xref: /qemu/accel/tcg/translate-all.c (revision 5086c997)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "exec/translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/cpu-timers.h"
61 #include "sysemu/tcg.h"
62 #include "qapi/error.h"
63 #include "internal.h"
64 
65 /* #define DEBUG_TB_INVALIDATE */
66 /* #define DEBUG_TB_FLUSH */
67 /* make various TB consistency checks */
68 /* #define DEBUG_TB_CHECK */
69 
70 #ifdef DEBUG_TB_INVALIDATE
71 #define DEBUG_TB_INVALIDATE_GATE 1
72 #else
73 #define DEBUG_TB_INVALIDATE_GATE 0
74 #endif
75 
76 #ifdef DEBUG_TB_FLUSH
77 #define DEBUG_TB_FLUSH_GATE 1
78 #else
79 #define DEBUG_TB_FLUSH_GATE 0
80 #endif
81 
82 #if !defined(CONFIG_USER_ONLY)
83 /* TB consistency checks only implemented for usermode emulation.  */
84 #undef DEBUG_TB_CHECK
85 #endif
86 
87 #ifdef DEBUG_TB_CHECK
88 #define DEBUG_TB_CHECK_GATE 1
89 #else
90 #define DEBUG_TB_CHECK_GATE 0
91 #endif
92 
93 /* Access to the various translations structures need to be serialised via locks
94  * for consistency.
95  * In user-mode emulation access to the memory related structures are protected
96  * with mmap_lock.
97  * In !user-mode we use per-page locks.
98  */
99 #ifdef CONFIG_SOFTMMU
100 #define assert_memory_lock()
101 #else
102 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
103 #endif
104 
105 #define SMC_BITMAP_USE_THRESHOLD 10
106 
107 typedef struct PageDesc {
108     /* list of TBs intersecting this ram page */
109     uintptr_t first_tb;
110 #ifdef CONFIG_SOFTMMU
111     /* in order to optimize self modifying code, we count the number
112        of lookups we do to a given page to use a bitmap */
113     unsigned long *code_bitmap;
114     unsigned int code_write_count;
115 #else
116     unsigned long flags;
117 #endif
118 #ifndef CONFIG_USER_ONLY
119     QemuSpin lock;
120 #endif
121 } PageDesc;
122 
123 /**
124  * struct page_entry - page descriptor entry
125  * @pd:     pointer to the &struct PageDesc of the page this entry represents
126  * @index:  page index of the page
127  * @locked: whether the page is locked
128  *
129  * This struct helps us keep track of the locked state of a page, without
130  * bloating &struct PageDesc.
131  *
132  * A page lock protects accesses to all fields of &struct PageDesc.
133  *
134  * See also: &struct page_collection.
135  */
136 struct page_entry {
137     PageDesc *pd;
138     tb_page_addr_t index;
139     bool locked;
140 };
141 
142 /**
143  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
144  * @tree:   Binary search tree (BST) of the pages, with key == page index
145  * @max:    Pointer to the page in @tree with the highest page index
146  *
147  * To avoid deadlock we lock pages in ascending order of page index.
148  * When operating on a set of pages, we need to keep track of them so that
149  * we can lock them in order and also unlock them later. For this we collect
150  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
151  * @tree implementation we use does not provide an O(1) operation to obtain the
152  * highest-ranked element, we use @max to keep track of the inserted page
153  * with the highest index. This is valuable because if a page is not in
154  * the tree and its index is higher than @max's, then we can lock it
155  * without breaking the locking order rule.
156  *
157  * Note on naming: 'struct page_set' would be shorter, but we already have a few
158  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
159  *
160  * See also: page_collection_lock().
161  */
162 struct page_collection {
163     GTree *tree;
164     struct page_entry *max;
165 };
166 
167 /* list iterators for lists of tagged pointers in TranslationBlock */
168 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
169     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
170          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
171              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
172 
173 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
174     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
175 
176 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
177     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
178 
179 /*
180  * In system mode we want L1_MAP to be based on ram offsets,
181  * while in user mode we want it to be based on virtual addresses.
182  *
183  * TODO: For user mode, see the caveat re host vs guest virtual
184  * address spaces near GUEST_ADDR_MAX.
185  */
186 #if !defined(CONFIG_USER_ONLY)
187 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
188 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
189 #else
190 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
191 #endif
192 #else
193 # define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
194 #endif
195 
196 /* Size of the L2 (and L3, etc) page tables.  */
197 #define V_L2_BITS 10
198 #define V_L2_SIZE (1 << V_L2_BITS)
199 
200 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
201 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
202                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
203                   * BITS_PER_BYTE);
204 
205 /*
206  * L1 Mapping properties
207  */
208 static int v_l1_size;
209 static int v_l1_shift;
210 static int v_l2_levels;
211 
212 /* The bottom level has pointers to PageDesc, and is indexed by
213  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
214  */
215 #define V_L1_MIN_BITS 4
216 #define V_L1_MAX_BITS (V_L2_BITS + 3)
217 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
218 
219 static void *l1_map[V_L1_MAX_SIZE];
220 
221 /* code generation context */
222 TCGContext tcg_init_ctx;
223 __thread TCGContext *tcg_ctx;
224 TBContext tb_ctx;
225 bool parallel_cpus;
226 
227 static void page_table_config_init(void)
228 {
229     uint32_t v_l1_bits;
230 
231     assert(TARGET_PAGE_BITS);
232     /* The bits remaining after N lower levels of page tables.  */
233     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
234     if (v_l1_bits < V_L1_MIN_BITS) {
235         v_l1_bits += V_L2_BITS;
236     }
237 
238     v_l1_size = 1 << v_l1_bits;
239     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
240     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
241 
242     assert(v_l1_bits <= V_L1_MAX_BITS);
243     assert(v_l1_shift % V_L2_BITS == 0);
244     assert(v_l2_levels >= 0);
245 }
246 
247 static void cpu_gen_init(void)
248 {
249     tcg_context_init(&tcg_init_ctx);
250 }
251 
252 /* Encode VAL as a signed leb128 sequence at P.
253    Return P incremented past the encoded value.  */
254 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
255 {
256     int more, byte;
257 
258     do {
259         byte = val & 0x7f;
260         val >>= 7;
261         more = !((val == 0 && (byte & 0x40) == 0)
262                  || (val == -1 && (byte & 0x40) != 0));
263         if (more) {
264             byte |= 0x80;
265         }
266         *p++ = byte;
267     } while (more);
268 
269     return p;
270 }
271 
272 /* Decode a signed leb128 sequence at *PP; increment *PP past the
273    decoded value.  Return the decoded value.  */
274 static target_long decode_sleb128(const uint8_t **pp)
275 {
276     const uint8_t *p = *pp;
277     target_long val = 0;
278     int byte, shift = 0;
279 
280     do {
281         byte = *p++;
282         val |= (target_ulong)(byte & 0x7f) << shift;
283         shift += 7;
284     } while (byte & 0x80);
285     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
286         val |= -(target_ulong)1 << shift;
287     }
288 
289     *pp = p;
290     return val;
291 }
292 
293 /* Encode the data collected about the instructions while compiling TB.
294    Place the data at BLOCK, and return the number of bytes consumed.
295 
296    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
297    which come from the target's insn_start data, followed by a uintptr_t
298    which comes from the host pc of the end of the code implementing the insn.
299 
300    Each line of the table is encoded as sleb128 deltas from the previous
301    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
302    That is, the first column is seeded with the guest pc, the last column
303    with the host pc, and the middle columns with zeros.  */
304 
305 static int encode_search(TranslationBlock *tb, uint8_t *block)
306 {
307     uint8_t *highwater = tcg_ctx->code_gen_highwater;
308     uint8_t *p = block;
309     int i, j, n;
310 
311     for (i = 0, n = tb->icount; i < n; ++i) {
312         target_ulong prev;
313 
314         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
315             if (i == 0) {
316                 prev = (j == 0 ? tb->pc : 0);
317             } else {
318                 prev = tcg_ctx->gen_insn_data[i - 1][j];
319             }
320             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
321         }
322         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
323         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
324 
325         /* Test for (pending) buffer overflow.  The assumption is that any
326            one row beginning below the high water mark cannot overrun
327            the buffer completely.  Thus we can test for overflow after
328            encoding a row without having to check during encoding.  */
329         if (unlikely(p > highwater)) {
330             return -1;
331         }
332     }
333 
334     return p - block;
335 }
336 
337 /* The cpu state corresponding to 'searched_pc' is restored.
338  * When reset_icount is true, current TB will be interrupted and
339  * icount should be recalculated.
340  */
341 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
342                                      uintptr_t searched_pc, bool reset_icount)
343 {
344     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
345     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
346     CPUArchState *env = cpu->env_ptr;
347     const uint8_t *p = tb->tc.ptr + tb->tc.size;
348     int i, j, num_insns = tb->icount;
349 #ifdef CONFIG_PROFILER
350     TCGProfile *prof = &tcg_ctx->prof;
351     int64_t ti = profile_getclock();
352 #endif
353 
354     searched_pc -= GETPC_ADJ;
355 
356     if (searched_pc < host_pc) {
357         return -1;
358     }
359 
360     /* Reconstruct the stored insn data while looking for the point at
361        which the end of the insn exceeds the searched_pc.  */
362     for (i = 0; i < num_insns; ++i) {
363         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
364             data[j] += decode_sleb128(&p);
365         }
366         host_pc += decode_sleb128(&p);
367         if (host_pc > searched_pc) {
368             goto found;
369         }
370     }
371     return -1;
372 
373  found:
374     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
375         assert(icount_enabled());
376         /* Reset the cycle counter to the start of the block
377            and shift if to the number of actually executed instructions */
378         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
379     }
380     restore_state_to_opc(env, tb, data);
381 
382 #ifdef CONFIG_PROFILER
383     qatomic_set(&prof->restore_time,
384                 prof->restore_time + profile_getclock() - ti);
385     qatomic_set(&prof->restore_count, prof->restore_count + 1);
386 #endif
387     return 0;
388 }
389 
390 void tb_destroy(TranslationBlock *tb)
391 {
392     qemu_spin_destroy(&tb->jmp_lock);
393 }
394 
395 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
396 {
397     /*
398      * The host_pc has to be in the rx region of the code buffer.
399      * If it is not we will not be able to resolve it here.
400      * The two cases where host_pc will not be correct are:
401      *
402      *  - fault during translation (instruction fetch)
403      *  - fault from helper (not using GETPC() macro)
404      *
405      * Either way we need return early as we can't resolve it here.
406      */
407     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
408         TranslationBlock *tb = tcg_tb_lookup(host_pc);
409         if (tb) {
410             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
411             if (tb_cflags(tb) & CF_NOCACHE) {
412                 /* one-shot translation, invalidate it immediately */
413                 tb_phys_invalidate(tb, -1);
414                 tcg_tb_remove(tb);
415                 tb_destroy(tb);
416             }
417             return true;
418         }
419     }
420     return false;
421 }
422 
423 static void page_init(void)
424 {
425     page_size_init();
426     page_table_config_init();
427 
428 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
429     {
430 #ifdef HAVE_KINFO_GETVMMAP
431         struct kinfo_vmentry *freep;
432         int i, cnt;
433 
434         freep = kinfo_getvmmap(getpid(), &cnt);
435         if (freep) {
436             mmap_lock();
437             for (i = 0; i < cnt; i++) {
438                 unsigned long startaddr, endaddr;
439 
440                 startaddr = freep[i].kve_start;
441                 endaddr = freep[i].kve_end;
442                 if (h2g_valid(startaddr)) {
443                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
444 
445                     if (h2g_valid(endaddr)) {
446                         endaddr = h2g(endaddr);
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448                     } else {
449 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
450                         endaddr = ~0ul;
451                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
452 #endif
453                     }
454                 }
455             }
456             free(freep);
457             mmap_unlock();
458         }
459 #else
460         FILE *f;
461 
462         last_brk = (unsigned long)sbrk(0);
463 
464         f = fopen("/compat/linux/proc/self/maps", "r");
465         if (f) {
466             mmap_lock();
467 
468             do {
469                 unsigned long startaddr, endaddr;
470                 int n;
471 
472                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
473 
474                 if (n == 2 && h2g_valid(startaddr)) {
475                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
476 
477                     if (h2g_valid(endaddr)) {
478                         endaddr = h2g(endaddr);
479                     } else {
480                         endaddr = ~0ul;
481                     }
482                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
483                 }
484             } while (!feof(f));
485 
486             fclose(f);
487             mmap_unlock();
488         }
489 #endif
490     }
491 #endif
492 }
493 
494 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
495 {
496     PageDesc *pd;
497     void **lp;
498     int i;
499 
500     /* Level 1.  Always allocated.  */
501     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
502 
503     /* Level 2..N-1.  */
504     for (i = v_l2_levels; i > 0; i--) {
505         void **p = qatomic_rcu_read(lp);
506 
507         if (p == NULL) {
508             void *existing;
509 
510             if (!alloc) {
511                 return NULL;
512             }
513             p = g_new0(void *, V_L2_SIZE);
514             existing = qatomic_cmpxchg(lp, NULL, p);
515             if (unlikely(existing)) {
516                 g_free(p);
517                 p = existing;
518             }
519         }
520 
521         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
522     }
523 
524     pd = qatomic_rcu_read(lp);
525     if (pd == NULL) {
526         void *existing;
527 
528         if (!alloc) {
529             return NULL;
530         }
531         pd = g_new0(PageDesc, V_L2_SIZE);
532 #ifndef CONFIG_USER_ONLY
533         {
534             int i;
535 
536             for (i = 0; i < V_L2_SIZE; i++) {
537                 qemu_spin_init(&pd[i].lock);
538             }
539         }
540 #endif
541         existing = qatomic_cmpxchg(lp, NULL, pd);
542         if (unlikely(existing)) {
543 #ifndef CONFIG_USER_ONLY
544             {
545                 int i;
546 
547                 for (i = 0; i < V_L2_SIZE; i++) {
548                     qemu_spin_destroy(&pd[i].lock);
549                 }
550             }
551 #endif
552             g_free(pd);
553             pd = existing;
554         }
555     }
556 
557     return pd + (index & (V_L2_SIZE - 1));
558 }
559 
560 static inline PageDesc *page_find(tb_page_addr_t index)
561 {
562     return page_find_alloc(index, 0);
563 }
564 
565 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
566                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
567 
568 /* In user-mode page locks aren't used; mmap_lock is enough */
569 #ifdef CONFIG_USER_ONLY
570 
571 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
572 
573 static inline void page_lock(PageDesc *pd)
574 { }
575 
576 static inline void page_unlock(PageDesc *pd)
577 { }
578 
579 static inline void page_lock_tb(const TranslationBlock *tb)
580 { }
581 
582 static inline void page_unlock_tb(const TranslationBlock *tb)
583 { }
584 
585 struct page_collection *
586 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
587 {
588     return NULL;
589 }
590 
591 void page_collection_unlock(struct page_collection *set)
592 { }
593 #else /* !CONFIG_USER_ONLY */
594 
595 #ifdef CONFIG_DEBUG_TCG
596 
597 static __thread GHashTable *ht_pages_locked_debug;
598 
599 static void ht_pages_locked_debug_init(void)
600 {
601     if (ht_pages_locked_debug) {
602         return;
603     }
604     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
605 }
606 
607 static bool page_is_locked(const PageDesc *pd)
608 {
609     PageDesc *found;
610 
611     ht_pages_locked_debug_init();
612     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
613     return !!found;
614 }
615 
616 static void page_lock__debug(PageDesc *pd)
617 {
618     ht_pages_locked_debug_init();
619     g_assert(!page_is_locked(pd));
620     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
621 }
622 
623 static void page_unlock__debug(const PageDesc *pd)
624 {
625     bool removed;
626 
627     ht_pages_locked_debug_init();
628     g_assert(page_is_locked(pd));
629     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
630     g_assert(removed);
631 }
632 
633 static void
634 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
635 {
636     if (unlikely(!page_is_locked(pd))) {
637         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
638                      pd, file, line);
639         abort();
640     }
641 }
642 
643 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
644 
645 void assert_no_pages_locked(void)
646 {
647     ht_pages_locked_debug_init();
648     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
649 }
650 
651 #else /* !CONFIG_DEBUG_TCG */
652 
653 #define assert_page_locked(pd)
654 
655 static inline void page_lock__debug(const PageDesc *pd)
656 {
657 }
658 
659 static inline void page_unlock__debug(const PageDesc *pd)
660 {
661 }
662 
663 #endif /* CONFIG_DEBUG_TCG */
664 
665 static inline void page_lock(PageDesc *pd)
666 {
667     page_lock__debug(pd);
668     qemu_spin_lock(&pd->lock);
669 }
670 
671 static inline void page_unlock(PageDesc *pd)
672 {
673     qemu_spin_unlock(&pd->lock);
674     page_unlock__debug(pd);
675 }
676 
677 /* lock the page(s) of a TB in the correct acquisition order */
678 static inline void page_lock_tb(const TranslationBlock *tb)
679 {
680     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
681 }
682 
683 static inline void page_unlock_tb(const TranslationBlock *tb)
684 {
685     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
686 
687     page_unlock(p1);
688     if (unlikely(tb->page_addr[1] != -1)) {
689         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
690 
691         if (p2 != p1) {
692             page_unlock(p2);
693         }
694     }
695 }
696 
697 static inline struct page_entry *
698 page_entry_new(PageDesc *pd, tb_page_addr_t index)
699 {
700     struct page_entry *pe = g_malloc(sizeof(*pe));
701 
702     pe->index = index;
703     pe->pd = pd;
704     pe->locked = false;
705     return pe;
706 }
707 
708 static void page_entry_destroy(gpointer p)
709 {
710     struct page_entry *pe = p;
711 
712     g_assert(pe->locked);
713     page_unlock(pe->pd);
714     g_free(pe);
715 }
716 
717 /* returns false on success */
718 static bool page_entry_trylock(struct page_entry *pe)
719 {
720     bool busy;
721 
722     busy = qemu_spin_trylock(&pe->pd->lock);
723     if (!busy) {
724         g_assert(!pe->locked);
725         pe->locked = true;
726         page_lock__debug(pe->pd);
727     }
728     return busy;
729 }
730 
731 static void do_page_entry_lock(struct page_entry *pe)
732 {
733     page_lock(pe->pd);
734     g_assert(!pe->locked);
735     pe->locked = true;
736 }
737 
738 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
739 {
740     struct page_entry *pe = value;
741 
742     do_page_entry_lock(pe);
743     return FALSE;
744 }
745 
746 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
747 {
748     struct page_entry *pe = value;
749 
750     if (pe->locked) {
751         pe->locked = false;
752         page_unlock(pe->pd);
753     }
754     return FALSE;
755 }
756 
757 /*
758  * Trylock a page, and if successful, add the page to a collection.
759  * Returns true ("busy") if the page could not be locked; false otherwise.
760  */
761 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
762 {
763     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
764     struct page_entry *pe;
765     PageDesc *pd;
766 
767     pe = g_tree_lookup(set->tree, &index);
768     if (pe) {
769         return false;
770     }
771 
772     pd = page_find(index);
773     if (pd == NULL) {
774         return false;
775     }
776 
777     pe = page_entry_new(pd, index);
778     g_tree_insert(set->tree, &pe->index, pe);
779 
780     /*
781      * If this is either (1) the first insertion or (2) a page whose index
782      * is higher than any other so far, just lock the page and move on.
783      */
784     if (set->max == NULL || pe->index > set->max->index) {
785         set->max = pe;
786         do_page_entry_lock(pe);
787         return false;
788     }
789     /*
790      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
791      * locks in order.
792      */
793     return page_entry_trylock(pe);
794 }
795 
796 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
797 {
798     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
799     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
800 
801     if (a == b) {
802         return 0;
803     } else if (a < b) {
804         return -1;
805     }
806     return 1;
807 }
808 
809 /*
810  * Lock a range of pages ([@start,@end[) as well as the pages of all
811  * intersecting TBs.
812  * Locking order: acquire locks in ascending order of page index.
813  */
814 struct page_collection *
815 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
816 {
817     struct page_collection *set = g_malloc(sizeof(*set));
818     tb_page_addr_t index;
819     PageDesc *pd;
820 
821     start >>= TARGET_PAGE_BITS;
822     end   >>= TARGET_PAGE_BITS;
823     g_assert(start <= end);
824 
825     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
826                                 page_entry_destroy);
827     set->max = NULL;
828     assert_no_pages_locked();
829 
830  retry:
831     g_tree_foreach(set->tree, page_entry_lock, NULL);
832 
833     for (index = start; index <= end; index++) {
834         TranslationBlock *tb;
835         int n;
836 
837         pd = page_find(index);
838         if (pd == NULL) {
839             continue;
840         }
841         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
842             g_tree_foreach(set->tree, page_entry_unlock, NULL);
843             goto retry;
844         }
845         assert_page_locked(pd);
846         PAGE_FOR_EACH_TB(pd, tb, n) {
847             if (page_trylock_add(set, tb->page_addr[0]) ||
848                 (tb->page_addr[1] != -1 &&
849                  page_trylock_add(set, tb->page_addr[1]))) {
850                 /* drop all locks, and reacquire in order */
851                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
852                 goto retry;
853             }
854         }
855     }
856     return set;
857 }
858 
859 void page_collection_unlock(struct page_collection *set)
860 {
861     /* entries are unlocked and freed via page_entry_destroy */
862     g_tree_destroy(set->tree);
863     g_free(set);
864 }
865 
866 #endif /* !CONFIG_USER_ONLY */
867 
868 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
869                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
870 {
871     PageDesc *p1, *p2;
872     tb_page_addr_t page1;
873     tb_page_addr_t page2;
874 
875     assert_memory_lock();
876     g_assert(phys1 != -1);
877 
878     page1 = phys1 >> TARGET_PAGE_BITS;
879     page2 = phys2 >> TARGET_PAGE_BITS;
880 
881     p1 = page_find_alloc(page1, alloc);
882     if (ret_p1) {
883         *ret_p1 = p1;
884     }
885     if (likely(phys2 == -1)) {
886         page_lock(p1);
887         return;
888     } else if (page1 == page2) {
889         page_lock(p1);
890         if (ret_p2) {
891             *ret_p2 = p1;
892         }
893         return;
894     }
895     p2 = page_find_alloc(page2, alloc);
896     if (ret_p2) {
897         *ret_p2 = p2;
898     }
899     if (page1 < page2) {
900         page_lock(p1);
901         page_lock(p2);
902     } else {
903         page_lock(p2);
904         page_lock(p1);
905     }
906 }
907 
908 /* Minimum size of the code gen buffer.  This number is randomly chosen,
909    but not so small that we can't have a fair number of TB's live.  */
910 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
911 
912 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
913    indicated, this is constrained by the range of direct branches on the
914    host cpu, as used by the TCG implementation of goto_tb.  */
915 #if defined(__x86_64__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
917 #elif defined(__sparc__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
919 #elif defined(__powerpc64__)
920 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
921 #elif defined(__powerpc__)
922 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
923 #elif defined(__aarch64__)
924 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
925 #elif defined(__s390x__)
926   /* We have a +- 4GB range on the branches; leave some slop.  */
927 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
928 #elif defined(__mips__)
929   /* We have a 256MB branch region, but leave room to make sure the
930      main executable is also within that region.  */
931 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
932 #else
933 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
934 #endif
935 
936 #if TCG_TARGET_REG_BITS == 32
937 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
938 #ifdef CONFIG_USER_ONLY
939 /*
940  * For user mode on smaller 32 bit systems we may run into trouble
941  * allocating big chunks of data in the right place. On these systems
942  * we utilise a static code generation buffer directly in the binary.
943  */
944 #define USE_STATIC_CODE_GEN_BUFFER
945 #endif
946 #else /* TCG_TARGET_REG_BITS == 64 */
947 #ifdef CONFIG_USER_ONLY
948 /*
949  * As user-mode emulation typically means running multiple instances
950  * of the translator don't go too nuts with our default code gen
951  * buffer lest we make things too hard for the OS.
952  */
953 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
954 #else
955 /*
956  * We expect most system emulation to run one or two guests per host.
957  * Users running large scale system emulation may want to tweak their
958  * runtime setup via the tb-size control on the command line.
959  */
960 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
961 #endif
962 #endif
963 
964 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
965   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
966    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
967 
968 static size_t size_code_gen_buffer(size_t tb_size)
969 {
970     /* Size the buffer.  */
971     if (tb_size == 0) {
972         size_t phys_mem = qemu_get_host_physmem();
973         if (phys_mem == 0) {
974             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
975         } else {
976             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
977         }
978     }
979     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
980         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
981     }
982     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
983         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
984     }
985     return tb_size;
986 }
987 
988 #ifdef __mips__
989 /* In order to use J and JAL within the code_gen_buffer, we require
990    that the buffer not cross a 256MB boundary.  */
991 static inline bool cross_256mb(void *addr, size_t size)
992 {
993     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
994 }
995 
996 /* We weren't able to allocate a buffer without crossing that boundary,
997    so make do with the larger portion of the buffer that doesn't cross.
998    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
999 static inline void *split_cross_256mb(void *buf1, size_t size1)
1000 {
1001     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
1002     size_t size2 = buf1 + size1 - buf2;
1003 
1004     size1 = buf2 - buf1;
1005     if (size1 < size2) {
1006         size1 = size2;
1007         buf1 = buf2;
1008     }
1009 
1010     tcg_ctx->code_gen_buffer_size = size1;
1011     return buf1;
1012 }
1013 #endif
1014 
1015 #ifdef USE_STATIC_CODE_GEN_BUFFER
1016 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1017     __attribute__((aligned(CODE_GEN_ALIGN)));
1018 
1019 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1020 {
1021     void *buf, *end;
1022     size_t size;
1023 
1024     if (splitwx > 0) {
1025         error_setg(errp, "jit split-wx not supported");
1026         return false;
1027     }
1028 
1029     /* page-align the beginning and end of the buffer */
1030     buf = static_code_gen_buffer;
1031     end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1032     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1033     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1034 
1035     size = end - buf;
1036 
1037     /* Honor a command-line option limiting the size of the buffer.  */
1038     if (size > tb_size) {
1039         size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1040     }
1041     tcg_ctx->code_gen_buffer_size = size;
1042 
1043 #ifdef __mips__
1044     if (cross_256mb(buf, size)) {
1045         buf = split_cross_256mb(buf, size);
1046         size = tcg_ctx->code_gen_buffer_size;
1047     }
1048 #endif
1049 
1050     if (qemu_mprotect_rwx(buf, size)) {
1051         error_setg_errno(errp, errno, "mprotect of jit buffer");
1052         return false;
1053     }
1054     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1055 
1056     tcg_ctx->code_gen_buffer = buf;
1057     return true;
1058 }
1059 #elif defined(_WIN32)
1060 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1061 {
1062     void *buf;
1063 
1064     if (splitwx > 0) {
1065         error_setg(errp, "jit split-wx not supported");
1066         return false;
1067     }
1068 
1069     buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1070                              PAGE_EXECUTE_READWRITE);
1071     if (buf == NULL) {
1072         error_setg_win32(errp, GetLastError(),
1073                          "allocate %zu bytes for jit buffer", size);
1074         return false;
1075     }
1076 
1077     tcg_ctx->code_gen_buffer = buf;
1078     tcg_ctx->code_gen_buffer_size = size;
1079     return true;
1080 }
1081 #else
1082 static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1083                                        int flags, Error **errp)
1084 {
1085     void *buf;
1086 
1087     buf = mmap(NULL, size, prot, flags, -1, 0);
1088     if (buf == MAP_FAILED) {
1089         error_setg_errno(errp, errno,
1090                          "allocate %zu bytes for jit buffer", size);
1091         return false;
1092     }
1093     tcg_ctx->code_gen_buffer_size = size;
1094 
1095 #ifdef __mips__
1096     if (cross_256mb(buf, size)) {
1097         /*
1098          * Try again, with the original still mapped, to avoid re-acquiring
1099          * the same 256mb crossing.
1100          */
1101         size_t size2;
1102         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1103         switch ((int)(buf2 != MAP_FAILED)) {
1104         case 1:
1105             if (!cross_256mb(buf2, size)) {
1106                 /* Success!  Use the new buffer.  */
1107                 munmap(buf, size);
1108                 break;
1109             }
1110             /* Failure.  Work with what we had.  */
1111             munmap(buf2, size);
1112             /* fallthru */
1113         default:
1114             /* Split the original buffer.  Free the smaller half.  */
1115             buf2 = split_cross_256mb(buf, size);
1116             size2 = tcg_ctx->code_gen_buffer_size;
1117             if (buf == buf2) {
1118                 munmap(buf + size2, size - size2);
1119             } else {
1120                 munmap(buf, size - size2);
1121             }
1122             size = size2;
1123             break;
1124         }
1125         buf = buf2;
1126     }
1127 #endif
1128 
1129     /* Request large pages for the buffer.  */
1130     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1131 
1132     tcg_ctx->code_gen_buffer = buf;
1133     return true;
1134 }
1135 
1136 #ifndef CONFIG_TCG_INTERPRETER
1137 #ifdef CONFIG_POSIX
1138 #include "qemu/memfd.h"
1139 
1140 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1141 {
1142     void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1143     int fd = -1;
1144 
1145 #ifdef __mips__
1146     /* Find space for the RX mapping, vs the 256MiB regions. */
1147     if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1148                                     MAP_PRIVATE | MAP_ANONYMOUS |
1149                                     MAP_NORESERVE, errp)) {
1150         return false;
1151     }
1152     /* The size of the mapping may have been adjusted. */
1153     size = tcg_ctx->code_gen_buffer_size;
1154     buf_rx = tcg_ctx->code_gen_buffer;
1155 #endif
1156 
1157     buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1158     if (buf_rw == NULL) {
1159         goto fail;
1160     }
1161 
1162 #ifdef __mips__
1163     void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1164                      MAP_SHARED | MAP_FIXED, fd, 0);
1165     if (tmp != buf_rx) {
1166         goto fail_rx;
1167     }
1168 #else
1169     buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1170     if (buf_rx == MAP_FAILED) {
1171         goto fail_rx;
1172     }
1173 #endif
1174 
1175     close(fd);
1176     tcg_ctx->code_gen_buffer = buf_rw;
1177     tcg_ctx->code_gen_buffer_size = size;
1178     tcg_splitwx_diff = buf_rx - buf_rw;
1179 
1180     /* Request large pages for the buffer and the splitwx.  */
1181     qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1182     qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1183     return true;
1184 
1185  fail_rx:
1186     error_setg_errno(errp, errno, "failed to map shared memory for execute");
1187  fail:
1188     if (buf_rx != MAP_FAILED) {
1189         munmap(buf_rx, size);
1190     }
1191     if (buf_rw) {
1192         munmap(buf_rw, size);
1193     }
1194     if (fd >= 0) {
1195         close(fd);
1196     }
1197     return false;
1198 }
1199 #endif /* CONFIG_POSIX */
1200 
1201 #ifdef CONFIG_DARWIN
1202 #include <mach/mach.h>
1203 
1204 extern kern_return_t mach_vm_remap(vm_map_t target_task,
1205                                    mach_vm_address_t *target_address,
1206                                    mach_vm_size_t size,
1207                                    mach_vm_offset_t mask,
1208                                    int flags,
1209                                    vm_map_t src_task,
1210                                    mach_vm_address_t src_address,
1211                                    boolean_t copy,
1212                                    vm_prot_t *cur_protection,
1213                                    vm_prot_t *max_protection,
1214                                    vm_inherit_t inheritance);
1215 
1216 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1217 {
1218     kern_return_t ret;
1219     mach_vm_address_t buf_rw, buf_rx;
1220     vm_prot_t cur_prot, max_prot;
1221 
1222     /* Map the read-write portion via normal anon memory. */
1223     if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1224                                     MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1225         return false;
1226     }
1227 
1228     buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1229     buf_rx = 0;
1230     ret = mach_vm_remap(mach_task_self(),
1231                         &buf_rx,
1232                         size,
1233                         0,
1234                         VM_FLAGS_ANYWHERE,
1235                         mach_task_self(),
1236                         buf_rw,
1237                         false,
1238                         &cur_prot,
1239                         &max_prot,
1240                         VM_INHERIT_NONE);
1241     if (ret != KERN_SUCCESS) {
1242         /* TODO: Convert "ret" to a human readable error message. */
1243         error_setg(errp, "vm_remap for jit splitwx failed");
1244         munmap((void *)buf_rw, size);
1245         return false;
1246     }
1247 
1248     if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1249         error_setg_errno(errp, errno, "mprotect for jit splitwx");
1250         munmap((void *)buf_rx, size);
1251         munmap((void *)buf_rw, size);
1252         return false;
1253     }
1254 
1255     tcg_splitwx_diff = buf_rx - buf_rw;
1256     return true;
1257 }
1258 #endif /* CONFIG_DARWIN */
1259 #endif /* CONFIG_TCG_INTERPRETER */
1260 
1261 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1262 {
1263 #ifndef CONFIG_TCG_INTERPRETER
1264 # ifdef CONFIG_DARWIN
1265     return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1266 # endif
1267 # ifdef CONFIG_POSIX
1268     return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1269 # endif
1270 #endif
1271     error_setg(errp, "jit split-wx not supported");
1272     return false;
1273 }
1274 
1275 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1276 {
1277     ERRP_GUARD();
1278     int prot, flags;
1279 
1280     if (splitwx) {
1281         if (alloc_code_gen_buffer_splitwx(size, errp)) {
1282             return true;
1283         }
1284         /*
1285          * If splitwx force-on (1), fail;
1286          * if splitwx default-on (-1), fall through to splitwx off.
1287          */
1288         if (splitwx > 0) {
1289             return false;
1290         }
1291         error_free_or_abort(errp);
1292     }
1293 
1294     prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1295     flags = MAP_PRIVATE | MAP_ANONYMOUS;
1296 #ifdef CONFIG_TCG_INTERPRETER
1297     /* The tcg interpreter does not need execute permission. */
1298     prot = PROT_READ | PROT_WRITE;
1299 #elif defined(CONFIG_DARWIN)
1300     /* Applicable to both iOS and macOS (Apple Silicon). */
1301     if (!splitwx) {
1302         flags |= MAP_JIT;
1303     }
1304 #endif
1305 
1306     return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1307 }
1308 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1309 
1310 static bool tb_cmp(const void *ap, const void *bp)
1311 {
1312     const TranslationBlock *a = ap;
1313     const TranslationBlock *b = bp;
1314 
1315     return a->pc == b->pc &&
1316         a->cs_base == b->cs_base &&
1317         a->flags == b->flags &&
1318         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1319         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1320         a->page_addr[0] == b->page_addr[0] &&
1321         a->page_addr[1] == b->page_addr[1];
1322 }
1323 
1324 static void tb_htable_init(void)
1325 {
1326     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1327 
1328     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1329 }
1330 
1331 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1332    (in bytes) allocated to the translation buffer. Zero means default
1333    size. */
1334 void tcg_exec_init(unsigned long tb_size, int splitwx)
1335 {
1336     bool ok;
1337 
1338     tcg_allowed = true;
1339     cpu_gen_init();
1340     page_init();
1341     tb_htable_init();
1342 
1343     ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1344                                splitwx, &error_fatal);
1345     assert(ok);
1346 
1347 #if defined(CONFIG_SOFTMMU)
1348     /* There's no guest base to take into account, so go ahead and
1349        initialize the prologue now.  */
1350     tcg_prologue_init(tcg_ctx);
1351 #endif
1352 }
1353 
1354 /* call with @p->lock held */
1355 static inline void invalidate_page_bitmap(PageDesc *p)
1356 {
1357     assert_page_locked(p);
1358 #ifdef CONFIG_SOFTMMU
1359     g_free(p->code_bitmap);
1360     p->code_bitmap = NULL;
1361     p->code_write_count = 0;
1362 #endif
1363 }
1364 
1365 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1366 static void page_flush_tb_1(int level, void **lp)
1367 {
1368     int i;
1369 
1370     if (*lp == NULL) {
1371         return;
1372     }
1373     if (level == 0) {
1374         PageDesc *pd = *lp;
1375 
1376         for (i = 0; i < V_L2_SIZE; ++i) {
1377             page_lock(&pd[i]);
1378             pd[i].first_tb = (uintptr_t)NULL;
1379             invalidate_page_bitmap(pd + i);
1380             page_unlock(&pd[i]);
1381         }
1382     } else {
1383         void **pp = *lp;
1384 
1385         for (i = 0; i < V_L2_SIZE; ++i) {
1386             page_flush_tb_1(level - 1, pp + i);
1387         }
1388     }
1389 }
1390 
1391 static void page_flush_tb(void)
1392 {
1393     int i, l1_sz = v_l1_size;
1394 
1395     for (i = 0; i < l1_sz; i++) {
1396         page_flush_tb_1(v_l2_levels, l1_map + i);
1397     }
1398 }
1399 
1400 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1401 {
1402     const TranslationBlock *tb = value;
1403     size_t *size = data;
1404 
1405     *size += tb->tc.size;
1406     return false;
1407 }
1408 
1409 /* flush all the translation blocks */
1410 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1411 {
1412     bool did_flush = false;
1413 
1414     mmap_lock();
1415     /* If it is already been done on request of another CPU,
1416      * just retry.
1417      */
1418     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1419         goto done;
1420     }
1421     did_flush = true;
1422 
1423     if (DEBUG_TB_FLUSH_GATE) {
1424         size_t nb_tbs = tcg_nb_tbs();
1425         size_t host_size = 0;
1426 
1427         tcg_tb_foreach(tb_host_size_iter, &host_size);
1428         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1429                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1430     }
1431 
1432     CPU_FOREACH(cpu) {
1433         cpu_tb_jmp_cache_clear(cpu);
1434     }
1435 
1436     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1437     page_flush_tb();
1438 
1439     tcg_region_reset_all();
1440     /* XXX: flush processor icache at this point if cache flush is
1441        expensive */
1442     qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1443 
1444 done:
1445     mmap_unlock();
1446     if (did_flush) {
1447         qemu_plugin_flush_cb();
1448     }
1449 }
1450 
1451 void tb_flush(CPUState *cpu)
1452 {
1453     if (tcg_enabled()) {
1454         unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1455 
1456         if (cpu_in_exclusive_context(cpu)) {
1457             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1458         } else {
1459             async_safe_run_on_cpu(cpu, do_tb_flush,
1460                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1461         }
1462     }
1463 }
1464 
1465 /*
1466  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1467  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1468  * and let the optimizer get rid of them by wrapping their user-only callers
1469  * with if (DEBUG_TB_CHECK_GATE).
1470  */
1471 #ifdef CONFIG_USER_ONLY
1472 
1473 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1474 {
1475     TranslationBlock *tb = p;
1476     target_ulong addr = *(target_ulong *)userp;
1477 
1478     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1479         printf("ERROR invalidate: address=" TARGET_FMT_lx
1480                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1481     }
1482 }
1483 
1484 /* verify that all the pages have correct rights for code
1485  *
1486  * Called with mmap_lock held.
1487  */
1488 static void tb_invalidate_check(target_ulong address)
1489 {
1490     address &= TARGET_PAGE_MASK;
1491     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1492 }
1493 
1494 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1495 {
1496     TranslationBlock *tb = p;
1497     int flags1, flags2;
1498 
1499     flags1 = page_get_flags(tb->pc);
1500     flags2 = page_get_flags(tb->pc + tb->size - 1);
1501     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1502         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1503                (long)tb->pc, tb->size, flags1, flags2);
1504     }
1505 }
1506 
1507 /* verify that all the pages have correct rights for code */
1508 static void tb_page_check(void)
1509 {
1510     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1511 }
1512 
1513 #endif /* CONFIG_USER_ONLY */
1514 
1515 /*
1516  * user-mode: call with mmap_lock held
1517  * !user-mode: call with @pd->lock held
1518  */
1519 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1520 {
1521     TranslationBlock *tb1;
1522     uintptr_t *pprev;
1523     unsigned int n1;
1524 
1525     assert_page_locked(pd);
1526     pprev = &pd->first_tb;
1527     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1528         if (tb1 == tb) {
1529             *pprev = tb1->page_next[n1];
1530             return;
1531         }
1532         pprev = &tb1->page_next[n1];
1533     }
1534     g_assert_not_reached();
1535 }
1536 
1537 /* remove @orig from its @n_orig-th jump list */
1538 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1539 {
1540     uintptr_t ptr, ptr_locked;
1541     TranslationBlock *dest;
1542     TranslationBlock *tb;
1543     uintptr_t *pprev;
1544     int n;
1545 
1546     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1547     ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1548     dest = (TranslationBlock *)(ptr & ~1);
1549     if (dest == NULL) {
1550         return;
1551     }
1552 
1553     qemu_spin_lock(&dest->jmp_lock);
1554     /*
1555      * While acquiring the lock, the jump might have been removed if the
1556      * destination TB was invalidated; check again.
1557      */
1558     ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1559     if (ptr_locked != ptr) {
1560         qemu_spin_unlock(&dest->jmp_lock);
1561         /*
1562          * The only possibility is that the jump was unlinked via
1563          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1564          * because we set the LSB above.
1565          */
1566         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1567         return;
1568     }
1569     /*
1570      * We first acquired the lock, and since the destination pointer matches,
1571      * we know for sure that @orig is in the jmp list.
1572      */
1573     pprev = &dest->jmp_list_head;
1574     TB_FOR_EACH_JMP(dest, tb, n) {
1575         if (tb == orig && n == n_orig) {
1576             *pprev = tb->jmp_list_next[n];
1577             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1578             qemu_spin_unlock(&dest->jmp_lock);
1579             return;
1580         }
1581         pprev = &tb->jmp_list_next[n];
1582     }
1583     g_assert_not_reached();
1584 }
1585 
1586 /* reset the jump entry 'n' of a TB so that it is not chained to
1587    another TB */
1588 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1589 {
1590     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1591     tb_set_jmp_target(tb, n, addr);
1592 }
1593 
1594 /* remove any jumps to the TB */
1595 static inline void tb_jmp_unlink(TranslationBlock *dest)
1596 {
1597     TranslationBlock *tb;
1598     int n;
1599 
1600     qemu_spin_lock(&dest->jmp_lock);
1601 
1602     TB_FOR_EACH_JMP(dest, tb, n) {
1603         tb_reset_jump(tb, n);
1604         qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1605         /* No need to clear the list entry; setting the dest ptr is enough */
1606     }
1607     dest->jmp_list_head = (uintptr_t)NULL;
1608 
1609     qemu_spin_unlock(&dest->jmp_lock);
1610 }
1611 
1612 /*
1613  * In user-mode, call with mmap_lock held.
1614  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1615  * locks held.
1616  */
1617 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1618 {
1619     CPUState *cpu;
1620     PageDesc *p;
1621     uint32_t h;
1622     tb_page_addr_t phys_pc;
1623 
1624     assert_memory_lock();
1625 
1626     /* make sure no further incoming jumps will be chained to this TB */
1627     qemu_spin_lock(&tb->jmp_lock);
1628     qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1629     qemu_spin_unlock(&tb->jmp_lock);
1630 
1631     /* remove the TB from the hash list */
1632     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1633     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1634                      tb->trace_vcpu_dstate);
1635     if (!(tb->cflags & CF_NOCACHE) &&
1636         !qht_remove(&tb_ctx.htable, tb, h)) {
1637         return;
1638     }
1639 
1640     /* remove the TB from the page list */
1641     if (rm_from_page_list) {
1642         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1643         tb_page_remove(p, tb);
1644         invalidate_page_bitmap(p);
1645         if (tb->page_addr[1] != -1) {
1646             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1647             tb_page_remove(p, tb);
1648             invalidate_page_bitmap(p);
1649         }
1650     }
1651 
1652     /* remove the TB from the hash list */
1653     h = tb_jmp_cache_hash_func(tb->pc);
1654     CPU_FOREACH(cpu) {
1655         if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1656             qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1657         }
1658     }
1659 
1660     /* suppress this TB from the two jump lists */
1661     tb_remove_from_jmp_list(tb, 0);
1662     tb_remove_from_jmp_list(tb, 1);
1663 
1664     /* suppress any remaining jumps to this TB */
1665     tb_jmp_unlink(tb);
1666 
1667     qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1668                tcg_ctx->tb_phys_invalidate_count + 1);
1669 }
1670 
1671 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1672 {
1673     qemu_thread_jit_write();
1674     do_tb_phys_invalidate(tb, true);
1675     qemu_thread_jit_execute();
1676 }
1677 
1678 /* invalidate one TB
1679  *
1680  * Called with mmap_lock held in user-mode.
1681  */
1682 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1683 {
1684     if (page_addr == -1 && tb->page_addr[0] != -1) {
1685         page_lock_tb(tb);
1686         do_tb_phys_invalidate(tb, true);
1687         page_unlock_tb(tb);
1688     } else {
1689         do_tb_phys_invalidate(tb, false);
1690     }
1691 }
1692 
1693 #ifdef CONFIG_SOFTMMU
1694 /* call with @p->lock held */
1695 static void build_page_bitmap(PageDesc *p)
1696 {
1697     int n, tb_start, tb_end;
1698     TranslationBlock *tb;
1699 
1700     assert_page_locked(p);
1701     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1702 
1703     PAGE_FOR_EACH_TB(p, tb, n) {
1704         /* NOTE: this is subtle as a TB may span two physical pages */
1705         if (n == 0) {
1706             /* NOTE: tb_end may be after the end of the page, but
1707                it is not a problem */
1708             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1709             tb_end = tb_start + tb->size;
1710             if (tb_end > TARGET_PAGE_SIZE) {
1711                 tb_end = TARGET_PAGE_SIZE;
1712              }
1713         } else {
1714             tb_start = 0;
1715             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1716         }
1717         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1718     }
1719 }
1720 #endif
1721 
1722 /* add the tb in the target page and protect it if necessary
1723  *
1724  * Called with mmap_lock held for user-mode emulation.
1725  * Called with @p->lock held in !user-mode.
1726  */
1727 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1728                                unsigned int n, tb_page_addr_t page_addr)
1729 {
1730 #ifndef CONFIG_USER_ONLY
1731     bool page_already_protected;
1732 #endif
1733 
1734     assert_page_locked(p);
1735 
1736     tb->page_addr[n] = page_addr;
1737     tb->page_next[n] = p->first_tb;
1738 #ifndef CONFIG_USER_ONLY
1739     page_already_protected = p->first_tb != (uintptr_t)NULL;
1740 #endif
1741     p->first_tb = (uintptr_t)tb | n;
1742     invalidate_page_bitmap(p);
1743 
1744 #if defined(CONFIG_USER_ONLY)
1745     if (p->flags & PAGE_WRITE) {
1746         target_ulong addr;
1747         PageDesc *p2;
1748         int prot;
1749 
1750         /* force the host page as non writable (writes will have a
1751            page fault + mprotect overhead) */
1752         page_addr &= qemu_host_page_mask;
1753         prot = 0;
1754         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1755             addr += TARGET_PAGE_SIZE) {
1756 
1757             p2 = page_find(addr >> TARGET_PAGE_BITS);
1758             if (!p2) {
1759                 continue;
1760             }
1761             prot |= p2->flags;
1762             p2->flags &= ~PAGE_WRITE;
1763           }
1764         mprotect(g2h(page_addr), qemu_host_page_size,
1765                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1766         if (DEBUG_TB_INVALIDATE_GATE) {
1767             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1768         }
1769     }
1770 #else
1771     /* if some code is already present, then the pages are already
1772        protected. So we handle the case where only the first TB is
1773        allocated in a physical page */
1774     if (!page_already_protected) {
1775         tlb_protect_code(page_addr);
1776     }
1777 #endif
1778 }
1779 
1780 /* add a new TB and link it to the physical page tables. phys_page2 is
1781  * (-1) to indicate that only one page contains the TB.
1782  *
1783  * Called with mmap_lock held for user-mode emulation.
1784  *
1785  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1786  * Note that in !user-mode, another thread might have already added a TB
1787  * for the same block of guest code that @tb corresponds to. In that case,
1788  * the caller should discard the original @tb, and use instead the returned TB.
1789  */
1790 static TranslationBlock *
1791 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1792              tb_page_addr_t phys_page2)
1793 {
1794     PageDesc *p;
1795     PageDesc *p2 = NULL;
1796 
1797     assert_memory_lock();
1798 
1799     if (phys_pc == -1) {
1800         /*
1801          * If the TB is not associated with a physical RAM page then
1802          * it must be a temporary one-insn TB, and we have nothing to do
1803          * except fill in the page_addr[] fields.
1804          */
1805         assert(tb->cflags & CF_NOCACHE);
1806         tb->page_addr[0] = tb->page_addr[1] = -1;
1807         return tb;
1808     }
1809 
1810     /*
1811      * Add the TB to the page list, acquiring first the pages's locks.
1812      * We keep the locks held until after inserting the TB in the hash table,
1813      * so that if the insertion fails we know for sure that the TBs are still
1814      * in the page descriptors.
1815      * Note that inserting into the hash table first isn't an option, since
1816      * we can only insert TBs that are fully initialized.
1817      */
1818     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1819     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1820     if (p2) {
1821         tb_page_add(p2, tb, 1, phys_page2);
1822     } else {
1823         tb->page_addr[1] = -1;
1824     }
1825 
1826     if (!(tb->cflags & CF_NOCACHE)) {
1827         void *existing_tb = NULL;
1828         uint32_t h;
1829 
1830         /* add in the hash table */
1831         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1832                          tb->trace_vcpu_dstate);
1833         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1834 
1835         /* remove TB from the page(s) if we couldn't insert it */
1836         if (unlikely(existing_tb)) {
1837             tb_page_remove(p, tb);
1838             invalidate_page_bitmap(p);
1839             if (p2) {
1840                 tb_page_remove(p2, tb);
1841                 invalidate_page_bitmap(p2);
1842             }
1843             tb = existing_tb;
1844         }
1845     }
1846 
1847     if (p2 && p2 != p) {
1848         page_unlock(p2);
1849     }
1850     page_unlock(p);
1851 
1852 #ifdef CONFIG_USER_ONLY
1853     if (DEBUG_TB_CHECK_GATE) {
1854         tb_page_check();
1855     }
1856 #endif
1857     return tb;
1858 }
1859 
1860 /* Called with mmap_lock held for user mode emulation.  */
1861 TranslationBlock *tb_gen_code(CPUState *cpu,
1862                               target_ulong pc, target_ulong cs_base,
1863                               uint32_t flags, int cflags)
1864 {
1865     CPUArchState *env = cpu->env_ptr;
1866     TranslationBlock *tb, *existing_tb;
1867     tb_page_addr_t phys_pc, phys_page2;
1868     target_ulong virt_page2;
1869     tcg_insn_unit *gen_code_buf;
1870     int gen_code_size, search_size, max_insns;
1871 #ifdef CONFIG_PROFILER
1872     TCGProfile *prof = &tcg_ctx->prof;
1873     int64_t ti;
1874 #endif
1875 
1876     assert_memory_lock();
1877     qemu_thread_jit_write();
1878 
1879     phys_pc = get_page_addr_code(env, pc);
1880 
1881     if (phys_pc == -1) {
1882         /* Generate a temporary TB with 1 insn in it */
1883         cflags &= ~CF_COUNT_MASK;
1884         cflags |= CF_NOCACHE | 1;
1885     }
1886 
1887     cflags &= ~CF_CLUSTER_MASK;
1888     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1889 
1890     max_insns = cflags & CF_COUNT_MASK;
1891     if (max_insns == 0) {
1892         max_insns = CF_COUNT_MASK;
1893     }
1894     if (max_insns > TCG_MAX_INSNS) {
1895         max_insns = TCG_MAX_INSNS;
1896     }
1897     if (cpu->singlestep_enabled || singlestep) {
1898         max_insns = 1;
1899     }
1900 
1901  buffer_overflow:
1902     tb = tcg_tb_alloc(tcg_ctx);
1903     if (unlikely(!tb)) {
1904         /* flush must be done */
1905         tb_flush(cpu);
1906         mmap_unlock();
1907         /* Make the execution loop process the flush as soon as possible.  */
1908         cpu->exception_index = EXCP_INTERRUPT;
1909         cpu_loop_exit(cpu);
1910     }
1911 
1912     gen_code_buf = tcg_ctx->code_gen_ptr;
1913     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1914     tb->pc = pc;
1915     tb->cs_base = cs_base;
1916     tb->flags = flags;
1917     tb->cflags = cflags;
1918     tb->orig_tb = NULL;
1919     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1920     tcg_ctx->tb_cflags = cflags;
1921  tb_overflow:
1922 
1923 #ifdef CONFIG_PROFILER
1924     /* includes aborted translations because of exceptions */
1925     qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1926     ti = profile_getclock();
1927 #endif
1928 
1929     gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1930     if (unlikely(gen_code_size != 0)) {
1931         goto error_return;
1932     }
1933 
1934     tcg_func_start(tcg_ctx);
1935 
1936     tcg_ctx->cpu = env_cpu(env);
1937     gen_intermediate_code(cpu, tb, max_insns);
1938     tcg_ctx->cpu = NULL;
1939     max_insns = tb->icount;
1940 
1941     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1942 
1943     /* generate machine code */
1944     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1945     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1946     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1947     if (TCG_TARGET_HAS_direct_jump) {
1948         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1949         tcg_ctx->tb_jmp_target_addr = NULL;
1950     } else {
1951         tcg_ctx->tb_jmp_insn_offset = NULL;
1952         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1953     }
1954 
1955 #ifdef CONFIG_PROFILER
1956     qatomic_set(&prof->tb_count, prof->tb_count + 1);
1957     qatomic_set(&prof->interm_time,
1958                 prof->interm_time + profile_getclock() - ti);
1959     ti = profile_getclock();
1960 #endif
1961 
1962     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1963     if (unlikely(gen_code_size < 0)) {
1964  error_return:
1965         switch (gen_code_size) {
1966         case -1:
1967             /*
1968              * Overflow of code_gen_buffer, or the current slice of it.
1969              *
1970              * TODO: We don't need to re-do gen_intermediate_code, nor
1971              * should we re-do the tcg optimization currently hidden
1972              * inside tcg_gen_code.  All that should be required is to
1973              * flush the TBs, allocate a new TB, re-initialize it per
1974              * above, and re-do the actual code generation.
1975              */
1976             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1977                           "Restarting code generation for "
1978                           "code_gen_buffer overflow\n");
1979             goto buffer_overflow;
1980 
1981         case -2:
1982             /*
1983              * The code generated for the TranslationBlock is too large.
1984              * The maximum size allowed by the unwind info is 64k.
1985              * There may be stricter constraints from relocations
1986              * in the tcg backend.
1987              *
1988              * Try again with half as many insns as we attempted this time.
1989              * If a single insn overflows, there's a bug somewhere...
1990              */
1991             assert(max_insns > 1);
1992             max_insns /= 2;
1993             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1994                           "Restarting code generation with "
1995                           "smaller translation block (max %d insns)\n",
1996                           max_insns);
1997             goto tb_overflow;
1998 
1999         default:
2000             g_assert_not_reached();
2001         }
2002     }
2003     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
2004     if (unlikely(search_size < 0)) {
2005         goto buffer_overflow;
2006     }
2007     tb->tc.size = gen_code_size;
2008 
2009 #ifdef CONFIG_PROFILER
2010     qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
2011     qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
2012     qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
2013     qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
2014 #endif
2015 
2016 #ifdef DEBUG_DISAS
2017     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
2018         qemu_log_in_addr_range(tb->pc)) {
2019         FILE *logfile = qemu_log_lock();
2020         int code_size, data_size;
2021         const tcg_target_ulong *rx_data_gen_ptr;
2022         size_t chunk_start;
2023         int insn = 0;
2024 
2025         if (tcg_ctx->data_gen_ptr) {
2026             rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2027             code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2028             data_size = gen_code_size - code_size;
2029         } else {
2030             rx_data_gen_ptr = 0;
2031             code_size = gen_code_size;
2032             data_size = 0;
2033         }
2034 
2035         /* Dump header and the first instruction */
2036         qemu_log("OUT: [size=%d]\n", gen_code_size);
2037         qemu_log("  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2038                  tcg_ctx->gen_insn_data[insn][0]);
2039         chunk_start = tcg_ctx->gen_insn_end_off[insn];
2040         log_disas(tb->tc.ptr, chunk_start);
2041 
2042         /*
2043          * Dump each instruction chunk, wrapping up empty chunks into
2044          * the next instruction. The whole array is offset so the
2045          * first entry is the beginning of the 2nd instruction.
2046          */
2047         while (insn < tb->icount) {
2048             size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2049             if (chunk_end > chunk_start) {
2050                 qemu_log("  -- guest addr 0x" TARGET_FMT_lx "\n",
2051                          tcg_ctx->gen_insn_data[insn][0]);
2052                 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2053                 chunk_start = chunk_end;
2054             }
2055             insn++;
2056         }
2057 
2058         if (chunk_start < code_size) {
2059             qemu_log("  -- tb slow paths + alignment\n");
2060             log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2061         }
2062 
2063         /* Finally dump any data we may have after the block */
2064         if (data_size) {
2065             int i;
2066             qemu_log("  data: [size=%d]\n", data_size);
2067             for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2068                 qemu_log("0x%08" PRIxPTR ":  .quad  0x%" TCG_PRIlx "\n",
2069                          (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2070             }
2071         }
2072         qemu_log("\n");
2073         qemu_log_flush();
2074         qemu_log_unlock(logfile);
2075     }
2076 #endif
2077 
2078     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2079         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2080                  CODE_GEN_ALIGN));
2081 
2082     /* init jump list */
2083     qemu_spin_init(&tb->jmp_lock);
2084     tb->jmp_list_head = (uintptr_t)NULL;
2085     tb->jmp_list_next[0] = (uintptr_t)NULL;
2086     tb->jmp_list_next[1] = (uintptr_t)NULL;
2087     tb->jmp_dest[0] = (uintptr_t)NULL;
2088     tb->jmp_dest[1] = (uintptr_t)NULL;
2089 
2090     /* init original jump addresses which have been set during tcg_gen_code() */
2091     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2092         tb_reset_jump(tb, 0);
2093     }
2094     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2095         tb_reset_jump(tb, 1);
2096     }
2097 
2098     /* check next page if needed */
2099     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2100     phys_page2 = -1;
2101     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2102         phys_page2 = get_page_addr_code(env, virt_page2);
2103     }
2104     /*
2105      * No explicit memory barrier is required -- tb_link_page() makes the
2106      * TB visible in a consistent state.
2107      */
2108     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2109     /* if the TB already exists, discard what we just translated */
2110     if (unlikely(existing_tb != tb)) {
2111         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2112 
2113         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2114         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2115         tb_destroy(tb);
2116         return existing_tb;
2117     }
2118     tcg_tb_insert(tb);
2119     return tb;
2120 }
2121 
2122 /*
2123  * @p must be non-NULL.
2124  * user-mode: call with mmap_lock held.
2125  * !user-mode: call with all @pages locked.
2126  */
2127 static void
2128 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2129                                       PageDesc *p, tb_page_addr_t start,
2130                                       tb_page_addr_t end,
2131                                       uintptr_t retaddr)
2132 {
2133     TranslationBlock *tb;
2134     tb_page_addr_t tb_start, tb_end;
2135     int n;
2136 #ifdef TARGET_HAS_PRECISE_SMC
2137     CPUState *cpu = current_cpu;
2138     CPUArchState *env = NULL;
2139     bool current_tb_not_found = retaddr != 0;
2140     bool current_tb_modified = false;
2141     TranslationBlock *current_tb = NULL;
2142     target_ulong current_pc = 0;
2143     target_ulong current_cs_base = 0;
2144     uint32_t current_flags = 0;
2145 #endif /* TARGET_HAS_PRECISE_SMC */
2146 
2147     assert_page_locked(p);
2148 
2149 #if defined(TARGET_HAS_PRECISE_SMC)
2150     if (cpu != NULL) {
2151         env = cpu->env_ptr;
2152     }
2153 #endif
2154 
2155     /* we remove all the TBs in the range [start, end[ */
2156     /* XXX: see if in some cases it could be faster to invalidate all
2157        the code */
2158     PAGE_FOR_EACH_TB(p, tb, n) {
2159         assert_page_locked(p);
2160         /* NOTE: this is subtle as a TB may span two physical pages */
2161         if (n == 0) {
2162             /* NOTE: tb_end may be after the end of the page, but
2163                it is not a problem */
2164             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2165             tb_end = tb_start + tb->size;
2166         } else {
2167             tb_start = tb->page_addr[1];
2168             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2169         }
2170         if (!(tb_end <= start || tb_start >= end)) {
2171 #ifdef TARGET_HAS_PRECISE_SMC
2172             if (current_tb_not_found) {
2173                 current_tb_not_found = false;
2174                 /* now we have a real cpu fault */
2175                 current_tb = tcg_tb_lookup(retaddr);
2176             }
2177             if (current_tb == tb &&
2178                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2179                 /*
2180                  * If we are modifying the current TB, we must stop
2181                  * its execution. We could be more precise by checking
2182                  * that the modification is after the current PC, but it
2183                  * would require a specialized function to partially
2184                  * restore the CPU state.
2185                  */
2186                 current_tb_modified = true;
2187                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2188                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2189                                      &current_flags);
2190             }
2191 #endif /* TARGET_HAS_PRECISE_SMC */
2192             tb_phys_invalidate__locked(tb);
2193         }
2194     }
2195 #if !defined(CONFIG_USER_ONLY)
2196     /* if no code remaining, no need to continue to use slow writes */
2197     if (!p->first_tb) {
2198         invalidate_page_bitmap(p);
2199         tlb_unprotect_code(start);
2200     }
2201 #endif
2202 #ifdef TARGET_HAS_PRECISE_SMC
2203     if (current_tb_modified) {
2204         page_collection_unlock(pages);
2205         /* Force execution of one insn next time.  */
2206         cpu->cflags_next_tb = 1 | curr_cflags();
2207         mmap_unlock();
2208         cpu_loop_exit_noexc(cpu);
2209     }
2210 #endif
2211 }
2212 
2213 /*
2214  * Invalidate all TBs which intersect with the target physical address range
2215  * [start;end[. NOTE: start and end must refer to the *same* physical page.
2216  * 'is_cpu_write_access' should be true if called from a real cpu write
2217  * access: the virtual CPU will exit the current TB if code is modified inside
2218  * this TB.
2219  *
2220  * Called with mmap_lock held for user-mode emulation
2221  */
2222 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2223 {
2224     struct page_collection *pages;
2225     PageDesc *p;
2226 
2227     assert_memory_lock();
2228 
2229     p = page_find(start >> TARGET_PAGE_BITS);
2230     if (p == NULL) {
2231         return;
2232     }
2233     pages = page_collection_lock(start, end);
2234     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2235     page_collection_unlock(pages);
2236 }
2237 
2238 /*
2239  * Invalidate all TBs which intersect with the target physical address range
2240  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2241  * 'is_cpu_write_access' should be true if called from a real cpu write
2242  * access: the virtual CPU will exit the current TB if code is modified inside
2243  * this TB.
2244  *
2245  * Called with mmap_lock held for user-mode emulation.
2246  */
2247 #ifdef CONFIG_SOFTMMU
2248 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2249 #else
2250 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2251 #endif
2252 {
2253     struct page_collection *pages;
2254     tb_page_addr_t next;
2255 
2256     assert_memory_lock();
2257 
2258     pages = page_collection_lock(start, end);
2259     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2260          start < end;
2261          start = next, next += TARGET_PAGE_SIZE) {
2262         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2263         tb_page_addr_t bound = MIN(next, end);
2264 
2265         if (pd == NULL) {
2266             continue;
2267         }
2268         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2269     }
2270     page_collection_unlock(pages);
2271 }
2272 
2273 #ifdef CONFIG_SOFTMMU
2274 /* len must be <= 8 and start must be a multiple of len.
2275  * Called via softmmu_template.h when code areas are written to with
2276  * iothread mutex not held.
2277  *
2278  * Call with all @pages in the range [@start, @start + len[ locked.
2279  */
2280 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2281                                   tb_page_addr_t start, int len,
2282                                   uintptr_t retaddr)
2283 {
2284     PageDesc *p;
2285 
2286     assert_memory_lock();
2287 
2288     p = page_find(start >> TARGET_PAGE_BITS);
2289     if (!p) {
2290         return;
2291     }
2292 
2293     assert_page_locked(p);
2294     if (!p->code_bitmap &&
2295         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2296         build_page_bitmap(p);
2297     }
2298     if (p->code_bitmap) {
2299         unsigned int nr;
2300         unsigned long b;
2301 
2302         nr = start & ~TARGET_PAGE_MASK;
2303         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2304         if (b & ((1 << len) - 1)) {
2305             goto do_invalidate;
2306         }
2307     } else {
2308     do_invalidate:
2309         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2310                                               retaddr);
2311     }
2312 }
2313 #else
2314 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2315  * host PC of the faulting store instruction that caused this invalidate.
2316  * Returns true if the caller needs to abort execution of the current
2317  * TB (because it was modified by this store and the guest CPU has
2318  * precise-SMC semantics).
2319  */
2320 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2321 {
2322     TranslationBlock *tb;
2323     PageDesc *p;
2324     int n;
2325 #ifdef TARGET_HAS_PRECISE_SMC
2326     TranslationBlock *current_tb = NULL;
2327     CPUState *cpu = current_cpu;
2328     CPUArchState *env = NULL;
2329     int current_tb_modified = 0;
2330     target_ulong current_pc = 0;
2331     target_ulong current_cs_base = 0;
2332     uint32_t current_flags = 0;
2333 #endif
2334 
2335     assert_memory_lock();
2336 
2337     addr &= TARGET_PAGE_MASK;
2338     p = page_find(addr >> TARGET_PAGE_BITS);
2339     if (!p) {
2340         return false;
2341     }
2342 
2343 #ifdef TARGET_HAS_PRECISE_SMC
2344     if (p->first_tb && pc != 0) {
2345         current_tb = tcg_tb_lookup(pc);
2346     }
2347     if (cpu != NULL) {
2348         env = cpu->env_ptr;
2349     }
2350 #endif
2351     assert_page_locked(p);
2352     PAGE_FOR_EACH_TB(p, tb, n) {
2353 #ifdef TARGET_HAS_PRECISE_SMC
2354         if (current_tb == tb &&
2355             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2356                 /* If we are modifying the current TB, we must stop
2357                    its execution. We could be more precise by checking
2358                    that the modification is after the current PC, but it
2359                    would require a specialized function to partially
2360                    restore the CPU state */
2361 
2362             current_tb_modified = 1;
2363             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2364             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2365                                  &current_flags);
2366         }
2367 #endif /* TARGET_HAS_PRECISE_SMC */
2368         tb_phys_invalidate(tb, addr);
2369     }
2370     p->first_tb = (uintptr_t)NULL;
2371 #ifdef TARGET_HAS_PRECISE_SMC
2372     if (current_tb_modified) {
2373         /* Force execution of one insn next time.  */
2374         cpu->cflags_next_tb = 1 | curr_cflags();
2375         return true;
2376     }
2377 #endif
2378 
2379     return false;
2380 }
2381 #endif
2382 
2383 /* user-mode: call with mmap_lock held */
2384 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2385 {
2386     TranslationBlock *tb;
2387 
2388     assert_memory_lock();
2389 
2390     tb = tcg_tb_lookup(retaddr);
2391     if (tb) {
2392         /* We can use retranslation to find the PC.  */
2393         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2394         tb_phys_invalidate(tb, -1);
2395     } else {
2396         /* The exception probably happened in a helper.  The CPU state should
2397            have been saved before calling it. Fetch the PC from there.  */
2398         CPUArchState *env = cpu->env_ptr;
2399         target_ulong pc, cs_base;
2400         tb_page_addr_t addr;
2401         uint32_t flags;
2402 
2403         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2404         addr = get_page_addr_code(env, pc);
2405         if (addr != -1) {
2406             tb_invalidate_phys_range(addr, addr + 1);
2407         }
2408     }
2409 }
2410 
2411 #ifndef CONFIG_USER_ONLY
2412 /* in deterministic execution mode, instructions doing device I/Os
2413  * must be at the end of the TB.
2414  *
2415  * Called by softmmu_template.h, with iothread mutex not held.
2416  */
2417 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2418 {
2419 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2420     CPUArchState *env = cpu->env_ptr;
2421 #endif
2422     TranslationBlock *tb;
2423     uint32_t n;
2424 
2425     tb = tcg_tb_lookup(retaddr);
2426     if (!tb) {
2427         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2428                   (void *)retaddr);
2429     }
2430     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2431 
2432     /* On MIPS and SH, delay slot instructions can only be restarted if
2433        they were already the first instruction in the TB.  If this is not
2434        the first instruction in a TB then re-execute the preceding
2435        branch.  */
2436     n = 1;
2437 #if defined(TARGET_MIPS)
2438     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2439         && env->active_tc.PC != tb->pc) {
2440         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2441         cpu_neg(cpu)->icount_decr.u16.low++;
2442         env->hflags &= ~MIPS_HFLAG_BMASK;
2443         n = 2;
2444     }
2445 #elif defined(TARGET_SH4)
2446     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2447         && env->pc != tb->pc) {
2448         env->pc -= 2;
2449         cpu_neg(cpu)->icount_decr.u16.low++;
2450         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2451         n = 2;
2452     }
2453 #endif
2454 
2455     /* Generate a new TB executing the I/O insn.  */
2456     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2457 
2458     if (tb_cflags(tb) & CF_NOCACHE) {
2459         if (tb->orig_tb) {
2460             /* Invalidate original TB if this TB was generated in
2461              * cpu_exec_nocache() */
2462             tb_phys_invalidate(tb->orig_tb, -1);
2463         }
2464         tcg_tb_remove(tb);
2465         tb_destroy(tb);
2466     }
2467 
2468     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2469                            "cpu_io_recompile: rewound execution of TB to "
2470                            TARGET_FMT_lx "\n", tb->pc);
2471 
2472     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2473      * the first in the TB) then we end up generating a whole new TB and
2474      *  repeating the fault, which is horribly inefficient.
2475      *  Better would be to execute just this insn uncached, or generate a
2476      *  second new TB.
2477      */
2478     cpu_loop_exit_noexc(cpu);
2479 }
2480 
2481 static void print_qht_statistics(struct qht_stats hst)
2482 {
2483     uint32_t hgram_opts;
2484     size_t hgram_bins;
2485     char *hgram;
2486 
2487     if (!hst.head_buckets) {
2488         return;
2489     }
2490     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2491                 hst.used_head_buckets, hst.head_buckets,
2492                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2493 
2494     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2495     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2496     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2497         hgram_opts |= QDIST_PR_NODECIMAL;
2498     }
2499     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2500     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2501                 qdist_avg(&hst.occupancy) * 100, hgram);
2502     g_free(hgram);
2503 
2504     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2505     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2506     if (hgram_bins > 10) {
2507         hgram_bins = 10;
2508     } else {
2509         hgram_bins = 0;
2510         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2511     }
2512     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2513     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2514                 qdist_avg(&hst.chain), hgram);
2515     g_free(hgram);
2516 }
2517 
2518 struct tb_tree_stats {
2519     size_t nb_tbs;
2520     size_t host_size;
2521     size_t target_size;
2522     size_t max_target_size;
2523     size_t direct_jmp_count;
2524     size_t direct_jmp2_count;
2525     size_t cross_page;
2526 };
2527 
2528 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2529 {
2530     const TranslationBlock *tb = value;
2531     struct tb_tree_stats *tst = data;
2532 
2533     tst->nb_tbs++;
2534     tst->host_size += tb->tc.size;
2535     tst->target_size += tb->size;
2536     if (tb->size > tst->max_target_size) {
2537         tst->max_target_size = tb->size;
2538     }
2539     if (tb->page_addr[1] != -1) {
2540         tst->cross_page++;
2541     }
2542     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2543         tst->direct_jmp_count++;
2544         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2545             tst->direct_jmp2_count++;
2546         }
2547     }
2548     return false;
2549 }
2550 
2551 void dump_exec_info(void)
2552 {
2553     struct tb_tree_stats tst = {};
2554     struct qht_stats hst;
2555     size_t nb_tbs, flush_full, flush_part, flush_elide;
2556 
2557     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2558     nb_tbs = tst.nb_tbs;
2559     /* XXX: avoid using doubles ? */
2560     qemu_printf("Translation buffer state:\n");
2561     /*
2562      * Report total code size including the padding and TB structs;
2563      * otherwise users might think "-accel tcg,tb-size" is not honoured.
2564      * For avg host size we use the precise numbers from tb_tree_stats though.
2565      */
2566     qemu_printf("gen code size       %zu/%zu\n",
2567                 tcg_code_size(), tcg_code_capacity());
2568     qemu_printf("TB count            %zu\n", nb_tbs);
2569     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2570                 nb_tbs ? tst.target_size / nb_tbs : 0,
2571                 tst.max_target_size);
2572     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2573                 nb_tbs ? tst.host_size / nb_tbs : 0,
2574                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2575     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2576                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2577     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2578                 tst.direct_jmp_count,
2579                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2580                 tst.direct_jmp2_count,
2581                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2582 
2583     qht_statistics_init(&tb_ctx.htable, &hst);
2584     print_qht_statistics(hst);
2585     qht_statistics_destroy(&hst);
2586 
2587     qemu_printf("\nStatistics:\n");
2588     qemu_printf("TB flush count      %u\n",
2589                 qatomic_read(&tb_ctx.tb_flush_count));
2590     qemu_printf("TB invalidate count %zu\n",
2591                 tcg_tb_phys_invalidate_count());
2592 
2593     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2594     qemu_printf("TLB full flushes    %zu\n", flush_full);
2595     qemu_printf("TLB partial flushes %zu\n", flush_part);
2596     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2597     tcg_dump_info();
2598 }
2599 
2600 void dump_opcount_info(void)
2601 {
2602     tcg_dump_op_count();
2603 }
2604 
2605 #else /* CONFIG_USER_ONLY */
2606 
2607 void cpu_interrupt(CPUState *cpu, int mask)
2608 {
2609     g_assert(qemu_mutex_iothread_locked());
2610     cpu->interrupt_request |= mask;
2611     qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2612 }
2613 
2614 /*
2615  * Walks guest process memory "regions" one by one
2616  * and calls callback function 'fn' for each region.
2617  */
2618 struct walk_memory_regions_data {
2619     walk_memory_regions_fn fn;
2620     void *priv;
2621     target_ulong start;
2622     int prot;
2623 };
2624 
2625 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2626                                    target_ulong end, int new_prot)
2627 {
2628     if (data->start != -1u) {
2629         int rc = data->fn(data->priv, data->start, end, data->prot);
2630         if (rc != 0) {
2631             return rc;
2632         }
2633     }
2634 
2635     data->start = (new_prot ? end : -1u);
2636     data->prot = new_prot;
2637 
2638     return 0;
2639 }
2640 
2641 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2642                                  target_ulong base, int level, void **lp)
2643 {
2644     target_ulong pa;
2645     int i, rc;
2646 
2647     if (*lp == NULL) {
2648         return walk_memory_regions_end(data, base, 0);
2649     }
2650 
2651     if (level == 0) {
2652         PageDesc *pd = *lp;
2653 
2654         for (i = 0; i < V_L2_SIZE; ++i) {
2655             int prot = pd[i].flags;
2656 
2657             pa = base | (i << TARGET_PAGE_BITS);
2658             if (prot != data->prot) {
2659                 rc = walk_memory_regions_end(data, pa, prot);
2660                 if (rc != 0) {
2661                     return rc;
2662                 }
2663             }
2664         }
2665     } else {
2666         void **pp = *lp;
2667 
2668         for (i = 0; i < V_L2_SIZE; ++i) {
2669             pa = base | ((target_ulong)i <<
2670                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2671             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2672             if (rc != 0) {
2673                 return rc;
2674             }
2675         }
2676     }
2677 
2678     return 0;
2679 }
2680 
2681 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2682 {
2683     struct walk_memory_regions_data data;
2684     uintptr_t i, l1_sz = v_l1_size;
2685 
2686     data.fn = fn;
2687     data.priv = priv;
2688     data.start = -1u;
2689     data.prot = 0;
2690 
2691     for (i = 0; i < l1_sz; i++) {
2692         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2693         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2694         if (rc != 0) {
2695             return rc;
2696         }
2697     }
2698 
2699     return walk_memory_regions_end(&data, 0, 0);
2700 }
2701 
2702 static int dump_region(void *priv, target_ulong start,
2703     target_ulong end, unsigned long prot)
2704 {
2705     FILE *f = (FILE *)priv;
2706 
2707     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2708         " "TARGET_FMT_lx" %c%c%c\n",
2709         start, end, end - start,
2710         ((prot & PAGE_READ) ? 'r' : '-'),
2711         ((prot & PAGE_WRITE) ? 'w' : '-'),
2712         ((prot & PAGE_EXEC) ? 'x' : '-'));
2713 
2714     return 0;
2715 }
2716 
2717 /* dump memory mappings */
2718 void page_dump(FILE *f)
2719 {
2720     const int length = sizeof(target_ulong) * 2;
2721     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2722             length, "start", length, "end", length, "size", "prot");
2723     walk_memory_regions(f, dump_region);
2724 }
2725 
2726 int page_get_flags(target_ulong address)
2727 {
2728     PageDesc *p;
2729 
2730     p = page_find(address >> TARGET_PAGE_BITS);
2731     if (!p) {
2732         return 0;
2733     }
2734     return p->flags;
2735 }
2736 
2737 /* Modify the flags of a page and invalidate the code if necessary.
2738    The flag PAGE_WRITE_ORG is positioned automatically depending
2739    on PAGE_WRITE.  The mmap_lock should already be held.  */
2740 void page_set_flags(target_ulong start, target_ulong end, int flags)
2741 {
2742     target_ulong addr, len;
2743 
2744     /* This function should never be called with addresses outside the
2745        guest address space.  If this assert fires, it probably indicates
2746        a missing call to h2g_valid.  */
2747     assert(end - 1 <= GUEST_ADDR_MAX);
2748     assert(start < end);
2749     assert_memory_lock();
2750 
2751     start = start & TARGET_PAGE_MASK;
2752     end = TARGET_PAGE_ALIGN(end);
2753 
2754     if (flags & PAGE_WRITE) {
2755         flags |= PAGE_WRITE_ORG;
2756     }
2757 
2758     for (addr = start, len = end - start;
2759          len != 0;
2760          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2761         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2762 
2763         /* If the write protection bit is set, then we invalidate
2764            the code inside.  */
2765         if (!(p->flags & PAGE_WRITE) &&
2766             (flags & PAGE_WRITE) &&
2767             p->first_tb) {
2768             tb_invalidate_phys_page(addr, 0);
2769         }
2770         p->flags = flags;
2771     }
2772 }
2773 
2774 int page_check_range(target_ulong start, target_ulong len, int flags)
2775 {
2776     PageDesc *p;
2777     target_ulong end;
2778     target_ulong addr;
2779 
2780     /* This function should never be called with addresses outside the
2781        guest address space.  If this assert fires, it probably indicates
2782        a missing call to h2g_valid.  */
2783     if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2784         assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2785     }
2786 
2787     if (len == 0) {
2788         return 0;
2789     }
2790     if (start + len - 1 < start) {
2791         /* We've wrapped around.  */
2792         return -1;
2793     }
2794 
2795     /* must do before we loose bits in the next step */
2796     end = TARGET_PAGE_ALIGN(start + len);
2797     start = start & TARGET_PAGE_MASK;
2798 
2799     for (addr = start, len = end - start;
2800          len != 0;
2801          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2802         p = page_find(addr >> TARGET_PAGE_BITS);
2803         if (!p) {
2804             return -1;
2805         }
2806         if (!(p->flags & PAGE_VALID)) {
2807             return -1;
2808         }
2809 
2810         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2811             return -1;
2812         }
2813         if (flags & PAGE_WRITE) {
2814             if (!(p->flags & PAGE_WRITE_ORG)) {
2815                 return -1;
2816             }
2817             /* unprotect the page if it was put read-only because it
2818                contains translated code */
2819             if (!(p->flags & PAGE_WRITE)) {
2820                 if (!page_unprotect(addr, 0)) {
2821                     return -1;
2822                 }
2823             }
2824         }
2825     }
2826     return 0;
2827 }
2828 
2829 /* called from signal handler: invalidate the code and unprotect the
2830  * page. Return 0 if the fault was not handled, 1 if it was handled,
2831  * and 2 if it was handled but the caller must cause the TB to be
2832  * immediately exited. (We can only return 2 if the 'pc' argument is
2833  * non-zero.)
2834  */
2835 int page_unprotect(target_ulong address, uintptr_t pc)
2836 {
2837     unsigned int prot;
2838     bool current_tb_invalidated;
2839     PageDesc *p;
2840     target_ulong host_start, host_end, addr;
2841 
2842     /* Technically this isn't safe inside a signal handler.  However we
2843        know this only ever happens in a synchronous SEGV handler, so in
2844        practice it seems to be ok.  */
2845     mmap_lock();
2846 
2847     p = page_find(address >> TARGET_PAGE_BITS);
2848     if (!p) {
2849         mmap_unlock();
2850         return 0;
2851     }
2852 
2853     /* if the page was really writable, then we change its
2854        protection back to writable */
2855     if (p->flags & PAGE_WRITE_ORG) {
2856         current_tb_invalidated = false;
2857         if (p->flags & PAGE_WRITE) {
2858             /* If the page is actually marked WRITE then assume this is because
2859              * this thread raced with another one which got here first and
2860              * set the page to PAGE_WRITE and did the TB invalidate for us.
2861              */
2862 #ifdef TARGET_HAS_PRECISE_SMC
2863             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2864             if (current_tb) {
2865                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2866             }
2867 #endif
2868         } else {
2869             host_start = address & qemu_host_page_mask;
2870             host_end = host_start + qemu_host_page_size;
2871 
2872             prot = 0;
2873             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2874                 p = page_find(addr >> TARGET_PAGE_BITS);
2875                 p->flags |= PAGE_WRITE;
2876                 prot |= p->flags;
2877 
2878                 /* and since the content will be modified, we must invalidate
2879                    the corresponding translated code. */
2880                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2881 #ifdef CONFIG_USER_ONLY
2882                 if (DEBUG_TB_CHECK_GATE) {
2883                     tb_invalidate_check(addr);
2884                 }
2885 #endif
2886             }
2887             mprotect((void *)g2h(host_start), qemu_host_page_size,
2888                      prot & PAGE_BITS);
2889         }
2890         mmap_unlock();
2891         /* If current TB was invalidated return to main loop */
2892         return current_tb_invalidated ? 2 : 1;
2893     }
2894     mmap_unlock();
2895     return 0;
2896 }
2897 #endif /* CONFIG_USER_ONLY */
2898 
2899 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2900 void tcg_flush_softmmu_tlb(CPUState *cs)
2901 {
2902 #ifdef CONFIG_SOFTMMU
2903     tlb_flush(cs);
2904 #endif
2905 }
2906