xref: /qemu/accel/tcg/cputlb.c (revision 8a64609e)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44 
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48 
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 #  define DEBUG_TLB_LOG_GATE 1
53 # else
54 #  define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60 
61 #define tlb_debug(fmt, ...) do { \
62     if (DEBUG_TLB_LOG_GATE) { \
63         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64                       ## __VA_ARGS__); \
65     } else if (DEBUG_TLB_GATE) { \
66         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67     } \
68 } while (0)
69 
70 #define assert_cpu_is_self(cpu) do {                              \
71         if (DEBUG_TLB_GATE) {                                     \
72             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
73         }                                                         \
74     } while (0)
75 
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77  * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79 
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81  */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89 
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94 
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96                              size_t max_entries)
97 {
98     desc->window_begin_ns = ns;
99     desc->window_max_entries = max_entries;
100 }
101 
102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
103 {
104     CPUJumpCache *jc = cpu->tb_jmp_cache;
105     int i, i0;
106 
107     if (unlikely(!jc)) {
108         return;
109     }
110 
111     i0 = tb_jmp_cache_hash_page(page_addr);
112     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113         qatomic_set(&jc->array[i0 + i].tb, NULL);
114     }
115 }
116 
117 /**
118  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119  * @desc: The CPUTLBDesc portion of the TLB
120  * @fast: The CPUTLBDescFast portion of the same TLB
121  *
122  * Called with tlb_lock_held.
123  *
124  * We have two main constraints when resizing a TLB: (1) we only resize it
125  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126  * the array or unnecessarily flushing it), which means we do not control how
127  * frequently the resizing can occur; (2) we don't have access to the guest's
128  * future scheduling decisions, and therefore have to decide the magnitude of
129  * the resize based on past observations.
130  *
131  * In general, a memory-hungry process can benefit greatly from an appropriately
132  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133  * we just have to make the TLB as large as possible; while an oversized TLB
134  * results in minimal TLB miss rates, it also takes longer to be flushed
135  * (flushes can be _very_ frequent), and the reduced locality can also hurt
136  * performance.
137  *
138  * To achieve near-optimal performance for all kinds of workloads, we:
139  *
140  * 1. Aggressively increase the size of the TLB when the use rate of the
141  * TLB being flushed is high, since it is likely that in the near future this
142  * memory-hungry process will execute again, and its memory hungriness will
143  * probably be similar.
144  *
145  * 2. Slowly reduce the size of the TLB as the use rate declines over a
146  * reasonably large time window. The rationale is that if in such a time window
147  * we have not observed a high TLB use rate, it is likely that we won't observe
148  * it in the near future. In that case, once a time window expires we downsize
149  * the TLB to match the maximum use rate observed in the window.
150  *
151  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152  * since in that range performance is likely near-optimal. Recall that the TLB
153  * is direct mapped, so we want the use rate to be low (or at least not too
154  * high), since otherwise we are likely to have a significant amount of
155  * conflict misses.
156  */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158                                   int64_t now)
159 {
160     size_t old_size = tlb_n_entries(fast);
161     size_t rate;
162     size_t new_size = old_size;
163     int64_t window_len_ms = 100;
164     int64_t window_len_ns = window_len_ms * 1000 * 1000;
165     bool window_expired = now > desc->window_begin_ns + window_len_ns;
166 
167     if (desc->n_used_entries > desc->window_max_entries) {
168         desc->window_max_entries = desc->n_used_entries;
169     }
170     rate = desc->window_max_entries * 100 / old_size;
171 
172     if (rate > 70) {
173         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174     } else if (rate < 30 && window_expired) {
175         size_t ceil = pow2ceil(desc->window_max_entries);
176         size_t expected_rate = desc->window_max_entries * 100 / ceil;
177 
178         /*
179          * Avoid undersizing when the max number of entries seen is just below
180          * a pow2. For instance, if max_entries == 1025, the expected use rate
181          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183          * later. Thus, make sure that the expected use rate remains below 70%.
184          * (and since we double the size, that means the lowest rate we'd
185          * expect to get is 35%, which is still in the 30-70% range where
186          * we consider that the size is appropriate.)
187          */
188         if (expected_rate > 70) {
189             ceil *= 2;
190         }
191         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192     }
193 
194     if (new_size == old_size) {
195         if (window_expired) {
196             tlb_window_reset(desc, now, desc->n_used_entries);
197         }
198         return;
199     }
200 
201     g_free(fast->table);
202     g_free(desc->fulltlb);
203 
204     tlb_window_reset(desc, now, 0);
205     /* desc->n_used_entries is cleared by the caller */
206     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207     fast->table = g_try_new(CPUTLBEntry, new_size);
208     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209 
210     /*
211      * If the allocations fail, try smaller sizes. We just freed some
212      * memory, so going back to half of new_size has a good chance of working.
213      * Increased memory pressure elsewhere in the system might cause the
214      * allocations to fail though, so we progressively reduce the allocation
215      * size, aborting if we cannot even allocate the smallest TLB we support.
216      */
217     while (fast->table == NULL || desc->fulltlb == NULL) {
218         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219             error_report("%s: %s", __func__, strerror(errno));
220             abort();
221         }
222         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224 
225         g_free(fast->table);
226         g_free(desc->fulltlb);
227         fast->table = g_try_new(CPUTLBEntry, new_size);
228         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229     }
230 }
231 
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234     desc->n_used_entries = 0;
235     desc->large_page_addr = -1;
236     desc->large_page_mask = -1;
237     desc->vindex = 0;
238     memset(fast->table, -1, sizeof_tlb(fast));
239     memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241 
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243                                         int64_t now)
244 {
245     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247 
248     tlb_mmu_resize_locked(desc, fast, now);
249     tlb_mmu_flush_locked(desc, fast);
250 }
251 
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255 
256     tlb_window_reset(desc, now, 0);
257     desc->n_used_entries = 0;
258     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259     fast->table = g_new(CPUTLBEntry, n_entries);
260     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261     tlb_mmu_flush_locked(desc, fast);
262 }
263 
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266     env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268 
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271     env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273 
274 void tlb_init(CPUState *cpu)
275 {
276     CPUArchState *env = cpu->env_ptr;
277     int64_t now = get_clock_realtime();
278     int i;
279 
280     qemu_spin_init(&env_tlb(env)->c.lock);
281 
282     /* All tlbs are initialized flushed. */
283     env_tlb(env)->c.dirty = 0;
284 
285     for (i = 0; i < NB_MMU_MODES; i++) {
286         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287     }
288 }
289 
290 void tlb_destroy(CPUState *cpu)
291 {
292     CPUArchState *env = cpu->env_ptr;
293     int i;
294 
295     qemu_spin_destroy(&env_tlb(env)->c.lock);
296     for (i = 0; i < NB_MMU_MODES; i++) {
297         CPUTLBDesc *desc = &env_tlb(env)->d[i];
298         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299 
300         g_free(fast->table);
301         g_free(desc->fulltlb);
302     }
303 }
304 
305 /* flush_all_helper: run fn across all cpus
306  *
307  * If the wait flag is set then the src cpu's helper will be queued as
308  * "safe" work and the loop exited creating a synchronisation point
309  * where all queued work will be finished before execution starts
310  * again.
311  */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313                              run_on_cpu_data d)
314 {
315     CPUState *cpu;
316 
317     CPU_FOREACH(cpu) {
318         if (cpu != src) {
319             async_run_on_cpu(cpu, fn, d);
320         }
321     }
322 }
323 
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326     CPUState *cpu;
327     size_t full = 0, part = 0, elide = 0;
328 
329     CPU_FOREACH(cpu) {
330         CPUArchState *env = cpu->env_ptr;
331 
332         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335     }
336     *pfull = full;
337     *ppart = part;
338     *pelide = elide;
339 }
340 
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343     CPUArchState *env = cpu->env_ptr;
344     uint16_t asked = data.host_int;
345     uint16_t all_dirty, work, to_clean;
346     int64_t now = get_clock_realtime();
347 
348     assert_cpu_is_self(cpu);
349 
350     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351 
352     qemu_spin_lock(&env_tlb(env)->c.lock);
353 
354     all_dirty = env_tlb(env)->c.dirty;
355     to_clean = asked & all_dirty;
356     all_dirty &= ~to_clean;
357     env_tlb(env)->c.dirty = all_dirty;
358 
359     for (work = to_clean; work != 0; work &= work - 1) {
360         int mmu_idx = ctz32(work);
361         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362     }
363 
364     qemu_spin_unlock(&env_tlb(env)->c.lock);
365 
366     tcg_flush_jmp_cache(cpu);
367 
368     if (to_clean == ALL_MMUIDX_BITS) {
369         qatomic_set(&env_tlb(env)->c.full_flush_count,
370                    env_tlb(env)->c.full_flush_count + 1);
371     } else {
372         qatomic_set(&env_tlb(env)->c.part_flush_count,
373                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374         if (to_clean != asked) {
375             qatomic_set(&env_tlb(env)->c.elide_flush_count,
376                        env_tlb(env)->c.elide_flush_count +
377                        ctpop16(asked & ~to_clean));
378         }
379     }
380 }
381 
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385 
386     if (cpu->created && !qemu_cpu_is_self(cpu)) {
387         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388                          RUN_ON_CPU_HOST_INT(idxmap));
389     } else {
390         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391     }
392 }
393 
394 void tlb_flush(CPUState *cpu)
395 {
396     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398 
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402 
403     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404 
405     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408 
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413 
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417 
418     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419 
420     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423 
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428 
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430                                       vaddr page, vaddr mask)
431 {
432     page &= mask;
433     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434 
435     return (page == (tlb_entry->addr_read & mask) ||
436             page == (tlb_addr_write(tlb_entry) & mask) ||
437             page == (tlb_entry->addr_code & mask));
438 }
439 
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
441 {
442     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444 
445 /**
446  * tlb_entry_is_empty - return true if the entry is not in use
447  * @te: pointer to CPUTLBEntry
448  */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453 
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456                                         vaddr page,
457                                         vaddr mask)
458 {
459     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460         memset(tlb_entry, -1, sizeof(*tlb_entry));
461         return true;
462     }
463     return false;
464 }
465 
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
467 {
468     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
469 }
470 
471 /* Called with tlb_c.lock held */
472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
473                                             vaddr page,
474                                             vaddr mask)
475 {
476     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
477     int k;
478 
479     assert_cpu_is_self(env_cpu(env));
480     for (k = 0; k < CPU_VTLB_SIZE; k++) {
481         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
482             tlb_n_used_entries_dec(env, mmu_idx);
483         }
484     }
485 }
486 
487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
488                                               vaddr page)
489 {
490     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
491 }
492 
493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
494 {
495     vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
496     vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
497 
498     /* Check if we need to flush due to large pages.  */
499     if ((page & lp_mask) == lp_addr) {
500         tlb_debug("forcing full flush midx %d (%016"
501                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
502                   midx, lp_addr, lp_mask);
503         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
504     } else {
505         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
506             tlb_n_used_entries_dec(env, midx);
507         }
508         tlb_flush_vtlb_page_locked(env, midx, page);
509     }
510 }
511 
512 /**
513  * tlb_flush_page_by_mmuidx_async_0:
514  * @cpu: cpu on which to flush
515  * @addr: page of virtual address to flush
516  * @idxmap: set of mmu_idx to flush
517  *
518  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
519  * at @addr from the tlbs indicated by @idxmap from @cpu.
520  */
521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
522                                              vaddr addr,
523                                              uint16_t idxmap)
524 {
525     CPUArchState *env = cpu->env_ptr;
526     int mmu_idx;
527 
528     assert_cpu_is_self(cpu);
529 
530     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
531 
532     qemu_spin_lock(&env_tlb(env)->c.lock);
533     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
534         if ((idxmap >> mmu_idx) & 1) {
535             tlb_flush_page_locked(env, mmu_idx, addr);
536         }
537     }
538     qemu_spin_unlock(&env_tlb(env)->c.lock);
539 
540     /*
541      * Discard jump cache entries for any tb which might potentially
542      * overlap the flushed page, which includes the previous.
543      */
544     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
545     tb_jmp_cache_clear_page(cpu, addr);
546 }
547 
548 /**
549  * tlb_flush_page_by_mmuidx_async_1:
550  * @cpu: cpu on which to flush
551  * @data: encoded addr + idxmap
552  *
553  * Helper for tlb_flush_page_by_mmuidx and friends, called through
554  * async_run_on_cpu.  The idxmap parameter is encoded in the page
555  * offset of the target_ptr field.  This limits the set of mmu_idx
556  * that can be passed via this method.
557  */
558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
559                                              run_on_cpu_data data)
560 {
561     vaddr addr_and_idxmap = data.target_ptr;
562     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
563     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564 
565     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
566 }
567 
568 typedef struct {
569     vaddr addr;
570     uint16_t idxmap;
571 } TLBFlushPageByMMUIdxData;
572 
573 /**
574  * tlb_flush_page_by_mmuidx_async_2:
575  * @cpu: cpu on which to flush
576  * @data: allocated addr + idxmap
577  *
578  * Helper for tlb_flush_page_by_mmuidx and friends, called through
579  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
580  * TLBFlushPageByMMUIdxData structure that has been allocated
581  * specifically for this helper.  Free the structure when done.
582  */
583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
584                                              run_on_cpu_data data)
585 {
586     TLBFlushPageByMMUIdxData *d = data.host_ptr;
587 
588     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
589     g_free(d);
590 }
591 
592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
593 {
594     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
595 
596     /* This should already be page aligned */
597     addr &= TARGET_PAGE_MASK;
598 
599     if (qemu_cpu_is_self(cpu)) {
600         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
601     } else if (idxmap < TARGET_PAGE_SIZE) {
602         /*
603          * Most targets have only a few mmu_idx.  In the case where
604          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
605          * allocating memory for this operation.
606          */
607         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
608                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
609     } else {
610         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611 
612         /* Otherwise allocate a structure, freed by the worker.  */
613         d->addr = addr;
614         d->idxmap = idxmap;
615         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
616                          RUN_ON_CPU_HOST_PTR(d));
617     }
618 }
619 
620 void tlb_flush_page(CPUState *cpu, vaddr addr)
621 {
622     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
623 }
624 
625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
626                                        uint16_t idxmap)
627 {
628     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
629 
630     /* This should already be page aligned */
631     addr &= TARGET_PAGE_MASK;
632 
633     /*
634      * Allocate memory to hold addr+idxmap only when needed.
635      * See tlb_flush_page_by_mmuidx for details.
636      */
637     if (idxmap < TARGET_PAGE_SIZE) {
638         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
639                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
640     } else {
641         CPUState *dst_cpu;
642 
643         /* Allocate a separate data block for each destination cpu.  */
644         CPU_FOREACH(dst_cpu) {
645             if (dst_cpu != src_cpu) {
646                 TLBFlushPageByMMUIdxData *d
647                     = g_new(TLBFlushPageByMMUIdxData, 1);
648 
649                 d->addr = addr;
650                 d->idxmap = idxmap;
651                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652                                  RUN_ON_CPU_HOST_PTR(d));
653             }
654         }
655     }
656 
657     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
658 }
659 
660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
661 {
662     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
663 }
664 
665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
666                                               vaddr addr,
667                                               uint16_t idxmap)
668 {
669     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
670 
671     /* This should already be page aligned */
672     addr &= TARGET_PAGE_MASK;
673 
674     /*
675      * Allocate memory to hold addr+idxmap only when needed.
676      * See tlb_flush_page_by_mmuidx for details.
677      */
678     if (idxmap < TARGET_PAGE_SIZE) {
679         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683     } else {
684         CPUState *dst_cpu;
685         TLBFlushPageByMMUIdxData *d;
686 
687         /* Allocate a separate data block for each destination cpu.  */
688         CPU_FOREACH(dst_cpu) {
689             if (dst_cpu != src_cpu) {
690                 d = g_new(TLBFlushPageByMMUIdxData, 1);
691                 d->addr = addr;
692                 d->idxmap = idxmap;
693                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
694                                  RUN_ON_CPU_HOST_PTR(d));
695             }
696         }
697 
698         d = g_new(TLBFlushPageByMMUIdxData, 1);
699         d->addr = addr;
700         d->idxmap = idxmap;
701         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
702                               RUN_ON_CPU_HOST_PTR(d));
703     }
704 }
705 
706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
707 {
708     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
709 }
710 
711 static void tlb_flush_range_locked(CPUArchState *env, int midx,
712                                    vaddr addr, vaddr len,
713                                    unsigned bits)
714 {
715     CPUTLBDesc *d = &env_tlb(env)->d[midx];
716     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
717     vaddr mask = MAKE_64BIT_MASK(0, bits);
718 
719     /*
720      * If @bits is smaller than the tlb size, there may be multiple entries
721      * within the TLB; otherwise all addresses that match under @mask hit
722      * the same TLB entry.
723      * TODO: Perhaps allow bits to be a few bits less than the size.
724      * For now, just flush the entire TLB.
725      *
726      * If @len is larger than the tlb size, then it will take longer to
727      * test all of the entries in the TLB than it will to flush it all.
728      */
729     if (mask < f->mask || len > f->mask) {
730         tlb_debug("forcing full flush midx %d ("
731                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
732                   midx, addr, mask, len);
733         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
734         return;
735     }
736 
737     /*
738      * Check if we need to flush due to large pages.
739      * Because large_page_mask contains all 1's from the msb,
740      * we only need to test the end of the range.
741      */
742     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
743         tlb_debug("forcing full flush midx %d ("
744                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
745                   midx, d->large_page_addr, d->large_page_mask);
746         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
747         return;
748     }
749 
750     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
751         vaddr page = addr + i;
752         CPUTLBEntry *entry = tlb_entry(env, midx, page);
753 
754         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
755             tlb_n_used_entries_dec(env, midx);
756         }
757         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
758     }
759 }
760 
761 typedef struct {
762     vaddr addr;
763     vaddr len;
764     uint16_t idxmap;
765     uint16_t bits;
766 } TLBFlushRangeData;
767 
768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
769                                               TLBFlushRangeData d)
770 {
771     CPUArchState *env = cpu->env_ptr;
772     int mmu_idx;
773 
774     assert_cpu_is_self(cpu);
775 
776     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
777               d.addr, d.bits, d.len, d.idxmap);
778 
779     qemu_spin_lock(&env_tlb(env)->c.lock);
780     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781         if ((d.idxmap >> mmu_idx) & 1) {
782             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
783         }
784     }
785     qemu_spin_unlock(&env_tlb(env)->c.lock);
786 
787     /*
788      * If the length is larger than the jump cache size, then it will take
789      * longer to clear each entry individually than it will to clear it all.
790      */
791     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
792         tcg_flush_jmp_cache(cpu);
793         return;
794     }
795 
796     /*
797      * Discard jump cache entries for any tb which might potentially
798      * overlap the flushed pages, which includes the previous.
799      */
800     d.addr -= TARGET_PAGE_SIZE;
801     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
802         tb_jmp_cache_clear_page(cpu, d.addr);
803         d.addr += TARGET_PAGE_SIZE;
804     }
805 }
806 
807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
808                                               run_on_cpu_data data)
809 {
810     TLBFlushRangeData *d = data.host_ptr;
811     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
812     g_free(d);
813 }
814 
815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
816                                vaddr len, uint16_t idxmap,
817                                unsigned bits)
818 {
819     TLBFlushRangeData d;
820 
821     /*
822      * If all bits are significant, and len is small,
823      * this devolves to tlb_flush_page.
824      */
825     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
827         return;
828     }
829     /* If no page bits are significant, this devolves to tlb_flush. */
830     if (bits < TARGET_PAGE_BITS) {
831         tlb_flush_by_mmuidx(cpu, idxmap);
832         return;
833     }
834 
835     /* This should already be page aligned */
836     d.addr = addr & TARGET_PAGE_MASK;
837     d.len = len;
838     d.idxmap = idxmap;
839     d.bits = bits;
840 
841     if (qemu_cpu_is_self(cpu)) {
842         tlb_flush_range_by_mmuidx_async_0(cpu, d);
843     } else {
844         /* Otherwise allocate a structure, freed by the worker.  */
845         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
846         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
847                          RUN_ON_CPU_HOST_PTR(p));
848     }
849 }
850 
851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
852                                    uint16_t idxmap, unsigned bits)
853 {
854     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
855 }
856 
857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
858                                         vaddr addr, vaddr len,
859                                         uint16_t idxmap, unsigned bits)
860 {
861     TLBFlushRangeData d;
862     CPUState *dst_cpu;
863 
864     /*
865      * If all bits are significant, and len is small,
866      * this devolves to tlb_flush_page.
867      */
868     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
869         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
870         return;
871     }
872     /* If no page bits are significant, this devolves to tlb_flush. */
873     if (bits < TARGET_PAGE_BITS) {
874         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
875         return;
876     }
877 
878     /* This should already be page aligned */
879     d.addr = addr & TARGET_PAGE_MASK;
880     d.len = len;
881     d.idxmap = idxmap;
882     d.bits = bits;
883 
884     /* Allocate a separate data block for each destination cpu.  */
885     CPU_FOREACH(dst_cpu) {
886         if (dst_cpu != src_cpu) {
887             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
888             async_run_on_cpu(dst_cpu,
889                              tlb_flush_range_by_mmuidx_async_1,
890                              RUN_ON_CPU_HOST_PTR(p));
891         }
892     }
893 
894     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
895 }
896 
897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
898                                             vaddr addr, uint16_t idxmap,
899                                             unsigned bits)
900 {
901     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
902                                        idxmap, bits);
903 }
904 
905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
906                                                vaddr addr,
907                                                vaddr len,
908                                                uint16_t idxmap,
909                                                unsigned bits)
910 {
911     TLBFlushRangeData d, *p;
912     CPUState *dst_cpu;
913 
914     /*
915      * If all bits are significant, and len is small,
916      * this devolves to tlb_flush_page.
917      */
918     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
919         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
920         return;
921     }
922     /* If no page bits are significant, this devolves to tlb_flush. */
923     if (bits < TARGET_PAGE_BITS) {
924         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
925         return;
926     }
927 
928     /* This should already be page aligned */
929     d.addr = addr & TARGET_PAGE_MASK;
930     d.len = len;
931     d.idxmap = idxmap;
932     d.bits = bits;
933 
934     /* Allocate a separate data block for each destination cpu.  */
935     CPU_FOREACH(dst_cpu) {
936         if (dst_cpu != src_cpu) {
937             p = g_memdup(&d, sizeof(d));
938             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
939                              RUN_ON_CPU_HOST_PTR(p));
940         }
941     }
942 
943     p = g_memdup(&d, sizeof(d));
944     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
945                           RUN_ON_CPU_HOST_PTR(p));
946 }
947 
948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
949                                                    vaddr addr,
950                                                    uint16_t idxmap,
951                                                    unsigned bits)
952 {
953     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
954                                               idxmap, bits);
955 }
956 
957 /* update the TLBs so that writes to code in the virtual page 'addr'
958    can be detected */
959 void tlb_protect_code(ram_addr_t ram_addr)
960 {
961     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
962                                              TARGET_PAGE_SIZE,
963                                              DIRTY_MEMORY_CODE);
964 }
965 
966 /* update the TLB so that writes in physical page 'phys_addr' are no longer
967    tested for self modifying code */
968 void tlb_unprotect_code(ram_addr_t ram_addr)
969 {
970     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
971 }
972 
973 
974 /*
975  * Dirty write flag handling
976  *
977  * When the TCG code writes to a location it looks up the address in
978  * the TLB and uses that data to compute the final address. If any of
979  * the lower bits of the address are set then the slow path is forced.
980  * There are a number of reasons to do this but for normal RAM the
981  * most usual is detecting writes to code regions which may invalidate
982  * generated code.
983  *
984  * Other vCPUs might be reading their TLBs during guest execution, so we update
985  * te->addr_write with qatomic_set. We don't need to worry about this for
986  * oversized guests as MTTCG is disabled for them.
987  *
988  * Called with tlb_c.lock held.
989  */
990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
991                                          uintptr_t start, uintptr_t length)
992 {
993     uintptr_t addr = tlb_entry->addr_write;
994 
995     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
996                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
997         addr &= TARGET_PAGE_MASK;
998         addr += tlb_entry->addend;
999         if ((addr - start) < length) {
1000 #if TARGET_LONG_BITS == 32
1001             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1002             ptr_write += HOST_BIG_ENDIAN;
1003             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1004 #elif TCG_OVERSIZED_GUEST
1005             tlb_entry->addr_write |= TLB_NOTDIRTY;
1006 #else
1007             qatomic_set(&tlb_entry->addr_write,
1008                         tlb_entry->addr_write | TLB_NOTDIRTY);
1009 #endif
1010         }
1011     }
1012 }
1013 
1014 /*
1015  * Called with tlb_c.lock held.
1016  * Called only from the vCPU context, i.e. the TLB's owner thread.
1017  */
1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1019 {
1020     *d = *s;
1021 }
1022 
1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1024  * the target vCPU).
1025  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1026  * thing actually updated is the target TLB entry ->addr_write flags.
1027  */
1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1029 {
1030     CPUArchState *env;
1031 
1032     int mmu_idx;
1033 
1034     env = cpu->env_ptr;
1035     qemu_spin_lock(&env_tlb(env)->c.lock);
1036     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1037         unsigned int i;
1038         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1039 
1040         for (i = 0; i < n; i++) {
1041             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1042                                          start1, length);
1043         }
1044 
1045         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1046             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1047                                          start1, length);
1048         }
1049     }
1050     qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 }
1052 
1053 /* Called with tlb_c.lock held */
1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1055                                          vaddr addr)
1056 {
1057     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1058         tlb_entry->addr_write = addr;
1059     }
1060 }
1061 
1062 /* update the TLB corresponding to virtual page vaddr
1063    so that it is no longer dirty */
1064 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1065 {
1066     CPUArchState *env = cpu->env_ptr;
1067     int mmu_idx;
1068 
1069     assert_cpu_is_self(cpu);
1070 
1071     addr &= TARGET_PAGE_MASK;
1072     qemu_spin_lock(&env_tlb(env)->c.lock);
1073     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1074         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1075     }
1076 
1077     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1078         int k;
1079         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1080             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1081         }
1082     }
1083     qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 }
1085 
1086 /* Our TLB does not support large pages, so remember the area covered by
1087    large pages and trigger a full TLB flush if these are invalidated.  */
1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1089                                vaddr addr, uint64_t size)
1090 {
1091     vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1092     vaddr lp_mask = ~(size - 1);
1093 
1094     if (lp_addr == (vaddr)-1) {
1095         /* No previous large page.  */
1096         lp_addr = addr;
1097     } else {
1098         /* Extend the existing region to include the new page.
1099            This is a compromise between unnecessary flushes and
1100            the cost of maintaining a full variable size TLB.  */
1101         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1102         while (((lp_addr ^ addr) & lp_mask) != 0) {
1103             lp_mask <<= 1;
1104         }
1105     }
1106     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1107     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1108 }
1109 
1110 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1111                                    target_ulong address, int flags,
1112                                    MMUAccessType access_type, bool enable)
1113 {
1114     if (enable) {
1115         address |= flags & TLB_FLAGS_MASK;
1116         flags &= TLB_SLOW_FLAGS_MASK;
1117         if (flags) {
1118             address |= TLB_FORCE_SLOW;
1119         }
1120     } else {
1121         address = -1;
1122         flags = 0;
1123     }
1124     ent->addr_idx[access_type] = address;
1125     full->slow_flags[access_type] = flags;
1126 }
1127 
1128 /*
1129  * Add a new TLB entry. At most one entry for a given virtual address
1130  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1131  * supplied size is only used by tlb_flush_page.
1132  *
1133  * Called from TCG-generated code, which is under an RCU read-side
1134  * critical section.
1135  */
1136 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1137                        vaddr addr, CPUTLBEntryFull *full)
1138 {
1139     CPUArchState *env = cpu->env_ptr;
1140     CPUTLB *tlb = env_tlb(env);
1141     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1142     MemoryRegionSection *section;
1143     unsigned int index, read_flags, write_flags;
1144     uintptr_t addend;
1145     CPUTLBEntry *te, tn;
1146     hwaddr iotlb, xlat, sz, paddr_page;
1147     vaddr addr_page;
1148     int asidx, wp_flags, prot;
1149     bool is_ram, is_romd;
1150 
1151     assert_cpu_is_self(cpu);
1152 
1153     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1154         sz = TARGET_PAGE_SIZE;
1155     } else {
1156         sz = (hwaddr)1 << full->lg_page_size;
1157         tlb_add_large_page(env, mmu_idx, addr, sz);
1158     }
1159     addr_page = addr & TARGET_PAGE_MASK;
1160     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1161 
1162     prot = full->prot;
1163     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1164     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1165                                                 &xlat, &sz, full->attrs, &prot);
1166     assert(sz >= TARGET_PAGE_SIZE);
1167 
1168     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1169               " prot=%x idx=%d\n",
1170               addr, full->phys_addr, prot, mmu_idx);
1171 
1172     read_flags = 0;
1173     if (full->lg_page_size < TARGET_PAGE_BITS) {
1174         /* Repeat the MMU check and TLB fill on every access.  */
1175         read_flags |= TLB_INVALID_MASK;
1176     }
1177     if (full->attrs.byte_swap) {
1178         read_flags |= TLB_BSWAP;
1179     }
1180 
1181     is_ram = memory_region_is_ram(section->mr);
1182     is_romd = memory_region_is_romd(section->mr);
1183 
1184     if (is_ram || is_romd) {
1185         /* RAM and ROMD both have associated host memory. */
1186         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1187     } else {
1188         /* I/O does not; force the host address to NULL. */
1189         addend = 0;
1190     }
1191 
1192     write_flags = read_flags;
1193     if (is_ram) {
1194         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1195         /*
1196          * Computing is_clean is expensive; avoid all that unless
1197          * the page is actually writable.
1198          */
1199         if (prot & PAGE_WRITE) {
1200             if (section->readonly) {
1201                 write_flags |= TLB_DISCARD_WRITE;
1202             } else if (cpu_physical_memory_is_clean(iotlb)) {
1203                 write_flags |= TLB_NOTDIRTY;
1204             }
1205         }
1206     } else {
1207         /* I/O or ROMD */
1208         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1209         /*
1210          * Writes to romd devices must go through MMIO to enable write.
1211          * Reads to romd devices go through the ram_ptr found above,
1212          * but of course reads to I/O must go through MMIO.
1213          */
1214         write_flags |= TLB_MMIO;
1215         if (!is_romd) {
1216             read_flags = write_flags;
1217         }
1218     }
1219 
1220     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1221                                               TARGET_PAGE_SIZE);
1222 
1223     index = tlb_index(env, mmu_idx, addr_page);
1224     te = tlb_entry(env, mmu_idx, addr_page);
1225 
1226     /*
1227      * Hold the TLB lock for the rest of the function. We could acquire/release
1228      * the lock several times in the function, but it is faster to amortize the
1229      * acquisition cost by acquiring it just once. Note that this leads to
1230      * a longer critical section, but this is not a concern since the TLB lock
1231      * is unlikely to be contended.
1232      */
1233     qemu_spin_lock(&tlb->c.lock);
1234 
1235     /* Note that the tlb is no longer clean.  */
1236     tlb->c.dirty |= 1 << mmu_idx;
1237 
1238     /* Make sure there's no cached translation for the new page.  */
1239     tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1240 
1241     /*
1242      * Only evict the old entry to the victim tlb if it's for a
1243      * different page; otherwise just overwrite the stale data.
1244      */
1245     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1246         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1247         CPUTLBEntry *tv = &desc->vtable[vidx];
1248 
1249         /* Evict the old entry into the victim tlb.  */
1250         copy_tlb_helper_locked(tv, te);
1251         desc->vfulltlb[vidx] = desc->fulltlb[index];
1252         tlb_n_used_entries_dec(env, mmu_idx);
1253     }
1254 
1255     /* refill the tlb */
1256     /*
1257      * At this point iotlb contains a physical section number in the lower
1258      * TARGET_PAGE_BITS, and either
1259      *  + the ram_addr_t of the page base of the target RAM (RAM)
1260      *  + the offset within section->mr of the page base (I/O, ROMD)
1261      * We subtract addr_page (which is page aligned and thus won't
1262      * disturb the low bits) to give an offset which can be added to the
1263      * (non-page-aligned) vaddr of the eventual memory access to get
1264      * the MemoryRegion offset for the access. Note that the vaddr we
1265      * subtract here is that of the page base, and not the same as the
1266      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1267      */
1268     desc->fulltlb[index] = *full;
1269     full = &desc->fulltlb[index];
1270     full->xlat_section = iotlb - addr_page;
1271     full->phys_addr = paddr_page;
1272 
1273     /* Now calculate the new entry */
1274     tn.addend = addend - addr_page;
1275 
1276     tlb_set_compare(full, &tn, addr_page, read_flags,
1277                     MMU_INST_FETCH, prot & PAGE_EXEC);
1278 
1279     if (wp_flags & BP_MEM_READ) {
1280         read_flags |= TLB_WATCHPOINT;
1281     }
1282     tlb_set_compare(full, &tn, addr_page, read_flags,
1283                     MMU_DATA_LOAD, prot & PAGE_READ);
1284 
1285     if (prot & PAGE_WRITE_INV) {
1286         write_flags |= TLB_INVALID_MASK;
1287     }
1288     if (wp_flags & BP_MEM_WRITE) {
1289         write_flags |= TLB_WATCHPOINT;
1290     }
1291     tlb_set_compare(full, &tn, addr_page, write_flags,
1292                     MMU_DATA_STORE, prot & PAGE_WRITE);
1293 
1294     copy_tlb_helper_locked(te, &tn);
1295     tlb_n_used_entries_inc(env, mmu_idx);
1296     qemu_spin_unlock(&tlb->c.lock);
1297 }
1298 
1299 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1300                              hwaddr paddr, MemTxAttrs attrs, int prot,
1301                              int mmu_idx, uint64_t size)
1302 {
1303     CPUTLBEntryFull full = {
1304         .phys_addr = paddr,
1305         .attrs = attrs,
1306         .prot = prot,
1307         .lg_page_size = ctz64(size)
1308     };
1309 
1310     assert(is_power_of_2(size));
1311     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1312 }
1313 
1314 void tlb_set_page(CPUState *cpu, vaddr addr,
1315                   hwaddr paddr, int prot,
1316                   int mmu_idx, uint64_t size)
1317 {
1318     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1319                             prot, mmu_idx, size);
1320 }
1321 
1322 /*
1323  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1324  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1325  * be discarded and looked up again (e.g. via tlb_entry()).
1326  */
1327 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1328                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1329 {
1330     bool ok;
1331 
1332     /*
1333      * This is not a probe, so only valid return is success; failure
1334      * should result in exception + longjmp to the cpu loop.
1335      */
1336     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1337                                     access_type, mmu_idx, false, retaddr);
1338     assert(ok);
1339 }
1340 
1341 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1342                                         MMUAccessType access_type,
1343                                         int mmu_idx, uintptr_t retaddr)
1344 {
1345     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1346                                           mmu_idx, retaddr);
1347 }
1348 
1349 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1350                                           vaddr addr, unsigned size,
1351                                           MMUAccessType access_type,
1352                                           int mmu_idx, MemTxAttrs attrs,
1353                                           MemTxResult response,
1354                                           uintptr_t retaddr)
1355 {
1356     CPUClass *cc = CPU_GET_CLASS(cpu);
1357 
1358     if (!cpu->ignore_memory_transaction_failures &&
1359         cc->tcg_ops->do_transaction_failed) {
1360         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1361                                            access_type, mmu_idx, attrs,
1362                                            response, retaddr);
1363     }
1364 }
1365 
1366 /*
1367  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1368  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1369  * because of the side effect of io_writex changing memory layout.
1370  */
1371 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1372                             hwaddr mr_offset)
1373 {
1374 #ifdef CONFIG_PLUGIN
1375     SavedIOTLB *saved = &cs->saved_iotlb;
1376     saved->section = section;
1377     saved->mr_offset = mr_offset;
1378 #endif
1379 }
1380 
1381 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1382                          int mmu_idx, vaddr addr, uintptr_t retaddr,
1383                          MMUAccessType access_type, MemOp op)
1384 {
1385     CPUState *cpu = env_cpu(env);
1386     hwaddr mr_offset;
1387     MemoryRegionSection *section;
1388     MemoryRegion *mr;
1389     uint64_t val;
1390     MemTxResult r;
1391 
1392     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1393     mr = section->mr;
1394     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1395     cpu->mem_io_pc = retaddr;
1396     if (!cpu->can_do_io) {
1397         cpu_io_recompile(cpu, retaddr);
1398     }
1399 
1400     /*
1401      * The memory_region_dispatch may trigger a flush/resize
1402      * so for plugins we save the iotlb_data just in case.
1403      */
1404     save_iotlb_data(cpu, section, mr_offset);
1405 
1406     {
1407         QEMU_IOTHREAD_LOCK_GUARD();
1408         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1409     }
1410 
1411     if (r != MEMTX_OK) {
1412         hwaddr physaddr = mr_offset +
1413             section->offset_within_address_space -
1414             section->offset_within_region;
1415 
1416         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1417                                mmu_idx, full->attrs, r, retaddr);
1418     }
1419     return val;
1420 }
1421 
1422 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1423                       int mmu_idx, uint64_t val, vaddr addr,
1424                       uintptr_t retaddr, MemOp op)
1425 {
1426     CPUState *cpu = env_cpu(env);
1427     hwaddr mr_offset;
1428     MemoryRegionSection *section;
1429     MemoryRegion *mr;
1430     MemTxResult r;
1431 
1432     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1433     mr = section->mr;
1434     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1435     if (!cpu->can_do_io) {
1436         cpu_io_recompile(cpu, retaddr);
1437     }
1438     cpu->mem_io_pc = retaddr;
1439 
1440     /*
1441      * The memory_region_dispatch may trigger a flush/resize
1442      * so for plugins we save the iotlb_data just in case.
1443      */
1444     save_iotlb_data(cpu, section, mr_offset);
1445 
1446     {
1447         QEMU_IOTHREAD_LOCK_GUARD();
1448         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1449     }
1450 
1451     if (r != MEMTX_OK) {
1452         hwaddr physaddr = mr_offset +
1453             section->offset_within_address_space -
1454             section->offset_within_region;
1455 
1456         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1457                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1458                                retaddr);
1459     }
1460 }
1461 
1462 /* Return true if ADDR is present in the victim tlb, and has been copied
1463    back to the main tlb.  */
1464 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1465                            MMUAccessType access_type, vaddr page)
1466 {
1467     size_t vidx;
1468 
1469     assert_cpu_is_self(env_cpu(env));
1470     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1471         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1472         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1473 
1474         if (cmp == page) {
1475             /* Found entry in victim tlb, swap tlb and iotlb.  */
1476             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1477 
1478             qemu_spin_lock(&env_tlb(env)->c.lock);
1479             copy_tlb_helper_locked(&tmptlb, tlb);
1480             copy_tlb_helper_locked(tlb, vtlb);
1481             copy_tlb_helper_locked(vtlb, &tmptlb);
1482             qemu_spin_unlock(&env_tlb(env)->c.lock);
1483 
1484             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1485             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1486             CPUTLBEntryFull tmpf;
1487             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1488             return true;
1489         }
1490     }
1491     return false;
1492 }
1493 
1494 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1495                            CPUTLBEntryFull *full, uintptr_t retaddr)
1496 {
1497     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1498 
1499     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1500 
1501     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1502         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1503     }
1504 
1505     /*
1506      * Set both VGA and migration bits for simplicity and to remove
1507      * the notdirty callback faster.
1508      */
1509     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1510 
1511     /* We remove the notdirty callback only if the code has been flushed. */
1512     if (!cpu_physical_memory_is_clean(ram_addr)) {
1513         trace_memory_notdirty_set_dirty(mem_vaddr);
1514         tlb_set_dirty(cpu, mem_vaddr);
1515     }
1516 }
1517 
1518 static int probe_access_internal(CPUArchState *env, vaddr addr,
1519                                  int fault_size, MMUAccessType access_type,
1520                                  int mmu_idx, bool nonfault,
1521                                  void **phost, CPUTLBEntryFull **pfull,
1522                                  uintptr_t retaddr, bool check_mem_cbs)
1523 {
1524     uintptr_t index = tlb_index(env, mmu_idx, addr);
1525     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1526     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1527     vaddr page_addr = addr & TARGET_PAGE_MASK;
1528     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1529     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1530     CPUTLBEntryFull *full;
1531 
1532     if (!tlb_hit_page(tlb_addr, page_addr)) {
1533         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1534             CPUState *cs = env_cpu(env);
1535 
1536             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1537                                            mmu_idx, nonfault, retaddr)) {
1538                 /* Non-faulting page table read failed.  */
1539                 *phost = NULL;
1540                 *pfull = NULL;
1541                 return TLB_INVALID_MASK;
1542             }
1543 
1544             /* TLB resize via tlb_fill may have moved the entry.  */
1545             index = tlb_index(env, mmu_idx, addr);
1546             entry = tlb_entry(env, mmu_idx, addr);
1547 
1548             /*
1549              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1550              * to force the next access through tlb_fill.  We've just
1551              * called tlb_fill, so we know that this entry *is* valid.
1552              */
1553             flags &= ~TLB_INVALID_MASK;
1554         }
1555         tlb_addr = tlb_read_idx(entry, access_type);
1556     }
1557     flags &= tlb_addr;
1558 
1559     *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1560     flags |= full->slow_flags[access_type];
1561 
1562     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1563     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1564         ||
1565         (access_type != MMU_INST_FETCH && force_mmio)) {
1566         *phost = NULL;
1567         return TLB_MMIO;
1568     }
1569 
1570     /* Everything else is RAM. */
1571     *phost = (void *)((uintptr_t)addr + entry->addend);
1572     return flags;
1573 }
1574 
1575 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1576                       MMUAccessType access_type, int mmu_idx,
1577                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1578                       uintptr_t retaddr)
1579 {
1580     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1581                                       nonfault, phost, pfull, retaddr, true);
1582 
1583     /* Handle clean RAM pages.  */
1584     if (unlikely(flags & TLB_NOTDIRTY)) {
1585         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1586         flags &= ~TLB_NOTDIRTY;
1587     }
1588 
1589     return flags;
1590 }
1591 
1592 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1593                           MMUAccessType access_type, int mmu_idx,
1594                           void **phost, CPUTLBEntryFull **pfull)
1595 {
1596     void *discard_phost;
1597     CPUTLBEntryFull *discard_tlb;
1598 
1599     /* privately handle users that don't need full results */
1600     phost = phost ? phost : &discard_phost;
1601     pfull = pfull ? pfull : &discard_tlb;
1602 
1603     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1604                                       true, phost, pfull, 0, false);
1605 
1606     /* Handle clean RAM pages.  */
1607     if (unlikely(flags & TLB_NOTDIRTY)) {
1608         notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1609         flags &= ~TLB_NOTDIRTY;
1610     }
1611 
1612     return flags;
1613 }
1614 
1615 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1616                        MMUAccessType access_type, int mmu_idx,
1617                        bool nonfault, void **phost, uintptr_t retaddr)
1618 {
1619     CPUTLBEntryFull *full;
1620     int flags;
1621 
1622     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1623 
1624     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1625                                   nonfault, phost, &full, retaddr, true);
1626 
1627     /* Handle clean RAM pages. */
1628     if (unlikely(flags & TLB_NOTDIRTY)) {
1629         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1630         flags &= ~TLB_NOTDIRTY;
1631     }
1632 
1633     return flags;
1634 }
1635 
1636 void *probe_access(CPUArchState *env, vaddr addr, int size,
1637                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1638 {
1639     CPUTLBEntryFull *full;
1640     void *host;
1641     int flags;
1642 
1643     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1644 
1645     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1646                                   false, &host, &full, retaddr, true);
1647 
1648     /* Per the interface, size == 0 merely faults the access. */
1649     if (size == 0) {
1650         return NULL;
1651     }
1652 
1653     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1654         /* Handle watchpoints.  */
1655         if (flags & TLB_WATCHPOINT) {
1656             int wp_access = (access_type == MMU_DATA_STORE
1657                              ? BP_MEM_WRITE : BP_MEM_READ);
1658             cpu_check_watchpoint(env_cpu(env), addr, size,
1659                                  full->attrs, wp_access, retaddr);
1660         }
1661 
1662         /* Handle clean RAM pages.  */
1663         if (flags & TLB_NOTDIRTY) {
1664             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1665         }
1666     }
1667 
1668     return host;
1669 }
1670 
1671 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1672                         MMUAccessType access_type, int mmu_idx)
1673 {
1674     CPUTLBEntryFull *full;
1675     void *host;
1676     int flags;
1677 
1678     flags = probe_access_internal(env, addr, 0, access_type,
1679                                   mmu_idx, true, &host, &full, 0, false);
1680 
1681     /* No combination of flags are expected by the caller. */
1682     return flags ? NULL : host;
1683 }
1684 
1685 /*
1686  * Return a ram_addr_t for the virtual address for execution.
1687  *
1688  * Return -1 if we can't translate and execute from an entire page
1689  * of RAM.  This will force us to execute by loading and translating
1690  * one insn at a time, without caching.
1691  *
1692  * NOTE: This function will trigger an exception if the page is
1693  * not executable.
1694  */
1695 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1696                                         void **hostp)
1697 {
1698     CPUTLBEntryFull *full;
1699     void *p;
1700 
1701     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1702                                 cpu_mmu_index(env, true), false,
1703                                 &p, &full, 0, false);
1704     if (p == NULL) {
1705         return -1;
1706     }
1707 
1708     if (full->lg_page_size < TARGET_PAGE_BITS) {
1709         return -1;
1710     }
1711 
1712     if (hostp) {
1713         *hostp = p;
1714     }
1715     return qemu_ram_addr_from_host_nofail(p);
1716 }
1717 
1718 /* Load/store with atomicity primitives. */
1719 #include "ldst_atomicity.c.inc"
1720 
1721 #ifdef CONFIG_PLUGIN
1722 /*
1723  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1724  * This should be a hot path as we will have just looked this path up
1725  * in the softmmu lookup code (or helper). We don't handle re-fills or
1726  * checking the victim table. This is purely informational.
1727  *
1728  * This almost never fails as the memory access being instrumented
1729  * should have just filled the TLB. The one corner case is io_writex
1730  * which can cause TLB flushes and potential resizing of the TLBs
1731  * losing the information we need. In those cases we need to recover
1732  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1733  * from the same thread (which a mem callback will be) this is safe.
1734  */
1735 
1736 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1737                        bool is_store, struct qemu_plugin_hwaddr *data)
1738 {
1739     CPUArchState *env = cpu->env_ptr;
1740     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1741     uintptr_t index = tlb_index(env, mmu_idx, addr);
1742     uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1743 
1744     if (likely(tlb_hit(tlb_addr, addr))) {
1745         /* We must have an iotlb entry for MMIO */
1746         if (tlb_addr & TLB_MMIO) {
1747             CPUTLBEntryFull *full;
1748             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1749             data->is_io = true;
1750             data->v.io.section =
1751                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1752             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1753         } else {
1754             data->is_io = false;
1755             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1756         }
1757         return true;
1758     } else {
1759         SavedIOTLB *saved = &cpu->saved_iotlb;
1760         data->is_io = true;
1761         data->v.io.section = saved->section;
1762         data->v.io.offset = saved->mr_offset;
1763         return true;
1764     }
1765 }
1766 
1767 #endif
1768 
1769 /*
1770  * Probe for a load/store operation.
1771  * Return the host address and into @flags.
1772  */
1773 
1774 typedef struct MMULookupPageData {
1775     CPUTLBEntryFull *full;
1776     void *haddr;
1777     vaddr addr;
1778     int flags;
1779     int size;
1780 } MMULookupPageData;
1781 
1782 typedef struct MMULookupLocals {
1783     MMULookupPageData page[2];
1784     MemOp memop;
1785     int mmu_idx;
1786 } MMULookupLocals;
1787 
1788 /**
1789  * mmu_lookup1: translate one page
1790  * @env: cpu context
1791  * @data: lookup parameters
1792  * @mmu_idx: virtual address context
1793  * @access_type: load/store/code
1794  * @ra: return address into tcg generated code, or 0
1795  *
1796  * Resolve the translation for the one page at @data.addr, filling in
1797  * the rest of @data with the results.  If the translation fails,
1798  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1799  * @mmu_idx may have resized.
1800  */
1801 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1802                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1803 {
1804     vaddr addr = data->addr;
1805     uintptr_t index = tlb_index(env, mmu_idx, addr);
1806     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1807     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1808     bool maybe_resized = false;
1809     CPUTLBEntryFull *full;
1810     int flags;
1811 
1812     /* If the TLB entry is for a different page, reload and try again.  */
1813     if (!tlb_hit(tlb_addr, addr)) {
1814         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1815                             addr & TARGET_PAGE_MASK)) {
1816             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1817             maybe_resized = true;
1818             index = tlb_index(env, mmu_idx, addr);
1819             entry = tlb_entry(env, mmu_idx, addr);
1820         }
1821         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1822     }
1823 
1824     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1825     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1826     flags |= full->slow_flags[access_type];
1827 
1828     data->full = full;
1829     data->flags = flags;
1830     /* Compute haddr speculatively; depending on flags it might be invalid. */
1831     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1832 
1833     return maybe_resized;
1834 }
1835 
1836 /**
1837  * mmu_watch_or_dirty
1838  * @env: cpu context
1839  * @data: lookup parameters
1840  * @access_type: load/store/code
1841  * @ra: return address into tcg generated code, or 0
1842  *
1843  * Trigger watchpoints for @data.addr:@data.size;
1844  * record writes to protected clean pages.
1845  */
1846 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1847                                MMUAccessType access_type, uintptr_t ra)
1848 {
1849     CPUTLBEntryFull *full = data->full;
1850     vaddr addr = data->addr;
1851     int flags = data->flags;
1852     int size = data->size;
1853 
1854     /* On watchpoint hit, this will longjmp out.  */
1855     if (flags & TLB_WATCHPOINT) {
1856         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1857         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1858         flags &= ~TLB_WATCHPOINT;
1859     }
1860 
1861     /* Note that notdirty is only set for writes. */
1862     if (flags & TLB_NOTDIRTY) {
1863         notdirty_write(env_cpu(env), addr, size, full, ra);
1864         flags &= ~TLB_NOTDIRTY;
1865     }
1866     data->flags = flags;
1867 }
1868 
1869 /**
1870  * mmu_lookup: translate page(s)
1871  * @env: cpu context
1872  * @addr: virtual address
1873  * @oi: combined mmu_idx and MemOp
1874  * @ra: return address into tcg generated code, or 0
1875  * @access_type: load/store/code
1876  * @l: output result
1877  *
1878  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1879  * bytes.  Return true if the lookup crosses a page boundary.
1880  */
1881 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1882                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1883 {
1884     unsigned a_bits;
1885     bool crosspage;
1886     int flags;
1887 
1888     l->memop = get_memop(oi);
1889     l->mmu_idx = get_mmuidx(oi);
1890 
1891     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1892 
1893     /* Handle CPU specific unaligned behaviour */
1894     a_bits = get_alignment_bits(l->memop);
1895     if (addr & ((1 << a_bits) - 1)) {
1896         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1897     }
1898 
1899     l->page[0].addr = addr;
1900     l->page[0].size = memop_size(l->memop);
1901     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1902     l->page[1].size = 0;
1903     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1904 
1905     if (likely(!crosspage)) {
1906         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1907 
1908         flags = l->page[0].flags;
1909         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1910             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1911         }
1912         if (unlikely(flags & TLB_BSWAP)) {
1913             l->memop ^= MO_BSWAP;
1914         }
1915     } else {
1916         /* Finish compute of page crossing. */
1917         int size0 = l->page[1].addr - addr;
1918         l->page[1].size = l->page[0].size - size0;
1919         l->page[0].size = size0;
1920 
1921         /*
1922          * Lookup both pages, recognizing exceptions from either.  If the
1923          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1924          */
1925         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1926         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1927             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1928             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1929         }
1930 
1931         flags = l->page[0].flags | l->page[1].flags;
1932         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1933             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1934             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1935         }
1936 
1937         /*
1938          * Since target/sparc is the only user of TLB_BSWAP, and all
1939          * Sparc accesses are aligned, any treatment across two pages
1940          * would be arbitrary.  Refuse it until there's a use.
1941          */
1942         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1943     }
1944 
1945     return crosspage;
1946 }
1947 
1948 /*
1949  * Probe for an atomic operation.  Do not allow unaligned operations,
1950  * or io operations to proceed.  Return the host address.
1951  */
1952 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1953                                int size, uintptr_t retaddr)
1954 {
1955     uintptr_t mmu_idx = get_mmuidx(oi);
1956     MemOp mop = get_memop(oi);
1957     int a_bits = get_alignment_bits(mop);
1958     uintptr_t index;
1959     CPUTLBEntry *tlbe;
1960     vaddr tlb_addr;
1961     void *hostaddr;
1962     CPUTLBEntryFull *full;
1963 
1964     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1965 
1966     /* Adjust the given return address.  */
1967     retaddr -= GETPC_ADJ;
1968 
1969     /* Enforce guest required alignment.  */
1970     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1971         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1972         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1973                              mmu_idx, retaddr);
1974     }
1975 
1976     /* Enforce qemu required alignment.  */
1977     if (unlikely(addr & (size - 1))) {
1978         /* We get here if guest alignment was not requested,
1979            or was not enforced by cpu_unaligned_access above.
1980            We might widen the access and emulate, but for now
1981            mark an exception and exit the cpu loop.  */
1982         goto stop_the_world;
1983     }
1984 
1985     index = tlb_index(env, mmu_idx, addr);
1986     tlbe = tlb_entry(env, mmu_idx, addr);
1987 
1988     /* Check TLB entry and enforce page permissions.  */
1989     tlb_addr = tlb_addr_write(tlbe);
1990     if (!tlb_hit(tlb_addr, addr)) {
1991         if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1992                             addr & TARGET_PAGE_MASK)) {
1993             tlb_fill(env_cpu(env), addr, size,
1994                      MMU_DATA_STORE, mmu_idx, retaddr);
1995             index = tlb_index(env, mmu_idx, addr);
1996             tlbe = tlb_entry(env, mmu_idx, addr);
1997         }
1998         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1999     }
2000 
2001     /*
2002      * Let the guest notice RMW on a write-only page.
2003      * We have just verified that the page is writable.
2004      * Subpage lookups may have left TLB_INVALID_MASK set,
2005      * but addr_read will only be -1 if PAGE_READ was unset.
2006      */
2007     if (unlikely(tlbe->addr_read == -1)) {
2008         tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
2009         /*
2010          * Since we don't support reads and writes to different
2011          * addresses, and we do have the proper page loaded for
2012          * write, this shouldn't ever return.  But just in case,
2013          * handle via stop-the-world.
2014          */
2015         goto stop_the_world;
2016     }
2017     /* Collect tlb flags for read. */
2018     tlb_addr |= tlbe->addr_read;
2019 
2020     /* Notice an IO access or a needs-MMU-lookup access */
2021     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
2022         /* There's really nothing that can be done to
2023            support this apart from stop-the-world.  */
2024         goto stop_the_world;
2025     }
2026 
2027     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
2028     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2029 
2030     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2031         notdirty_write(env_cpu(env), addr, size, full, retaddr);
2032     }
2033 
2034     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2035         int wp_flags = 0;
2036 
2037         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2038             wp_flags |= BP_MEM_WRITE;
2039         }
2040         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2041             wp_flags |= BP_MEM_READ;
2042         }
2043         if (wp_flags) {
2044             cpu_check_watchpoint(env_cpu(env), addr, size,
2045                                  full->attrs, wp_flags, retaddr);
2046         }
2047     }
2048 
2049     return hostaddr;
2050 
2051  stop_the_world:
2052     cpu_loop_exit_atomic(env_cpu(env), retaddr);
2053 }
2054 
2055 /*
2056  * Load Helpers
2057  *
2058  * We support two different access types. SOFTMMU_CODE_ACCESS is
2059  * specifically for reading instructions from system memory. It is
2060  * called by the translation loop and in some helpers where the code
2061  * is disassembled. It shouldn't be called directly by guest code.
2062  *
2063  * For the benefit of TCG generated code, we want to avoid the
2064  * complication of ABI-specific return type promotion and always
2065  * return a value extended to the register size of the host. This is
2066  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2067  * data, and for that we always have uint64_t.
2068  *
2069  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2070  */
2071 
2072 /**
2073  * do_ld_mmio_beN:
2074  * @env: cpu context
2075  * @full: page parameters
2076  * @ret_be: accumulated data
2077  * @addr: virtual address
2078  * @size: number of bytes
2079  * @mmu_idx: virtual address context
2080  * @ra: return address into tcg generated code, or 0
2081  * Context: iothread lock held
2082  *
2083  * Load @size bytes from @addr, which is memory-mapped i/o.
2084  * The bytes are concatenated in big-endian order with @ret_be.
2085  */
2086 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2087                                uint64_t ret_be, vaddr addr, int size,
2088                                int mmu_idx, MMUAccessType type, uintptr_t ra)
2089 {
2090     uint64_t t;
2091 
2092     tcg_debug_assert(size > 0 && size <= 8);
2093     do {
2094         /* Read aligned pieces up to 8 bytes. */
2095         switch ((size | (int)addr) & 7) {
2096         case 1:
2097         case 3:
2098         case 5:
2099         case 7:
2100             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB);
2101             ret_be = (ret_be << 8) | t;
2102             size -= 1;
2103             addr += 1;
2104             break;
2105         case 2:
2106         case 6:
2107             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW);
2108             ret_be = (ret_be << 16) | t;
2109             size -= 2;
2110             addr += 2;
2111             break;
2112         case 4:
2113             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL);
2114             ret_be = (ret_be << 32) | t;
2115             size -= 4;
2116             addr += 4;
2117             break;
2118         case 0:
2119             return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ);
2120         default:
2121             qemu_build_not_reached();
2122         }
2123     } while (size);
2124     return ret_be;
2125 }
2126 
2127 /**
2128  * do_ld_bytes_beN
2129  * @p: translation parameters
2130  * @ret_be: accumulated data
2131  *
2132  * Load @p->size bytes from @p->haddr, which is RAM.
2133  * The bytes to concatenated in big-endian order with @ret_be.
2134  */
2135 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2136 {
2137     uint8_t *haddr = p->haddr;
2138     int i, size = p->size;
2139 
2140     for (i = 0; i < size; i++) {
2141         ret_be = (ret_be << 8) | haddr[i];
2142     }
2143     return ret_be;
2144 }
2145 
2146 /**
2147  * do_ld_parts_beN
2148  * @p: translation parameters
2149  * @ret_be: accumulated data
2150  *
2151  * As do_ld_bytes_beN, but atomically on each aligned part.
2152  */
2153 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2154 {
2155     void *haddr = p->haddr;
2156     int size = p->size;
2157 
2158     do {
2159         uint64_t x;
2160         int n;
2161 
2162         /*
2163          * Find minimum of alignment and size.
2164          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2165          * would have only checked the low bits of addr|size once at the start,
2166          * but is just as easy.
2167          */
2168         switch (((uintptr_t)haddr | size) & 7) {
2169         case 4:
2170             x = cpu_to_be32(load_atomic4(haddr));
2171             ret_be = (ret_be << 32) | x;
2172             n = 4;
2173             break;
2174         case 2:
2175         case 6:
2176             x = cpu_to_be16(load_atomic2(haddr));
2177             ret_be = (ret_be << 16) | x;
2178             n = 2;
2179             break;
2180         default:
2181             x = *(uint8_t *)haddr;
2182             ret_be = (ret_be << 8) | x;
2183             n = 1;
2184             break;
2185         case 0:
2186             g_assert_not_reached();
2187         }
2188         haddr += n;
2189         size -= n;
2190     } while (size != 0);
2191     return ret_be;
2192 }
2193 
2194 /**
2195  * do_ld_parts_be4
2196  * @p: translation parameters
2197  * @ret_be: accumulated data
2198  *
2199  * As do_ld_bytes_beN, but with one atomic load.
2200  * Four aligned bytes are guaranteed to cover the load.
2201  */
2202 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2203 {
2204     int o = p->addr & 3;
2205     uint32_t x = load_atomic4(p->haddr - o);
2206 
2207     x = cpu_to_be32(x);
2208     x <<= o * 8;
2209     x >>= (4 - p->size) * 8;
2210     return (ret_be << (p->size * 8)) | x;
2211 }
2212 
2213 /**
2214  * do_ld_parts_be8
2215  * @p: translation parameters
2216  * @ret_be: accumulated data
2217  *
2218  * As do_ld_bytes_beN, but with one atomic load.
2219  * Eight aligned bytes are guaranteed to cover the load.
2220  */
2221 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2222                                 MMULookupPageData *p, uint64_t ret_be)
2223 {
2224     int o = p->addr & 7;
2225     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2226 
2227     x = cpu_to_be64(x);
2228     x <<= o * 8;
2229     x >>= (8 - p->size) * 8;
2230     return (ret_be << (p->size * 8)) | x;
2231 }
2232 
2233 /**
2234  * do_ld_parts_be16
2235  * @p: translation parameters
2236  * @ret_be: accumulated data
2237  *
2238  * As do_ld_bytes_beN, but with one atomic load.
2239  * 16 aligned bytes are guaranteed to cover the load.
2240  */
2241 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2242                                MMULookupPageData *p, uint64_t ret_be)
2243 {
2244     int o = p->addr & 15;
2245     Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2246     int size = p->size;
2247 
2248     if (!HOST_BIG_ENDIAN) {
2249         y = bswap128(y);
2250     }
2251     y = int128_lshift(y, o * 8);
2252     y = int128_urshift(y, (16 - size) * 8);
2253     x = int128_make64(ret_be);
2254     x = int128_lshift(x, size * 8);
2255     return int128_or(x, y);
2256 }
2257 
2258 /*
2259  * Wrapper for the above.
2260  */
2261 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2262                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2263                           MemOp mop, uintptr_t ra)
2264 {
2265     MemOp atom;
2266     unsigned tmp, half_size;
2267 
2268     if (unlikely(p->flags & TLB_MMIO)) {
2269         QEMU_IOTHREAD_LOCK_GUARD();
2270         return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2271                               mmu_idx, type, ra);
2272     }
2273 
2274     /*
2275      * It is a given that we cross a page and therefore there is no
2276      * atomicity for the load as a whole, but subobjects may need attention.
2277      */
2278     atom = mop & MO_ATOM_MASK;
2279     switch (atom) {
2280     case MO_ATOM_SUBALIGN:
2281         return do_ld_parts_beN(p, ret_be);
2282 
2283     case MO_ATOM_IFALIGN_PAIR:
2284     case MO_ATOM_WITHIN16_PAIR:
2285         tmp = mop & MO_SIZE;
2286         tmp = tmp ? tmp - 1 : 0;
2287         half_size = 1 << tmp;
2288         if (atom == MO_ATOM_IFALIGN_PAIR
2289             ? p->size == half_size
2290             : p->size >= half_size) {
2291             if (!HAVE_al8_fast && p->size < 4) {
2292                 return do_ld_whole_be4(p, ret_be);
2293             } else {
2294                 return do_ld_whole_be8(env, ra, p, ret_be);
2295             }
2296         }
2297         /* fall through */
2298 
2299     case MO_ATOM_IFALIGN:
2300     case MO_ATOM_WITHIN16:
2301     case MO_ATOM_NONE:
2302         return do_ld_bytes_beN(p, ret_be);
2303 
2304     default:
2305         g_assert_not_reached();
2306     }
2307 }
2308 
2309 /*
2310  * Wrapper for the above, for 8 < size < 16.
2311  */
2312 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2313                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2314 {
2315     int size = p->size;
2316     uint64_t b;
2317     MemOp atom;
2318 
2319     if (unlikely(p->flags & TLB_MMIO)) {
2320         QEMU_IOTHREAD_LOCK_GUARD();
2321         a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2322                            mmu_idx, MMU_DATA_LOAD, ra);
2323         b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2324                            mmu_idx, MMU_DATA_LOAD, ra);
2325         return int128_make128(b, a);
2326     }
2327 
2328     /*
2329      * It is a given that we cross a page and therefore there is no
2330      * atomicity for the load as a whole, but subobjects may need attention.
2331      */
2332     atom = mop & MO_ATOM_MASK;
2333     switch (atom) {
2334     case MO_ATOM_SUBALIGN:
2335         p->size = size - 8;
2336         a = do_ld_parts_beN(p, a);
2337         p->haddr += size - 8;
2338         p->size = 8;
2339         b = do_ld_parts_beN(p, 0);
2340         break;
2341 
2342     case MO_ATOM_WITHIN16_PAIR:
2343         /* Since size > 8, this is the half that must be atomic. */
2344         return do_ld_whole_be16(env, ra, p, a);
2345 
2346     case MO_ATOM_IFALIGN_PAIR:
2347         /*
2348          * Since size > 8, both halves are misaligned,
2349          * and so neither is atomic.
2350          */
2351     case MO_ATOM_IFALIGN:
2352     case MO_ATOM_WITHIN16:
2353     case MO_ATOM_NONE:
2354         p->size = size - 8;
2355         a = do_ld_bytes_beN(p, a);
2356         b = ldq_be_p(p->haddr + size - 8);
2357         break;
2358 
2359     default:
2360         g_assert_not_reached();
2361     }
2362 
2363     return int128_make128(b, a);
2364 }
2365 
2366 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2367                        MMUAccessType type, uintptr_t ra)
2368 {
2369     if (unlikely(p->flags & TLB_MMIO)) {
2370         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2371     } else {
2372         return *(uint8_t *)p->haddr;
2373     }
2374 }
2375 
2376 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2377                         MMUAccessType type, MemOp memop, uintptr_t ra)
2378 {
2379     uint16_t ret;
2380 
2381     if (unlikely(p->flags & TLB_MMIO)) {
2382         QEMU_IOTHREAD_LOCK_GUARD();
2383         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2384         if ((memop & MO_BSWAP) == MO_LE) {
2385             ret = bswap16(ret);
2386         }
2387     } else {
2388         /* Perform the load host endian, then swap if necessary. */
2389         ret = load_atom_2(env, ra, p->haddr, memop);
2390         if (memop & MO_BSWAP) {
2391             ret = bswap16(ret);
2392         }
2393     }
2394     return ret;
2395 }
2396 
2397 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2398                         MMUAccessType type, MemOp memop, uintptr_t ra)
2399 {
2400     uint32_t ret;
2401 
2402     if (unlikely(p->flags & TLB_MMIO)) {
2403         QEMU_IOTHREAD_LOCK_GUARD();
2404         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2405         if ((memop & MO_BSWAP) == MO_LE) {
2406             ret = bswap32(ret);
2407         }
2408     } else {
2409         /* Perform the load host endian. */
2410         ret = load_atom_4(env, ra, p->haddr, memop);
2411         if (memop & MO_BSWAP) {
2412             ret = bswap32(ret);
2413         }
2414     }
2415     return ret;
2416 }
2417 
2418 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2419                         MMUAccessType type, MemOp memop, uintptr_t ra)
2420 {
2421     uint64_t ret;
2422 
2423     if (unlikely(p->flags & TLB_MMIO)) {
2424         QEMU_IOTHREAD_LOCK_GUARD();
2425         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2426         if ((memop & MO_BSWAP) == MO_LE) {
2427             ret = bswap64(ret);
2428         }
2429     } else {
2430         /* Perform the load host endian. */
2431         ret = load_atom_8(env, ra, p->haddr, memop);
2432         if (memop & MO_BSWAP) {
2433             ret = bswap64(ret);
2434         }
2435     }
2436     return ret;
2437 }
2438 
2439 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2440                           uintptr_t ra, MMUAccessType access_type)
2441 {
2442     MMULookupLocals l;
2443     bool crosspage;
2444 
2445     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2446     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2447     tcg_debug_assert(!crosspage);
2448 
2449     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2450 }
2451 
2452 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2453                                  MemOpIdx oi, uintptr_t retaddr)
2454 {
2455     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2456     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2457 }
2458 
2459 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2460                            uintptr_t ra, MMUAccessType access_type)
2461 {
2462     MMULookupLocals l;
2463     bool crosspage;
2464     uint16_t ret;
2465     uint8_t a, b;
2466 
2467     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2468     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2469     if (likely(!crosspage)) {
2470         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2471     }
2472 
2473     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2474     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2475 
2476     if ((l.memop & MO_BSWAP) == MO_LE) {
2477         ret = a | (b << 8);
2478     } else {
2479         ret = b | (a << 8);
2480     }
2481     return ret;
2482 }
2483 
2484 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2485                                  MemOpIdx oi, uintptr_t retaddr)
2486 {
2487     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2488     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2489 }
2490 
2491 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2492                            uintptr_t ra, MMUAccessType access_type)
2493 {
2494     MMULookupLocals l;
2495     bool crosspage;
2496     uint32_t ret;
2497 
2498     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2499     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2500     if (likely(!crosspage)) {
2501         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2502     }
2503 
2504     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2505     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2506     if ((l.memop & MO_BSWAP) == MO_LE) {
2507         ret = bswap32(ret);
2508     }
2509     return ret;
2510 }
2511 
2512 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2513                                  MemOpIdx oi, uintptr_t retaddr)
2514 {
2515     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2516     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2517 }
2518 
2519 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2520                            uintptr_t ra, MMUAccessType access_type)
2521 {
2522     MMULookupLocals l;
2523     bool crosspage;
2524     uint64_t ret;
2525 
2526     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2527     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2528     if (likely(!crosspage)) {
2529         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2530     }
2531 
2532     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2533     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2534     if ((l.memop & MO_BSWAP) == MO_LE) {
2535         ret = bswap64(ret);
2536     }
2537     return ret;
2538 }
2539 
2540 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2541                         MemOpIdx oi, uintptr_t retaddr)
2542 {
2543     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2544     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2545 }
2546 
2547 /*
2548  * Provide signed versions of the load routines as well.  We can of course
2549  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2550  */
2551 
2552 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2553                                  MemOpIdx oi, uintptr_t retaddr)
2554 {
2555     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2556 }
2557 
2558 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2559                                  MemOpIdx oi, uintptr_t retaddr)
2560 {
2561     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2562 }
2563 
2564 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2565                                  MemOpIdx oi, uintptr_t retaddr)
2566 {
2567     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2568 }
2569 
2570 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2571                           MemOpIdx oi, uintptr_t ra)
2572 {
2573     MMULookupLocals l;
2574     bool crosspage;
2575     uint64_t a, b;
2576     Int128 ret;
2577     int first;
2578 
2579     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2580     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2581     if (likely(!crosspage)) {
2582         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2583             QEMU_IOTHREAD_LOCK_GUARD();
2584             a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2585                                l.mmu_idx, MMU_DATA_LOAD, ra);
2586             b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2587                                l.mmu_idx, MMU_DATA_LOAD, ra);
2588             ret = int128_make128(b, a);
2589             if ((l.memop & MO_BSWAP) == MO_LE) {
2590                 ret = bswap128(ret);
2591             }
2592         } else {
2593             /* Perform the load host endian. */
2594             ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2595             if (l.memop & MO_BSWAP) {
2596                 ret = bswap128(ret);
2597             }
2598         }
2599         return ret;
2600     }
2601 
2602     first = l.page[0].size;
2603     if (first == 8) {
2604         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2605 
2606         a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2607         b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2608         if ((mop8 & MO_BSWAP) == MO_LE) {
2609             ret = int128_make128(a, b);
2610         } else {
2611             ret = int128_make128(b, a);
2612         }
2613         return ret;
2614     }
2615 
2616     if (first < 8) {
2617         a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2618                       MMU_DATA_LOAD, l.memop, ra);
2619         ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2620     } else {
2621         ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2622         b = int128_getlo(ret);
2623         ret = int128_lshift(ret, l.page[1].size * 8);
2624         a = int128_gethi(ret);
2625         b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2626                       MMU_DATA_LOAD, l.memop, ra);
2627         ret = int128_make128(b, a);
2628     }
2629     if ((l.memop & MO_BSWAP) == MO_LE) {
2630         ret = bswap128(ret);
2631     }
2632     return ret;
2633 }
2634 
2635 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2636                        uint32_t oi, uintptr_t retaddr)
2637 {
2638     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2639     return do_ld16_mmu(env, addr, oi, retaddr);
2640 }
2641 
2642 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2643 {
2644     return helper_ld16_mmu(env, addr, oi, GETPC());
2645 }
2646 
2647 /*
2648  * Load helpers for cpu_ldst.h.
2649  */
2650 
2651 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2652 {
2653     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2654 }
2655 
2656 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2657 {
2658     uint8_t ret;
2659 
2660     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2661     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2662     plugin_load_cb(env, addr, oi);
2663     return ret;
2664 }
2665 
2666 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2667                      MemOpIdx oi, uintptr_t ra)
2668 {
2669     uint16_t ret;
2670 
2671     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2672     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2673     plugin_load_cb(env, addr, oi);
2674     return ret;
2675 }
2676 
2677 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2678                      MemOpIdx oi, uintptr_t ra)
2679 {
2680     uint32_t ret;
2681 
2682     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2683     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2684     plugin_load_cb(env, addr, oi);
2685     return ret;
2686 }
2687 
2688 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2689                      MemOpIdx oi, uintptr_t ra)
2690 {
2691     uint64_t ret;
2692 
2693     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2694     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2695     plugin_load_cb(env, addr, oi);
2696     return ret;
2697 }
2698 
2699 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2700                     MemOpIdx oi, uintptr_t ra)
2701 {
2702     Int128 ret;
2703 
2704     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2705     ret = do_ld16_mmu(env, addr, oi, ra);
2706     plugin_load_cb(env, addr, oi);
2707     return ret;
2708 }
2709 
2710 /*
2711  * Store Helpers
2712  */
2713 
2714 /**
2715  * do_st_mmio_leN:
2716  * @env: cpu context
2717  * @full: page parameters
2718  * @val_le: data to store
2719  * @addr: virtual address
2720  * @size: number of bytes
2721  * @mmu_idx: virtual address context
2722  * @ra: return address into tcg generated code, or 0
2723  * Context: iothread lock held
2724  *
2725  * Store @size bytes at @addr, which is memory-mapped i/o.
2726  * The bytes to store are extracted in little-endian order from @val_le;
2727  * return the bytes of @val_le beyond @p->size that have not been stored.
2728  */
2729 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2730                                uint64_t val_le, vaddr addr, int size,
2731                                int mmu_idx, uintptr_t ra)
2732 {
2733     tcg_debug_assert(size > 0 && size <= 8);
2734 
2735     do {
2736         /* Store aligned pieces up to 8 bytes. */
2737         switch ((size | (int)addr) & 7) {
2738         case 1:
2739         case 3:
2740         case 5:
2741         case 7:
2742             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2743             val_le >>= 8;
2744             size -= 1;
2745             addr += 1;
2746             break;
2747         case 2:
2748         case 6:
2749             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2750             val_le >>= 16;
2751             size -= 2;
2752             addr += 2;
2753             break;
2754         case 4:
2755             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2756             val_le >>= 32;
2757             size -= 4;
2758             addr += 4;
2759             break;
2760         case 0:
2761             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2762             return 0;
2763         default:
2764             qemu_build_not_reached();
2765         }
2766     } while (size);
2767 
2768     return val_le;
2769 }
2770 
2771 /*
2772  * Wrapper for the above.
2773  */
2774 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2775                           uint64_t val_le, int mmu_idx,
2776                           MemOp mop, uintptr_t ra)
2777 {
2778     MemOp atom;
2779     unsigned tmp, half_size;
2780 
2781     if (unlikely(p->flags & TLB_MMIO)) {
2782         QEMU_IOTHREAD_LOCK_GUARD();
2783         return do_st_mmio_leN(env, p->full, val_le, p->addr,
2784                               p->size, mmu_idx, ra);
2785     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2786         return val_le >> (p->size * 8);
2787     }
2788 
2789     /*
2790      * It is a given that we cross a page and therefore there is no atomicity
2791      * for the store as a whole, but subobjects may need attention.
2792      */
2793     atom = mop & MO_ATOM_MASK;
2794     switch (atom) {
2795     case MO_ATOM_SUBALIGN:
2796         return store_parts_leN(p->haddr, p->size, val_le);
2797 
2798     case MO_ATOM_IFALIGN_PAIR:
2799     case MO_ATOM_WITHIN16_PAIR:
2800         tmp = mop & MO_SIZE;
2801         tmp = tmp ? tmp - 1 : 0;
2802         half_size = 1 << tmp;
2803         if (atom == MO_ATOM_IFALIGN_PAIR
2804             ? p->size == half_size
2805             : p->size >= half_size) {
2806             if (!HAVE_al8_fast && p->size <= 4) {
2807                 return store_whole_le4(p->haddr, p->size, val_le);
2808             } else if (HAVE_al8) {
2809                 return store_whole_le8(p->haddr, p->size, val_le);
2810             } else {
2811                 cpu_loop_exit_atomic(env_cpu(env), ra);
2812             }
2813         }
2814         /* fall through */
2815 
2816     case MO_ATOM_IFALIGN:
2817     case MO_ATOM_WITHIN16:
2818     case MO_ATOM_NONE:
2819         return store_bytes_leN(p->haddr, p->size, val_le);
2820 
2821     default:
2822         g_assert_not_reached();
2823     }
2824 }
2825 
2826 /*
2827  * Wrapper for the above, for 8 < size < 16.
2828  */
2829 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2830                             Int128 val_le, int mmu_idx,
2831                             MemOp mop, uintptr_t ra)
2832 {
2833     int size = p->size;
2834     MemOp atom;
2835 
2836     if (unlikely(p->flags & TLB_MMIO)) {
2837         QEMU_IOTHREAD_LOCK_GUARD();
2838         do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2839                        p->addr, 8, mmu_idx, ra);
2840         return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2841                               p->addr + 8, size - 8, mmu_idx, ra);
2842     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2843         return int128_gethi(val_le) >> ((size - 8) * 8);
2844     }
2845 
2846     /*
2847      * It is a given that we cross a page and therefore there is no atomicity
2848      * for the store as a whole, but subobjects may need attention.
2849      */
2850     atom = mop & MO_ATOM_MASK;
2851     switch (atom) {
2852     case MO_ATOM_SUBALIGN:
2853         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2854         return store_parts_leN(p->haddr + 8, p->size - 8,
2855                                int128_gethi(val_le));
2856 
2857     case MO_ATOM_WITHIN16_PAIR:
2858         /* Since size > 8, this is the half that must be atomic. */
2859         if (!HAVE_ATOMIC128_RW) {
2860             cpu_loop_exit_atomic(env_cpu(env), ra);
2861         }
2862         return store_whole_le16(p->haddr, p->size, val_le);
2863 
2864     case MO_ATOM_IFALIGN_PAIR:
2865         /*
2866          * Since size > 8, both halves are misaligned,
2867          * and so neither is atomic.
2868          */
2869     case MO_ATOM_IFALIGN:
2870     case MO_ATOM_WITHIN16:
2871     case MO_ATOM_NONE:
2872         stq_le_p(p->haddr, int128_getlo(val_le));
2873         return store_bytes_leN(p->haddr + 8, p->size - 8,
2874                                int128_gethi(val_le));
2875 
2876     default:
2877         g_assert_not_reached();
2878     }
2879 }
2880 
2881 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2882                     int mmu_idx, uintptr_t ra)
2883 {
2884     if (unlikely(p->flags & TLB_MMIO)) {
2885         io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2886     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2887         /* nothing */
2888     } else {
2889         *(uint8_t *)p->haddr = val;
2890     }
2891 }
2892 
2893 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2894                     int mmu_idx, MemOp memop, uintptr_t ra)
2895 {
2896     if (unlikely(p->flags & TLB_MMIO)) {
2897         if ((memop & MO_BSWAP) != MO_LE) {
2898             val = bswap16(val);
2899         }
2900         QEMU_IOTHREAD_LOCK_GUARD();
2901         do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2902     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2903         /* nothing */
2904     } else {
2905         /* Swap to host endian if necessary, then store. */
2906         if (memop & MO_BSWAP) {
2907             val = bswap16(val);
2908         }
2909         store_atom_2(env, ra, p->haddr, memop, val);
2910     }
2911 }
2912 
2913 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2914                     int mmu_idx, MemOp memop, uintptr_t ra)
2915 {
2916     if (unlikely(p->flags & TLB_MMIO)) {
2917         if ((memop & MO_BSWAP) != MO_LE) {
2918             val = bswap32(val);
2919         }
2920         QEMU_IOTHREAD_LOCK_GUARD();
2921         do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2922     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2923         /* nothing */
2924     } else {
2925         /* Swap to host endian if necessary, then store. */
2926         if (memop & MO_BSWAP) {
2927             val = bswap32(val);
2928         }
2929         store_atom_4(env, ra, p->haddr, memop, val);
2930     }
2931 }
2932 
2933 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2934                     int mmu_idx, MemOp memop, uintptr_t ra)
2935 {
2936     if (unlikely(p->flags & TLB_MMIO)) {
2937         if ((memop & MO_BSWAP) != MO_LE) {
2938             val = bswap64(val);
2939         }
2940         QEMU_IOTHREAD_LOCK_GUARD();
2941         do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2942     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2943         /* nothing */
2944     } else {
2945         /* Swap to host endian if necessary, then store. */
2946         if (memop & MO_BSWAP) {
2947             val = bswap64(val);
2948         }
2949         store_atom_8(env, ra, p->haddr, memop, val);
2950     }
2951 }
2952 
2953 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2954                     MemOpIdx oi, uintptr_t ra)
2955 {
2956     MMULookupLocals l;
2957     bool crosspage;
2958 
2959     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2960     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2961     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2962     tcg_debug_assert(!crosspage);
2963 
2964     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2965 }
2966 
2967 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2968                        MemOpIdx oi, uintptr_t ra)
2969 {
2970     MMULookupLocals l;
2971     bool crosspage;
2972     uint8_t a, b;
2973 
2974     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2975     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2976     if (likely(!crosspage)) {
2977         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2978         return;
2979     }
2980 
2981     if ((l.memop & MO_BSWAP) == MO_LE) {
2982         a = val, b = val >> 8;
2983     } else {
2984         b = val, a = val >> 8;
2985     }
2986     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2987     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2988 }
2989 
2990 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2991                     MemOpIdx oi, uintptr_t retaddr)
2992 {
2993     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2994     do_st2_mmu(env, addr, val, oi, retaddr);
2995 }
2996 
2997 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2998                        MemOpIdx oi, uintptr_t ra)
2999 {
3000     MMULookupLocals l;
3001     bool crosspage;
3002 
3003     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3004     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3005     if (likely(!crosspage)) {
3006         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3007         return;
3008     }
3009 
3010     /* Swap to little endian for simplicity, then store by bytes. */
3011     if ((l.memop & MO_BSWAP) != MO_LE) {
3012         val = bswap32(val);
3013     }
3014     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3015     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3016 }
3017 
3018 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3019                     MemOpIdx oi, uintptr_t retaddr)
3020 {
3021     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3022     do_st4_mmu(env, addr, val, oi, retaddr);
3023 }
3024 
3025 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3026                        MemOpIdx oi, uintptr_t ra)
3027 {
3028     MMULookupLocals l;
3029     bool crosspage;
3030 
3031     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3032     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3033     if (likely(!crosspage)) {
3034         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3035         return;
3036     }
3037 
3038     /* Swap to little endian for simplicity, then store by bytes. */
3039     if ((l.memop & MO_BSWAP) != MO_LE) {
3040         val = bswap64(val);
3041     }
3042     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3043     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3044 }
3045 
3046 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3047                     MemOpIdx oi, uintptr_t retaddr)
3048 {
3049     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3050     do_st8_mmu(env, addr, val, oi, retaddr);
3051 }
3052 
3053 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3054                         MemOpIdx oi, uintptr_t ra)
3055 {
3056     MMULookupLocals l;
3057     bool crosspage;
3058     uint64_t a, b;
3059     int first;
3060 
3061     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3062     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3063     if (likely(!crosspage)) {
3064         if (unlikely(l.page[0].flags & TLB_MMIO)) {
3065             if ((l.memop & MO_BSWAP) != MO_LE) {
3066                 val = bswap128(val);
3067             }
3068             a = int128_getlo(val);
3069             b = int128_gethi(val);
3070             QEMU_IOTHREAD_LOCK_GUARD();
3071             do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3072             do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3073         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3074             /* nothing */
3075         } else {
3076             /* Swap to host endian if necessary, then store. */
3077             if (l.memop & MO_BSWAP) {
3078                 val = bswap128(val);
3079             }
3080             store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3081         }
3082         return;
3083     }
3084 
3085     first = l.page[0].size;
3086     if (first == 8) {
3087         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3088 
3089         if (l.memop & MO_BSWAP) {
3090             val = bswap128(val);
3091         }
3092         if (HOST_BIG_ENDIAN) {
3093             b = int128_getlo(val), a = int128_gethi(val);
3094         } else {
3095             a = int128_getlo(val), b = int128_gethi(val);
3096         }
3097         do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3098         do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3099         return;
3100     }
3101 
3102     if ((l.memop & MO_BSWAP) != MO_LE) {
3103         val = bswap128(val);
3104     }
3105     if (first < 8) {
3106         do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3107         val = int128_urshift(val, first * 8);
3108         do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3109     } else {
3110         b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3111         do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3112     }
3113 }
3114 
3115 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3116                      MemOpIdx oi, uintptr_t retaddr)
3117 {
3118     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3119     do_st16_mmu(env, addr, val, oi, retaddr);
3120 }
3121 
3122 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3123 {
3124     helper_st16_mmu(env, addr, val, oi, GETPC());
3125 }
3126 
3127 /*
3128  * Store Helpers for cpu_ldst.h
3129  */
3130 
3131 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3132 {
3133     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3134 }
3135 
3136 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
3137                  MemOpIdx oi, uintptr_t retaddr)
3138 {
3139     helper_stb_mmu(env, addr, val, oi, retaddr);
3140     plugin_store_cb(env, addr, oi);
3141 }
3142 
3143 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
3144                  MemOpIdx oi, uintptr_t retaddr)
3145 {
3146     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3147     do_st2_mmu(env, addr, val, oi, retaddr);
3148     plugin_store_cb(env, addr, oi);
3149 }
3150 
3151 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
3152                     MemOpIdx oi, uintptr_t retaddr)
3153 {
3154     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3155     do_st4_mmu(env, addr, val, oi, retaddr);
3156     plugin_store_cb(env, addr, oi);
3157 }
3158 
3159 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3160                  MemOpIdx oi, uintptr_t retaddr)
3161 {
3162     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3163     do_st8_mmu(env, addr, val, oi, retaddr);
3164     plugin_store_cb(env, addr, oi);
3165 }
3166 
3167 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3168                   MemOpIdx oi, uintptr_t retaddr)
3169 {
3170     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3171     do_st16_mmu(env, addr, val, oi, retaddr);
3172     plugin_store_cb(env, addr, oi);
3173 }
3174 
3175 #include "ldst_common.c.inc"
3176 
3177 /*
3178  * First set of functions passes in OI and RETADDR.
3179  * This makes them callable from other helpers.
3180  */
3181 
3182 #define ATOMIC_NAME(X) \
3183     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3184 
3185 #define ATOMIC_MMU_CLEANUP
3186 
3187 #include "atomic_common.c.inc"
3188 
3189 #define DATA_SIZE 1
3190 #include "atomic_template.h"
3191 
3192 #define DATA_SIZE 2
3193 #include "atomic_template.h"
3194 
3195 #define DATA_SIZE 4
3196 #include "atomic_template.h"
3197 
3198 #ifdef CONFIG_ATOMIC64
3199 #define DATA_SIZE 8
3200 #include "atomic_template.h"
3201 #endif
3202 
3203 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3204 #define DATA_SIZE 16
3205 #include "atomic_template.h"
3206 #endif
3207 
3208 /* Code access functions.  */
3209 
3210 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3211 {
3212     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3213     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3214 }
3215 
3216 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3217 {
3218     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3219     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3220 }
3221 
3222 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3223 {
3224     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3225     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3226 }
3227 
3228 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3229 {
3230     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3231     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3232 }
3233 
3234 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3235                          MemOpIdx oi, uintptr_t retaddr)
3236 {
3237     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3238 }
3239 
3240 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3241                           MemOpIdx oi, uintptr_t retaddr)
3242 {
3243     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3244 }
3245 
3246 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3247                           MemOpIdx oi, uintptr_t retaddr)
3248 {
3249     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3250 }
3251 
3252 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3253                           MemOpIdx oi, uintptr_t retaddr)
3254 {
3255     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3256 }
3257