xref: /qemu/accel/tcg/cputlb.c (revision 29b62a10)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47 
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 #  define DEBUG_TLB_LOG_GATE 1
52 # else
53 #  define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59 
60 #define tlb_debug(fmt, ...) do { \
61     if (DEBUG_TLB_LOG_GATE) { \
62         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63                       ## __VA_ARGS__); \
64     } else if (DEBUG_TLB_GATE) { \
65         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66     } \
67 } while (0)
68 
69 #define assert_cpu_is_self(cpu) do {                              \
70         if (DEBUG_TLB_GATE) {                                     \
71             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
72         }                                                         \
73     } while (0)
74 
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76  * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78 
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80  */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83 
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88 
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93 
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95                              size_t max_entries)
96 {
97     desc->window_begin_ns = ns;
98     desc->window_max_entries = max_entries;
99 }
100 
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103     int i, i0 = tb_jmp_cache_hash_page(page_addr);
104     CPUJumpCache *jc = cpu->tb_jmp_cache;
105 
106     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
107         qatomic_set(&jc->array[i0 + i].tb, NULL);
108     }
109 }
110 
111 /**
112  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
113  * @desc: The CPUTLBDesc portion of the TLB
114  * @fast: The CPUTLBDescFast portion of the same TLB
115  *
116  * Called with tlb_lock_held.
117  *
118  * We have two main constraints when resizing a TLB: (1) we only resize it
119  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
120  * the array or unnecessarily flushing it), which means we do not control how
121  * frequently the resizing can occur; (2) we don't have access to the guest's
122  * future scheduling decisions, and therefore have to decide the magnitude of
123  * the resize based on past observations.
124  *
125  * In general, a memory-hungry process can benefit greatly from an appropriately
126  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
127  * we just have to make the TLB as large as possible; while an oversized TLB
128  * results in minimal TLB miss rates, it also takes longer to be flushed
129  * (flushes can be _very_ frequent), and the reduced locality can also hurt
130  * performance.
131  *
132  * To achieve near-optimal performance for all kinds of workloads, we:
133  *
134  * 1. Aggressively increase the size of the TLB when the use rate of the
135  * TLB being flushed is high, since it is likely that in the near future this
136  * memory-hungry process will execute again, and its memory hungriness will
137  * probably be similar.
138  *
139  * 2. Slowly reduce the size of the TLB as the use rate declines over a
140  * reasonably large time window. The rationale is that if in such a time window
141  * we have not observed a high TLB use rate, it is likely that we won't observe
142  * it in the near future. In that case, once a time window expires we downsize
143  * the TLB to match the maximum use rate observed in the window.
144  *
145  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
146  * since in that range performance is likely near-optimal. Recall that the TLB
147  * is direct mapped, so we want the use rate to be low (or at least not too
148  * high), since otherwise we are likely to have a significant amount of
149  * conflict misses.
150  */
151 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
152                                   int64_t now)
153 {
154     size_t old_size = tlb_n_entries(fast);
155     size_t rate;
156     size_t new_size = old_size;
157     int64_t window_len_ms = 100;
158     int64_t window_len_ns = window_len_ms * 1000 * 1000;
159     bool window_expired = now > desc->window_begin_ns + window_len_ns;
160 
161     if (desc->n_used_entries > desc->window_max_entries) {
162         desc->window_max_entries = desc->n_used_entries;
163     }
164     rate = desc->window_max_entries * 100 / old_size;
165 
166     if (rate > 70) {
167         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
168     } else if (rate < 30 && window_expired) {
169         size_t ceil = pow2ceil(desc->window_max_entries);
170         size_t expected_rate = desc->window_max_entries * 100 / ceil;
171 
172         /*
173          * Avoid undersizing when the max number of entries seen is just below
174          * a pow2. For instance, if max_entries == 1025, the expected use rate
175          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
176          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
177          * later. Thus, make sure that the expected use rate remains below 70%.
178          * (and since we double the size, that means the lowest rate we'd
179          * expect to get is 35%, which is still in the 30-70% range where
180          * we consider that the size is appropriate.)
181          */
182         if (expected_rate > 70) {
183             ceil *= 2;
184         }
185         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
186     }
187 
188     if (new_size == old_size) {
189         if (window_expired) {
190             tlb_window_reset(desc, now, desc->n_used_entries);
191         }
192         return;
193     }
194 
195     g_free(fast->table);
196     g_free(desc->fulltlb);
197 
198     tlb_window_reset(desc, now, 0);
199     /* desc->n_used_entries is cleared by the caller */
200     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
201     fast->table = g_try_new(CPUTLBEntry, new_size);
202     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
203 
204     /*
205      * If the allocations fail, try smaller sizes. We just freed some
206      * memory, so going back to half of new_size has a good chance of working.
207      * Increased memory pressure elsewhere in the system might cause the
208      * allocations to fail though, so we progressively reduce the allocation
209      * size, aborting if we cannot even allocate the smallest TLB we support.
210      */
211     while (fast->table == NULL || desc->fulltlb == NULL) {
212         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
213             error_report("%s: %s", __func__, strerror(errno));
214             abort();
215         }
216         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
217         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
218 
219         g_free(fast->table);
220         g_free(desc->fulltlb);
221         fast->table = g_try_new(CPUTLBEntry, new_size);
222         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
223     }
224 }
225 
226 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
227 {
228     desc->n_used_entries = 0;
229     desc->large_page_addr = -1;
230     desc->large_page_mask = -1;
231     desc->vindex = 0;
232     memset(fast->table, -1, sizeof_tlb(fast));
233     memset(desc->vtable, -1, sizeof(desc->vtable));
234 }
235 
236 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
237                                         int64_t now)
238 {
239     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
240     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
241 
242     tlb_mmu_resize_locked(desc, fast, now);
243     tlb_mmu_flush_locked(desc, fast);
244 }
245 
246 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
247 {
248     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
249 
250     tlb_window_reset(desc, now, 0);
251     desc->n_used_entries = 0;
252     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
253     fast->table = g_new(CPUTLBEntry, n_entries);
254     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
255     tlb_mmu_flush_locked(desc, fast);
256 }
257 
258 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
259 {
260     env_tlb(env)->d[mmu_idx].n_used_entries++;
261 }
262 
263 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
264 {
265     env_tlb(env)->d[mmu_idx].n_used_entries--;
266 }
267 
268 void tlb_init(CPUState *cpu)
269 {
270     CPUArchState *env = cpu->env_ptr;
271     int64_t now = get_clock_realtime();
272     int i;
273 
274     qemu_spin_init(&env_tlb(env)->c.lock);
275 
276     /* All tlbs are initialized flushed. */
277     env_tlb(env)->c.dirty = 0;
278 
279     for (i = 0; i < NB_MMU_MODES; i++) {
280         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
281     }
282 }
283 
284 void tlb_destroy(CPUState *cpu)
285 {
286     CPUArchState *env = cpu->env_ptr;
287     int i;
288 
289     qemu_spin_destroy(&env_tlb(env)->c.lock);
290     for (i = 0; i < NB_MMU_MODES; i++) {
291         CPUTLBDesc *desc = &env_tlb(env)->d[i];
292         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
293 
294         g_free(fast->table);
295         g_free(desc->fulltlb);
296     }
297 }
298 
299 /* flush_all_helper: run fn across all cpus
300  *
301  * If the wait flag is set then the src cpu's helper will be queued as
302  * "safe" work and the loop exited creating a synchronisation point
303  * where all queued work will be finished before execution starts
304  * again.
305  */
306 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
307                              run_on_cpu_data d)
308 {
309     CPUState *cpu;
310 
311     CPU_FOREACH(cpu) {
312         if (cpu != src) {
313             async_run_on_cpu(cpu, fn, d);
314         }
315     }
316 }
317 
318 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
319 {
320     CPUState *cpu;
321     size_t full = 0, part = 0, elide = 0;
322 
323     CPU_FOREACH(cpu) {
324         CPUArchState *env = cpu->env_ptr;
325 
326         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
327         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
328         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
329     }
330     *pfull = full;
331     *ppart = part;
332     *pelide = elide;
333 }
334 
335 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
336 {
337     CPUArchState *env = cpu->env_ptr;
338     uint16_t asked = data.host_int;
339     uint16_t all_dirty, work, to_clean;
340     int64_t now = get_clock_realtime();
341 
342     assert_cpu_is_self(cpu);
343 
344     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
345 
346     qemu_spin_lock(&env_tlb(env)->c.lock);
347 
348     all_dirty = env_tlb(env)->c.dirty;
349     to_clean = asked & all_dirty;
350     all_dirty &= ~to_clean;
351     env_tlb(env)->c.dirty = all_dirty;
352 
353     for (work = to_clean; work != 0; work &= work - 1) {
354         int mmu_idx = ctz32(work);
355         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
356     }
357 
358     qemu_spin_unlock(&env_tlb(env)->c.lock);
359 
360     tcg_flush_jmp_cache(cpu);
361 
362     if (to_clean == ALL_MMUIDX_BITS) {
363         qatomic_set(&env_tlb(env)->c.full_flush_count,
364                    env_tlb(env)->c.full_flush_count + 1);
365     } else {
366         qatomic_set(&env_tlb(env)->c.part_flush_count,
367                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
368         if (to_clean != asked) {
369             qatomic_set(&env_tlb(env)->c.elide_flush_count,
370                        env_tlb(env)->c.elide_flush_count +
371                        ctpop16(asked & ~to_clean));
372         }
373     }
374 }
375 
376 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
377 {
378     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
379 
380     if (cpu->created && !qemu_cpu_is_self(cpu)) {
381         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
382                          RUN_ON_CPU_HOST_INT(idxmap));
383     } else {
384         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
385     }
386 }
387 
388 void tlb_flush(CPUState *cpu)
389 {
390     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
391 }
392 
393 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
394 {
395     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
396 
397     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
398 
399     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
400     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
401 }
402 
403 void tlb_flush_all_cpus(CPUState *src_cpu)
404 {
405     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
406 }
407 
408 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
409 {
410     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
411 
412     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
413 
414     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
415     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
416 }
417 
418 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
419 {
420     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
421 }
422 
423 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
424                                       target_ulong page, target_ulong mask)
425 {
426     page &= mask;
427     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
428 
429     return (page == (tlb_entry->addr_read & mask) ||
430             page == (tlb_addr_write(tlb_entry) & mask) ||
431             page == (tlb_entry->addr_code & mask));
432 }
433 
434 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
435                                         target_ulong page)
436 {
437     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
438 }
439 
440 /**
441  * tlb_entry_is_empty - return true if the entry is not in use
442  * @te: pointer to CPUTLBEntry
443  */
444 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
445 {
446     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
447 }
448 
449 /* Called with tlb_c.lock held */
450 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
451                                         target_ulong page,
452                                         target_ulong mask)
453 {
454     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
455         memset(tlb_entry, -1, sizeof(*tlb_entry));
456         return true;
457     }
458     return false;
459 }
460 
461 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
462                                           target_ulong page)
463 {
464     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
465 }
466 
467 /* Called with tlb_c.lock held */
468 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
469                                             target_ulong page,
470                                             target_ulong mask)
471 {
472     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
473     int k;
474 
475     assert_cpu_is_self(env_cpu(env));
476     for (k = 0; k < CPU_VTLB_SIZE; k++) {
477         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
478             tlb_n_used_entries_dec(env, mmu_idx);
479         }
480     }
481 }
482 
483 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
484                                               target_ulong page)
485 {
486     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
487 }
488 
489 static void tlb_flush_page_locked(CPUArchState *env, int midx,
490                                   target_ulong page)
491 {
492     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
493     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
494 
495     /* Check if we need to flush due to large pages.  */
496     if ((page & lp_mask) == lp_addr) {
497         tlb_debug("forcing full flush midx %d ("
498                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
499                   midx, lp_addr, lp_mask);
500         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
501     } else {
502         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
503             tlb_n_used_entries_dec(env, midx);
504         }
505         tlb_flush_vtlb_page_locked(env, midx, page);
506     }
507 }
508 
509 /**
510  * tlb_flush_page_by_mmuidx_async_0:
511  * @cpu: cpu on which to flush
512  * @addr: page of virtual address to flush
513  * @idxmap: set of mmu_idx to flush
514  *
515  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
516  * at @addr from the tlbs indicated by @idxmap from @cpu.
517  */
518 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
519                                              target_ulong addr,
520                                              uint16_t idxmap)
521 {
522     CPUArchState *env = cpu->env_ptr;
523     int mmu_idx;
524 
525     assert_cpu_is_self(cpu);
526 
527     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
528 
529     qemu_spin_lock(&env_tlb(env)->c.lock);
530     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
531         if ((idxmap >> mmu_idx) & 1) {
532             tlb_flush_page_locked(env, mmu_idx, addr);
533         }
534     }
535     qemu_spin_unlock(&env_tlb(env)->c.lock);
536 
537     /*
538      * Discard jump cache entries for any tb which might potentially
539      * overlap the flushed page, which includes the previous.
540      */
541     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
542     tb_jmp_cache_clear_page(cpu, addr);
543 }
544 
545 /**
546  * tlb_flush_page_by_mmuidx_async_1:
547  * @cpu: cpu on which to flush
548  * @data: encoded addr + idxmap
549  *
550  * Helper for tlb_flush_page_by_mmuidx and friends, called through
551  * async_run_on_cpu.  The idxmap parameter is encoded in the page
552  * offset of the target_ptr field.  This limits the set of mmu_idx
553  * that can be passed via this method.
554  */
555 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
556                                              run_on_cpu_data data)
557 {
558     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
559     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
560     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
561 
562     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
563 }
564 
565 typedef struct {
566     target_ulong addr;
567     uint16_t idxmap;
568 } TLBFlushPageByMMUIdxData;
569 
570 /**
571  * tlb_flush_page_by_mmuidx_async_2:
572  * @cpu: cpu on which to flush
573  * @data: allocated addr + idxmap
574  *
575  * Helper for tlb_flush_page_by_mmuidx and friends, called through
576  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
577  * TLBFlushPageByMMUIdxData structure that has been allocated
578  * specifically for this helper.  Free the structure when done.
579  */
580 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
581                                              run_on_cpu_data data)
582 {
583     TLBFlushPageByMMUIdxData *d = data.host_ptr;
584 
585     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
586     g_free(d);
587 }
588 
589 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
590 {
591     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
592 
593     /* This should already be page aligned */
594     addr &= TARGET_PAGE_MASK;
595 
596     if (qemu_cpu_is_self(cpu)) {
597         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
598     } else if (idxmap < TARGET_PAGE_SIZE) {
599         /*
600          * Most targets have only a few mmu_idx.  In the case where
601          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
602          * allocating memory for this operation.
603          */
604         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
605                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
606     } else {
607         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
608 
609         /* Otherwise allocate a structure, freed by the worker.  */
610         d->addr = addr;
611         d->idxmap = idxmap;
612         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
613                          RUN_ON_CPU_HOST_PTR(d));
614     }
615 }
616 
617 void tlb_flush_page(CPUState *cpu, target_ulong addr)
618 {
619     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
620 }
621 
622 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
623                                        uint16_t idxmap)
624 {
625     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
626 
627     /* This should already be page aligned */
628     addr &= TARGET_PAGE_MASK;
629 
630     /*
631      * Allocate memory to hold addr+idxmap only when needed.
632      * See tlb_flush_page_by_mmuidx for details.
633      */
634     if (idxmap < TARGET_PAGE_SIZE) {
635         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
636                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
637     } else {
638         CPUState *dst_cpu;
639 
640         /* Allocate a separate data block for each destination cpu.  */
641         CPU_FOREACH(dst_cpu) {
642             if (dst_cpu != src_cpu) {
643                 TLBFlushPageByMMUIdxData *d
644                     = g_new(TLBFlushPageByMMUIdxData, 1);
645 
646                 d->addr = addr;
647                 d->idxmap = idxmap;
648                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
649                                  RUN_ON_CPU_HOST_PTR(d));
650             }
651         }
652     }
653 
654     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
655 }
656 
657 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
658 {
659     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
660 }
661 
662 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
663                                               target_ulong addr,
664                                               uint16_t idxmap)
665 {
666     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
667 
668     /* This should already be page aligned */
669     addr &= TARGET_PAGE_MASK;
670 
671     /*
672      * Allocate memory to hold addr+idxmap only when needed.
673      * See tlb_flush_page_by_mmuidx for details.
674      */
675     if (idxmap < TARGET_PAGE_SIZE) {
676         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
677                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
678         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680     } else {
681         CPUState *dst_cpu;
682         TLBFlushPageByMMUIdxData *d;
683 
684         /* Allocate a separate data block for each destination cpu.  */
685         CPU_FOREACH(dst_cpu) {
686             if (dst_cpu != src_cpu) {
687                 d = g_new(TLBFlushPageByMMUIdxData, 1);
688                 d->addr = addr;
689                 d->idxmap = idxmap;
690                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
691                                  RUN_ON_CPU_HOST_PTR(d));
692             }
693         }
694 
695         d = g_new(TLBFlushPageByMMUIdxData, 1);
696         d->addr = addr;
697         d->idxmap = idxmap;
698         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
699                               RUN_ON_CPU_HOST_PTR(d));
700     }
701 }
702 
703 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
704 {
705     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
706 }
707 
708 static void tlb_flush_range_locked(CPUArchState *env, int midx,
709                                    target_ulong addr, target_ulong len,
710                                    unsigned bits)
711 {
712     CPUTLBDesc *d = &env_tlb(env)->d[midx];
713     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
714     target_ulong mask = MAKE_64BIT_MASK(0, bits);
715 
716     /*
717      * If @bits is smaller than the tlb size, there may be multiple entries
718      * within the TLB; otherwise all addresses that match under @mask hit
719      * the same TLB entry.
720      * TODO: Perhaps allow bits to be a few bits less than the size.
721      * For now, just flush the entire TLB.
722      *
723      * If @len is larger than the tlb size, then it will take longer to
724      * test all of the entries in the TLB than it will to flush it all.
725      */
726     if (mask < f->mask || len > f->mask) {
727         tlb_debug("forcing full flush midx %d ("
728                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
729                   midx, addr, mask, len);
730         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
731         return;
732     }
733 
734     /*
735      * Check if we need to flush due to large pages.
736      * Because large_page_mask contains all 1's from the msb,
737      * we only need to test the end of the range.
738      */
739     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
740         tlb_debug("forcing full flush midx %d ("
741                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
742                   midx, d->large_page_addr, d->large_page_mask);
743         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
744         return;
745     }
746 
747     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
748         target_ulong page = addr + i;
749         CPUTLBEntry *entry = tlb_entry(env, midx, page);
750 
751         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
752             tlb_n_used_entries_dec(env, midx);
753         }
754         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
755     }
756 }
757 
758 typedef struct {
759     target_ulong addr;
760     target_ulong len;
761     uint16_t idxmap;
762     uint16_t bits;
763 } TLBFlushRangeData;
764 
765 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
766                                               TLBFlushRangeData d)
767 {
768     CPUArchState *env = cpu->env_ptr;
769     int mmu_idx;
770 
771     assert_cpu_is_self(cpu);
772 
773     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
774               d.addr, d.bits, d.len, d.idxmap);
775 
776     qemu_spin_lock(&env_tlb(env)->c.lock);
777     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
778         if ((d.idxmap >> mmu_idx) & 1) {
779             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
780         }
781     }
782     qemu_spin_unlock(&env_tlb(env)->c.lock);
783 
784     /*
785      * If the length is larger than the jump cache size, then it will take
786      * longer to clear each entry individually than it will to clear it all.
787      */
788     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
789         tcg_flush_jmp_cache(cpu);
790         return;
791     }
792 
793     /*
794      * Discard jump cache entries for any tb which might potentially
795      * overlap the flushed pages, which includes the previous.
796      */
797     d.addr -= TARGET_PAGE_SIZE;
798     for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
799         tb_jmp_cache_clear_page(cpu, d.addr);
800         d.addr += TARGET_PAGE_SIZE;
801     }
802 }
803 
804 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
805                                               run_on_cpu_data data)
806 {
807     TLBFlushRangeData *d = data.host_ptr;
808     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
809     g_free(d);
810 }
811 
812 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
813                                target_ulong len, uint16_t idxmap,
814                                unsigned bits)
815 {
816     TLBFlushRangeData d;
817 
818     /*
819      * If all bits are significant, and len is small,
820      * this devolves to tlb_flush_page.
821      */
822     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
823         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
824         return;
825     }
826     /* If no page bits are significant, this devolves to tlb_flush. */
827     if (bits < TARGET_PAGE_BITS) {
828         tlb_flush_by_mmuidx(cpu, idxmap);
829         return;
830     }
831 
832     /* This should already be page aligned */
833     d.addr = addr & TARGET_PAGE_MASK;
834     d.len = len;
835     d.idxmap = idxmap;
836     d.bits = bits;
837 
838     if (qemu_cpu_is_self(cpu)) {
839         tlb_flush_range_by_mmuidx_async_0(cpu, d);
840     } else {
841         /* Otherwise allocate a structure, freed by the worker.  */
842         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
843         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
844                          RUN_ON_CPU_HOST_PTR(p));
845     }
846 }
847 
848 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
849                                    uint16_t idxmap, unsigned bits)
850 {
851     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
852 }
853 
854 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
855                                         target_ulong addr, target_ulong len,
856                                         uint16_t idxmap, unsigned bits)
857 {
858     TLBFlushRangeData d;
859     CPUState *dst_cpu;
860 
861     /*
862      * If all bits are significant, and len is small,
863      * this devolves to tlb_flush_page.
864      */
865     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
866         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
867         return;
868     }
869     /* If no page bits are significant, this devolves to tlb_flush. */
870     if (bits < TARGET_PAGE_BITS) {
871         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
872         return;
873     }
874 
875     /* This should already be page aligned */
876     d.addr = addr & TARGET_PAGE_MASK;
877     d.len = len;
878     d.idxmap = idxmap;
879     d.bits = bits;
880 
881     /* Allocate a separate data block for each destination cpu.  */
882     CPU_FOREACH(dst_cpu) {
883         if (dst_cpu != src_cpu) {
884             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
885             async_run_on_cpu(dst_cpu,
886                              tlb_flush_range_by_mmuidx_async_1,
887                              RUN_ON_CPU_HOST_PTR(p));
888         }
889     }
890 
891     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
892 }
893 
894 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
895                                             target_ulong addr,
896                                             uint16_t idxmap, unsigned bits)
897 {
898     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
899                                        idxmap, bits);
900 }
901 
902 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
903                                                target_ulong addr,
904                                                target_ulong len,
905                                                uint16_t idxmap,
906                                                unsigned bits)
907 {
908     TLBFlushRangeData d, *p;
909     CPUState *dst_cpu;
910 
911     /*
912      * If all bits are significant, and len is small,
913      * this devolves to tlb_flush_page.
914      */
915     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
916         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
917         return;
918     }
919     /* If no page bits are significant, this devolves to tlb_flush. */
920     if (bits < TARGET_PAGE_BITS) {
921         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
922         return;
923     }
924 
925     /* This should already be page aligned */
926     d.addr = addr & TARGET_PAGE_MASK;
927     d.len = len;
928     d.idxmap = idxmap;
929     d.bits = bits;
930 
931     /* Allocate a separate data block for each destination cpu.  */
932     CPU_FOREACH(dst_cpu) {
933         if (dst_cpu != src_cpu) {
934             p = g_memdup(&d, sizeof(d));
935             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
936                              RUN_ON_CPU_HOST_PTR(p));
937         }
938     }
939 
940     p = g_memdup(&d, sizeof(d));
941     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
942                           RUN_ON_CPU_HOST_PTR(p));
943 }
944 
945 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
946                                                    target_ulong addr,
947                                                    uint16_t idxmap,
948                                                    unsigned bits)
949 {
950     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
951                                               idxmap, bits);
952 }
953 
954 /* update the TLBs so that writes to code in the virtual page 'addr'
955    can be detected */
956 void tlb_protect_code(ram_addr_t ram_addr)
957 {
958     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
959                                              TARGET_PAGE_SIZE,
960                                              DIRTY_MEMORY_CODE);
961 }
962 
963 /* update the TLB so that writes in physical page 'phys_addr' are no longer
964    tested for self modifying code */
965 void tlb_unprotect_code(ram_addr_t ram_addr)
966 {
967     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
968 }
969 
970 
971 /*
972  * Dirty write flag handling
973  *
974  * When the TCG code writes to a location it looks up the address in
975  * the TLB and uses that data to compute the final address. If any of
976  * the lower bits of the address are set then the slow path is forced.
977  * There are a number of reasons to do this but for normal RAM the
978  * most usual is detecting writes to code regions which may invalidate
979  * generated code.
980  *
981  * Other vCPUs might be reading their TLBs during guest execution, so we update
982  * te->addr_write with qatomic_set. We don't need to worry about this for
983  * oversized guests as MTTCG is disabled for them.
984  *
985  * Called with tlb_c.lock held.
986  */
987 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
988                                          uintptr_t start, uintptr_t length)
989 {
990     uintptr_t addr = tlb_entry->addr_write;
991 
992     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
993                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
994         addr &= TARGET_PAGE_MASK;
995         addr += tlb_entry->addend;
996         if ((addr - start) < length) {
997 #if TCG_OVERSIZED_GUEST
998             tlb_entry->addr_write |= TLB_NOTDIRTY;
999 #else
1000             qatomic_set(&tlb_entry->addr_write,
1001                        tlb_entry->addr_write | TLB_NOTDIRTY);
1002 #endif
1003         }
1004     }
1005 }
1006 
1007 /*
1008  * Called with tlb_c.lock held.
1009  * Called only from the vCPU context, i.e. the TLB's owner thread.
1010  */
1011 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1012 {
1013     *d = *s;
1014 }
1015 
1016 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1017  * the target vCPU).
1018  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1019  * thing actually updated is the target TLB entry ->addr_write flags.
1020  */
1021 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1022 {
1023     CPUArchState *env;
1024 
1025     int mmu_idx;
1026 
1027     env = cpu->env_ptr;
1028     qemu_spin_lock(&env_tlb(env)->c.lock);
1029     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1030         unsigned int i;
1031         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1032 
1033         for (i = 0; i < n; i++) {
1034             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1035                                          start1, length);
1036         }
1037 
1038         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1039             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1040                                          start1, length);
1041         }
1042     }
1043     qemu_spin_unlock(&env_tlb(env)->c.lock);
1044 }
1045 
1046 /* Called with tlb_c.lock held */
1047 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1048                                          target_ulong vaddr)
1049 {
1050     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1051         tlb_entry->addr_write = vaddr;
1052     }
1053 }
1054 
1055 /* update the TLB corresponding to virtual page vaddr
1056    so that it is no longer dirty */
1057 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1058 {
1059     CPUArchState *env = cpu->env_ptr;
1060     int mmu_idx;
1061 
1062     assert_cpu_is_self(cpu);
1063 
1064     vaddr &= TARGET_PAGE_MASK;
1065     qemu_spin_lock(&env_tlb(env)->c.lock);
1066     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1067         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1068     }
1069 
1070     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1071         int k;
1072         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1073             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1074         }
1075     }
1076     qemu_spin_unlock(&env_tlb(env)->c.lock);
1077 }
1078 
1079 /* Our TLB does not support large pages, so remember the area covered by
1080    large pages and trigger a full TLB flush if these are invalidated.  */
1081 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1082                                target_ulong vaddr, target_ulong size)
1083 {
1084     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1085     target_ulong lp_mask = ~(size - 1);
1086 
1087     if (lp_addr == (target_ulong)-1) {
1088         /* No previous large page.  */
1089         lp_addr = vaddr;
1090     } else {
1091         /* Extend the existing region to include the new page.
1092            This is a compromise between unnecessary flushes and
1093            the cost of maintaining a full variable size TLB.  */
1094         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1095         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1096             lp_mask <<= 1;
1097         }
1098     }
1099     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1100     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1101 }
1102 
1103 /*
1104  * Add a new TLB entry. At most one entry for a given virtual address
1105  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1106  * supplied size is only used by tlb_flush_page.
1107  *
1108  * Called from TCG-generated code, which is under an RCU read-side
1109  * critical section.
1110  */
1111 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1112                        target_ulong vaddr, CPUTLBEntryFull *full)
1113 {
1114     CPUArchState *env = cpu->env_ptr;
1115     CPUTLB *tlb = env_tlb(env);
1116     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1117     MemoryRegionSection *section;
1118     unsigned int index;
1119     target_ulong address;
1120     target_ulong write_address;
1121     uintptr_t addend;
1122     CPUTLBEntry *te, tn;
1123     hwaddr iotlb, xlat, sz, paddr_page;
1124     target_ulong vaddr_page;
1125     int asidx, wp_flags, prot;
1126     bool is_ram, is_romd;
1127 
1128     assert_cpu_is_self(cpu);
1129 
1130     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1131         sz = TARGET_PAGE_SIZE;
1132     } else {
1133         sz = (hwaddr)1 << full->lg_page_size;
1134         tlb_add_large_page(env, mmu_idx, vaddr, sz);
1135     }
1136     vaddr_page = vaddr & TARGET_PAGE_MASK;
1137     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1138 
1139     prot = full->prot;
1140     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1141     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1142                                                 &xlat, &sz, full->attrs, &prot);
1143     assert(sz >= TARGET_PAGE_SIZE);
1144 
1145     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1146               " prot=%x idx=%d\n",
1147               vaddr, full->phys_addr, prot, mmu_idx);
1148 
1149     address = vaddr_page;
1150     if (full->lg_page_size < TARGET_PAGE_BITS) {
1151         /* Repeat the MMU check and TLB fill on every access.  */
1152         address |= TLB_INVALID_MASK;
1153     }
1154     if (full->attrs.byte_swap) {
1155         address |= TLB_BSWAP;
1156     }
1157 
1158     is_ram = memory_region_is_ram(section->mr);
1159     is_romd = memory_region_is_romd(section->mr);
1160 
1161     if (is_ram || is_romd) {
1162         /* RAM and ROMD both have associated host memory. */
1163         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1164     } else {
1165         /* I/O does not; force the host address to NULL. */
1166         addend = 0;
1167     }
1168 
1169     write_address = address;
1170     if (is_ram) {
1171         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1172         /*
1173          * Computing is_clean is expensive; avoid all that unless
1174          * the page is actually writable.
1175          */
1176         if (prot & PAGE_WRITE) {
1177             if (section->readonly) {
1178                 write_address |= TLB_DISCARD_WRITE;
1179             } else if (cpu_physical_memory_is_clean(iotlb)) {
1180                 write_address |= TLB_NOTDIRTY;
1181             }
1182         }
1183     } else {
1184         /* I/O or ROMD */
1185         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1186         /*
1187          * Writes to romd devices must go through MMIO to enable write.
1188          * Reads to romd devices go through the ram_ptr found above,
1189          * but of course reads to I/O must go through MMIO.
1190          */
1191         write_address |= TLB_MMIO;
1192         if (!is_romd) {
1193             address = write_address;
1194         }
1195     }
1196 
1197     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1198                                               TARGET_PAGE_SIZE);
1199 
1200     index = tlb_index(env, mmu_idx, vaddr_page);
1201     te = tlb_entry(env, mmu_idx, vaddr_page);
1202 
1203     /*
1204      * Hold the TLB lock for the rest of the function. We could acquire/release
1205      * the lock several times in the function, but it is faster to amortize the
1206      * acquisition cost by acquiring it just once. Note that this leads to
1207      * a longer critical section, but this is not a concern since the TLB lock
1208      * is unlikely to be contended.
1209      */
1210     qemu_spin_lock(&tlb->c.lock);
1211 
1212     /* Note that the tlb is no longer clean.  */
1213     tlb->c.dirty |= 1 << mmu_idx;
1214 
1215     /* Make sure there's no cached translation for the new page.  */
1216     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1217 
1218     /*
1219      * Only evict the old entry to the victim tlb if it's for a
1220      * different page; otherwise just overwrite the stale data.
1221      */
1222     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1223         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1224         CPUTLBEntry *tv = &desc->vtable[vidx];
1225 
1226         /* Evict the old entry into the victim tlb.  */
1227         copy_tlb_helper_locked(tv, te);
1228         desc->vfulltlb[vidx] = desc->fulltlb[index];
1229         tlb_n_used_entries_dec(env, mmu_idx);
1230     }
1231 
1232     /* refill the tlb */
1233     /*
1234      * At this point iotlb contains a physical section number in the lower
1235      * TARGET_PAGE_BITS, and either
1236      *  + the ram_addr_t of the page base of the target RAM (RAM)
1237      *  + the offset within section->mr of the page base (I/O, ROMD)
1238      * We subtract the vaddr_page (which is page aligned and thus won't
1239      * disturb the low bits) to give an offset which can be added to the
1240      * (non-page-aligned) vaddr of the eventual memory access to get
1241      * the MemoryRegion offset for the access. Note that the vaddr we
1242      * subtract here is that of the page base, and not the same as the
1243      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1244      */
1245     desc->fulltlb[index] = *full;
1246     desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1247     desc->fulltlb[index].phys_addr = paddr_page;
1248     desc->fulltlb[index].prot = prot;
1249 
1250     /* Now calculate the new entry */
1251     tn.addend = addend - vaddr_page;
1252     if (prot & PAGE_READ) {
1253         tn.addr_read = address;
1254         if (wp_flags & BP_MEM_READ) {
1255             tn.addr_read |= TLB_WATCHPOINT;
1256         }
1257     } else {
1258         tn.addr_read = -1;
1259     }
1260 
1261     if (prot & PAGE_EXEC) {
1262         tn.addr_code = address;
1263     } else {
1264         tn.addr_code = -1;
1265     }
1266 
1267     tn.addr_write = -1;
1268     if (prot & PAGE_WRITE) {
1269         tn.addr_write = write_address;
1270         if (prot & PAGE_WRITE_INV) {
1271             tn.addr_write |= TLB_INVALID_MASK;
1272         }
1273         if (wp_flags & BP_MEM_WRITE) {
1274             tn.addr_write |= TLB_WATCHPOINT;
1275         }
1276     }
1277 
1278     copy_tlb_helper_locked(te, &tn);
1279     tlb_n_used_entries_inc(env, mmu_idx);
1280     qemu_spin_unlock(&tlb->c.lock);
1281 }
1282 
1283 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1284                              hwaddr paddr, MemTxAttrs attrs, int prot,
1285                              int mmu_idx, target_ulong size)
1286 {
1287     CPUTLBEntryFull full = {
1288         .phys_addr = paddr,
1289         .attrs = attrs,
1290         .prot = prot,
1291         .lg_page_size = ctz64(size)
1292     };
1293 
1294     assert(is_power_of_2(size));
1295     tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1296 }
1297 
1298 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1299                   hwaddr paddr, int prot,
1300                   int mmu_idx, target_ulong size)
1301 {
1302     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1303                             prot, mmu_idx, size);
1304 }
1305 
1306 /*
1307  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1308  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1309  * be discarded and looked up again (e.g. via tlb_entry()).
1310  */
1311 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1312                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1313 {
1314     bool ok;
1315 
1316     /*
1317      * This is not a probe, so only valid return is success; failure
1318      * should result in exception + longjmp to the cpu loop.
1319      */
1320     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1321                                     access_type, mmu_idx, false, retaddr);
1322     assert(ok);
1323 }
1324 
1325 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1326                                         MMUAccessType access_type,
1327                                         int mmu_idx, uintptr_t retaddr)
1328 {
1329     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1330                                           mmu_idx, retaddr);
1331 }
1332 
1333 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1334                                           vaddr addr, unsigned size,
1335                                           MMUAccessType access_type,
1336                                           int mmu_idx, MemTxAttrs attrs,
1337                                           MemTxResult response,
1338                                           uintptr_t retaddr)
1339 {
1340     CPUClass *cc = CPU_GET_CLASS(cpu);
1341 
1342     if (!cpu->ignore_memory_transaction_failures &&
1343         cc->tcg_ops->do_transaction_failed) {
1344         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1345                                            access_type, mmu_idx, attrs,
1346                                            response, retaddr);
1347     }
1348 }
1349 
1350 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1351                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1352                          MMUAccessType access_type, MemOp op)
1353 {
1354     CPUState *cpu = env_cpu(env);
1355     hwaddr mr_offset;
1356     MemoryRegionSection *section;
1357     MemoryRegion *mr;
1358     uint64_t val;
1359     MemTxResult r;
1360 
1361     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1362     mr = section->mr;
1363     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1364     cpu->mem_io_pc = retaddr;
1365     if (!cpu->can_do_io) {
1366         cpu_io_recompile(cpu, retaddr);
1367     }
1368 
1369     {
1370         QEMU_IOTHREAD_LOCK_GUARD();
1371         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1372     }
1373 
1374     if (r != MEMTX_OK) {
1375         hwaddr physaddr = mr_offset +
1376             section->offset_within_address_space -
1377             section->offset_within_region;
1378 
1379         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1380                                mmu_idx, full->attrs, r, retaddr);
1381     }
1382     return val;
1383 }
1384 
1385 /*
1386  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1387  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1388  * because of the side effect of io_writex changing memory layout.
1389  */
1390 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1391                             hwaddr mr_offset)
1392 {
1393 #ifdef CONFIG_PLUGIN
1394     SavedIOTLB *saved = &cs->saved_iotlb;
1395     saved->section = section;
1396     saved->mr_offset = mr_offset;
1397 #endif
1398 }
1399 
1400 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1401                       int mmu_idx, uint64_t val, target_ulong addr,
1402                       uintptr_t retaddr, MemOp op)
1403 {
1404     CPUState *cpu = env_cpu(env);
1405     hwaddr mr_offset;
1406     MemoryRegionSection *section;
1407     MemoryRegion *mr;
1408     MemTxResult r;
1409 
1410     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1411     mr = section->mr;
1412     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1413     if (!cpu->can_do_io) {
1414         cpu_io_recompile(cpu, retaddr);
1415     }
1416     cpu->mem_io_pc = retaddr;
1417 
1418     /*
1419      * The memory_region_dispatch may trigger a flush/resize
1420      * so for plugins we save the iotlb_data just in case.
1421      */
1422     save_iotlb_data(cpu, section, mr_offset);
1423 
1424     {
1425         QEMU_IOTHREAD_LOCK_GUARD();
1426         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1427     }
1428 
1429     if (r != MEMTX_OK) {
1430         hwaddr physaddr = mr_offset +
1431             section->offset_within_address_space -
1432             section->offset_within_region;
1433 
1434         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1435                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1436                                retaddr);
1437     }
1438 }
1439 
1440 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1441 {
1442 #if TCG_OVERSIZED_GUEST
1443     return *(target_ulong *)((uintptr_t)entry + ofs);
1444 #else
1445     /* ofs might correspond to .addr_write, so use qatomic_read */
1446     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1447 #endif
1448 }
1449 
1450 /* Return true if ADDR is present in the victim tlb, and has been copied
1451    back to the main tlb.  */
1452 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1453                            size_t elt_ofs, target_ulong page)
1454 {
1455     size_t vidx;
1456 
1457     assert_cpu_is_self(env_cpu(env));
1458     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1459         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1460         target_ulong cmp;
1461 
1462         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1463 #if TCG_OVERSIZED_GUEST
1464         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1465 #else
1466         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1467 #endif
1468 
1469         if (cmp == page) {
1470             /* Found entry in victim tlb, swap tlb and iotlb.  */
1471             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1472 
1473             qemu_spin_lock(&env_tlb(env)->c.lock);
1474             copy_tlb_helper_locked(&tmptlb, tlb);
1475             copy_tlb_helper_locked(tlb, vtlb);
1476             copy_tlb_helper_locked(vtlb, &tmptlb);
1477             qemu_spin_unlock(&env_tlb(env)->c.lock);
1478 
1479             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1480             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1481             CPUTLBEntryFull tmpf;
1482             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1483             return true;
1484         }
1485     }
1486     return false;
1487 }
1488 
1489 /* Macro to call the above, with local variables from the use context.  */
1490 #define VICTIM_TLB_HIT(TY, ADDR) \
1491   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1492                  (ADDR) & TARGET_PAGE_MASK)
1493 
1494 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1495                            CPUTLBEntryFull *full, uintptr_t retaddr)
1496 {
1497     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1498 
1499     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1500 
1501     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1502         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1503     }
1504 
1505     /*
1506      * Set both VGA and migration bits for simplicity and to remove
1507      * the notdirty callback faster.
1508      */
1509     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1510 
1511     /* We remove the notdirty callback only if the code has been flushed. */
1512     if (!cpu_physical_memory_is_clean(ram_addr)) {
1513         trace_memory_notdirty_set_dirty(mem_vaddr);
1514         tlb_set_dirty(cpu, mem_vaddr);
1515     }
1516 }
1517 
1518 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1519                                  int fault_size, MMUAccessType access_type,
1520                                  int mmu_idx, bool nonfault,
1521                                  void **phost, CPUTLBEntryFull **pfull,
1522                                  uintptr_t retaddr)
1523 {
1524     uintptr_t index = tlb_index(env, mmu_idx, addr);
1525     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1526     target_ulong tlb_addr, page_addr;
1527     size_t elt_ofs;
1528     int flags;
1529 
1530     switch (access_type) {
1531     case MMU_DATA_LOAD:
1532         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1533         break;
1534     case MMU_DATA_STORE:
1535         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1536         break;
1537     case MMU_INST_FETCH:
1538         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1539         break;
1540     default:
1541         g_assert_not_reached();
1542     }
1543     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1544 
1545     flags = TLB_FLAGS_MASK;
1546     page_addr = addr & TARGET_PAGE_MASK;
1547     if (!tlb_hit_page(tlb_addr, page_addr)) {
1548         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1549             CPUState *cs = env_cpu(env);
1550 
1551             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1552                                            mmu_idx, nonfault, retaddr)) {
1553                 /* Non-faulting page table read failed.  */
1554                 *phost = NULL;
1555                 *pfull = NULL;
1556                 return TLB_INVALID_MASK;
1557             }
1558 
1559             /* TLB resize via tlb_fill may have moved the entry.  */
1560             index = tlb_index(env, mmu_idx, addr);
1561             entry = tlb_entry(env, mmu_idx, addr);
1562 
1563             /*
1564              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1565              * to force the next access through tlb_fill.  We've just
1566              * called tlb_fill, so we know that this entry *is* valid.
1567              */
1568             flags &= ~TLB_INVALID_MASK;
1569         }
1570         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1571     }
1572     flags &= tlb_addr;
1573 
1574     *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1575 
1576     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1577     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1578         *phost = NULL;
1579         return TLB_MMIO;
1580     }
1581 
1582     /* Everything else is RAM. */
1583     *phost = (void *)((uintptr_t)addr + entry->addend);
1584     return flags;
1585 }
1586 
1587 int probe_access_full(CPUArchState *env, target_ulong addr,
1588                       MMUAccessType access_type, int mmu_idx,
1589                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1590                       uintptr_t retaddr)
1591 {
1592     int flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1593                                       nonfault, phost, pfull, retaddr);
1594 
1595     /* Handle clean RAM pages.  */
1596     if (unlikely(flags & TLB_NOTDIRTY)) {
1597         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1598         flags &= ~TLB_NOTDIRTY;
1599     }
1600 
1601     return flags;
1602 }
1603 
1604 int probe_access_flags(CPUArchState *env, target_ulong addr,
1605                        MMUAccessType access_type, int mmu_idx,
1606                        bool nonfault, void **phost, uintptr_t retaddr)
1607 {
1608     CPUTLBEntryFull *full;
1609 
1610     return probe_access_full(env, addr, access_type, mmu_idx,
1611                              nonfault, phost, &full, retaddr);
1612 }
1613 
1614 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1615                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1616 {
1617     CPUTLBEntryFull *full;
1618     void *host;
1619     int flags;
1620 
1621     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1622 
1623     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1624                                   false, &host, &full, retaddr);
1625 
1626     /* Per the interface, size == 0 merely faults the access. */
1627     if (size == 0) {
1628         return NULL;
1629     }
1630 
1631     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1632         /* Handle watchpoints.  */
1633         if (flags & TLB_WATCHPOINT) {
1634             int wp_access = (access_type == MMU_DATA_STORE
1635                              ? BP_MEM_WRITE : BP_MEM_READ);
1636             cpu_check_watchpoint(env_cpu(env), addr, size,
1637                                  full->attrs, wp_access, retaddr);
1638         }
1639 
1640         /* Handle clean RAM pages.  */
1641         if (flags & TLB_NOTDIRTY) {
1642             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1643         }
1644     }
1645 
1646     return host;
1647 }
1648 
1649 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1650                         MMUAccessType access_type, int mmu_idx)
1651 {
1652     CPUTLBEntryFull *full;
1653     void *host;
1654     int flags;
1655 
1656     flags = probe_access_internal(env, addr, 0, access_type,
1657                                   mmu_idx, true, &host, &full, 0);
1658 
1659     /* No combination of flags are expected by the caller. */
1660     return flags ? NULL : host;
1661 }
1662 
1663 /*
1664  * Return a ram_addr_t for the virtual address for execution.
1665  *
1666  * Return -1 if we can't translate and execute from an entire page
1667  * of RAM.  This will force us to execute by loading and translating
1668  * one insn at a time, without caching.
1669  *
1670  * NOTE: This function will trigger an exception if the page is
1671  * not executable.
1672  */
1673 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1674                                         void **hostp)
1675 {
1676     CPUTLBEntryFull *full;
1677     void *p;
1678 
1679     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1680                                 cpu_mmu_index(env, true), false, &p, &full, 0);
1681     if (p == NULL) {
1682         return -1;
1683     }
1684     if (hostp) {
1685         *hostp = p;
1686     }
1687     return qemu_ram_addr_from_host_nofail(p);
1688 }
1689 
1690 #ifdef CONFIG_PLUGIN
1691 /*
1692  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1693  * This should be a hot path as we will have just looked this path up
1694  * in the softmmu lookup code (or helper). We don't handle re-fills or
1695  * checking the victim table. This is purely informational.
1696  *
1697  * This almost never fails as the memory access being instrumented
1698  * should have just filled the TLB. The one corner case is io_writex
1699  * which can cause TLB flushes and potential resizing of the TLBs
1700  * losing the information we need. In those cases we need to recover
1701  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1702  * from the same thread (which a mem callback will be) this is safe.
1703  */
1704 
1705 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1706                        bool is_store, struct qemu_plugin_hwaddr *data)
1707 {
1708     CPUArchState *env = cpu->env_ptr;
1709     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1710     uintptr_t index = tlb_index(env, mmu_idx, addr);
1711     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1712 
1713     if (likely(tlb_hit(tlb_addr, addr))) {
1714         /* We must have an iotlb entry for MMIO */
1715         if (tlb_addr & TLB_MMIO) {
1716             CPUTLBEntryFull *full;
1717             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1718             data->is_io = true;
1719             data->v.io.section =
1720                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1721             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1722         } else {
1723             data->is_io = false;
1724             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1725         }
1726         return true;
1727     } else {
1728         SavedIOTLB *saved = &cpu->saved_iotlb;
1729         data->is_io = true;
1730         data->v.io.section = saved->section;
1731         data->v.io.offset = saved->mr_offset;
1732         return true;
1733     }
1734 }
1735 
1736 #endif
1737 
1738 /*
1739  * Probe for an atomic operation.  Do not allow unaligned operations,
1740  * or io operations to proceed.  Return the host address.
1741  *
1742  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1743  */
1744 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1745                                MemOpIdx oi, int size, int prot,
1746                                uintptr_t retaddr)
1747 {
1748     uintptr_t mmu_idx = get_mmuidx(oi);
1749     MemOp mop = get_memop(oi);
1750     int a_bits = get_alignment_bits(mop);
1751     uintptr_t index;
1752     CPUTLBEntry *tlbe;
1753     target_ulong tlb_addr;
1754     void *hostaddr;
1755 
1756     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1757 
1758     /* Adjust the given return address.  */
1759     retaddr -= GETPC_ADJ;
1760 
1761     /* Enforce guest required alignment.  */
1762     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1763         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1764         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1765                              mmu_idx, retaddr);
1766     }
1767 
1768     /* Enforce qemu required alignment.  */
1769     if (unlikely(addr & (size - 1))) {
1770         /* We get here if guest alignment was not requested,
1771            or was not enforced by cpu_unaligned_access above.
1772            We might widen the access and emulate, but for now
1773            mark an exception and exit the cpu loop.  */
1774         goto stop_the_world;
1775     }
1776 
1777     index = tlb_index(env, mmu_idx, addr);
1778     tlbe = tlb_entry(env, mmu_idx, addr);
1779 
1780     /* Check TLB entry and enforce page permissions.  */
1781     if (prot & PAGE_WRITE) {
1782         tlb_addr = tlb_addr_write(tlbe);
1783         if (!tlb_hit(tlb_addr, addr)) {
1784             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1785                 tlb_fill(env_cpu(env), addr, size,
1786                          MMU_DATA_STORE, mmu_idx, retaddr);
1787                 index = tlb_index(env, mmu_idx, addr);
1788                 tlbe = tlb_entry(env, mmu_idx, addr);
1789             }
1790             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1791         }
1792 
1793         /* Let the guest notice RMW on a write-only page.  */
1794         if ((prot & PAGE_READ) &&
1795             unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1796             tlb_fill(env_cpu(env), addr, size,
1797                      MMU_DATA_LOAD, mmu_idx, retaddr);
1798             /*
1799              * Since we don't support reads and writes to different addresses,
1800              * and we do have the proper page loaded for write, this shouldn't
1801              * ever return.  But just in case, handle via stop-the-world.
1802              */
1803             goto stop_the_world;
1804         }
1805     } else /* if (prot & PAGE_READ) */ {
1806         tlb_addr = tlbe->addr_read;
1807         if (!tlb_hit(tlb_addr, addr)) {
1808             if (!VICTIM_TLB_HIT(addr_write, addr)) {
1809                 tlb_fill(env_cpu(env), addr, size,
1810                          MMU_DATA_LOAD, mmu_idx, retaddr);
1811                 index = tlb_index(env, mmu_idx, addr);
1812                 tlbe = tlb_entry(env, mmu_idx, addr);
1813             }
1814             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1815         }
1816     }
1817 
1818     /* Notice an IO access or a needs-MMU-lookup access */
1819     if (unlikely(tlb_addr & TLB_MMIO)) {
1820         /* There's really nothing that can be done to
1821            support this apart from stop-the-world.  */
1822         goto stop_the_world;
1823     }
1824 
1825     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1826 
1827     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1828         notdirty_write(env_cpu(env), addr, size,
1829                        &env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr);
1830     }
1831 
1832     return hostaddr;
1833 
1834  stop_the_world:
1835     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1836 }
1837 
1838 /*
1839  * Verify that we have passed the correct MemOp to the correct function.
1840  *
1841  * In the case of the helper_*_mmu functions, we will have done this by
1842  * using the MemOp to look up the helper during code generation.
1843  *
1844  * In the case of the cpu_*_mmu functions, this is up to the caller.
1845  * We could present one function to target code, and dispatch based on
1846  * the MemOp, but so far we have worked hard to avoid an indirect function
1847  * call along the memory path.
1848  */
1849 static void validate_memop(MemOpIdx oi, MemOp expected)
1850 {
1851 #ifdef CONFIG_DEBUG_TCG
1852     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1853     assert(have == expected);
1854 #endif
1855 }
1856 
1857 /*
1858  * Load Helpers
1859  *
1860  * We support two different access types. SOFTMMU_CODE_ACCESS is
1861  * specifically for reading instructions from system memory. It is
1862  * called by the translation loop and in some helpers where the code
1863  * is disassembled. It shouldn't be called directly by guest code.
1864  */
1865 
1866 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1867                                 MemOpIdx oi, uintptr_t retaddr);
1868 
1869 static inline uint64_t QEMU_ALWAYS_INLINE
1870 load_memop(const void *haddr, MemOp op)
1871 {
1872     switch (op) {
1873     case MO_UB:
1874         return ldub_p(haddr);
1875     case MO_BEUW:
1876         return lduw_be_p(haddr);
1877     case MO_LEUW:
1878         return lduw_le_p(haddr);
1879     case MO_BEUL:
1880         return (uint32_t)ldl_be_p(haddr);
1881     case MO_LEUL:
1882         return (uint32_t)ldl_le_p(haddr);
1883     case MO_BEUQ:
1884         return ldq_be_p(haddr);
1885     case MO_LEUQ:
1886         return ldq_le_p(haddr);
1887     default:
1888         qemu_build_not_reached();
1889     }
1890 }
1891 
1892 static inline uint64_t QEMU_ALWAYS_INLINE
1893 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1894             uintptr_t retaddr, MemOp op, bool code_read,
1895             FullLoadHelper *full_load)
1896 {
1897     const size_t tlb_off = code_read ?
1898         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1899     const MMUAccessType access_type =
1900         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1901     const unsigned a_bits = get_alignment_bits(get_memop(oi));
1902     const size_t size = memop_size(op);
1903     uintptr_t mmu_idx = get_mmuidx(oi);
1904     uintptr_t index;
1905     CPUTLBEntry *entry;
1906     target_ulong tlb_addr;
1907     void *haddr;
1908     uint64_t res;
1909 
1910     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1911 
1912     /* Handle CPU specific unaligned behaviour */
1913     if (addr & ((1 << a_bits) - 1)) {
1914         cpu_unaligned_access(env_cpu(env), addr, access_type,
1915                              mmu_idx, retaddr);
1916     }
1917 
1918     index = tlb_index(env, mmu_idx, addr);
1919     entry = tlb_entry(env, mmu_idx, addr);
1920     tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1921 
1922     /* If the TLB entry is for a different page, reload and try again.  */
1923     if (!tlb_hit(tlb_addr, addr)) {
1924         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1925                             addr & TARGET_PAGE_MASK)) {
1926             tlb_fill(env_cpu(env), addr, size,
1927                      access_type, mmu_idx, retaddr);
1928             index = tlb_index(env, mmu_idx, addr);
1929             entry = tlb_entry(env, mmu_idx, addr);
1930         }
1931         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1932         tlb_addr &= ~TLB_INVALID_MASK;
1933     }
1934 
1935     /* Handle anything that isn't just a straight memory access.  */
1936     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1937         CPUTLBEntryFull *full;
1938         bool need_swap;
1939 
1940         /* For anything that is unaligned, recurse through full_load.  */
1941         if ((addr & (size - 1)) != 0) {
1942             goto do_unaligned_access;
1943         }
1944 
1945         full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1946 
1947         /* Handle watchpoints.  */
1948         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1949             /* On watchpoint hit, this will longjmp out.  */
1950             cpu_check_watchpoint(env_cpu(env), addr, size,
1951                                  full->attrs, BP_MEM_READ, retaddr);
1952         }
1953 
1954         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1955 
1956         /* Handle I/O access.  */
1957         if (likely(tlb_addr & TLB_MMIO)) {
1958             return io_readx(env, full, mmu_idx, addr, retaddr,
1959                             access_type, op ^ (need_swap * MO_BSWAP));
1960         }
1961 
1962         haddr = (void *)((uintptr_t)addr + entry->addend);
1963 
1964         /*
1965          * Keep these two load_memop separate to ensure that the compiler
1966          * is able to fold the entire function to a single instruction.
1967          * There is a build-time assert inside to remind you of this.  ;-)
1968          */
1969         if (unlikely(need_swap)) {
1970             return load_memop(haddr, op ^ MO_BSWAP);
1971         }
1972         return load_memop(haddr, op);
1973     }
1974 
1975     /* Handle slow unaligned access (it spans two pages or IO).  */
1976     if (size > 1
1977         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1978                     >= TARGET_PAGE_SIZE)) {
1979         target_ulong addr1, addr2;
1980         uint64_t r1, r2;
1981         unsigned shift;
1982     do_unaligned_access:
1983         addr1 = addr & ~((target_ulong)size - 1);
1984         addr2 = addr1 + size;
1985         r1 = full_load(env, addr1, oi, retaddr);
1986         r2 = full_load(env, addr2, oi, retaddr);
1987         shift = (addr & (size - 1)) * 8;
1988 
1989         if (memop_big_endian(op)) {
1990             /* Big-endian combine.  */
1991             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1992         } else {
1993             /* Little-endian combine.  */
1994             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1995         }
1996         return res & MAKE_64BIT_MASK(0, size * 8);
1997     }
1998 
1999     haddr = (void *)((uintptr_t)addr + entry->addend);
2000     return load_memop(haddr, op);
2001 }
2002 
2003 /*
2004  * For the benefit of TCG generated code, we want to avoid the
2005  * complication of ABI-specific return type promotion and always
2006  * return a value extended to the register size of the host. This is
2007  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2008  * data, and for that we always have uint64_t.
2009  *
2010  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2011  */
2012 
2013 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2014                               MemOpIdx oi, uintptr_t retaddr)
2015 {
2016     validate_memop(oi, MO_UB);
2017     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2018 }
2019 
2020 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2021                                      MemOpIdx oi, uintptr_t retaddr)
2022 {
2023     return full_ldub_mmu(env, addr, oi, retaddr);
2024 }
2025 
2026 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2027                                  MemOpIdx oi, uintptr_t retaddr)
2028 {
2029     validate_memop(oi, MO_LEUW);
2030     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2031                        full_le_lduw_mmu);
2032 }
2033 
2034 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2035                                     MemOpIdx oi, uintptr_t retaddr)
2036 {
2037     return full_le_lduw_mmu(env, addr, oi, retaddr);
2038 }
2039 
2040 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2041                                  MemOpIdx oi, uintptr_t retaddr)
2042 {
2043     validate_memop(oi, MO_BEUW);
2044     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2045                        full_be_lduw_mmu);
2046 }
2047 
2048 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2049                                     MemOpIdx oi, uintptr_t retaddr)
2050 {
2051     return full_be_lduw_mmu(env, addr, oi, retaddr);
2052 }
2053 
2054 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2055                                  MemOpIdx oi, uintptr_t retaddr)
2056 {
2057     validate_memop(oi, MO_LEUL);
2058     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2059                        full_le_ldul_mmu);
2060 }
2061 
2062 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2063                                     MemOpIdx oi, uintptr_t retaddr)
2064 {
2065     return full_le_ldul_mmu(env, addr, oi, retaddr);
2066 }
2067 
2068 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2069                                  MemOpIdx oi, uintptr_t retaddr)
2070 {
2071     validate_memop(oi, MO_BEUL);
2072     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2073                        full_be_ldul_mmu);
2074 }
2075 
2076 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2077                                     MemOpIdx oi, uintptr_t retaddr)
2078 {
2079     return full_be_ldul_mmu(env, addr, oi, retaddr);
2080 }
2081 
2082 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2083                            MemOpIdx oi, uintptr_t retaddr)
2084 {
2085     validate_memop(oi, MO_LEUQ);
2086     return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2087                        helper_le_ldq_mmu);
2088 }
2089 
2090 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2091                            MemOpIdx oi, uintptr_t retaddr)
2092 {
2093     validate_memop(oi, MO_BEUQ);
2094     return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2095                        helper_be_ldq_mmu);
2096 }
2097 
2098 /*
2099  * Provide signed versions of the load routines as well.  We can of course
2100  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2101  */
2102 
2103 
2104 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2105                                      MemOpIdx oi, uintptr_t retaddr)
2106 {
2107     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2108 }
2109 
2110 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2111                                     MemOpIdx oi, uintptr_t retaddr)
2112 {
2113     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2114 }
2115 
2116 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2117                                     MemOpIdx oi, uintptr_t retaddr)
2118 {
2119     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2120 }
2121 
2122 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2123                                     MemOpIdx oi, uintptr_t retaddr)
2124 {
2125     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2126 }
2127 
2128 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2129                                     MemOpIdx oi, uintptr_t retaddr)
2130 {
2131     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2132 }
2133 
2134 /*
2135  * Load helpers for cpu_ldst.h.
2136  */
2137 
2138 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2139                                        MemOpIdx oi, uintptr_t retaddr,
2140                                        FullLoadHelper *full_load)
2141 {
2142     uint64_t ret;
2143 
2144     ret = full_load(env, addr, oi, retaddr);
2145     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2146     return ret;
2147 }
2148 
2149 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2150 {
2151     return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2152 }
2153 
2154 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2155                         MemOpIdx oi, uintptr_t ra)
2156 {
2157     return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2158 }
2159 
2160 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2161                         MemOpIdx oi, uintptr_t ra)
2162 {
2163     return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2164 }
2165 
2166 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2167                         MemOpIdx oi, uintptr_t ra)
2168 {
2169     return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
2170 }
2171 
2172 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2173                         MemOpIdx oi, uintptr_t ra)
2174 {
2175     return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2176 }
2177 
2178 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2179                         MemOpIdx oi, uintptr_t ra)
2180 {
2181     return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2182 }
2183 
2184 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2185                         MemOpIdx oi, uintptr_t ra)
2186 {
2187     return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2188 }
2189 
2190 /*
2191  * Store Helpers
2192  */
2193 
2194 static inline void QEMU_ALWAYS_INLINE
2195 store_memop(void *haddr, uint64_t val, MemOp op)
2196 {
2197     switch (op) {
2198     case MO_UB:
2199         stb_p(haddr, val);
2200         break;
2201     case MO_BEUW:
2202         stw_be_p(haddr, val);
2203         break;
2204     case MO_LEUW:
2205         stw_le_p(haddr, val);
2206         break;
2207     case MO_BEUL:
2208         stl_be_p(haddr, val);
2209         break;
2210     case MO_LEUL:
2211         stl_le_p(haddr, val);
2212         break;
2213     case MO_BEUQ:
2214         stq_be_p(haddr, val);
2215         break;
2216     case MO_LEUQ:
2217         stq_le_p(haddr, val);
2218         break;
2219     default:
2220         qemu_build_not_reached();
2221     }
2222 }
2223 
2224 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2225                          MemOpIdx oi, uintptr_t retaddr);
2226 
2227 static void __attribute__((noinline))
2228 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2229                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2230                        bool big_endian)
2231 {
2232     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2233     uintptr_t index, index2;
2234     CPUTLBEntry *entry, *entry2;
2235     target_ulong page1, page2, tlb_addr, tlb_addr2;
2236     MemOpIdx oi;
2237     size_t size2;
2238     int i;
2239 
2240     /*
2241      * Ensure the second page is in the TLB.  Note that the first page
2242      * is already guaranteed to be filled, and that the second page
2243      * cannot evict the first.  An exception to this rule is PAGE_WRITE_INV
2244      * handling: the first page could have evicted itself.
2245      */
2246     page1 = addr & TARGET_PAGE_MASK;
2247     page2 = (addr + size) & TARGET_PAGE_MASK;
2248     size2 = (addr + size) & ~TARGET_PAGE_MASK;
2249     index2 = tlb_index(env, mmu_idx, page2);
2250     entry2 = tlb_entry(env, mmu_idx, page2);
2251 
2252     tlb_addr2 = tlb_addr_write(entry2);
2253     if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) {
2254         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2255             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2256                      mmu_idx, retaddr);
2257             index2 = tlb_index(env, mmu_idx, page2);
2258             entry2 = tlb_entry(env, mmu_idx, page2);
2259         }
2260         tlb_addr2 = tlb_addr_write(entry2);
2261     }
2262 
2263     index = tlb_index(env, mmu_idx, addr);
2264     entry = tlb_entry(env, mmu_idx, addr);
2265     tlb_addr = tlb_addr_write(entry);
2266 
2267     /*
2268      * Handle watchpoints.  Since this may trap, all checks
2269      * must happen before any store.
2270      */
2271     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2272         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2273                              env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
2274                              BP_MEM_WRITE, retaddr);
2275     }
2276     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2277         cpu_check_watchpoint(env_cpu(env), page2, size2,
2278                              env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
2279                              BP_MEM_WRITE, retaddr);
2280     }
2281 
2282     /*
2283      * XXX: not efficient, but simple.
2284      * This loop must go in the forward direction to avoid issues
2285      * with self-modifying code in Windows 64-bit.
2286      */
2287     oi = make_memop_idx(MO_UB, mmu_idx);
2288     if (big_endian) {
2289         for (i = 0; i < size; ++i) {
2290             /* Big-endian extract.  */
2291             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2292             full_stb_mmu(env, addr + i, val8, oi, retaddr);
2293         }
2294     } else {
2295         for (i = 0; i < size; ++i) {
2296             /* Little-endian extract.  */
2297             uint8_t val8 = val >> (i * 8);
2298             full_stb_mmu(env, addr + i, val8, oi, retaddr);
2299         }
2300     }
2301 }
2302 
2303 static inline void QEMU_ALWAYS_INLINE
2304 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2305              MemOpIdx oi, uintptr_t retaddr, MemOp op)
2306 {
2307     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2308     const unsigned a_bits = get_alignment_bits(get_memop(oi));
2309     const size_t size = memop_size(op);
2310     uintptr_t mmu_idx = get_mmuidx(oi);
2311     uintptr_t index;
2312     CPUTLBEntry *entry;
2313     target_ulong tlb_addr;
2314     void *haddr;
2315 
2316     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
2317 
2318     /* Handle CPU specific unaligned behaviour */
2319     if (addr & ((1 << a_bits) - 1)) {
2320         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2321                              mmu_idx, retaddr);
2322     }
2323 
2324     index = tlb_index(env, mmu_idx, addr);
2325     entry = tlb_entry(env, mmu_idx, addr);
2326     tlb_addr = tlb_addr_write(entry);
2327 
2328     /* If the TLB entry is for a different page, reload and try again.  */
2329     if (!tlb_hit(tlb_addr, addr)) {
2330         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2331             addr & TARGET_PAGE_MASK)) {
2332             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2333                      mmu_idx, retaddr);
2334             index = tlb_index(env, mmu_idx, addr);
2335             entry = tlb_entry(env, mmu_idx, addr);
2336         }
2337         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2338     }
2339 
2340     /* Handle anything that isn't just a straight memory access.  */
2341     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2342         CPUTLBEntryFull *full;
2343         bool need_swap;
2344 
2345         /* For anything that is unaligned, recurse through byte stores.  */
2346         if ((addr & (size - 1)) != 0) {
2347             goto do_unaligned_access;
2348         }
2349 
2350         full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2351 
2352         /* Handle watchpoints.  */
2353         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2354             /* On watchpoint hit, this will longjmp out.  */
2355             cpu_check_watchpoint(env_cpu(env), addr, size,
2356                                  full->attrs, BP_MEM_WRITE, retaddr);
2357         }
2358 
2359         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2360 
2361         /* Handle I/O access.  */
2362         if (tlb_addr & TLB_MMIO) {
2363             io_writex(env, full, mmu_idx, val, addr, retaddr,
2364                       op ^ (need_swap * MO_BSWAP));
2365             return;
2366         }
2367 
2368         /* Ignore writes to ROM.  */
2369         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2370             return;
2371         }
2372 
2373         /* Handle clean RAM pages.  */
2374         if (tlb_addr & TLB_NOTDIRTY) {
2375             notdirty_write(env_cpu(env), addr, size, full, retaddr);
2376         }
2377 
2378         haddr = (void *)((uintptr_t)addr + entry->addend);
2379 
2380         /*
2381          * Keep these two store_memop separate to ensure that the compiler
2382          * is able to fold the entire function to a single instruction.
2383          * There is a build-time assert inside to remind you of this.  ;-)
2384          */
2385         if (unlikely(need_swap)) {
2386             store_memop(haddr, val, op ^ MO_BSWAP);
2387         } else {
2388             store_memop(haddr, val, op);
2389         }
2390         return;
2391     }
2392 
2393     /* Handle slow unaligned access (it spans two pages or IO).  */
2394     if (size > 1
2395         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2396                      >= TARGET_PAGE_SIZE)) {
2397     do_unaligned_access:
2398         store_helper_unaligned(env, addr, val, retaddr, size,
2399                                mmu_idx, memop_big_endian(op));
2400         return;
2401     }
2402 
2403     haddr = (void *)((uintptr_t)addr + entry->addend);
2404     store_memop(haddr, val, op);
2405 }
2406 
2407 static void __attribute__((noinline))
2408 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2409              MemOpIdx oi, uintptr_t retaddr)
2410 {
2411     validate_memop(oi, MO_UB);
2412     store_helper(env, addr, val, oi, retaddr, MO_UB);
2413 }
2414 
2415 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2416                         MemOpIdx oi, uintptr_t retaddr)
2417 {
2418     full_stb_mmu(env, addr, val, oi, retaddr);
2419 }
2420 
2421 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2422                             MemOpIdx oi, uintptr_t retaddr)
2423 {
2424     validate_memop(oi, MO_LEUW);
2425     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2426 }
2427 
2428 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2429                        MemOpIdx oi, uintptr_t retaddr)
2430 {
2431     full_le_stw_mmu(env, addr, val, oi, retaddr);
2432 }
2433 
2434 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2435                             MemOpIdx oi, uintptr_t retaddr)
2436 {
2437     validate_memop(oi, MO_BEUW);
2438     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2439 }
2440 
2441 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2442                        MemOpIdx oi, uintptr_t retaddr)
2443 {
2444     full_be_stw_mmu(env, addr, val, oi, retaddr);
2445 }
2446 
2447 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2448                             MemOpIdx oi, uintptr_t retaddr)
2449 {
2450     validate_memop(oi, MO_LEUL);
2451     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2452 }
2453 
2454 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2455                        MemOpIdx oi, uintptr_t retaddr)
2456 {
2457     full_le_stl_mmu(env, addr, val, oi, retaddr);
2458 }
2459 
2460 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2461                             MemOpIdx oi, uintptr_t retaddr)
2462 {
2463     validate_memop(oi, MO_BEUL);
2464     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2465 }
2466 
2467 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2468                        MemOpIdx oi, uintptr_t retaddr)
2469 {
2470     full_be_stl_mmu(env, addr, val, oi, retaddr);
2471 }
2472 
2473 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2474                        MemOpIdx oi, uintptr_t retaddr)
2475 {
2476     validate_memop(oi, MO_LEUQ);
2477     store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2478 }
2479 
2480 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2481                        MemOpIdx oi, uintptr_t retaddr)
2482 {
2483     validate_memop(oi, MO_BEUQ);
2484     store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2485 }
2486 
2487 /*
2488  * Store Helpers for cpu_ldst.h
2489  */
2490 
2491 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2492                              uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2493 
2494 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2495                                     uint64_t val, MemOpIdx oi, uintptr_t ra,
2496                                     FullStoreHelper *full_store)
2497 {
2498     full_store(env, addr, val, oi, ra);
2499     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2500 }
2501 
2502 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2503                  MemOpIdx oi, uintptr_t retaddr)
2504 {
2505     cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2506 }
2507 
2508 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2509                     MemOpIdx oi, uintptr_t retaddr)
2510 {
2511     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2512 }
2513 
2514 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2515                     MemOpIdx oi, uintptr_t retaddr)
2516 {
2517     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2518 }
2519 
2520 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2521                     MemOpIdx oi, uintptr_t retaddr)
2522 {
2523     cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2524 }
2525 
2526 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2527                     MemOpIdx oi, uintptr_t retaddr)
2528 {
2529     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2530 }
2531 
2532 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2533                     MemOpIdx oi, uintptr_t retaddr)
2534 {
2535     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2536 }
2537 
2538 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539                     MemOpIdx oi, uintptr_t retaddr)
2540 {
2541     cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2542 }
2543 
2544 #include "ldst_common.c.inc"
2545 
2546 /*
2547  * First set of functions passes in OI and RETADDR.
2548  * This makes them callable from other helpers.
2549  */
2550 
2551 #define ATOMIC_NAME(X) \
2552     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2553 
2554 #define ATOMIC_MMU_CLEANUP
2555 
2556 #include "atomic_common.c.inc"
2557 
2558 #define DATA_SIZE 1
2559 #include "atomic_template.h"
2560 
2561 #define DATA_SIZE 2
2562 #include "atomic_template.h"
2563 
2564 #define DATA_SIZE 4
2565 #include "atomic_template.h"
2566 
2567 #ifdef CONFIG_ATOMIC64
2568 #define DATA_SIZE 8
2569 #include "atomic_template.h"
2570 #endif
2571 
2572 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2573 #define DATA_SIZE 16
2574 #include "atomic_template.h"
2575 #endif
2576 
2577 /* Code access functions.  */
2578 
2579 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2580                                MemOpIdx oi, uintptr_t retaddr)
2581 {
2582     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2583 }
2584 
2585 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2586 {
2587     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2588     return full_ldub_code(env, addr, oi, 0);
2589 }
2590 
2591 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2592                                MemOpIdx oi, uintptr_t retaddr)
2593 {
2594     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2595 }
2596 
2597 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2598 {
2599     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2600     return full_lduw_code(env, addr, oi, 0);
2601 }
2602 
2603 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2604                               MemOpIdx oi, uintptr_t retaddr)
2605 {
2606     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2607 }
2608 
2609 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2610 {
2611     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2612     return full_ldl_code(env, addr, oi, 0);
2613 }
2614 
2615 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2616                               MemOpIdx oi, uintptr_t retaddr)
2617 {
2618     return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2619 }
2620 
2621 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2622 {
2623     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2624     return full_ldq_code(env, addr, oi, 0);
2625 }
2626