iothread_locked()) {
1007             qemu_mutex_unlock_iothread();
1008         }
1009         qemu_plugin_disable_mem_helpers(cpu);
1010 
1011         assert_no_pages_locked();
1012     }
1013 
1014     return cpu_exec_loop(cpu, sc);
1015 }
1016 
1017 int cpu_exec(CPUState *cpu)
1018 {
1019     int ret;
1020     SyncClocks sc = { 0 };
1021 
1022     /* replay_interrupt may need current_cpu */
1023     current_cpu = cpu;
1024 
1025     if (cpu_handle_halt(cpu)) {
1026         return EXCP_HALTED;
1027     }
1028 
1029     rcu_read_lock();
1030     cpu_exec_enter(cpu);
1031 
1032     /*
1033      * Calculate difference between guest clock and host clock.
1034      * This delay includes the delay of the last cycle, so
1035      * what we have to do is sleep until it is 0. As for the
1036      * advance/delay we gain here, we try to fix it next time.
1037      */
1038     init_delay_params(&sc, cpu);
1039 
1040     ret = cpu_exec_setjmp(cpu, &sc);
1041 
1042     cpu_exec_exit(cpu);
1043     rcu_read_unlock();
1044 
1045     return ret;
1046 }
1047 
1048 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1049 {
1050     static bool tcg_target_initialized;
1051     CPUClass *cc = CPU_GET_CLASS(cpu);
1052 
1053     if (!tcg_target_initialized) {
1054         cc->tcg_ops->initialize();
1055         tcg_target_initialized = true;
1056     }
1057 
1058     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1059     tlb_init(cpu);
1060 #ifndef CONFIG_USER_ONLY
1061     tcg_iommu_init_notifier_list(cpu);
1062 #endif /* !CONFIG_USER_ONLY */
1063     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1064 }
1065 
1066 /* undo the initializations in reverse order */
1067 void tcg_exec_unrealizefn(CPUState *cpu)
1068 {
1069 #ifndef CONFIG_USER_ONLY
1070     tcg_iommu_free_notifier_list(cpu);
1071 #endif /* !CONFIG_USER_ONLY */
1072 
1073     tlb_destroy(cpu);
1074     g_free_rcu(cpu->tb_jmp_cache, rcu);
1075 }
1076 
1077 #ifndef CONFIG_USER_ONLY
1078 
1079 static void dump_drift_info(GString *buf)
1080 {
1081     if (!icount_enabled()) {
1082         return;
1083     }
1084 
1085     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
1086                            (cpu_get_clock() - icount_get()) / SCALE_MS);
1087     if (icount_align_option) {
1088         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
1089                                -max_delay / SCALE_MS);
1090         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
1091                                max_advance / SCALE_MS);
1092     } else {
1093         g_string_append_printf(buf, "Max guest delay     NA\n");
1094         g_string_append_printf(buf, "Max guest advance   NA\n");
1095     }
1096 }
1097 
1098 HumanReadableText *qmp_x_query_jit(Error **errp)
1099 {
1100     g_autoptr(GString) buf = g_string_new("");
1101 
1102     if (!tcg_enabled()) {
1103         error_setg(errp, "JIT information is only available with accel=tcg");
1104         return NULL;
1105     }
1106 
1107     dump_exec_info(buf);
1108     dump_drift_info(buf);
1109 
1110     return human_readable_text_from_str(buf);
1111 }
1112 
1113 HumanReadableText *qmp_x_query_opcount(Error **errp)
1114 {
1115     g_autoptr(GString) buf = g_string_new("");
1116 
1117     if (!tcg_enabled()) {
1118         error_setg(errp, "Opcode count information is only available with accel=tcg");
1119         return NULL;
1120     }
1121 
1122     tcg_dump_op_count(buf);
1123 
1124     return human_readable_text_from_str(buf);
1125 }
1126 
1127 #ifdef CONFIG_PROFILER
1128 
1129 int64_t dev_time;
1130 
1131 HumanReadableText *qmp_x_query_profile(Error **errp)
1132 {
1133     g_autoptr(GString) buf = g_string_new("");
1134     static int64_t last_cpu_exec_time;
1135     int64_t cpu_exec_time;
1136     int64_t delta;
1137 
1138     cpu_exec_time = tcg_cpu_exec_time();
1139     delta = cpu_exec_time - last_cpu_exec_time;
1140 
1141     g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
1142                            dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1143     g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
1144                            delta, delta / (double)NANOSECONDS_PER_SECOND);
1145     last_cpu_exec_time = cpu_exec_time;
1146     dev_time = 0;
1147 
1148     return human_readable_text_from_str(buf);
1149 }
1150 #else
1151 HumanReadableText *qmp_x_query_profile(Error **errp)
1152 {
1153     error_setg(errp, "Internal profiler not compiled");
1154     return NULL;
1155 }
1156 #endif
1157 
1158 #endif /* !CONFIG_USER_ONLY */
1159