xref: /qemu/accel/tcg/tcg-accel-ops-rr.c (revision d0fb9657)
1 /*
2  * QEMU TCG Single Threaded vCPUs implementation
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2014 Red Hat Inc.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "sysemu/tcg.h"
29 #include "sysemu/replay.h"
30 #include "qemu/main-loop.h"
31 #include "qemu/guest-random.h"
32 #include "exec/exec-all.h"
33 
34 #include "tcg-accel-ops.h"
35 #include "tcg-accel-ops-rr.h"
36 #include "tcg-accel-ops-icount.h"
37 
38 /* Kick all RR vCPUs */
39 void rr_kick_vcpu_thread(CPUState *unused)
40 {
41     CPUState *cpu;
42 
43     CPU_FOREACH(cpu) {
44         cpu_exit(cpu);
45     };
46 }
47 
48 /*
49  * TCG vCPU kick timer
50  *
51  * The kick timer is responsible for moving single threaded vCPU
52  * emulation on to the next vCPU. If more than one vCPU is running a
53  * timer event with force a cpu->exit so the next vCPU can get
54  * scheduled.
55  *
56  * The timer is removed if all vCPUs are idle and restarted again once
57  * idleness is complete.
58  */
59 
60 static QEMUTimer *rr_kick_vcpu_timer;
61 static CPUState *rr_current_cpu;
62 
63 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
64 
65 static inline int64_t rr_next_kick_time(void)
66 {
67     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
68 }
69 
70 /* Kick the currently round-robin scheduled vCPU to next */
71 static void rr_kick_next_cpu(void)
72 {
73     CPUState *cpu;
74     do {
75         cpu = qatomic_mb_read(&rr_current_cpu);
76         if (cpu) {
77             cpu_exit(cpu);
78         }
79     } while (cpu != qatomic_mb_read(&rr_current_cpu));
80 }
81 
82 static void rr_kick_thread(void *opaque)
83 {
84     timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
85     rr_kick_next_cpu();
86 }
87 
88 static void rr_start_kick_timer(void)
89 {
90     if (!rr_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
91         rr_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
92                                            rr_kick_thread, NULL);
93     }
94     if (rr_kick_vcpu_timer && !timer_pending(rr_kick_vcpu_timer)) {
95         timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
96     }
97 }
98 
99 static void rr_stop_kick_timer(void)
100 {
101     if (rr_kick_vcpu_timer && timer_pending(rr_kick_vcpu_timer)) {
102         timer_del(rr_kick_vcpu_timer);
103     }
104 }
105 
106 static void rr_wait_io_event(void)
107 {
108     CPUState *cpu;
109 
110     while (all_cpu_threads_idle()) {
111         rr_stop_kick_timer();
112         qemu_cond_wait_iothread(first_cpu->halt_cond);
113     }
114 
115     rr_start_kick_timer();
116 
117     CPU_FOREACH(cpu) {
118         qemu_wait_io_event_common(cpu);
119     }
120 }
121 
122 /*
123  * Destroy any remaining vCPUs which have been unplugged and have
124  * finished running
125  */
126 static void rr_deal_with_unplugged_cpus(void)
127 {
128     CPUState *cpu;
129 
130     CPU_FOREACH(cpu) {
131         if (cpu->unplug && !cpu_can_run(cpu)) {
132             tcg_cpus_destroy(cpu);
133             break;
134         }
135     }
136 }
137 
138 /*
139  * In the single-threaded case each vCPU is simulated in turn. If
140  * there is more than a single vCPU we create a simple timer to kick
141  * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
142  * This is done explicitly rather than relying on side-effects
143  * elsewhere.
144  */
145 
146 static void *rr_cpu_thread_fn(void *arg)
147 {
148     CPUState *cpu = arg;
149 
150     assert(tcg_enabled());
151     rcu_register_thread();
152     tcg_register_thread();
153 
154     qemu_mutex_lock_iothread();
155     qemu_thread_get_self(cpu->thread);
156 
157     cpu->thread_id = qemu_get_thread_id();
158     cpu->can_do_io = 1;
159     cpu_thread_signal_created(cpu);
160     qemu_guest_random_seed_thread_part2(cpu->random_seed);
161 
162     /* wait for initial kick-off after machine start */
163     while (first_cpu->stopped) {
164         qemu_cond_wait_iothread(first_cpu->halt_cond);
165 
166         /* process any pending work */
167         CPU_FOREACH(cpu) {
168             current_cpu = cpu;
169             qemu_wait_io_event_common(cpu);
170         }
171     }
172 
173     rr_start_kick_timer();
174 
175     cpu = first_cpu;
176 
177     /* process any pending work */
178     cpu->exit_request = 1;
179 
180     while (1) {
181         qemu_mutex_unlock_iothread();
182         replay_mutex_lock();
183         qemu_mutex_lock_iothread();
184 
185         if (icount_enabled()) {
186             /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
187             icount_account_warp_timer();
188             /*
189              * Run the timers here.  This is much more efficient than
190              * waking up the I/O thread and waiting for completion.
191              */
192             icount_handle_deadline();
193         }
194 
195         replay_mutex_unlock();
196 
197         if (!cpu) {
198             cpu = first_cpu;
199         }
200 
201         while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
202 
203             qatomic_mb_set(&rr_current_cpu, cpu);
204             current_cpu = cpu;
205 
206             qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
207                               (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
208 
209             if (cpu_can_run(cpu)) {
210                 int r;
211 
212                 qemu_mutex_unlock_iothread();
213                 if (icount_enabled()) {
214                     icount_prepare_for_run(cpu);
215                 }
216                 r = tcg_cpus_exec(cpu);
217                 if (icount_enabled()) {
218                     icount_process_data(cpu);
219                 }
220                 qemu_mutex_lock_iothread();
221 
222                 if (r == EXCP_DEBUG) {
223                     cpu_handle_guest_debug(cpu);
224                     break;
225                 } else if (r == EXCP_ATOMIC) {
226                     qemu_mutex_unlock_iothread();
227                     cpu_exec_step_atomic(cpu);
228                     qemu_mutex_lock_iothread();
229                     break;
230                 }
231             } else if (cpu->stop) {
232                 if (cpu->unplug) {
233                     cpu = CPU_NEXT(cpu);
234                 }
235                 break;
236             }
237 
238             cpu = CPU_NEXT(cpu);
239         } /* while (cpu && !cpu->exit_request).. */
240 
241         /* Does not need qatomic_mb_set because a spurious wakeup is okay.  */
242         qatomic_set(&rr_current_cpu, NULL);
243 
244         if (cpu && cpu->exit_request) {
245             qatomic_mb_set(&cpu->exit_request, 0);
246         }
247 
248         if (icount_enabled() && all_cpu_threads_idle()) {
249             /*
250              * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
251              * in the main_loop, wake it up in order to start the warp timer.
252              */
253             qemu_notify_event();
254         }
255 
256         rr_wait_io_event();
257         rr_deal_with_unplugged_cpus();
258     }
259 
260     rcu_unregister_thread();
261     return NULL;
262 }
263 
264 void rr_start_vcpu_thread(CPUState *cpu)
265 {
266     char thread_name[VCPU_THREAD_NAME_SIZE];
267     static QemuCond *single_tcg_halt_cond;
268     static QemuThread *single_tcg_cpu_thread;
269 
270     g_assert(tcg_enabled());
271     tcg_cpu_init_cflags(cpu, false);
272 
273     if (!single_tcg_cpu_thread) {
274         cpu->thread = g_malloc0(sizeof(QemuThread));
275         cpu->halt_cond = g_malloc0(sizeof(QemuCond));
276         qemu_cond_init(cpu->halt_cond);
277 
278         /* share a single thread for all cpus with TCG */
279         snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
280         qemu_thread_create(cpu->thread, thread_name,
281                            rr_cpu_thread_fn,
282                            cpu, QEMU_THREAD_JOINABLE);
283 
284         single_tcg_halt_cond = cpu->halt_cond;
285         single_tcg_cpu_thread = cpu->thread;
286 #ifdef _WIN32
287         cpu->hThread = qemu_thread_get_handle(cpu->thread);
288 #endif
289     } else {
290         /* we share the thread */
291         cpu->thread = single_tcg_cpu_thread;
292         cpu->halt_cond = single_tcg_halt_cond;
293         cpu->thread_id = first_cpu->thread_id;
294         cpu->can_do_io = 1;
295         cpu->created = true;
296     }
297 }
298