xref: /qemu/accel/tcg/translate-all.c (revision 6402cbbb)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23 
24 
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #include "exec/exec-all.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
52 
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/error-report.h"
58 #include "qemu/timer.h"
59 #include "qemu/main-loop.h"
60 #include "exec/log.h"
61 #include "sysemu/cpus.h"
62 
63 /* #define DEBUG_TB_INVALIDATE */
64 /* #define DEBUG_TB_FLUSH */
65 /* make various TB consistency checks */
66 /* #define DEBUG_TB_CHECK */
67 
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation.  */
70 #undef DEBUG_TB_CHECK
71 #endif
72 
73 /* Access to the various translations structures need to be serialised via locks
74  * for consistency. This is automatic for SoftMMU based system
75  * emulation due to its single threaded nature. In user-mode emulation
76  * access to the memory related structures are protected with the
77  * mmap_lock.
78  */
79 #ifdef CONFIG_SOFTMMU
80 #define assert_memory_lock() tcg_debug_assert(have_tb_lock)
81 #else
82 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
83 #endif
84 
85 #define SMC_BITMAP_USE_THRESHOLD 10
86 
87 typedef struct PageDesc {
88     /* list of TBs intersecting this ram page */
89     TranslationBlock *first_tb;
90 #ifdef CONFIG_SOFTMMU
91     /* in order to optimize self modifying code, we count the number
92        of lookups we do to a given page to use a bitmap */
93     unsigned int code_write_count;
94     unsigned long *code_bitmap;
95 #else
96     unsigned long flags;
97 #endif
98 } PageDesc;
99 
100 /* In system mode we want L1_MAP to be based on ram offsets,
101    while in user mode we want it to be based on virtual addresses.  */
102 #if !defined(CONFIG_USER_ONLY)
103 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
104 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
105 #else
106 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
107 #endif
108 #else
109 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
110 #endif
111 
112 /* Size of the L2 (and L3, etc) page tables.  */
113 #define V_L2_BITS 10
114 #define V_L2_SIZE (1 << V_L2_BITS)
115 
116 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
117 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
118                   sizeof(((TranslationBlock *)0)->trace_vcpu_dstate)
119                   * BITS_PER_BYTE);
120 
121 /*
122  * L1 Mapping properties
123  */
124 static int v_l1_size;
125 static int v_l1_shift;
126 static int v_l2_levels;
127 
128 /* The bottom level has pointers to PageDesc, and is indexed by
129  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
130  */
131 #define V_L1_MIN_BITS 4
132 #define V_L1_MAX_BITS (V_L2_BITS + 3)
133 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
134 
135 static void *l1_map[V_L1_MAX_SIZE];
136 
137 /* code generation context */
138 TCGContext tcg_ctx;
139 bool parallel_cpus;
140 
141 /* translation block context */
142 __thread int have_tb_lock;
143 
144 static void page_table_config_init(void)
145 {
146     uint32_t v_l1_bits;
147 
148     assert(TARGET_PAGE_BITS);
149     /* The bits remaining after N lower levels of page tables.  */
150     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
151     if (v_l1_bits < V_L1_MIN_BITS) {
152         v_l1_bits += V_L2_BITS;
153     }
154 
155     v_l1_size = 1 << v_l1_bits;
156     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
157     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
158 
159     assert(v_l1_bits <= V_L1_MAX_BITS);
160     assert(v_l1_shift % V_L2_BITS == 0);
161     assert(v_l2_levels >= 0);
162 }
163 
164 #define assert_tb_locked() tcg_debug_assert(have_tb_lock)
165 #define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)
166 
167 void tb_lock(void)
168 {
169     assert_tb_unlocked();
170     qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
171     have_tb_lock++;
172 }
173 
174 void tb_unlock(void)
175 {
176     assert_tb_locked();
177     have_tb_lock--;
178     qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
179 }
180 
181 void tb_lock_reset(void)
182 {
183     if (have_tb_lock) {
184         qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
185         have_tb_lock = 0;
186     }
187 }
188 
189 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
190 
191 void cpu_gen_init(void)
192 {
193     tcg_context_init(&tcg_ctx);
194 }
195 
196 /* Encode VAL as a signed leb128 sequence at P.
197    Return P incremented past the encoded value.  */
198 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
199 {
200     int more, byte;
201 
202     do {
203         byte = val & 0x7f;
204         val >>= 7;
205         more = !((val == 0 && (byte & 0x40) == 0)
206                  || (val == -1 && (byte & 0x40) != 0));
207         if (more) {
208             byte |= 0x80;
209         }
210         *p++ = byte;
211     } while (more);
212 
213     return p;
214 }
215 
216 /* Decode a signed leb128 sequence at *PP; increment *PP past the
217    decoded value.  Return the decoded value.  */
218 static target_long decode_sleb128(uint8_t **pp)
219 {
220     uint8_t *p = *pp;
221     target_long val = 0;
222     int byte, shift = 0;
223 
224     do {
225         byte = *p++;
226         val |= (target_ulong)(byte & 0x7f) << shift;
227         shift += 7;
228     } while (byte & 0x80);
229     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
230         val |= -(target_ulong)1 << shift;
231     }
232 
233     *pp = p;
234     return val;
235 }
236 
237 /* Encode the data collected about the instructions while compiling TB.
238    Place the data at BLOCK, and return the number of bytes consumed.
239 
240    The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
241    which come from the target's insn_start data, followed by a uintptr_t
242    which comes from the host pc of the end of the code implementing the insn.
243 
244    Each line of the table is encoded as sleb128 deltas from the previous
245    line.  The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
246    That is, the first column is seeded with the guest pc, the last column
247    with the host pc, and the middle columns with zeros.  */
248 
249 static int encode_search(TranslationBlock *tb, uint8_t *block)
250 {
251     uint8_t *highwater = tcg_ctx.code_gen_highwater;
252     uint8_t *p = block;
253     int i, j, n;
254 
255     tb->tc_search = block;
256 
257     for (i = 0, n = tb->icount; i < n; ++i) {
258         target_ulong prev;
259 
260         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
261             if (i == 0) {
262                 prev = (j == 0 ? tb->pc : 0);
263             } else {
264                 prev = tcg_ctx.gen_insn_data[i - 1][j];
265             }
266             p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
267         }
268         prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
269         p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
270 
271         /* Test for (pending) buffer overflow.  The assumption is that any
272            one row beginning below the high water mark cannot overrun
273            the buffer completely.  Thus we can test for overflow after
274            encoding a row without having to check during encoding.  */
275         if (unlikely(p > highwater)) {
276             return -1;
277         }
278     }
279 
280     return p - block;
281 }
282 
283 /* The cpu state corresponding to 'searched_pc' is restored.
284  * Called with tb_lock held.
285  */
286 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
287                                      uintptr_t searched_pc)
288 {
289     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
290     uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
291     CPUArchState *env = cpu->env_ptr;
292     uint8_t *p = tb->tc_search;
293     int i, j, num_insns = tb->icount;
294 #ifdef CONFIG_PROFILER
295     int64_t ti = profile_getclock();
296 #endif
297 
298     searched_pc -= GETPC_ADJ;
299 
300     if (searched_pc < host_pc) {
301         return -1;
302     }
303 
304     /* Reconstruct the stored insn data while looking for the point at
305        which the end of the insn exceeds the searched_pc.  */
306     for (i = 0; i < num_insns; ++i) {
307         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
308             data[j] += decode_sleb128(&p);
309         }
310         host_pc += decode_sleb128(&p);
311         if (host_pc > searched_pc) {
312             goto found;
313         }
314     }
315     return -1;
316 
317  found:
318     if (tb->cflags & CF_USE_ICOUNT) {
319         assert(use_icount);
320         /* Reset the cycle counter to the start of the block.  */
321         cpu->icount_decr.u16.low += num_insns;
322         /* Clear the IO flag.  */
323         cpu->can_do_io = 0;
324     }
325     cpu->icount_decr.u16.low -= i;
326     restore_state_to_opc(env, tb, data);
327 
328 #ifdef CONFIG_PROFILER
329     tcg_ctx.restore_time += profile_getclock() - ti;
330     tcg_ctx.restore_count++;
331 #endif
332     return 0;
333 }
334 
335 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
336 {
337     TranslationBlock *tb;
338     bool r = false;
339 
340     /* A retaddr of zero is invalid so we really shouldn't have ended
341      * up here. The target code has likely forgotten to check retaddr
342      * != 0 before attempting to restore state. We return early to
343      * avoid blowing up on a recursive tb_lock(). The target must have
344      * previously survived a failed cpu_restore_state because
345      * tb_find_pc(0) would have failed anyway. It still should be
346      * fixed though.
347      */
348 
349     if (!retaddr) {
350         return r;
351     }
352 
353     tb_lock();
354     tb = tb_find_pc(retaddr);
355     if (tb) {
356         cpu_restore_state_from_tb(cpu, tb, retaddr);
357         if (tb->cflags & CF_NOCACHE) {
358             /* one-shot translation, invalidate it immediately */
359             tb_phys_invalidate(tb, -1);
360             tb_free(tb);
361         }
362         r = true;
363     }
364     tb_unlock();
365 
366     return r;
367 }
368 
369 static void page_init(void)
370 {
371     page_size_init();
372     page_table_config_init();
373 
374 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
375     {
376 #ifdef HAVE_KINFO_GETVMMAP
377         struct kinfo_vmentry *freep;
378         int i, cnt;
379 
380         freep = kinfo_getvmmap(getpid(), &cnt);
381         if (freep) {
382             mmap_lock();
383             for (i = 0; i < cnt; i++) {
384                 unsigned long startaddr, endaddr;
385 
386                 startaddr = freep[i].kve_start;
387                 endaddr = freep[i].kve_end;
388                 if (h2g_valid(startaddr)) {
389                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
390 
391                     if (h2g_valid(endaddr)) {
392                         endaddr = h2g(endaddr);
393                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
394                     } else {
395 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
396                         endaddr = ~0ul;
397                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
398 #endif
399                     }
400                 }
401             }
402             free(freep);
403             mmap_unlock();
404         }
405 #else
406         FILE *f;
407 
408         last_brk = (unsigned long)sbrk(0);
409 
410         f = fopen("/compat/linux/proc/self/maps", "r");
411         if (f) {
412             mmap_lock();
413 
414             do {
415                 unsigned long startaddr, endaddr;
416                 int n;
417 
418                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
419 
420                 if (n == 2 && h2g_valid(startaddr)) {
421                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
422 
423                     if (h2g_valid(endaddr)) {
424                         endaddr = h2g(endaddr);
425                     } else {
426                         endaddr = ~0ul;
427                     }
428                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
429                 }
430             } while (!feof(f));
431 
432             fclose(f);
433             mmap_unlock();
434         }
435 #endif
436     }
437 #endif
438 }
439 
440 /* If alloc=1:
441  * Called with tb_lock held for system emulation.
442  * Called with mmap_lock held for user-mode emulation.
443  */
444 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
445 {
446     PageDesc *pd;
447     void **lp;
448     int i;
449 
450     if (alloc) {
451         assert_memory_lock();
452     }
453 
454     /* Level 1.  Always allocated.  */
455     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
456 
457     /* Level 2..N-1.  */
458     for (i = v_l2_levels; i > 0; i--) {
459         void **p = atomic_rcu_read(lp);
460 
461         if (p == NULL) {
462             if (!alloc) {
463                 return NULL;
464             }
465             p = g_new0(void *, V_L2_SIZE);
466             atomic_rcu_set(lp, p);
467         }
468 
469         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
470     }
471 
472     pd = atomic_rcu_read(lp);
473     if (pd == NULL) {
474         if (!alloc) {
475             return NULL;
476         }
477         pd = g_new0(PageDesc, V_L2_SIZE);
478         atomic_rcu_set(lp, pd);
479     }
480 
481     return pd + (index & (V_L2_SIZE - 1));
482 }
483 
484 static inline PageDesc *page_find(tb_page_addr_t index)
485 {
486     return page_find_alloc(index, 0);
487 }
488 
489 #if defined(CONFIG_USER_ONLY)
490 /* Currently it is not recommended to allocate big chunks of data in
491    user mode. It will change when a dedicated libc will be used.  */
492 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
493    region in which the guest needs to run.  Revisit this.  */
494 #define USE_STATIC_CODE_GEN_BUFFER
495 #endif
496 
497 /* Minimum size of the code gen buffer.  This number is randomly chosen,
498    but not so small that we can't have a fair number of TB's live.  */
499 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
500 
501 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
502    indicated, this is constrained by the range of direct branches on the
503    host cpu, as used by the TCG implementation of goto_tb.  */
504 #if defined(__x86_64__)
505 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
506 #elif defined(__sparc__)
507 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
508 #elif defined(__powerpc64__)
509 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
510 #elif defined(__powerpc__)
511 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
512 #elif defined(__aarch64__)
513 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
514 #elif defined(__s390x__)
515   /* We have a +- 4GB range on the branches; leave some slop.  */
516 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
517 #elif defined(__mips__)
518   /* We have a 256MB branch region, but leave room to make sure the
519      main executable is also within that region.  */
520 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
521 #else
522 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
523 #endif
524 
525 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
526 
527 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
528   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
529    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
530 
531 static inline size_t size_code_gen_buffer(size_t tb_size)
532 {
533     /* Size the buffer.  */
534     if (tb_size == 0) {
535 #ifdef USE_STATIC_CODE_GEN_BUFFER
536         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
537 #else
538         /* ??? Needs adjustments.  */
539         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
540            static buffer, we could size this on RESERVED_VA, on the text
541            segment size of the executable, or continue to use the default.  */
542         tb_size = (unsigned long)(ram_size / 4);
543 #endif
544     }
545     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
546         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
547     }
548     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
549         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
550     }
551     return tb_size;
552 }
553 
554 #ifdef __mips__
555 /* In order to use J and JAL within the code_gen_buffer, we require
556    that the buffer not cross a 256MB boundary.  */
557 static inline bool cross_256mb(void *addr, size_t size)
558 {
559     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
560 }
561 
562 /* We weren't able to allocate a buffer without crossing that boundary,
563    so make do with the larger portion of the buffer that doesn't cross.
564    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
565 static inline void *split_cross_256mb(void *buf1, size_t size1)
566 {
567     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
568     size_t size2 = buf1 + size1 - buf2;
569 
570     size1 = buf2 - buf1;
571     if (size1 < size2) {
572         size1 = size2;
573         buf1 = buf2;
574     }
575 
576     tcg_ctx.code_gen_buffer_size = size1;
577     return buf1;
578 }
579 #endif
580 
581 #ifdef USE_STATIC_CODE_GEN_BUFFER
582 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
583     __attribute__((aligned(CODE_GEN_ALIGN)));
584 
585 # ifdef _WIN32
586 static inline void do_protect(void *addr, long size, int prot)
587 {
588     DWORD old_protect;
589     VirtualProtect(addr, size, prot, &old_protect);
590 }
591 
592 static inline void map_exec(void *addr, long size)
593 {
594     do_protect(addr, size, PAGE_EXECUTE_READWRITE);
595 }
596 
597 static inline void map_none(void *addr, long size)
598 {
599     do_protect(addr, size, PAGE_NOACCESS);
600 }
601 # else
602 static inline void do_protect(void *addr, long size, int prot)
603 {
604     uintptr_t start, end;
605 
606     start = (uintptr_t)addr;
607     start &= qemu_real_host_page_mask;
608 
609     end = (uintptr_t)addr + size;
610     end = ROUND_UP(end, qemu_real_host_page_size);
611 
612     mprotect((void *)start, end - start, prot);
613 }
614 
615 static inline void map_exec(void *addr, long size)
616 {
617     do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
618 }
619 
620 static inline void map_none(void *addr, long size)
621 {
622     do_protect(addr, size, PROT_NONE);
623 }
624 # endif /* WIN32 */
625 
626 static inline void *alloc_code_gen_buffer(void)
627 {
628     void *buf = static_code_gen_buffer;
629     size_t full_size, size;
630 
631     /* The size of the buffer, rounded down to end on a page boundary.  */
632     full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
633                  & qemu_real_host_page_mask) - (uintptr_t)buf;
634 
635     /* Reserve a guard page.  */
636     size = full_size - qemu_real_host_page_size;
637 
638     /* Honor a command-line option limiting the size of the buffer.  */
639     if (size > tcg_ctx.code_gen_buffer_size) {
640         size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
641                 & qemu_real_host_page_mask) - (uintptr_t)buf;
642     }
643     tcg_ctx.code_gen_buffer_size = size;
644 
645 #ifdef __mips__
646     if (cross_256mb(buf, size)) {
647         buf = split_cross_256mb(buf, size);
648         size = tcg_ctx.code_gen_buffer_size;
649     }
650 #endif
651 
652     map_exec(buf, size);
653     map_none(buf + size, qemu_real_host_page_size);
654     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
655 
656     return buf;
657 }
658 #elif defined(_WIN32)
659 static inline void *alloc_code_gen_buffer(void)
660 {
661     size_t size = tcg_ctx.code_gen_buffer_size;
662     void *buf1, *buf2;
663 
664     /* Perform the allocation in two steps, so that the guard page
665        is reserved but uncommitted.  */
666     buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
667                         MEM_RESERVE, PAGE_NOACCESS);
668     if (buf1 != NULL) {
669         buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
670         assert(buf1 == buf2);
671     }
672 
673     return buf1;
674 }
675 #else
676 static inline void *alloc_code_gen_buffer(void)
677 {
678     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
679     uintptr_t start = 0;
680     size_t size = tcg_ctx.code_gen_buffer_size;
681     void *buf;
682 
683     /* Constrain the position of the buffer based on the host cpu.
684        Note that these addresses are chosen in concert with the
685        addresses assigned in the relevant linker script file.  */
686 # if defined(__PIE__) || defined(__PIC__)
687     /* Don't bother setting a preferred location if we're building
688        a position-independent executable.  We're more likely to get
689        an address near the main executable if we let the kernel
690        choose the address.  */
691 # elif defined(__x86_64__) && defined(MAP_32BIT)
692     /* Force the memory down into low memory with the executable.
693        Leave the choice of exact location with the kernel.  */
694     flags |= MAP_32BIT;
695     /* Cannot expect to map more than 800MB in low memory.  */
696     if (size > 800u * 1024 * 1024) {
697         tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
698     }
699 # elif defined(__sparc__)
700     start = 0x40000000ul;
701 # elif defined(__s390x__)
702     start = 0x90000000ul;
703 # elif defined(__mips__)
704 #  if _MIPS_SIM == _ABI64
705     start = 0x128000000ul;
706 #  else
707     start = 0x08000000ul;
708 #  endif
709 # endif
710 
711     buf = mmap((void *)start, size + qemu_real_host_page_size,
712                PROT_NONE, flags, -1, 0);
713     if (buf == MAP_FAILED) {
714         return NULL;
715     }
716 
717 #ifdef __mips__
718     if (cross_256mb(buf, size)) {
719         /* Try again, with the original still mapped, to avoid re-acquiring
720            that 256mb crossing.  This time don't specify an address.  */
721         size_t size2;
722         void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
723                           PROT_NONE, flags, -1, 0);
724         switch ((int)(buf2 != MAP_FAILED)) {
725         case 1:
726             if (!cross_256mb(buf2, size)) {
727                 /* Success!  Use the new buffer.  */
728                 munmap(buf, size + qemu_real_host_page_size);
729                 break;
730             }
731             /* Failure.  Work with what we had.  */
732             munmap(buf2, size + qemu_real_host_page_size);
733             /* fallthru */
734         default:
735             /* Split the original buffer.  Free the smaller half.  */
736             buf2 = split_cross_256mb(buf, size);
737             size2 = tcg_ctx.code_gen_buffer_size;
738             if (buf == buf2) {
739                 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
740             } else {
741                 munmap(buf, size - size2);
742             }
743             size = size2;
744             break;
745         }
746         buf = buf2;
747     }
748 #endif
749 
750     /* Make the final buffer accessible.  The guard page at the end
751        will remain inaccessible with PROT_NONE.  */
752     mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
753 
754     /* Request large pages for the buffer.  */
755     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
756 
757     return buf;
758 }
759 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
760 
761 static inline void code_gen_alloc(size_t tb_size)
762 {
763     tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
764     tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
765     if (tcg_ctx.code_gen_buffer == NULL) {
766         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
767         exit(1);
768     }
769 
770     /* size this conservatively -- realloc later if needed */
771     tcg_ctx.tb_ctx.tbs_size =
772         tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE / 8;
773     if (unlikely(!tcg_ctx.tb_ctx.tbs_size)) {
774         tcg_ctx.tb_ctx.tbs_size = 64 * 1024;
775     }
776     tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock *, tcg_ctx.tb_ctx.tbs_size);
777 
778     qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
779 }
780 
781 static void tb_htable_init(void)
782 {
783     unsigned int mode = QHT_MODE_AUTO_RESIZE;
784 
785     qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
786 }
787 
788 /* Must be called before using the QEMU cpus. 'tb_size' is the size
789    (in bytes) allocated to the translation buffer. Zero means default
790    size. */
791 void tcg_exec_init(unsigned long tb_size)
792 {
793     tcg_allowed = true;
794     cpu_gen_init();
795     page_init();
796     tb_htable_init();
797     code_gen_alloc(tb_size);
798 #if defined(CONFIG_SOFTMMU)
799     /* There's no guest base to take into account, so go ahead and
800        initialize the prologue now.  */
801     tcg_prologue_init(&tcg_ctx);
802 #endif
803 }
804 
805 /*
806  * Allocate a new translation block. Flush the translation buffer if
807  * too many translation blocks or too much generated code.
808  *
809  * Called with tb_lock held.
810  */
811 static TranslationBlock *tb_alloc(target_ulong pc)
812 {
813     TranslationBlock *tb;
814     TBContext *ctx;
815 
816     assert_tb_locked();
817 
818     tb = tcg_tb_alloc(&tcg_ctx);
819     if (unlikely(tb == NULL)) {
820         return NULL;
821     }
822     ctx = &tcg_ctx.tb_ctx;
823     if (unlikely(ctx->nb_tbs == ctx->tbs_size)) {
824         ctx->tbs_size *= 2;
825         ctx->tbs = g_renew(TranslationBlock *, ctx->tbs, ctx->tbs_size);
826     }
827     ctx->tbs[ctx->nb_tbs++] = tb;
828     return tb;
829 }
830 
831 /* Called with tb_lock held.  */
832 void tb_free(TranslationBlock *tb)
833 {
834     assert_tb_locked();
835 
836     /* In practice this is mostly used for single use temporary TB
837        Ignore the hard cases and just back up if this TB happens to
838        be the last one generated.  */
839     if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
840             tb == tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
841         size_t struct_size = ROUND_UP(sizeof(*tb), qemu_icache_linesize);
842 
843         tcg_ctx.code_gen_ptr = tb->tc_ptr - struct_size;
844         tcg_ctx.tb_ctx.nb_tbs--;
845     }
846 }
847 
848 static inline void invalidate_page_bitmap(PageDesc *p)
849 {
850 #ifdef CONFIG_SOFTMMU
851     g_free(p->code_bitmap);
852     p->code_bitmap = NULL;
853     p->code_write_count = 0;
854 #endif
855 }
856 
857 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
858 static void page_flush_tb_1(int level, void **lp)
859 {
860     int i;
861 
862     if (*lp == NULL) {
863         return;
864     }
865     if (level == 0) {
866         PageDesc *pd = *lp;
867 
868         for (i = 0; i < V_L2_SIZE; ++i) {
869             pd[i].first_tb = NULL;
870             invalidate_page_bitmap(pd + i);
871         }
872     } else {
873         void **pp = *lp;
874 
875         for (i = 0; i < V_L2_SIZE; ++i) {
876             page_flush_tb_1(level - 1, pp + i);
877         }
878     }
879 }
880 
881 static void page_flush_tb(void)
882 {
883     int i, l1_sz = v_l1_size;
884 
885     for (i = 0; i < l1_sz; i++) {
886         page_flush_tb_1(v_l2_levels, l1_map + i);
887     }
888 }
889 
890 /* flush all the translation blocks */
891 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
892 {
893     tb_lock();
894 
895     /* If it is already been done on request of another CPU,
896      * just retry.
897      */
898     if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
899         goto done;
900     }
901 
902 #if defined(DEBUG_TB_FLUSH)
903     printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
904            (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
905            tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
906            ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
907            tcg_ctx.tb_ctx.nb_tbs : 0);
908 #endif
909     if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
910         > tcg_ctx.code_gen_buffer_size) {
911         cpu_abort(cpu, "Internal error: code buffer overflow\n");
912     }
913 
914     CPU_FOREACH(cpu) {
915         cpu_tb_jmp_cache_clear(cpu);
916     }
917 
918     tcg_ctx.tb_ctx.nb_tbs = 0;
919     qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
920     page_flush_tb();
921 
922     tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
923     /* XXX: flush processor icache at this point if cache flush is
924        expensive */
925     atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
926                   tcg_ctx.tb_ctx.tb_flush_count + 1);
927 
928 done:
929     tb_unlock();
930 }
931 
932 void tb_flush(CPUState *cpu)
933 {
934     if (tcg_enabled()) {
935         unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
936         async_safe_run_on_cpu(cpu, do_tb_flush,
937                               RUN_ON_CPU_HOST_INT(tb_flush_count));
938     }
939 }
940 
941 #ifdef DEBUG_TB_CHECK
942 
943 static void
944 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
945 {
946     TranslationBlock *tb = p;
947     target_ulong addr = *(target_ulong *)userp;
948 
949     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
950         printf("ERROR invalidate: address=" TARGET_FMT_lx
951                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
952     }
953 }
954 
955 /* verify that all the pages have correct rights for code
956  *
957  * Called with tb_lock held.
958  */
959 static void tb_invalidate_check(target_ulong address)
960 {
961     address &= TARGET_PAGE_MASK;
962     qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
963 }
964 
965 static void
966 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
967 {
968     TranslationBlock *tb = p;
969     int flags1, flags2;
970 
971     flags1 = page_get_flags(tb->pc);
972     flags2 = page_get_flags(tb->pc + tb->size - 1);
973     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
974         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
975                (long)tb->pc, tb->size, flags1, flags2);
976     }
977 }
978 
979 /* verify that all the pages have correct rights for code */
980 static void tb_page_check(void)
981 {
982     qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
983 }
984 
985 #endif
986 
987 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
988 {
989     TranslationBlock *tb1;
990     unsigned int n1;
991 
992     for (;;) {
993         tb1 = *ptb;
994         n1 = (uintptr_t)tb1 & 3;
995         tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
996         if (tb1 == tb) {
997             *ptb = tb1->page_next[n1];
998             break;
999         }
1000         ptb = &tb1->page_next[n1];
1001     }
1002 }
1003 
1004 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1005 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1006 {
1007     TranslationBlock *tb1;
1008     uintptr_t *ptb, ntb;
1009     unsigned int n1;
1010 
1011     ptb = &tb->jmp_list_next[n];
1012     if (*ptb) {
1013         /* find tb(n) in circular list */
1014         for (;;) {
1015             ntb = *ptb;
1016             n1 = ntb & 3;
1017             tb1 = (TranslationBlock *)(ntb & ~3);
1018             if (n1 == n && tb1 == tb) {
1019                 break;
1020             }
1021             if (n1 == 2) {
1022                 ptb = &tb1->jmp_list_first;
1023             } else {
1024                 ptb = &tb1->jmp_list_next[n1];
1025             }
1026         }
1027         /* now we can suppress tb(n) from the list */
1028         *ptb = tb->jmp_list_next[n];
1029 
1030         tb->jmp_list_next[n] = (uintptr_t)NULL;
1031     }
1032 }
1033 
1034 /* reset the jump entry 'n' of a TB so that it is not chained to
1035    another TB */
1036 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1037 {
1038     uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1039     tb_set_jmp_target(tb, n, addr);
1040 }
1041 
1042 /* remove any jumps to the TB */
1043 static inline void tb_jmp_unlink(TranslationBlock *tb)
1044 {
1045     TranslationBlock *tb1;
1046     uintptr_t *ptb, ntb;
1047     unsigned int n1;
1048 
1049     ptb = &tb->jmp_list_first;
1050     for (;;) {
1051         ntb = *ptb;
1052         n1 = ntb & 3;
1053         tb1 = (TranslationBlock *)(ntb & ~3);
1054         if (n1 == 2) {
1055             break;
1056         }
1057         tb_reset_jump(tb1, n1);
1058         *ptb = tb1->jmp_list_next[n1];
1059         tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1060     }
1061 }
1062 
1063 /* invalidate one TB
1064  *
1065  * Called with tb_lock held.
1066  */
1067 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1068 {
1069     CPUState *cpu;
1070     PageDesc *p;
1071     uint32_t h;
1072     tb_page_addr_t phys_pc;
1073 
1074     assert_tb_locked();
1075 
1076     atomic_set(&tb->invalid, true);
1077 
1078     /* remove the TB from the hash list */
1079     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1080     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->trace_vcpu_dstate);
1081     qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1082 
1083     /* remove the TB from the page list */
1084     if (tb->page_addr[0] != page_addr) {
1085         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1086         tb_page_remove(&p->first_tb, tb);
1087         invalidate_page_bitmap(p);
1088     }
1089     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1090         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1091         tb_page_remove(&p->first_tb, tb);
1092         invalidate_page_bitmap(p);
1093     }
1094 
1095     /* remove the TB from the hash list */
1096     h = tb_jmp_cache_hash_func(tb->pc);
1097     CPU_FOREACH(cpu) {
1098         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1099             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1100         }
1101     }
1102 
1103     /* suppress this TB from the two jump lists */
1104     tb_remove_from_jmp_list(tb, 0);
1105     tb_remove_from_jmp_list(tb, 1);
1106 
1107     /* suppress any remaining jumps to this TB */
1108     tb_jmp_unlink(tb);
1109 
1110     tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1111 }
1112 
1113 #ifdef CONFIG_SOFTMMU
1114 static void build_page_bitmap(PageDesc *p)
1115 {
1116     int n, tb_start, tb_end;
1117     TranslationBlock *tb;
1118 
1119     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1120 
1121     tb = p->first_tb;
1122     while (tb != NULL) {
1123         n = (uintptr_t)tb & 3;
1124         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125         /* NOTE: this is subtle as a TB may span two physical pages */
1126         if (n == 0) {
1127             /* NOTE: tb_end may be after the end of the page, but
1128                it is not a problem */
1129             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1130             tb_end = tb_start + tb->size;
1131             if (tb_end > TARGET_PAGE_SIZE) {
1132                 tb_end = TARGET_PAGE_SIZE;
1133              }
1134         } else {
1135             tb_start = 0;
1136             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1137         }
1138         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1139         tb = tb->page_next[n];
1140     }
1141 }
1142 #endif
1143 
1144 /* add the tb in the target page and protect it if necessary
1145  *
1146  * Called with mmap_lock held for user-mode emulation.
1147  */
1148 static inline void tb_alloc_page(TranslationBlock *tb,
1149                                  unsigned int n, tb_page_addr_t page_addr)
1150 {
1151     PageDesc *p;
1152 #ifndef CONFIG_USER_ONLY
1153     bool page_already_protected;
1154 #endif
1155 
1156     assert_memory_lock();
1157 
1158     tb->page_addr[n] = page_addr;
1159     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1160     tb->page_next[n] = p->first_tb;
1161 #ifndef CONFIG_USER_ONLY
1162     page_already_protected = p->first_tb != NULL;
1163 #endif
1164     p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1165     invalidate_page_bitmap(p);
1166 
1167 #if defined(CONFIG_USER_ONLY)
1168     if (p->flags & PAGE_WRITE) {
1169         target_ulong addr;
1170         PageDesc *p2;
1171         int prot;
1172 
1173         /* force the host page as non writable (writes will have a
1174            page fault + mprotect overhead) */
1175         page_addr &= qemu_host_page_mask;
1176         prot = 0;
1177         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1178             addr += TARGET_PAGE_SIZE) {
1179 
1180             p2 = page_find(addr >> TARGET_PAGE_BITS);
1181             if (!p2) {
1182                 continue;
1183             }
1184             prot |= p2->flags;
1185             p2->flags &= ~PAGE_WRITE;
1186           }
1187         mprotect(g2h(page_addr), qemu_host_page_size,
1188                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1189 #ifdef DEBUG_TB_INVALIDATE
1190         printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1191                page_addr);
1192 #endif
1193     }
1194 #else
1195     /* if some code is already present, then the pages are already
1196        protected. So we handle the case where only the first TB is
1197        allocated in a physical page */
1198     if (!page_already_protected) {
1199         tlb_protect_code(page_addr);
1200     }
1201 #endif
1202 }
1203 
1204 /* add a new TB and link it to the physical page tables. phys_page2 is
1205  * (-1) to indicate that only one page contains the TB.
1206  *
1207  * Called with mmap_lock held for user-mode emulation.
1208  */
1209 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1210                          tb_page_addr_t phys_page2)
1211 {
1212     uint32_t h;
1213 
1214     assert_memory_lock();
1215 
1216     /* add in the page list */
1217     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1218     if (phys_page2 != -1) {
1219         tb_alloc_page(tb, 1, phys_page2);
1220     } else {
1221         tb->page_addr[1] = -1;
1222     }
1223 
1224     /* add in the hash table */
1225     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->trace_vcpu_dstate);
1226     qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1227 
1228 #ifdef DEBUG_TB_CHECK
1229     tb_page_check();
1230 #endif
1231 }
1232 
1233 /* Called with mmap_lock held for user mode emulation.  */
1234 TranslationBlock *tb_gen_code(CPUState *cpu,
1235                               target_ulong pc, target_ulong cs_base,
1236                               uint32_t flags, int cflags)
1237 {
1238     CPUArchState *env = cpu->env_ptr;
1239     TranslationBlock *tb;
1240     tb_page_addr_t phys_pc, phys_page2;
1241     target_ulong virt_page2;
1242     tcg_insn_unit *gen_code_buf;
1243     int gen_code_size, search_size;
1244 #ifdef CONFIG_PROFILER
1245     int64_t ti;
1246 #endif
1247     assert_memory_lock();
1248 
1249     phys_pc = get_page_addr_code(env, pc);
1250     if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1251         cflags |= CF_USE_ICOUNT;
1252     }
1253 
1254     tb = tb_alloc(pc);
1255     if (unlikely(!tb)) {
1256  buffer_overflow:
1257         /* flush must be done */
1258         tb_flush(cpu);
1259         mmap_unlock();
1260         /* Make the execution loop process the flush as soon as possible.  */
1261         cpu->exception_index = EXCP_INTERRUPT;
1262         cpu_loop_exit(cpu);
1263     }
1264 
1265     gen_code_buf = tcg_ctx.code_gen_ptr;
1266     tb->tc_ptr = gen_code_buf;
1267     tb->pc = pc;
1268     tb->cs_base = cs_base;
1269     tb->flags = flags;
1270     tb->cflags = cflags;
1271     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1272     tb->invalid = false;
1273 
1274 #ifdef CONFIG_PROFILER
1275     tcg_ctx.tb_count1++; /* includes aborted translations because of
1276                        exceptions */
1277     ti = profile_getclock();
1278 #endif
1279 
1280     tcg_func_start(&tcg_ctx);
1281 
1282     tcg_ctx.cpu = ENV_GET_CPU(env);
1283     gen_intermediate_code(cpu, tb);
1284     tcg_ctx.cpu = NULL;
1285 
1286     trace_translate_block(tb, tb->pc, tb->tc_ptr);
1287 
1288     /* generate machine code */
1289     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1290     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1291     tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1292 #ifdef USE_DIRECT_JUMP
1293     tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1294     tcg_ctx.tb_jmp_target_addr = NULL;
1295 #else
1296     tcg_ctx.tb_jmp_insn_offset = NULL;
1297     tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1298 #endif
1299 
1300 #ifdef CONFIG_PROFILER
1301     tcg_ctx.tb_count++;
1302     tcg_ctx.interm_time += profile_getclock() - ti;
1303     tcg_ctx.code_time -= profile_getclock();
1304 #endif
1305 
1306     /* ??? Overflow could be handled better here.  In particular, we
1307        don't need to re-do gen_intermediate_code, nor should we re-do
1308        the tcg optimization currently hidden inside tcg_gen_code.  All
1309        that should be required is to flush the TBs, allocate a new TB,
1310        re-initialize it per above, and re-do the actual code generation.  */
1311     gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1312     if (unlikely(gen_code_size < 0)) {
1313         goto buffer_overflow;
1314     }
1315     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1316     if (unlikely(search_size < 0)) {
1317         goto buffer_overflow;
1318     }
1319 
1320 #ifdef CONFIG_PROFILER
1321     tcg_ctx.code_time += profile_getclock();
1322     tcg_ctx.code_in_len += tb->size;
1323     tcg_ctx.code_out_len += gen_code_size;
1324     tcg_ctx.search_out_len += search_size;
1325 #endif
1326 
1327 #ifdef DEBUG_DISAS
1328     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1329         qemu_log_in_addr_range(tb->pc)) {
1330         qemu_log_lock();
1331         qemu_log("OUT: [size=%d]\n", gen_code_size);
1332         log_disas(tb->tc_ptr, gen_code_size);
1333         qemu_log("\n");
1334         qemu_log_flush();
1335         qemu_log_unlock();
1336     }
1337 #endif
1338 
1339     tcg_ctx.code_gen_ptr = (void *)
1340         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1341                  CODE_GEN_ALIGN);
1342 
1343     /* init jump list */
1344     assert(((uintptr_t)tb & 3) == 0);
1345     tb->jmp_list_first = (uintptr_t)tb | 2;
1346     tb->jmp_list_next[0] = (uintptr_t)NULL;
1347     tb->jmp_list_next[1] = (uintptr_t)NULL;
1348 
1349     /* init original jump addresses wich has been set during tcg_gen_code() */
1350     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1351         tb_reset_jump(tb, 0);
1352     }
1353     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1354         tb_reset_jump(tb, 1);
1355     }
1356 
1357     /* check next page if needed */
1358     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1359     phys_page2 = -1;
1360     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1361         phys_page2 = get_page_addr_code(env, virt_page2);
1362     }
1363     /* As long as consistency of the TB stuff is provided by tb_lock in user
1364      * mode and is implicit in single-threaded softmmu emulation, no explicit
1365      * memory barrier is required before tb_link_page() makes the TB visible
1366      * through the physical hash table and physical page list.
1367      */
1368     tb_link_page(tb, phys_pc, phys_page2);
1369     return tb;
1370 }
1371 
1372 /*
1373  * Invalidate all TBs which intersect with the target physical address range
1374  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1375  * 'is_cpu_write_access' should be true if called from a real cpu write
1376  * access: the virtual CPU will exit the current TB if code is modified inside
1377  * this TB.
1378  *
1379  * Called with mmap_lock held for user-mode emulation, grabs tb_lock
1380  * Called with tb_lock held for system-mode emulation
1381  */
1382 static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
1383 {
1384     while (start < end) {
1385         tb_invalidate_phys_page_range(start, end, 0);
1386         start &= TARGET_PAGE_MASK;
1387         start += TARGET_PAGE_SIZE;
1388     }
1389 }
1390 
1391 #ifdef CONFIG_SOFTMMU
1392 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1393 {
1394     assert_tb_locked();
1395     tb_invalidate_phys_range_1(start, end);
1396 }
1397 #else
1398 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1399 {
1400     assert_memory_lock();
1401     tb_lock();
1402     tb_invalidate_phys_range_1(start, end);
1403     tb_unlock();
1404 }
1405 #endif
1406 /*
1407  * Invalidate all TBs which intersect with the target physical address range
1408  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1409  * 'is_cpu_write_access' should be true if called from a real cpu write
1410  * access: the virtual CPU will exit the current TB if code is modified inside
1411  * this TB.
1412  *
1413  * Called with tb_lock/mmap_lock held for user-mode emulation
1414  * Called with tb_lock held for system-mode emulation
1415  */
1416 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1417                                    int is_cpu_write_access)
1418 {
1419     TranslationBlock *tb, *tb_next;
1420 #if defined(TARGET_HAS_PRECISE_SMC)
1421     CPUState *cpu = current_cpu;
1422     CPUArchState *env = NULL;
1423 #endif
1424     tb_page_addr_t tb_start, tb_end;
1425     PageDesc *p;
1426     int n;
1427 #ifdef TARGET_HAS_PRECISE_SMC
1428     int current_tb_not_found = is_cpu_write_access;
1429     TranslationBlock *current_tb = NULL;
1430     int current_tb_modified = 0;
1431     target_ulong current_pc = 0;
1432     target_ulong current_cs_base = 0;
1433     uint32_t current_flags = 0;
1434 #endif /* TARGET_HAS_PRECISE_SMC */
1435 
1436     assert_memory_lock();
1437     assert_tb_locked();
1438 
1439     p = page_find(start >> TARGET_PAGE_BITS);
1440     if (!p) {
1441         return;
1442     }
1443 #if defined(TARGET_HAS_PRECISE_SMC)
1444     if (cpu != NULL) {
1445         env = cpu->env_ptr;
1446     }
1447 #endif
1448 
1449     /* we remove all the TBs in the range [start, end[ */
1450     /* XXX: see if in some cases it could be faster to invalidate all
1451        the code */
1452     tb = p->first_tb;
1453     while (tb != NULL) {
1454         n = (uintptr_t)tb & 3;
1455         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1456         tb_next = tb->page_next[n];
1457         /* NOTE: this is subtle as a TB may span two physical pages */
1458         if (n == 0) {
1459             /* NOTE: tb_end may be after the end of the page, but
1460                it is not a problem */
1461             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1462             tb_end = tb_start + tb->size;
1463         } else {
1464             tb_start = tb->page_addr[1];
1465             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1466         }
1467         if (!(tb_end <= start || tb_start >= end)) {
1468 #ifdef TARGET_HAS_PRECISE_SMC
1469             if (current_tb_not_found) {
1470                 current_tb_not_found = 0;
1471                 current_tb = NULL;
1472                 if (cpu->mem_io_pc) {
1473                     /* now we have a real cpu fault */
1474                     current_tb = tb_find_pc(cpu->mem_io_pc);
1475                 }
1476             }
1477             if (current_tb == tb &&
1478                 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1479                 /* If we are modifying the current TB, we must stop
1480                 its execution. We could be more precise by checking
1481                 that the modification is after the current PC, but it
1482                 would require a specialized function to partially
1483                 restore the CPU state */
1484 
1485                 current_tb_modified = 1;
1486                 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1487                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1488                                      &current_flags);
1489             }
1490 #endif /* TARGET_HAS_PRECISE_SMC */
1491             tb_phys_invalidate(tb, -1);
1492         }
1493         tb = tb_next;
1494     }
1495 #if !defined(CONFIG_USER_ONLY)
1496     /* if no code remaining, no need to continue to use slow writes */
1497     if (!p->first_tb) {
1498         invalidate_page_bitmap(p);
1499         tlb_unprotect_code(start);
1500     }
1501 #endif
1502 #ifdef TARGET_HAS_PRECISE_SMC
1503     if (current_tb_modified) {
1504         /* we generate a block containing just the instruction
1505            modifying the memory. It will ensure that it cannot modify
1506            itself */
1507         tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1508         cpu_loop_exit_noexc(cpu);
1509     }
1510 #endif
1511 }
1512 
1513 #ifdef CONFIG_SOFTMMU
1514 /* len must be <= 8 and start must be a multiple of len.
1515  * Called via softmmu_template.h when code areas are written to with
1516  * iothread mutex not held.
1517  */
1518 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1519 {
1520     PageDesc *p;
1521 
1522 #if 0
1523     if (1) {
1524         qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1525                   cpu_single_env->mem_io_vaddr, len,
1526                   cpu_single_env->eip,
1527                   cpu_single_env->eip +
1528                   (intptr_t)cpu_single_env->segs[R_CS].base);
1529     }
1530 #endif
1531     assert_memory_lock();
1532 
1533     p = page_find(start >> TARGET_PAGE_BITS);
1534     if (!p) {
1535         return;
1536     }
1537     if (!p->code_bitmap &&
1538         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1539         /* build code bitmap.  FIXME: writes should be protected by
1540          * tb_lock, reads by tb_lock or RCU.
1541          */
1542         build_page_bitmap(p);
1543     }
1544     if (p->code_bitmap) {
1545         unsigned int nr;
1546         unsigned long b;
1547 
1548         nr = start & ~TARGET_PAGE_MASK;
1549         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1550         if (b & ((1 << len) - 1)) {
1551             goto do_invalidate;
1552         }
1553     } else {
1554     do_invalidate:
1555         tb_invalidate_phys_page_range(start, start + len, 1);
1556     }
1557 }
1558 #else
1559 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1560  * host PC of the faulting store instruction that caused this invalidate.
1561  * Returns true if the caller needs to abort execution of the current
1562  * TB (because it was modified by this store and the guest CPU has
1563  * precise-SMC semantics).
1564  */
1565 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1566 {
1567     TranslationBlock *tb;
1568     PageDesc *p;
1569     int n;
1570 #ifdef TARGET_HAS_PRECISE_SMC
1571     TranslationBlock *current_tb = NULL;
1572     CPUState *cpu = current_cpu;
1573     CPUArchState *env = NULL;
1574     int current_tb_modified = 0;
1575     target_ulong current_pc = 0;
1576     target_ulong current_cs_base = 0;
1577     uint32_t current_flags = 0;
1578 #endif
1579 
1580     assert_memory_lock();
1581 
1582     addr &= TARGET_PAGE_MASK;
1583     p = page_find(addr >> TARGET_PAGE_BITS);
1584     if (!p) {
1585         return false;
1586     }
1587 
1588     tb_lock();
1589     tb = p->first_tb;
1590 #ifdef TARGET_HAS_PRECISE_SMC
1591     if (tb && pc != 0) {
1592         current_tb = tb_find_pc(pc);
1593     }
1594     if (cpu != NULL) {
1595         env = cpu->env_ptr;
1596     }
1597 #endif
1598     while (tb != NULL) {
1599         n = (uintptr_t)tb & 3;
1600         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1601 #ifdef TARGET_HAS_PRECISE_SMC
1602         if (current_tb == tb &&
1603             (current_tb->cflags & CF_COUNT_MASK) != 1) {
1604                 /* If we are modifying the current TB, we must stop
1605                    its execution. We could be more precise by checking
1606                    that the modification is after the current PC, but it
1607                    would require a specialized function to partially
1608                    restore the CPU state */
1609 
1610             current_tb_modified = 1;
1611             cpu_restore_state_from_tb(cpu, current_tb, pc);
1612             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1613                                  &current_flags);
1614         }
1615 #endif /* TARGET_HAS_PRECISE_SMC */
1616         tb_phys_invalidate(tb, addr);
1617         tb = tb->page_next[n];
1618     }
1619     p->first_tb = NULL;
1620 #ifdef TARGET_HAS_PRECISE_SMC
1621     if (current_tb_modified) {
1622         /* we generate a block containing just the instruction
1623            modifying the memory. It will ensure that it cannot modify
1624            itself */
1625         tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1626         /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1627          * back into the cpu_exec loop. */
1628         return true;
1629     }
1630 #endif
1631     tb_unlock();
1632 
1633     return false;
1634 }
1635 #endif
1636 
1637 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1638    tb[1].tc_ptr. Return NULL if not found */
1639 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1640 {
1641     int m_min, m_max, m;
1642     uintptr_t v;
1643     TranslationBlock *tb;
1644 
1645     if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1646         return NULL;
1647     }
1648     if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1649         tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1650         return NULL;
1651     }
1652     /* binary search (cf Knuth) */
1653     m_min = 0;
1654     m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1655     while (m_min <= m_max) {
1656         m = (m_min + m_max) >> 1;
1657         tb = tcg_ctx.tb_ctx.tbs[m];
1658         v = (uintptr_t)tb->tc_ptr;
1659         if (v == tc_ptr) {
1660             return tb;
1661         } else if (tc_ptr < v) {
1662             m_max = m - 1;
1663         } else {
1664             m_min = m + 1;
1665         }
1666     }
1667     return tcg_ctx.tb_ctx.tbs[m_max];
1668 }
1669 
1670 #if !defined(CONFIG_USER_ONLY)
1671 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1672 {
1673     ram_addr_t ram_addr;
1674     MemoryRegion *mr;
1675     hwaddr l = 1;
1676 
1677     rcu_read_lock();
1678     mr = address_space_translate(as, addr, &addr, &l, false);
1679     if (!(memory_region_is_ram(mr)
1680           || memory_region_is_romd(mr))) {
1681         rcu_read_unlock();
1682         return;
1683     }
1684     ram_addr = memory_region_get_ram_addr(mr) + addr;
1685     tb_lock();
1686     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1687     tb_unlock();
1688     rcu_read_unlock();
1689 }
1690 #endif /* !defined(CONFIG_USER_ONLY) */
1691 
1692 /* Called with tb_lock held.  */
1693 void tb_check_watchpoint(CPUState *cpu)
1694 {
1695     TranslationBlock *tb;
1696 
1697     tb = tb_find_pc(cpu->mem_io_pc);
1698     if (tb) {
1699         /* We can use retranslation to find the PC.  */
1700         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1701         tb_phys_invalidate(tb, -1);
1702     } else {
1703         /* The exception probably happened in a helper.  The CPU state should
1704            have been saved before calling it. Fetch the PC from there.  */
1705         CPUArchState *env = cpu->env_ptr;
1706         target_ulong pc, cs_base;
1707         tb_page_addr_t addr;
1708         uint32_t flags;
1709 
1710         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1711         addr = get_page_addr_code(env, pc);
1712         tb_invalidate_phys_range(addr, addr + 1);
1713     }
1714 }
1715 
1716 #ifndef CONFIG_USER_ONLY
1717 /* in deterministic execution mode, instructions doing device I/Os
1718  * must be at the end of the TB.
1719  *
1720  * Called by softmmu_template.h, with iothread mutex not held.
1721  */
1722 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1723 {
1724 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1725     CPUArchState *env = cpu->env_ptr;
1726 #endif
1727     TranslationBlock *tb;
1728     uint32_t n, cflags;
1729     target_ulong pc, cs_base;
1730     uint32_t flags;
1731 
1732     tb_lock();
1733     tb = tb_find_pc(retaddr);
1734     if (!tb) {
1735         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1736                   (void *)retaddr);
1737     }
1738     n = cpu->icount_decr.u16.low + tb->icount;
1739     cpu_restore_state_from_tb(cpu, tb, retaddr);
1740     /* Calculate how many instructions had been executed before the fault
1741        occurred.  */
1742     n = n - cpu->icount_decr.u16.low;
1743     /* Generate a new TB ending on the I/O insn.  */
1744     n++;
1745     /* On MIPS and SH, delay slot instructions can only be restarted if
1746        they were already the first instruction in the TB.  If this is not
1747        the first instruction in a TB then re-execute the preceding
1748        branch.  */
1749 #if defined(TARGET_MIPS)
1750     if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1751         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1752         cpu->icount_decr.u16.low++;
1753         env->hflags &= ~MIPS_HFLAG_BMASK;
1754     }
1755 #elif defined(TARGET_SH4)
1756     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1757             && n > 1) {
1758         env->pc -= 2;
1759         cpu->icount_decr.u16.low++;
1760         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1761     }
1762 #endif
1763     /* This should never happen.  */
1764     if (n > CF_COUNT_MASK) {
1765         cpu_abort(cpu, "TB too big during recompile");
1766     }
1767 
1768     cflags = n | CF_LAST_IO;
1769     pc = tb->pc;
1770     cs_base = tb->cs_base;
1771     flags = tb->flags;
1772     tb_phys_invalidate(tb, -1);
1773     if (tb->cflags & CF_NOCACHE) {
1774         if (tb->orig_tb) {
1775             /* Invalidate original TB if this TB was generated in
1776              * cpu_exec_nocache() */
1777             tb_phys_invalidate(tb->orig_tb, -1);
1778         }
1779         tb_free(tb);
1780     }
1781     /* FIXME: In theory this could raise an exception.  In practice
1782        we have already translated the block once so it's probably ok.  */
1783     tb_gen_code(cpu, pc, cs_base, flags, cflags);
1784 
1785     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1786      * the first in the TB) then we end up generating a whole new TB and
1787      *  repeating the fault, which is horribly inefficient.
1788      *  Better would be to execute just this insn uncached, or generate a
1789      *  second new TB.
1790      *
1791      * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1792      * tb_lock gets reset.
1793      */
1794     cpu_loop_exit_noexc(cpu);
1795 }
1796 
1797 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
1798 {
1799     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
1800 
1801     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
1802         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
1803     }
1804 }
1805 
1806 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1807 {
1808     /* Discard jump cache entries for any tb which might potentially
1809        overlap the flushed page.  */
1810     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
1811     tb_jmp_cache_clear_page(cpu, addr);
1812 }
1813 
1814 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1815                                  struct qht_stats hst)
1816 {
1817     uint32_t hgram_opts;
1818     size_t hgram_bins;
1819     char *hgram;
1820 
1821     if (!hst.head_buckets) {
1822         return;
1823     }
1824     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
1825                 hst.used_head_buckets, hst.head_buckets,
1826                 (double)hst.used_head_buckets / hst.head_buckets * 100);
1827 
1828     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
1829     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
1830     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1831         hgram_opts |= QDIST_PR_NODECIMAL;
1832     }
1833     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1834     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
1835                 qdist_avg(&hst.occupancy) * 100, hgram);
1836     g_free(hgram);
1837 
1838     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1839     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1840     if (hgram_bins > 10) {
1841         hgram_bins = 10;
1842     } else {
1843         hgram_bins = 0;
1844         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1845     }
1846     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1847     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
1848                 qdist_avg(&hst.chain), hgram);
1849     g_free(hgram);
1850 }
1851 
1852 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1853 {
1854     int i, target_code_size, max_target_code_size;
1855     int direct_jmp_count, direct_jmp2_count, cross_page;
1856     TranslationBlock *tb;
1857     struct qht_stats hst;
1858 
1859     tb_lock();
1860 
1861     target_code_size = 0;
1862     max_target_code_size = 0;
1863     cross_page = 0;
1864     direct_jmp_count = 0;
1865     direct_jmp2_count = 0;
1866     for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1867         tb = tcg_ctx.tb_ctx.tbs[i];
1868         target_code_size += tb->size;
1869         if (tb->size > max_target_code_size) {
1870             max_target_code_size = tb->size;
1871         }
1872         if (tb->page_addr[1] != -1) {
1873             cross_page++;
1874         }
1875         if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1876             direct_jmp_count++;
1877             if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1878                 direct_jmp2_count++;
1879             }
1880         }
1881     }
1882     /* XXX: avoid using doubles ? */
1883     cpu_fprintf(f, "Translation buffer state:\n");
1884     cpu_fprintf(f, "gen code size       %td/%zd\n",
1885                 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1886                 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1887     cpu_fprintf(f, "TB count            %d\n", tcg_ctx.tb_ctx.nb_tbs);
1888     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
1889             tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1890                     tcg_ctx.tb_ctx.nb_tbs : 0,
1891             max_target_code_size);
1892     cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
1893             tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1894                                      tcg_ctx.code_gen_buffer) /
1895                                      tcg_ctx.tb_ctx.nb_tbs : 0,
1896                 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1897                                              tcg_ctx.code_gen_buffer) /
1898                                              target_code_size : 0);
1899     cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1900             tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1901                                     tcg_ctx.tb_ctx.nb_tbs : 0);
1902     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
1903                 direct_jmp_count,
1904                 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1905                         tcg_ctx.tb_ctx.nb_tbs : 0,
1906                 direct_jmp2_count,
1907                 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1908                         tcg_ctx.tb_ctx.nb_tbs : 0);
1909 
1910     qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1911     print_qht_statistics(f, cpu_fprintf, hst);
1912     qht_statistics_destroy(&hst);
1913 
1914     cpu_fprintf(f, "\nStatistics:\n");
1915     cpu_fprintf(f, "TB flush count      %u\n",
1916             atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1917     cpu_fprintf(f, "TB invalidate count %d\n",
1918             tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1919     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
1920     tcg_dump_info(f, cpu_fprintf);
1921 
1922     tb_unlock();
1923 }
1924 
1925 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1926 {
1927     tcg_dump_op_count(f, cpu_fprintf);
1928 }
1929 
1930 #else /* CONFIG_USER_ONLY */
1931 
1932 void cpu_interrupt(CPUState *cpu, int mask)
1933 {
1934     g_assert(qemu_mutex_iothread_locked());
1935     cpu->interrupt_request |= mask;
1936     cpu->icount_decr.u16.high = -1;
1937 }
1938 
1939 /*
1940  * Walks guest process memory "regions" one by one
1941  * and calls callback function 'fn' for each region.
1942  */
1943 struct walk_memory_regions_data {
1944     walk_memory_regions_fn fn;
1945     void *priv;
1946     target_ulong start;
1947     int prot;
1948 };
1949 
1950 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1951                                    target_ulong end, int new_prot)
1952 {
1953     if (data->start != -1u) {
1954         int rc = data->fn(data->priv, data->start, end, data->prot);
1955         if (rc != 0) {
1956             return rc;
1957         }
1958     }
1959 
1960     data->start = (new_prot ? end : -1u);
1961     data->prot = new_prot;
1962 
1963     return 0;
1964 }
1965 
1966 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1967                                  target_ulong base, int level, void **lp)
1968 {
1969     target_ulong pa;
1970     int i, rc;
1971 
1972     if (*lp == NULL) {
1973         return walk_memory_regions_end(data, base, 0);
1974     }
1975 
1976     if (level == 0) {
1977         PageDesc *pd = *lp;
1978 
1979         for (i = 0; i < V_L2_SIZE; ++i) {
1980             int prot = pd[i].flags;
1981 
1982             pa = base | (i << TARGET_PAGE_BITS);
1983             if (prot != data->prot) {
1984                 rc = walk_memory_regions_end(data, pa, prot);
1985                 if (rc != 0) {
1986                     return rc;
1987                 }
1988             }
1989         }
1990     } else {
1991         void **pp = *lp;
1992 
1993         for (i = 0; i < V_L2_SIZE; ++i) {
1994             pa = base | ((target_ulong)i <<
1995                 (TARGET_PAGE_BITS + V_L2_BITS * level));
1996             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1997             if (rc != 0) {
1998                 return rc;
1999             }
2000         }
2001     }
2002 
2003     return 0;
2004 }
2005 
2006 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2007 {
2008     struct walk_memory_regions_data data;
2009     uintptr_t i, l1_sz = v_l1_size;
2010 
2011     data.fn = fn;
2012     data.priv = priv;
2013     data.start = -1u;
2014     data.prot = 0;
2015 
2016     for (i = 0; i < l1_sz; i++) {
2017         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2018         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2019         if (rc != 0) {
2020             return rc;
2021         }
2022     }
2023 
2024     return walk_memory_regions_end(&data, 0, 0);
2025 }
2026 
2027 static int dump_region(void *priv, target_ulong start,
2028     target_ulong end, unsigned long prot)
2029 {
2030     FILE *f = (FILE *)priv;
2031 
2032     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2033         " "TARGET_FMT_lx" %c%c%c\n",
2034         start, end, end - start,
2035         ((prot & PAGE_READ) ? 'r' : '-'),
2036         ((prot & PAGE_WRITE) ? 'w' : '-'),
2037         ((prot & PAGE_EXEC) ? 'x' : '-'));
2038 
2039     return 0;
2040 }
2041 
2042 /* dump memory mappings */
2043 void page_dump(FILE *f)
2044 {
2045     const int length = sizeof(target_ulong) * 2;
2046     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2047             length, "start", length, "end", length, "size", "prot");
2048     walk_memory_regions(f, dump_region);
2049 }
2050 
2051 int page_get_flags(target_ulong address)
2052 {
2053     PageDesc *p;
2054 
2055     p = page_find(address >> TARGET_PAGE_BITS);
2056     if (!p) {
2057         return 0;
2058     }
2059     return p->flags;
2060 }
2061 
2062 /* Modify the flags of a page and invalidate the code if necessary.
2063    The flag PAGE_WRITE_ORG is positioned automatically depending
2064    on PAGE_WRITE.  The mmap_lock should already be held.  */
2065 void page_set_flags(target_ulong start, target_ulong end, int flags)
2066 {
2067     target_ulong addr, len;
2068 
2069     /* This function should never be called with addresses outside the
2070        guest address space.  If this assert fires, it probably indicates
2071        a missing call to h2g_valid.  */
2072 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2073     assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2074 #endif
2075     assert(start < end);
2076     assert_memory_lock();
2077 
2078     start = start & TARGET_PAGE_MASK;
2079     end = TARGET_PAGE_ALIGN(end);
2080 
2081     if (flags & PAGE_WRITE) {
2082         flags |= PAGE_WRITE_ORG;
2083     }
2084 
2085     for (addr = start, len = end - start;
2086          len != 0;
2087          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2088         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2089 
2090         /* If the write protection bit is set, then we invalidate
2091            the code inside.  */
2092         if (!(p->flags & PAGE_WRITE) &&
2093             (flags & PAGE_WRITE) &&
2094             p->first_tb) {
2095             tb_invalidate_phys_page(addr, 0);
2096         }
2097         p->flags = flags;
2098     }
2099 }
2100 
2101 int page_check_range(target_ulong start, target_ulong len, int flags)
2102 {
2103     PageDesc *p;
2104     target_ulong end;
2105     target_ulong addr;
2106 
2107     /* This function should never be called with addresses outside the
2108        guest address space.  If this assert fires, it probably indicates
2109        a missing call to h2g_valid.  */
2110 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2111     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2112 #endif
2113 
2114     if (len == 0) {
2115         return 0;
2116     }
2117     if (start + len - 1 < start) {
2118         /* We've wrapped around.  */
2119         return -1;
2120     }
2121 
2122     /* must do before we loose bits in the next step */
2123     end = TARGET_PAGE_ALIGN(start + len);
2124     start = start & TARGET_PAGE_MASK;
2125 
2126     for (addr = start, len = end - start;
2127          len != 0;
2128          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2129         p = page_find(addr >> TARGET_PAGE_BITS);
2130         if (!p) {
2131             return -1;
2132         }
2133         if (!(p->flags & PAGE_VALID)) {
2134             return -1;
2135         }
2136 
2137         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2138             return -1;
2139         }
2140         if (flags & PAGE_WRITE) {
2141             if (!(p->flags & PAGE_WRITE_ORG)) {
2142                 return -1;
2143             }
2144             /* unprotect the page if it was put read-only because it
2145                contains translated code */
2146             if (!(p->flags & PAGE_WRITE)) {
2147                 if (!page_unprotect(addr, 0)) {
2148                     return -1;
2149                 }
2150             }
2151         }
2152     }
2153     return 0;
2154 }
2155 
2156 /* called from signal handler: invalidate the code and unprotect the
2157  * page. Return 0 if the fault was not handled, 1 if it was handled,
2158  * and 2 if it was handled but the caller must cause the TB to be
2159  * immediately exited. (We can only return 2 if the 'pc' argument is
2160  * non-zero.)
2161  */
2162 int page_unprotect(target_ulong address, uintptr_t pc)
2163 {
2164     unsigned int prot;
2165     bool current_tb_invalidated;
2166     PageDesc *p;
2167     target_ulong host_start, host_end, addr;
2168 
2169     /* Technically this isn't safe inside a signal handler.  However we
2170        know this only ever happens in a synchronous SEGV handler, so in
2171        practice it seems to be ok.  */
2172     mmap_lock();
2173 
2174     p = page_find(address >> TARGET_PAGE_BITS);
2175     if (!p) {
2176         mmap_unlock();
2177         return 0;
2178     }
2179 
2180     /* if the page was really writable, then we change its
2181        protection back to writable */
2182     if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2183         host_start = address & qemu_host_page_mask;
2184         host_end = host_start + qemu_host_page_size;
2185 
2186         prot = 0;
2187         current_tb_invalidated = false;
2188         for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2189             p = page_find(addr >> TARGET_PAGE_BITS);
2190             p->flags |= PAGE_WRITE;
2191             prot |= p->flags;
2192 
2193             /* and since the content will be modified, we must invalidate
2194                the corresponding translated code. */
2195             current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2196 #ifdef DEBUG_TB_CHECK
2197             tb_invalidate_check(addr);
2198 #endif
2199         }
2200         mprotect((void *)g2h(host_start), qemu_host_page_size,
2201                  prot & PAGE_BITS);
2202 
2203         mmap_unlock();
2204         /* If current TB was invalidated return to main loop */
2205         return current_tb_invalidated ? 2 : 1;
2206     }
2207     mmap_unlock();
2208     return 0;
2209 }
2210 #endif /* CONFIG_USER_ONLY */
2211 
2212 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2213 void tcg_flush_softmmu_tlb(CPUState *cs)
2214 {
2215 #ifdef CONFIG_SOFTMMU
2216     tlb_flush(cs);
2217 #endif
2218 }
2219