xref: /qemu/accel/tcg/cpu-exec.c (revision f16d15c9)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-hash.h"
46 #include "tb-context.h"
47 #include "internal.h"
48 
49 /* -icount align implementation. */
50 
51 typedef struct SyncClocks {
52     int64_t diff_clk;
53     int64_t last_cpu_icount;
54     int64_t realtime_clock;
55 } SyncClocks;
56 
57 #if !defined(CONFIG_USER_ONLY)
58 /* Allow the guest to have a max 3ms advance.
59  * The difference between the 2 clocks could therefore
60  * oscillate around 0.
61  */
62 #define VM_CLOCK_ADVANCE 3000000
63 #define THRESHOLD_REDUCE 1.5
64 #define MAX_DELAY_PRINT_RATE 2000000000LL
65 #define MAX_NB_PRINTS 100
66 
67 static int64_t max_delay;
68 static int64_t max_advance;
69 
70 static void align_clocks(SyncClocks *sc, CPUState *cpu)
71 {
72     int64_t cpu_icount;
73 
74     if (!icount_align_option) {
75         return;
76     }
77 
78     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
79     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
80     sc->last_cpu_icount = cpu_icount;
81 
82     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
83 #ifndef _WIN32
84         struct timespec sleep_delay, rem_delay;
85         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
86         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
87         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
88             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
89         } else {
90             sc->diff_clk = 0;
91         }
92 #else
93         Sleep(sc->diff_clk / SCALE_MS);
94         sc->diff_clk = 0;
95 #endif
96     }
97 }
98 
99 static void print_delay(const SyncClocks *sc)
100 {
101     static float threshold_delay;
102     static int64_t last_realtime_clock;
103     static int nb_prints;
104 
105     if (icount_align_option &&
106         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
107         nb_prints < MAX_NB_PRINTS) {
108         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
109             (-sc->diff_clk / (float)1000000000LL <
110              (threshold_delay - THRESHOLD_REDUCE))) {
111             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
112             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
113                         threshold_delay - 1,
114                         threshold_delay);
115             nb_prints++;
116             last_realtime_clock = sc->realtime_clock;
117         }
118     }
119 }
120 
121 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
122 {
123     if (!icount_align_option) {
124         return;
125     }
126     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
127     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
128     sc->last_cpu_icount
129         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
130     if (sc->diff_clk < max_delay) {
131         max_delay = sc->diff_clk;
132     }
133     if (sc->diff_clk > max_advance) {
134         max_advance = sc->diff_clk;
135     }
136 
137     /* Print every 2s max if the guest is late. We limit the number
138        of printed messages to NB_PRINT_MAX(currently 100) */
139     print_delay(sc);
140 }
141 #else
142 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
143 {
144 }
145 
146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
147 {
148 }
149 #endif /* CONFIG USER ONLY */
150 
151 uint32_t curr_cflags(CPUState *cpu)
152 {
153     uint32_t cflags = cpu->tcg_cflags;
154 
155     /*
156      * Record gdb single-step.  We should be exiting the TB by raising
157      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
158      *
159      * For singlestep and -d nochain, suppress goto_tb so that
160      * we can log -d cpu,exec after every TB.
161      */
162     if (unlikely(cpu->singlestep_enabled)) {
163         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
164     } else if (singlestep) {
165         cflags |= CF_NO_GOTO_TB | 1;
166     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
167         cflags |= CF_NO_GOTO_TB;
168     }
169 
170     return cflags;
171 }
172 
173 struct tb_desc {
174     target_ulong pc;
175     target_ulong cs_base;
176     CPUArchState *env;
177     tb_page_addr_t phys_page1;
178     uint32_t flags;
179     uint32_t cflags;
180     uint32_t trace_vcpu_dstate;
181 };
182 
183 static bool tb_lookup_cmp(const void *p, const void *d)
184 {
185     const TranslationBlock *tb = p;
186     const struct tb_desc *desc = d;
187 
188     if (tb->pc == desc->pc &&
189         tb->page_addr[0] == desc->phys_page1 &&
190         tb->cs_base == desc->cs_base &&
191         tb->flags == desc->flags &&
192         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
193         tb_cflags(tb) == desc->cflags) {
194         /* check next page if needed */
195         if (tb->page_addr[1] == -1) {
196             return true;
197         } else {
198             tb_page_addr_t phys_page2;
199             target_ulong virt_page2;
200 
201             /*
202              * We know that the first page matched, and an otherwise valid TB
203              * encountered an incomplete instruction at the end of that page,
204              * therefore we know that generating a new TB from the current PC
205              * must also require reading from the next page -- even if the
206              * second pages do not match, and therefore the resulting insn
207              * is different for the new TB.  Therefore any exception raised
208              * here by the faulting lookup is not premature.
209              */
210             virt_page2 = TARGET_PAGE_ALIGN(desc->pc);
211             phys_page2 = get_page_addr_code(desc->env, virt_page2);
212             if (tb->page_addr[1] == phys_page2) {
213                 return true;
214             }
215         }
216     }
217     return false;
218 }
219 
220 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
221                                           target_ulong cs_base, uint32_t flags,
222                                           uint32_t cflags)
223 {
224     tb_page_addr_t phys_pc;
225     struct tb_desc desc;
226     uint32_t h;
227 
228     desc.env = cpu->env_ptr;
229     desc.cs_base = cs_base;
230     desc.flags = flags;
231     desc.cflags = cflags;
232     desc.trace_vcpu_dstate = *cpu->trace_dstate;
233     desc.pc = pc;
234     phys_pc = get_page_addr_code(desc.env, pc);
235     if (phys_pc == -1) {
236         return NULL;
237     }
238     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
239     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
240     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242 
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245                                           target_ulong cs_base,
246                                           uint32_t flags, uint32_t cflags)
247 {
248     TranslationBlock *tb;
249     uint32_t hash;
250 
251     /* we should never be trying to look up an INVALID tb */
252     tcg_debug_assert(!(cflags & CF_INVALID));
253 
254     hash = tb_jmp_cache_hash_func(pc);
255     tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
256 
257     if (likely(tb &&
258                tb->pc == pc &&
259                tb->cs_base == cs_base &&
260                tb->flags == flags &&
261                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
262                tb_cflags(tb) == cflags)) {
263         return tb;
264     }
265     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
266     if (tb == NULL) {
267         return NULL;
268     }
269     qatomic_set(&cpu->tb_jmp_cache[hash], tb);
270     return tb;
271 }
272 
273 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
274                                 const TranslationBlock *tb)
275 {
276     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
277         && qemu_log_in_addr_range(pc)) {
278 
279         qemu_log_mask(CPU_LOG_EXEC,
280                       "Trace %d: %p [" TARGET_FMT_lx
281                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
282                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
283                       tb->flags, tb->cflags, lookup_symbol(pc));
284 
285 #if defined(DEBUG_DISAS)
286         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
287             FILE *logfile = qemu_log_trylock();
288             if (logfile) {
289                 int flags = 0;
290 
291                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
292                     flags |= CPU_DUMP_FPU;
293                 }
294 #if defined(TARGET_I386)
295                 flags |= CPU_DUMP_CCOP;
296 #endif
297                 cpu_dump_state(cpu, logfile, flags);
298                 qemu_log_unlock(logfile);
299             }
300         }
301 #endif /* DEBUG_DISAS */
302     }
303 }
304 
305 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
306                                   uint32_t *cflags)
307 {
308     CPUBreakpoint *bp;
309     bool match_page = false;
310 
311     if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
312         return false;
313     }
314 
315     /*
316      * Singlestep overrides breakpoints.
317      * This requirement is visible in the record-replay tests, where
318      * we would fail to make forward progress in reverse-continue.
319      *
320      * TODO: gdb singlestep should only override gdb breakpoints,
321      * so that one could (gdb) singlestep into the guest kernel's
322      * architectural breakpoint handler.
323      */
324     if (cpu->singlestep_enabled) {
325         return false;
326     }
327 
328     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
329         /*
330          * If we have an exact pc match, trigger the breakpoint.
331          * Otherwise, note matches within the page.
332          */
333         if (pc == bp->pc) {
334             bool match_bp = false;
335 
336             if (bp->flags & BP_GDB) {
337                 match_bp = true;
338             } else if (bp->flags & BP_CPU) {
339 #ifdef CONFIG_USER_ONLY
340                 g_assert_not_reached();
341 #else
342                 CPUClass *cc = CPU_GET_CLASS(cpu);
343                 assert(cc->tcg_ops->debug_check_breakpoint);
344                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
345 #endif
346             }
347 
348             if (match_bp) {
349                 cpu->exception_index = EXCP_DEBUG;
350                 return true;
351             }
352         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
353             match_page = true;
354         }
355     }
356 
357     /*
358      * Within the same page as a breakpoint, single-step,
359      * returning to helper_lookup_tb_ptr after each insn looking
360      * for the actual breakpoint.
361      *
362      * TODO: Perhaps better to record all of the TBs associated
363      * with a given virtual page that contains a breakpoint, and
364      * then invalidate them when a new overlapping breakpoint is
365      * set on the page.  Non-overlapping TBs would not be
366      * invalidated, nor would any TB need to be invalidated as
367      * breakpoints are removed.
368      */
369     if (match_page) {
370         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
371     }
372     return false;
373 }
374 
375 /**
376  * helper_lookup_tb_ptr: quick check for next tb
377  * @env: current cpu state
378  *
379  * Look for an existing TB matching the current cpu state.
380  * If found, return the code pointer.  If not found, return
381  * the tcg epilogue so that we return into cpu_tb_exec.
382  */
383 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
384 {
385     CPUState *cpu = env_cpu(env);
386     TranslationBlock *tb;
387     target_ulong cs_base, pc;
388     uint32_t flags, cflags;
389 
390     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
391 
392     cflags = curr_cflags(cpu);
393     if (check_for_breakpoints(cpu, pc, &cflags)) {
394         cpu_loop_exit(cpu);
395     }
396 
397     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
398     if (tb == NULL) {
399         return tcg_code_gen_epilogue;
400     }
401 
402     log_cpu_exec(pc, cpu, tb);
403 
404     return tb->tc.ptr;
405 }
406 
407 /* Execute a TB, and fix up the CPU state afterwards if necessary */
408 /*
409  * Disable CFI checks.
410  * TCG creates binary blobs at runtime, with the transformed code.
411  * A TB is a blob of binary code, created at runtime and called with an
412  * indirect function call. Since such function did not exist at compile time,
413  * the CFI runtime has no way to verify its signature and would fail.
414  * TCG is not considered a security-sensitive part of QEMU so this does not
415  * affect the impact of CFI in environment with high security requirements
416  */
417 static inline TranslationBlock * QEMU_DISABLE_CFI
418 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
419 {
420     CPUArchState *env = cpu->env_ptr;
421     uintptr_t ret;
422     TranslationBlock *last_tb;
423     const void *tb_ptr = itb->tc.ptr;
424 
425     log_cpu_exec(itb->pc, cpu, itb);
426 
427     qemu_thread_jit_execute();
428     ret = tcg_qemu_tb_exec(env, tb_ptr);
429     cpu->can_do_io = 1;
430     /*
431      * TODO: Delay swapping back to the read-write region of the TB
432      * until we actually need to modify the TB.  The read-only copy,
433      * coming from the rx region, shares the same host TLB entry as
434      * the code that executed the exit_tb opcode that arrived here.
435      * If we insist on touching both the RX and the RW pages, we
436      * double the host TLB pressure.
437      */
438     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
439     *tb_exit = ret & TB_EXIT_MASK;
440 
441     trace_exec_tb_exit(last_tb, *tb_exit);
442 
443     if (*tb_exit > TB_EXIT_IDX1) {
444         /* We didn't start executing this TB (eg because the instruction
445          * counter hit zero); we must restore the guest PC to the address
446          * of the start of the TB.
447          */
448         CPUClass *cc = CPU_GET_CLASS(cpu);
449         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
450                                "Stopped execution of TB chain before %p ["
451                                TARGET_FMT_lx "] %s\n",
452                                last_tb->tc.ptr, last_tb->pc,
453                                lookup_symbol(last_tb->pc));
454         if (cc->tcg_ops->synchronize_from_tb) {
455             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
456         } else {
457             assert(cc->set_pc);
458             cc->set_pc(cpu, last_tb->pc);
459         }
460     }
461 
462     /*
463      * If gdb single-step, and we haven't raised another exception,
464      * raise a debug exception.  Single-step with another exception
465      * is handled in cpu_handle_exception.
466      */
467     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
468         cpu->exception_index = EXCP_DEBUG;
469         cpu_loop_exit(cpu);
470     }
471 
472     return last_tb;
473 }
474 
475 
476 static void cpu_exec_enter(CPUState *cpu)
477 {
478     CPUClass *cc = CPU_GET_CLASS(cpu);
479 
480     if (cc->tcg_ops->cpu_exec_enter) {
481         cc->tcg_ops->cpu_exec_enter(cpu);
482     }
483 }
484 
485 static void cpu_exec_exit(CPUState *cpu)
486 {
487     CPUClass *cc = CPU_GET_CLASS(cpu);
488 
489     if (cc->tcg_ops->cpu_exec_exit) {
490         cc->tcg_ops->cpu_exec_exit(cpu);
491     }
492 }
493 
494 void cpu_exec_step_atomic(CPUState *cpu)
495 {
496     CPUArchState *env = cpu->env_ptr;
497     TranslationBlock *tb;
498     target_ulong cs_base, pc;
499     uint32_t flags, cflags;
500     int tb_exit;
501 
502     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
503         start_exclusive();
504         g_assert(cpu == current_cpu);
505         g_assert(!cpu->running);
506         cpu->running = true;
507 
508         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
509 
510         cflags = curr_cflags(cpu);
511         /* Execute in a serial context. */
512         cflags &= ~CF_PARALLEL;
513         /* After 1 insn, return and release the exclusive lock. */
514         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
515         /*
516          * No need to check_for_breakpoints here.
517          * We only arrive in cpu_exec_step_atomic after beginning execution
518          * of an insn that includes an atomic operation we can't handle.
519          * Any breakpoint for this insn will have been recognized earlier.
520          */
521 
522         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
523         if (tb == NULL) {
524             mmap_lock();
525             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
526             mmap_unlock();
527         }
528 
529         cpu_exec_enter(cpu);
530         /* execute the generated code */
531         trace_exec_tb(tb, pc);
532         cpu_tb_exec(cpu, tb, &tb_exit);
533         cpu_exec_exit(cpu);
534     } else {
535 #ifndef CONFIG_SOFTMMU
536         clear_helper_retaddr();
537         if (have_mmap_lock()) {
538             mmap_unlock();
539         }
540 #endif
541         if (qemu_mutex_iothread_locked()) {
542             qemu_mutex_unlock_iothread();
543         }
544         assert_no_pages_locked();
545         qemu_plugin_disable_mem_helpers(cpu);
546     }
547 
548     /*
549      * As we start the exclusive region before codegen we must still
550      * be in the region if we longjump out of either the codegen or
551      * the execution.
552      */
553     g_assert(cpu_in_exclusive_context(cpu));
554     cpu->running = false;
555     end_exclusive();
556 }
557 
558 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
559 {
560     if (TCG_TARGET_HAS_direct_jump) {
561         uintptr_t offset = tb->jmp_target_arg[n];
562         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
563         uintptr_t jmp_rx = tc_ptr + offset;
564         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
565         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
566     } else {
567         tb->jmp_target_arg[n] = addr;
568     }
569 }
570 
571 static inline void tb_add_jump(TranslationBlock *tb, int n,
572                                TranslationBlock *tb_next)
573 {
574     uintptr_t old;
575 
576     qemu_thread_jit_write();
577     assert(n < ARRAY_SIZE(tb->jmp_list_next));
578     qemu_spin_lock(&tb_next->jmp_lock);
579 
580     /* make sure the destination TB is valid */
581     if (tb_next->cflags & CF_INVALID) {
582         goto out_unlock_next;
583     }
584     /* Atomically claim the jump destination slot only if it was NULL */
585     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
586                           (uintptr_t)tb_next);
587     if (old) {
588         goto out_unlock_next;
589     }
590 
591     /* patch the native jump address */
592     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
593 
594     /* add in TB jmp list */
595     tb->jmp_list_next[n] = tb_next->jmp_list_head;
596     tb_next->jmp_list_head = (uintptr_t)tb | n;
597 
598     qemu_spin_unlock(&tb_next->jmp_lock);
599 
600     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
601                            "Linking TBs %p [" TARGET_FMT_lx
602                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
603                            tb->tc.ptr, tb->pc, n,
604                            tb_next->tc.ptr, tb_next->pc);
605     return;
606 
607  out_unlock_next:
608     qemu_spin_unlock(&tb_next->jmp_lock);
609     return;
610 }
611 
612 static inline bool cpu_handle_halt(CPUState *cpu)
613 {
614 #ifndef CONFIG_USER_ONLY
615     if (cpu->halted) {
616 #if defined(TARGET_I386)
617         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
618             X86CPU *x86_cpu = X86_CPU(cpu);
619             qemu_mutex_lock_iothread();
620             apic_poll_irq(x86_cpu->apic_state);
621             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
622             qemu_mutex_unlock_iothread();
623         }
624 #endif /* TARGET_I386 */
625         if (!cpu_has_work(cpu)) {
626             return true;
627         }
628 
629         cpu->halted = 0;
630     }
631 #endif /* !CONFIG_USER_ONLY */
632 
633     return false;
634 }
635 
636 static inline void cpu_handle_debug_exception(CPUState *cpu)
637 {
638     CPUClass *cc = CPU_GET_CLASS(cpu);
639     CPUWatchpoint *wp;
640 
641     if (!cpu->watchpoint_hit) {
642         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
643             wp->flags &= ~BP_WATCHPOINT_HIT;
644         }
645     }
646 
647     if (cc->tcg_ops->debug_excp_handler) {
648         cc->tcg_ops->debug_excp_handler(cpu);
649     }
650 }
651 
652 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
653 {
654     if (cpu->exception_index < 0) {
655 #ifndef CONFIG_USER_ONLY
656         if (replay_has_exception()
657             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
658             /* Execute just one insn to trigger exception pending in the log */
659             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
660                 | CF_NOIRQ | 1;
661         }
662 #endif
663         return false;
664     }
665     if (cpu->exception_index >= EXCP_INTERRUPT) {
666         /* exit request from the cpu execution loop */
667         *ret = cpu->exception_index;
668         if (*ret == EXCP_DEBUG) {
669             cpu_handle_debug_exception(cpu);
670         }
671         cpu->exception_index = -1;
672         return true;
673     } else {
674 #if defined(CONFIG_USER_ONLY)
675         /* if user mode only, we simulate a fake exception
676            which will be handled outside the cpu execution
677            loop */
678 #if defined(TARGET_I386)
679         CPUClass *cc = CPU_GET_CLASS(cpu);
680         cc->tcg_ops->fake_user_interrupt(cpu);
681 #endif /* TARGET_I386 */
682         *ret = cpu->exception_index;
683         cpu->exception_index = -1;
684         return true;
685 #else
686         if (replay_exception()) {
687             CPUClass *cc = CPU_GET_CLASS(cpu);
688             qemu_mutex_lock_iothread();
689             cc->tcg_ops->do_interrupt(cpu);
690             qemu_mutex_unlock_iothread();
691             cpu->exception_index = -1;
692 
693             if (unlikely(cpu->singlestep_enabled)) {
694                 /*
695                  * After processing the exception, ensure an EXCP_DEBUG is
696                  * raised when single-stepping so that GDB doesn't miss the
697                  * next instruction.
698                  */
699                 *ret = EXCP_DEBUG;
700                 cpu_handle_debug_exception(cpu);
701                 return true;
702             }
703         } else if (!replay_has_interrupt()) {
704             /* give a chance to iothread in replay mode */
705             *ret = EXCP_INTERRUPT;
706             return true;
707         }
708 #endif
709     }
710 
711     return false;
712 }
713 
714 #ifndef CONFIG_USER_ONLY
715 /*
716  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
717  * "real" interrupt event later. It does not need to be recorded for
718  * replay purposes.
719  */
720 static inline bool need_replay_interrupt(int interrupt_request)
721 {
722 #if defined(TARGET_I386)
723     return !(interrupt_request & CPU_INTERRUPT_POLL);
724 #else
725     return true;
726 #endif
727 }
728 #endif /* !CONFIG_USER_ONLY */
729 
730 static inline bool cpu_handle_interrupt(CPUState *cpu,
731                                         TranslationBlock **last_tb)
732 {
733     /*
734      * If we have requested custom cflags with CF_NOIRQ we should
735      * skip checking here. Any pending interrupts will get picked up
736      * by the next TB we execute under normal cflags.
737      */
738     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
739         return false;
740     }
741 
742     /* Clear the interrupt flag now since we're processing
743      * cpu->interrupt_request and cpu->exit_request.
744      * Ensure zeroing happens before reading cpu->exit_request or
745      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
746      */
747     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
748 
749     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
750         int interrupt_request;
751         qemu_mutex_lock_iothread();
752         interrupt_request = cpu->interrupt_request;
753         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
754             /* Mask out external interrupts for this step. */
755             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
756         }
757         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
758             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
759             cpu->exception_index = EXCP_DEBUG;
760             qemu_mutex_unlock_iothread();
761             return true;
762         }
763 #if !defined(CONFIG_USER_ONLY)
764         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
765             /* Do nothing */
766         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
767             replay_interrupt();
768             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
769             cpu->halted = 1;
770             cpu->exception_index = EXCP_HLT;
771             qemu_mutex_unlock_iothread();
772             return true;
773         }
774 #if defined(TARGET_I386)
775         else if (interrupt_request & CPU_INTERRUPT_INIT) {
776             X86CPU *x86_cpu = X86_CPU(cpu);
777             CPUArchState *env = &x86_cpu->env;
778             replay_interrupt();
779             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
780             do_cpu_init(x86_cpu);
781             cpu->exception_index = EXCP_HALTED;
782             qemu_mutex_unlock_iothread();
783             return true;
784         }
785 #else
786         else if (interrupt_request & CPU_INTERRUPT_RESET) {
787             replay_interrupt();
788             cpu_reset(cpu);
789             qemu_mutex_unlock_iothread();
790             return true;
791         }
792 #endif /* !TARGET_I386 */
793         /* The target hook has 3 exit conditions:
794            False when the interrupt isn't processed,
795            True when it is, and we should restart on a new TB,
796            and via longjmp via cpu_loop_exit.  */
797         else {
798             CPUClass *cc = CPU_GET_CLASS(cpu);
799 
800             if (cc->tcg_ops->cpu_exec_interrupt &&
801                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
802                 if (need_replay_interrupt(interrupt_request)) {
803                     replay_interrupt();
804                 }
805                 /*
806                  * After processing the interrupt, ensure an EXCP_DEBUG is
807                  * raised when single-stepping so that GDB doesn't miss the
808                  * next instruction.
809                  */
810                 if (unlikely(cpu->singlestep_enabled)) {
811                     cpu->exception_index = EXCP_DEBUG;
812                     qemu_mutex_unlock_iothread();
813                     return true;
814                 }
815                 cpu->exception_index = -1;
816                 *last_tb = NULL;
817             }
818             /* The target hook may have updated the 'cpu->interrupt_request';
819              * reload the 'interrupt_request' value */
820             interrupt_request = cpu->interrupt_request;
821         }
822 #endif /* !CONFIG_USER_ONLY */
823         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
824             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
825             /* ensure that no TB jump will be modified as
826                the program flow was changed */
827             *last_tb = NULL;
828         }
829 
830         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
831         qemu_mutex_unlock_iothread();
832     }
833 
834     /* Finally, check if we need to exit to the main loop.  */
835     if (unlikely(qatomic_read(&cpu->exit_request))
836         || (icount_enabled()
837             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
838             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
839         qatomic_set(&cpu->exit_request, 0);
840         if (cpu->exception_index == -1) {
841             cpu->exception_index = EXCP_INTERRUPT;
842         }
843         return true;
844     }
845 
846     return false;
847 }
848 
849 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
850                                     TranslationBlock **last_tb, int *tb_exit)
851 {
852     int32_t insns_left;
853 
854     trace_exec_tb(tb, tb->pc);
855     tb = cpu_tb_exec(cpu, tb, tb_exit);
856     if (*tb_exit != TB_EXIT_REQUESTED) {
857         *last_tb = tb;
858         return;
859     }
860 
861     *last_tb = NULL;
862     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
863     if (insns_left < 0) {
864         /* Something asked us to stop executing chained TBs; just
865          * continue round the main loop. Whatever requested the exit
866          * will also have set something else (eg exit_request or
867          * interrupt_request) which will be handled by
868          * cpu_handle_interrupt.  cpu_handle_interrupt will also
869          * clear cpu->icount_decr.u16.high.
870          */
871         return;
872     }
873 
874     /* Instruction counter expired.  */
875     assert(icount_enabled());
876 #ifndef CONFIG_USER_ONLY
877     /* Ensure global icount has gone forward */
878     icount_update(cpu);
879     /* Refill decrementer and continue execution.  */
880     insns_left = MIN(0xffff, cpu->icount_budget);
881     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
882     cpu->icount_extra = cpu->icount_budget - insns_left;
883 
884     /*
885      * If the next tb has more instructions than we have left to
886      * execute we need to ensure we find/generate a TB with exactly
887      * insns_left instructions in it.
888      */
889     if (insns_left > 0 && insns_left < tb->icount)  {
890         assert(insns_left <= CF_COUNT_MASK);
891         assert(cpu->icount_extra == 0);
892         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
893     }
894 #endif
895 }
896 
897 /* main execution loop */
898 
899 int cpu_exec(CPUState *cpu)
900 {
901     int ret;
902     SyncClocks sc = { 0 };
903 
904     /* replay_interrupt may need current_cpu */
905     current_cpu = cpu;
906 
907     if (cpu_handle_halt(cpu)) {
908         return EXCP_HALTED;
909     }
910 
911     rcu_read_lock();
912 
913     cpu_exec_enter(cpu);
914 
915     /* Calculate difference between guest clock and host clock.
916      * This delay includes the delay of the last cycle, so
917      * what we have to do is sleep until it is 0. As for the
918      * advance/delay we gain here, we try to fix it next time.
919      */
920     init_delay_params(&sc, cpu);
921 
922     /* prepare setjmp context for exception handling */
923     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
924 #if defined(__clang__)
925         /*
926          * Some compilers wrongly smash all local variables after
927          * siglongjmp (the spec requires that only non-volatile locals
928          * which are changed between the sigsetjmp and siglongjmp are
929          * permitted to be trashed). There were bug reports for gcc
930          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
931          * that we support, but is still unfixed in clang:
932          *   https://bugs.llvm.org/show_bug.cgi?id=21183
933          *
934          * Reload an essential local variable here for those compilers.
935          * Newer versions of gcc would complain about this code (-Wclobbered),
936          * so we only perform the workaround for clang.
937          */
938         cpu = current_cpu;
939 #else
940         /* Non-buggy compilers preserve this; assert the correct value. */
941         g_assert(cpu == current_cpu);
942 #endif
943 
944 #ifndef CONFIG_SOFTMMU
945         clear_helper_retaddr();
946         if (have_mmap_lock()) {
947             mmap_unlock();
948         }
949 #endif
950         if (qemu_mutex_iothread_locked()) {
951             qemu_mutex_unlock_iothread();
952         }
953         qemu_plugin_disable_mem_helpers(cpu);
954 
955         assert_no_pages_locked();
956     }
957 
958     /* if an exception is pending, we execute it here */
959     while (!cpu_handle_exception(cpu, &ret)) {
960         TranslationBlock *last_tb = NULL;
961         int tb_exit = 0;
962 
963         while (!cpu_handle_interrupt(cpu, &last_tb)) {
964             TranslationBlock *tb;
965             target_ulong cs_base, pc;
966             uint32_t flags, cflags;
967 
968             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
969 
970             /*
971              * When requested, use an exact setting for cflags for the next
972              * execution.  This is used for icount, precise smc, and stop-
973              * after-access watchpoints.  Since this request should never
974              * have CF_INVALID set, -1 is a convenient invalid value that
975              * does not require tcg headers for cpu_common_reset.
976              */
977             cflags = cpu->cflags_next_tb;
978             if (cflags == -1) {
979                 cflags = curr_cflags(cpu);
980             } else {
981                 cpu->cflags_next_tb = -1;
982             }
983 
984             if (check_for_breakpoints(cpu, pc, &cflags)) {
985                 break;
986             }
987 
988             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
989             if (tb == NULL) {
990                 mmap_lock();
991                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
992                 mmap_unlock();
993                 /*
994                  * We add the TB in the virtual pc hash table
995                  * for the fast lookup
996                  */
997                 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
998             }
999 
1000 #ifndef CONFIG_USER_ONLY
1001             /*
1002              * We don't take care of direct jumps when address mapping
1003              * changes in system emulation.  So it's not safe to make a
1004              * direct jump to a TB spanning two pages because the mapping
1005              * for the second page can change.
1006              */
1007             if (tb->page_addr[1] != -1) {
1008                 last_tb = NULL;
1009             }
1010 #endif
1011             /* See if we can patch the calling TB. */
1012             if (last_tb) {
1013                 tb_add_jump(last_tb, tb_exit, tb);
1014             }
1015 
1016             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
1017 
1018             /* Try to align the host and virtual clocks
1019                if the guest is in advance */
1020             align_clocks(&sc, cpu);
1021         }
1022     }
1023 
1024     cpu_exec_exit(cpu);
1025     rcu_read_unlock();
1026 
1027     return ret;
1028 }
1029 
1030 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1031 {
1032     static bool tcg_target_initialized;
1033     CPUClass *cc = CPU_GET_CLASS(cpu);
1034 
1035     if (!tcg_target_initialized) {
1036         cc->tcg_ops->initialize();
1037         tcg_target_initialized = true;
1038     }
1039     tlb_init(cpu);
1040     qemu_plugin_vcpu_init_hook(cpu);
1041 
1042 #ifndef CONFIG_USER_ONLY
1043     tcg_iommu_init_notifier_list(cpu);
1044 #endif /* !CONFIG_USER_ONLY */
1045 }
1046 
1047 /* undo the initializations in reverse order */
1048 void tcg_exec_unrealizefn(CPUState *cpu)
1049 {
1050 #ifndef CONFIG_USER_ONLY
1051     tcg_iommu_free_notifier_list(cpu);
1052 #endif /* !CONFIG_USER_ONLY */
1053 
1054     qemu_plugin_vcpu_exit_hook(cpu);
1055     tlb_destroy(cpu);
1056 }
1057 
1058 #ifndef CONFIG_USER_ONLY
1059 
1060 static void dump_drift_info(GString *buf)
1061 {
1062     if (!icount_enabled()) {
1063         return;
1064     }
1065 
1066     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
1067                            (cpu_get_clock() - icount_get()) / SCALE_MS);
1068     if (icount_align_option) {
1069         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
1070                                -max_delay / SCALE_MS);
1071         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
1072                                max_advance / SCALE_MS);
1073     } else {
1074         g_string_append_printf(buf, "Max guest delay     NA\n");
1075         g_string_append_printf(buf, "Max guest advance   NA\n");
1076     }
1077 }
1078 
1079 HumanReadableText *qmp_x_query_jit(Error **errp)
1080 {
1081     g_autoptr(GString) buf = g_string_new("");
1082 
1083     if (!tcg_enabled()) {
1084         error_setg(errp, "JIT information is only available with accel=tcg");
1085         return NULL;
1086     }
1087 
1088     dump_exec_info(buf);
1089     dump_drift_info(buf);
1090 
1091     return human_readable_text_from_str(buf);
1092 }
1093 
1094 HumanReadableText *qmp_x_query_opcount(Error **errp)
1095 {
1096     g_autoptr(GString) buf = g_string_new("");
1097 
1098     if (!tcg_enabled()) {
1099         error_setg(errp, "Opcode count information is only available with accel=tcg");
1100         return NULL;
1101     }
1102 
1103     tcg_dump_op_count(buf);
1104 
1105     return human_readable_text_from_str(buf);
1106 }
1107 
1108 #ifdef CONFIG_PROFILER
1109 
1110 int64_t dev_time;
1111 
1112 HumanReadableText *qmp_x_query_profile(Error **errp)
1113 {
1114     g_autoptr(GString) buf = g_string_new("");
1115     static int64_t last_cpu_exec_time;
1116     int64_t cpu_exec_time;
1117     int64_t delta;
1118 
1119     cpu_exec_time = tcg_cpu_exec_time();
1120     delta = cpu_exec_time - last_cpu_exec_time;
1121 
1122     g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
1123                            dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1124     g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
1125                            delta, delta / (double)NANOSECONDS_PER_SECOND);
1126     last_cpu_exec_time = cpu_exec_time;
1127     dev_time = 0;
1128 
1129     return human_readable_text_from_str(buf);
1130 }
1131 #else
1132 HumanReadableText *qmp_x_query_profile(Error **errp)
1133 {
1134     error_setg(errp, "Internal profiler not compiled");
1135     return NULL;
1136 }
1137 #endif
1138 
1139 #endif /* !CONFIG_USER_ONLY */
1140