xref: /qemu/accel/tcg/tcg-accel-ops-rr.c (revision 654d6b04)
1 /*
2  * QEMU TCG Single Threaded vCPUs implementation
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2014 Red Hat Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "sysemu/tcg.h"
29 #include "sysemu/replay.h"
30 #include "qemu/main-loop.h"
31 #include "qemu/guest-random.h"
32 #include "exec/exec-all.h"
33 
34 #include "tcg-accel-ops.h"
35 #include "tcg-accel-ops-rr.h"
36 #include "tcg-accel-ops-icount.h"
37 
38 /* Kick all RR vCPUs */
39 void rr_kick_vcpu_thread(CPUState *unused)
40 {
41     CPUState *cpu;
42 
43     CPU_FOREACH(cpu) {
44         cpu_exit(cpu);
45     };
46 }
47 
48 /*
49  * TCG vCPU kick timer
50  *
51  * The kick timer is responsible for moving single threaded vCPU
52  * emulation on to the next vCPU. If more than one vCPU is running a
53  * timer event with force a cpu->exit so the next vCPU can get
54  * scheduled.
55  *
56  * The timer is removed if all vCPUs are idle and restarted again once
57  * idleness is complete.
58  */
59 
60 static QEMUTimer *rr_kick_vcpu_timer;
61 static CPUState *rr_current_cpu;
62 
63 static inline int64_t rr_next_kick_time(void)
64 {
65     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
66 }
67 
68 /* Kick the currently round-robin scheduled vCPU to next */
69 static void rr_kick_next_cpu(void)
70 {
71     CPUState *cpu;
72     do {
73         cpu = qatomic_mb_read(&rr_current_cpu);
74         if (cpu) {
75             cpu_exit(cpu);
76         }
77     } while (cpu != qatomic_mb_read(&rr_current_cpu));
78 }
79 
80 static void rr_kick_thread(void *opaque)
81 {
82     timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
83     rr_kick_next_cpu();
84 }
85 
86 static void rr_start_kick_timer(void)
87 {
88     if (!rr_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
89         rr_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
90                                            rr_kick_thread, NULL);
91     }
92     if (rr_kick_vcpu_timer && !timer_pending(rr_kick_vcpu_timer)) {
93         timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
94     }
95 }
96 
97 static void rr_stop_kick_timer(void)
98 {
99     if (rr_kick_vcpu_timer && timer_pending(rr_kick_vcpu_timer)) {
100         timer_del(rr_kick_vcpu_timer);
101     }
102 }
103 
104 static void rr_wait_io_event(void)
105 {
106     CPUState *cpu;
107 
108     while (all_cpu_threads_idle()) {
109         rr_stop_kick_timer();
110         qemu_cond_wait_iothread(first_cpu->halt_cond);
111     }
112 
113     rr_start_kick_timer();
114 
115     CPU_FOREACH(cpu) {
116         qemu_wait_io_event_common(cpu);
117     }
118 }
119 
120 /*
121  * Destroy any remaining vCPUs which have been unplugged and have
122  * finished running
123  */
124 static void rr_deal_with_unplugged_cpus(void)
125 {
126     CPUState *cpu;
127 
128     CPU_FOREACH(cpu) {
129         if (cpu->unplug && !cpu_can_run(cpu)) {
130             tcg_cpus_destroy(cpu);
131             break;
132         }
133     }
134 }
135 
136 /*
137  * In the single-threaded case each vCPU is simulated in turn. If
138  * there is more than a single vCPU we create a simple timer to kick
139  * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
140  * This is done explicitly rather than relying on side-effects
141  * elsewhere.
142  */
143 
144 static void *rr_cpu_thread_fn(void *arg)
145 {
146     CPUState *cpu = arg;
147 
148     assert(tcg_enabled());
149     rcu_register_thread();
150     tcg_register_thread();
151 
152     qemu_mutex_lock_iothread();
153     qemu_thread_get_self(cpu->thread);
154 
155     cpu->thread_id = qemu_get_thread_id();
156     cpu->can_do_io = 1;
157     cpu_thread_signal_created(cpu);
158     qemu_guest_random_seed_thread_part2(cpu->random_seed);
159 
160     /* wait for initial kick-off after machine start */
161     while (first_cpu->stopped) {
162         qemu_cond_wait_iothread(first_cpu->halt_cond);
163 
164         /* process any pending work */
165         CPU_FOREACH(cpu) {
166             current_cpu = cpu;
167             qemu_wait_io_event_common(cpu);
168         }
169     }
170 
171     rr_start_kick_timer();
172 
173     cpu = first_cpu;
174 
175     /* process any pending work */
176     cpu->exit_request = 1;
177 
178     while (1) {
179         qemu_mutex_unlock_iothread();
180         replay_mutex_lock();
181         qemu_mutex_lock_iothread();
182 
183         if (icount_enabled()) {
184             /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
185             icount_account_warp_timer();
186             /*
187              * Run the timers here.  This is much more efficient than
188              * waking up the I/O thread and waiting for completion.
189              */
190             icount_handle_deadline();
191         }
192 
193         replay_mutex_unlock();
194 
195         if (!cpu) {
196             cpu = first_cpu;
197         }
198 
199         while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
200 
201             qatomic_mb_set(&rr_current_cpu, cpu);
202             current_cpu = cpu;
203 
204             qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
205                               (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
206 
207             if (cpu_can_run(cpu)) {
208                 int r;
209 
210                 qemu_mutex_unlock_iothread();
211                 if (icount_enabled()) {
212                     icount_prepare_for_run(cpu);
213                 }
214                 r = tcg_cpus_exec(cpu);
215                 if (icount_enabled()) {
216                     icount_process_data(cpu);
217                 }
218                 qemu_mutex_lock_iothread();
219 
220                 if (r == EXCP_DEBUG) {
221                     cpu_handle_guest_debug(cpu);
222                     break;
223                 } else if (r == EXCP_ATOMIC) {
224                     qemu_mutex_unlock_iothread();
225                     cpu_exec_step_atomic(cpu);
226                     qemu_mutex_lock_iothread();
227                     break;
228                 }
229             } else if (cpu->stop) {
230                 if (cpu->unplug) {
231                     cpu = CPU_NEXT(cpu);
232                 }
233                 break;
234             }
235 
236             cpu = CPU_NEXT(cpu);
237         } /* while (cpu && !cpu->exit_request).. */
238 
239         /* Does not need qatomic_mb_set because a spurious wakeup is okay.  */
240         qatomic_set(&rr_current_cpu, NULL);
241 
242         if (cpu && cpu->exit_request) {
243             qatomic_mb_set(&cpu->exit_request, 0);
244         }
245 
246         if (icount_enabled() && all_cpu_threads_idle()) {
247             /*
248              * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
249              * in the main_loop, wake it up in order to start the warp timer.
250              */
251             qemu_notify_event();
252         }
253 
254         rr_wait_io_event();
255         rr_deal_with_unplugged_cpus();
256     }
257 
258     rcu_unregister_thread();
259     return NULL;
260 }
261 
262 void rr_start_vcpu_thread(CPUState *cpu)
263 {
264     char thread_name[VCPU_THREAD_NAME_SIZE];
265     static QemuCond *single_tcg_halt_cond;
266     static QemuThread *single_tcg_cpu_thread;
267 
268     g_assert(tcg_enabled());
269     tcg_cpu_init_cflags(cpu, false);
270 
271     if (!single_tcg_cpu_thread) {
272         cpu->thread = g_malloc0(sizeof(QemuThread));
273         cpu->halt_cond = g_malloc0(sizeof(QemuCond));
274         qemu_cond_init(cpu->halt_cond);
275 
276         /* share a single thread for all cpus with TCG */
277         snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
278         qemu_thread_create(cpu->thread, thread_name,
279                            rr_cpu_thread_fn,
280                            cpu, QEMU_THREAD_JOINABLE);
281 
282         single_tcg_halt_cond = cpu->halt_cond;
283         single_tcg_cpu_thread = cpu->thread;
284 #ifdef _WIN32
285         cpu->hThread = qemu_thread_get_handle(cpu->thread);
286 #endif
287     } else {
288         /* we share the thread */
289         cpu->thread = single_tcg_cpu_thread;
290         cpu->halt_cond = single_tcg_halt_cond;
291         cpu->thread_id = first_cpu->thread_id;
292         cpu->can_do_io = 1;
293         cpu->created = true;
294     }
295 }
296