xref: /qemu/accel/tcg/translate-all.c (revision 8d6d4c1b)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48 
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60 
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65 
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71 
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77 
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation.  */
80 #undef DEBUG_TB_CHECK
81 #endif
82 
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88 
89 /* Access to the various translations structures need to be serialised via locks
90  * for consistency.
91  * In user-mode emulation access to the memory related structures are protected
92  * with mmap_lock.
93  * In !user-mode we use per-page locks.
94  */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100 
101 #define SMC_BITMAP_USE_THRESHOLD 10
102 
103 typedef struct PageDesc {
104     /* list of TBs intersecting this ram page */
105     uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107     /* in order to optimize self modifying code, we count the number
108        of lookups we do to a given page to use a bitmap */
109     unsigned long *code_bitmap;
110     unsigned int code_write_count;
111 #else
112     unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115     QemuSpin lock;
116 #endif
117 } PageDesc;
118 
119 /**
120  * struct page_entry - page descriptor entry
121  * @pd:     pointer to the &struct PageDesc of the page this entry represents
122  * @index:  page index of the page
123  * @locked: whether the page is locked
124  *
125  * This struct helps us keep track of the locked state of a page, without
126  * bloating &struct PageDesc.
127  *
128  * A page lock protects accesses to all fields of &struct PageDesc.
129  *
130  * See also: &struct page_collection.
131  */
132 struct page_entry {
133     PageDesc *pd;
134     tb_page_addr_t index;
135     bool locked;
136 };
137 
138 /**
139  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140  * @tree:   Binary search tree (BST) of the pages, with key == page index
141  * @max:    Pointer to the page in @tree with the highest page index
142  *
143  * To avoid deadlock we lock pages in ascending order of page index.
144  * When operating on a set of pages, we need to keep track of them so that
145  * we can lock them in order and also unlock them later. For this we collect
146  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147  * @tree implementation we use does not provide an O(1) operation to obtain the
148  * highest-ranked element, we use @max to keep track of the inserted page
149  * with the highest index. This is valuable because if a page is not in
150  * the tree and its index is higher than @max's, then we can lock it
151  * without breaking the locking order rule.
152  *
153  * Note on naming: 'struct page_set' would be shorter, but we already have a few
154  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155  *
156  * See also: page_collection_lock().
157  */
158 struct page_collection {
159     GTree *tree;
160     struct page_entry *max;
161 };
162 
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
165     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
166          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168 
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
170     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171 
172 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
173     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174 
175 /* In system mode we want L1_MAP to be based on ram offsets,
176    while in user mode we want it to be based on virtual addresses.  */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186 
187 /* Size of the L2 (and L3, etc) page tables.  */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190 
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
194                   * BITS_PER_BYTE);
195 
196 /*
197  * L1 Mapping properties
198  */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202 
203 /* The bottom level has pointers to PageDesc, and is indexed by
204  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205  */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209 
210 static void *l1_map[V_L1_MAX_SIZE];
211 
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217 
218 static void page_table_config_init(void)
219 {
220     uint32_t v_l1_bits;
221 
222     assert(TARGET_PAGE_BITS);
223     /* The bits remaining after N lower levels of page tables.  */
224     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225     if (v_l1_bits < V_L1_MIN_BITS) {
226         v_l1_bits += V_L2_BITS;
227     }
228 
229     v_l1_size = 1 << v_l1_bits;
230     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232 
233     assert(v_l1_bits <= V_L1_MAX_BITS);
234     assert(v_l1_shift % V_L2_BITS == 0);
235     assert(v_l2_levels >= 0);
236 }
237 
238 void cpu_gen_init(void)
239 {
240     tcg_context_init(&tcg_init_ctx);
241 }
242 
243 /* Encode VAL as a signed leb128 sequence at P.
244    Return P incremented past the encoded value.  */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247     int more, byte;
248 
249     do {
250         byte = val & 0x7f;
251         val >>= 7;
252         more = !((val == 0 && (byte & 0x40) == 0)
253                  || (val == -1 && (byte & 0x40) != 0));
254         if (more) {
255             byte |= 0x80;
256         }
257         *p++ = byte;
258     } while (more);
259 
260     return p;
261 }
262 
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264    decoded value.  Return the decoded value.  */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267     uint8_t *p = *pp;
268     target_long val = 0;
269     int byte, shift = 0;
270 
271     do {
272         byte = *p++;
273         val |= (target_ulong)(byte & 0x7f) << shift;
274         shift += 7;
275     } while (byte & 0x80);
276     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277         val |= -(target_ulong)1 << shift;
278     }
279 
280     *pp = p;
281     return val;
282 }
283 
284 /* Encode the data collected about the instructions while compiling TB.
285    Place the data at BLOCK, and return the number of bytes consumed.
286 
287    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288    which come from the target's insn_start data, followed by a uintptr_t
289    which comes from the host pc of the end of the code implementing the insn.
290 
291    Each line of the table is encoded as sleb128 deltas from the previous
292    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293    That is, the first column is seeded with the guest pc, the last column
294    with the host pc, and the middle columns with zeros.  */
295 
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298     uint8_t *highwater = tcg_ctx->code_gen_highwater;
299     uint8_t *p = block;
300     int i, j, n;
301 
302     for (i = 0, n = tb->icount; i < n; ++i) {
303         target_ulong prev;
304 
305         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306             if (i == 0) {
307                 prev = (j == 0 ? tb->pc : 0);
308             } else {
309                 prev = tcg_ctx->gen_insn_data[i - 1][j];
310             }
311             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312         }
313         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315 
316         /* Test for (pending) buffer overflow.  The assumption is that any
317            one row beginning below the high water mark cannot overrun
318            the buffer completely.  Thus we can test for overflow after
319            encoding a row without having to check during encoding.  */
320         if (unlikely(p > highwater)) {
321             return -1;
322         }
323     }
324 
325     return p - block;
326 }
327 
328 /* The cpu state corresponding to 'searched_pc' is restored.
329  * When reset_icount is true, current TB will be interrupted and
330  * icount should be recalculated.
331  */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333                                      uintptr_t searched_pc, bool reset_icount)
334 {
335     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337     CPUArchState *env = cpu->env_ptr;
338     uint8_t *p = tb->tc.ptr + tb->tc.size;
339     int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341     TCGProfile *prof = &tcg_ctx->prof;
342     int64_t ti = profile_getclock();
343 #endif
344 
345     searched_pc -= GETPC_ADJ;
346 
347     if (searched_pc < host_pc) {
348         return -1;
349     }
350 
351     /* Reconstruct the stored insn data while looking for the point at
352        which the end of the insn exceeds the searched_pc.  */
353     for (i = 0; i < num_insns; ++i) {
354         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355             data[j] += decode_sleb128(&p);
356         }
357         host_pc += decode_sleb128(&p);
358         if (host_pc > searched_pc) {
359             goto found;
360         }
361     }
362     return -1;
363 
364  found:
365     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366         assert(use_icount);
367         /* Reset the cycle counter to the start of the block
368            and shift if to the number of actually executed instructions */
369         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370     }
371     restore_state_to_opc(env, tb, data);
372 
373 #ifdef CONFIG_PROFILER
374     atomic_set(&prof->restore_time,
375                 prof->restore_time + profile_getclock() - ti);
376     atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378     return 0;
379 }
380 
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383     TranslationBlock *tb;
384     bool r = false;
385     uintptr_t check_offset;
386 
387     /* The host_pc has to be in the region of current code buffer. If
388      * it is not we will not be able to resolve it here. The two cases
389      * where host_pc will not be correct are:
390      *
391      *  - fault during translation (instruction fetch)
392      *  - fault from helper (not using GETPC() macro)
393      *
394      * Either way we need return early as we can't resolve it here.
395      *
396      * We are using unsigned arithmetic so if host_pc <
397      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398      * above the code_gen_buffer_size
399      */
400     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401 
402     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403         tb = tcg_tb_lookup(host_pc);
404         if (tb) {
405             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406             if (tb_cflags(tb) & CF_NOCACHE) {
407                 /* one-shot translation, invalidate it immediately */
408                 tb_phys_invalidate(tb, -1);
409                 tcg_tb_remove(tb);
410             }
411             r = true;
412         }
413     }
414 
415     return r;
416 }
417 
418 static void page_init(void)
419 {
420     page_size_init();
421     page_table_config_init();
422 
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424     {
425 #ifdef HAVE_KINFO_GETVMMAP
426         struct kinfo_vmentry *freep;
427         int i, cnt;
428 
429         freep = kinfo_getvmmap(getpid(), &cnt);
430         if (freep) {
431             mmap_lock();
432             for (i = 0; i < cnt; i++) {
433                 unsigned long startaddr, endaddr;
434 
435                 startaddr = freep[i].kve_start;
436                 endaddr = freep[i].kve_end;
437                 if (h2g_valid(startaddr)) {
438                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439 
440                     if (h2g_valid(endaddr)) {
441                         endaddr = h2g(endaddr);
442                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443                     } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445                         endaddr = ~0ul;
446                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448                     }
449                 }
450             }
451             free(freep);
452             mmap_unlock();
453         }
454 #else
455         FILE *f;
456 
457         last_brk = (unsigned long)sbrk(0);
458 
459         f = fopen("/compat/linux/proc/self/maps", "r");
460         if (f) {
461             mmap_lock();
462 
463             do {
464                 unsigned long startaddr, endaddr;
465                 int n;
466 
467                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468 
469                 if (n == 2 && h2g_valid(startaddr)) {
470                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471 
472                     if (h2g_valid(endaddr)) {
473                         endaddr = h2g(endaddr);
474                     } else {
475                         endaddr = ~0ul;
476                     }
477                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478                 }
479             } while (!feof(f));
480 
481             fclose(f);
482             mmap_unlock();
483         }
484 #endif
485     }
486 #endif
487 }
488 
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491     PageDesc *pd;
492     void **lp;
493     int i;
494 
495     /* Level 1.  Always allocated.  */
496     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497 
498     /* Level 2..N-1.  */
499     for (i = v_l2_levels; i > 0; i--) {
500         void **p = atomic_rcu_read(lp);
501 
502         if (p == NULL) {
503             void *existing;
504 
505             if (!alloc) {
506                 return NULL;
507             }
508             p = g_new0(void *, V_L2_SIZE);
509             existing = atomic_cmpxchg(lp, NULL, p);
510             if (unlikely(existing)) {
511                 g_free(p);
512                 p = existing;
513             }
514         }
515 
516         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517     }
518 
519     pd = atomic_rcu_read(lp);
520     if (pd == NULL) {
521         void *existing;
522 
523         if (!alloc) {
524             return NULL;
525         }
526         pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528         {
529             int i;
530 
531             for (i = 0; i < V_L2_SIZE; i++) {
532                 qemu_spin_init(&pd[i].lock);
533             }
534         }
535 #endif
536         existing = atomic_cmpxchg(lp, NULL, pd);
537         if (unlikely(existing)) {
538             g_free(pd);
539             pd = existing;
540         }
541     }
542 
543     return pd + (index & (V_L2_SIZE - 1));
544 }
545 
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548     return page_find_alloc(index, 0);
549 }
550 
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553 
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556 
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558 
559 static inline void page_lock(PageDesc *pd)
560 { }
561 
562 static inline void page_unlock(PageDesc *pd)
563 { }
564 
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567 
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570 
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574     return NULL;
575 }
576 
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580 
581 #ifdef CONFIG_DEBUG_TCG
582 
583 static __thread GHashTable *ht_pages_locked_debug;
584 
585 static void ht_pages_locked_debug_init(void)
586 {
587     if (ht_pages_locked_debug) {
588         return;
589     }
590     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592 
593 static bool page_is_locked(const PageDesc *pd)
594 {
595     PageDesc *found;
596 
597     ht_pages_locked_debug_init();
598     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599     return !!found;
600 }
601 
602 static void page_lock__debug(PageDesc *pd)
603 {
604     ht_pages_locked_debug_init();
605     g_assert(!page_is_locked(pd));
606     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608 
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611     bool removed;
612 
613     ht_pages_locked_debug_init();
614     g_assert(page_is_locked(pd));
615     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616     g_assert(removed);
617 }
618 
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622     if (unlikely(!page_is_locked(pd))) {
623         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624                      pd, file, line);
625         abort();
626     }
627 }
628 
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630 
631 void assert_no_pages_locked(void)
632 {
633     ht_pages_locked_debug_init();
634     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636 
637 #else /* !CONFIG_DEBUG_TCG */
638 
639 #define assert_page_locked(pd)
640 
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644 
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648 
649 #endif /* CONFIG_DEBUG_TCG */
650 
651 static inline void page_lock(PageDesc *pd)
652 {
653     page_lock__debug(pd);
654     qemu_spin_lock(&pd->lock);
655 }
656 
657 static inline void page_unlock(PageDesc *pd)
658 {
659     qemu_spin_unlock(&pd->lock);
660     page_unlock__debug(pd);
661 }
662 
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668 
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672 
673     page_unlock(p1);
674     if (unlikely(tb->page_addr[1] != -1)) {
675         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676 
677         if (p2 != p1) {
678             page_unlock(p2);
679         }
680     }
681 }
682 
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686     struct page_entry *pe = g_malloc(sizeof(*pe));
687 
688     pe->index = index;
689     pe->pd = pd;
690     pe->locked = false;
691     return pe;
692 }
693 
694 static void page_entry_destroy(gpointer p)
695 {
696     struct page_entry *pe = p;
697 
698     g_assert(pe->locked);
699     page_unlock(pe->pd);
700     g_free(pe);
701 }
702 
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706     bool busy;
707 
708     busy = qemu_spin_trylock(&pe->pd->lock);
709     if (!busy) {
710         g_assert(!pe->locked);
711         pe->locked = true;
712         page_lock__debug(pe->pd);
713     }
714     return busy;
715 }
716 
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719     page_lock(pe->pd);
720     g_assert(!pe->locked);
721     pe->locked = true;
722 }
723 
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726     struct page_entry *pe = value;
727 
728     do_page_entry_lock(pe);
729     return FALSE;
730 }
731 
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734     struct page_entry *pe = value;
735 
736     if (pe->locked) {
737         pe->locked = false;
738         page_unlock(pe->pd);
739     }
740     return FALSE;
741 }
742 
743 /*
744  * Trylock a page, and if successful, add the page to a collection.
745  * Returns true ("busy") if the page could not be locked; false otherwise.
746  */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750     struct page_entry *pe;
751     PageDesc *pd;
752 
753     pe = g_tree_lookup(set->tree, &index);
754     if (pe) {
755         return false;
756     }
757 
758     pd = page_find(index);
759     if (pd == NULL) {
760         return false;
761     }
762 
763     pe = page_entry_new(pd, index);
764     g_tree_insert(set->tree, &pe->index, pe);
765 
766     /*
767      * If this is either (1) the first insertion or (2) a page whose index
768      * is higher than any other so far, just lock the page and move on.
769      */
770     if (set->max == NULL || pe->index > set->max->index) {
771         set->max = pe;
772         do_page_entry_lock(pe);
773         return false;
774     }
775     /*
776      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777      * locks in order.
778      */
779     return page_entry_trylock(pe);
780 }
781 
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786 
787     if (a == b) {
788         return 0;
789     } else if (a < b) {
790         return -1;
791     }
792     return 1;
793 }
794 
795 /*
796  * Lock a range of pages ([@start,@end[) as well as the pages of all
797  * intersecting TBs.
798  * Locking order: acquire locks in ascending order of page index.
799  */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803     struct page_collection *set = g_malloc(sizeof(*set));
804     tb_page_addr_t index;
805     PageDesc *pd;
806 
807     start >>= TARGET_PAGE_BITS;
808     end   >>= TARGET_PAGE_BITS;
809     g_assert(start <= end);
810 
811     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812                                 page_entry_destroy);
813     set->max = NULL;
814     assert_no_pages_locked();
815 
816  retry:
817     g_tree_foreach(set->tree, page_entry_lock, NULL);
818 
819     for (index = start; index <= end; index++) {
820         TranslationBlock *tb;
821         int n;
822 
823         pd = page_find(index);
824         if (pd == NULL) {
825             continue;
826         }
827         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828             g_tree_foreach(set->tree, page_entry_unlock, NULL);
829             goto retry;
830         }
831         assert_page_locked(pd);
832         PAGE_FOR_EACH_TB(pd, tb, n) {
833             if (page_trylock_add(set, tb->page_addr[0]) ||
834                 (tb->page_addr[1] != -1 &&
835                  page_trylock_add(set, tb->page_addr[1]))) {
836                 /* drop all locks, and reacquire in order */
837                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838                 goto retry;
839             }
840         }
841     }
842     return set;
843 }
844 
845 void page_collection_unlock(struct page_collection *set)
846 {
847     /* entries are unlocked and freed via page_entry_destroy */
848     g_tree_destroy(set->tree);
849     g_free(set);
850 }
851 
852 #endif /* !CONFIG_USER_ONLY */
853 
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857     PageDesc *p1, *p2;
858     tb_page_addr_t page1;
859     tb_page_addr_t page2;
860 
861     assert_memory_lock();
862     g_assert(phys1 != -1);
863 
864     page1 = phys1 >> TARGET_PAGE_BITS;
865     page2 = phys2 >> TARGET_PAGE_BITS;
866 
867     p1 = page_find_alloc(page1, alloc);
868     if (ret_p1) {
869         *ret_p1 = p1;
870     }
871     if (likely(phys2 == -1)) {
872         page_lock(p1);
873         return;
874     } else if (page1 == page2) {
875         page_lock(p1);
876         if (ret_p2) {
877             *ret_p2 = p1;
878         }
879         return;
880     }
881     p2 = page_find_alloc(page2, alloc);
882     if (ret_p2) {
883         *ret_p2 = p2;
884     }
885     if (page1 < page2) {
886         page_lock(p1);
887         page_lock(p2);
888     } else {
889         page_lock(p2);
890         page_lock(p1);
891     }
892 }
893 
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896    user mode. It will change when a dedicated libc will be used.  */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898    region in which the guest needs to run.  Revisit this.  */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901 
902 /* Minimum size of the code gen buffer.  This number is randomly chosen,
903    but not so small that we can't have a fair number of TB's live.  */
904 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
905 
906 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
907    indicated, this is constrained by the range of direct branches on the
908    host cpu, as used by the TCG implementation of goto_tb.  */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920   /* We have a +- 4GB range on the branches; leave some slop.  */
921 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923   /* We have a 256MB branch region, but leave room to make sure the
924      main executable is also within that region.  */
925 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
928 #endif
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931 
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935 
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938     /* Size the buffer.  */
939     if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943         /* ??? Needs adjustments.  */
944         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945            static buffer, we could size this on RESERVED_VA, on the text
946            segment size of the executable, or continue to use the default.  */
947         tb_size = (unsigned long)(ram_size / 4);
948 #endif
949     }
950     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952     }
953     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955     }
956     return tb_size;
957 }
958 
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961    that the buffer not cross a 256MB boundary.  */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966 
967 /* We weren't able to allocate a buffer without crossing that boundary,
968    so make do with the larger portion of the buffer that doesn't cross.
969    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973     size_t size2 = buf1 + size1 - buf2;
974 
975     size1 = buf2 - buf1;
976     if (size1 < size2) {
977         size1 = size2;
978         buf1 = buf2;
979     }
980 
981     tcg_ctx->code_gen_buffer_size = size1;
982     return buf1;
983 }
984 #endif
985 
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988     __attribute__((aligned(CODE_GEN_ALIGN)));
989 
990 static inline void *alloc_code_gen_buffer(void)
991 {
992     void *buf = static_code_gen_buffer;
993     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994     size_t size;
995 
996     /* page-align the beginning and end of the buffer */
997     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999 
1000     size = end - buf;
1001 
1002     /* Honor a command-line option limiting the size of the buffer.  */
1003     if (size > tcg_ctx->code_gen_buffer_size) {
1004         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005                                qemu_real_host_page_size);
1006     }
1007     tcg_ctx->code_gen_buffer_size = size;
1008 
1009 #ifdef __mips__
1010     if (cross_256mb(buf, size)) {
1011         buf = split_cross_256mb(buf, size);
1012         size = tcg_ctx->code_gen_buffer_size;
1013     }
1014 #endif
1015 
1016     if (qemu_mprotect_rwx(buf, size)) {
1017         abort();
1018     }
1019     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020 
1021     return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026     size_t size = tcg_ctx->code_gen_buffer_size;
1027     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028                         PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035     uintptr_t start = 0;
1036     size_t size = tcg_ctx->code_gen_buffer_size;
1037     void *buf;
1038 
1039     /* Constrain the position of the buffer based on the host cpu.
1040        Note that these addresses are chosen in concert with the
1041        addresses assigned in the relevant linker script file.  */
1042 # if defined(__PIE__) || defined(__PIC__)
1043     /* Don't bother setting a preferred location if we're building
1044        a position-independent executable.  We're more likely to get
1045        an address near the main executable if we let the kernel
1046        choose the address.  */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048     /* Force the memory down into low memory with the executable.
1049        Leave the choice of exact location with the kernel.  */
1050     flags |= MAP_32BIT;
1051     /* Cannot expect to map more than 800MB in low memory.  */
1052     if (size > 800u * 1024 * 1024) {
1053         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054     }
1055 # elif defined(__sparc__)
1056     start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058     start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 #  if _MIPS_SIM == _ABI64
1061     start = 0x128000000ul;
1062 #  else
1063     start = 0x08000000ul;
1064 #  endif
1065 # endif
1066 
1067     buf = mmap((void *)start, size, prot, flags, -1, 0);
1068     if (buf == MAP_FAILED) {
1069         return NULL;
1070     }
1071 
1072 #ifdef __mips__
1073     if (cross_256mb(buf, size)) {
1074         /* Try again, with the original still mapped, to avoid re-acquiring
1075            that 256mb crossing.  This time don't specify an address.  */
1076         size_t size2;
1077         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078         switch ((int)(buf2 != MAP_FAILED)) {
1079         case 1:
1080             if (!cross_256mb(buf2, size)) {
1081                 /* Success!  Use the new buffer.  */
1082                 munmap(buf, size);
1083                 break;
1084             }
1085             /* Failure.  Work with what we had.  */
1086             munmap(buf2, size);
1087             /* fallthru */
1088         default:
1089             /* Split the original buffer.  Free the smaller half.  */
1090             buf2 = split_cross_256mb(buf, size);
1091             size2 = tcg_ctx->code_gen_buffer_size;
1092             if (buf == buf2) {
1093                 munmap(buf + size2, size - size2);
1094             } else {
1095                 munmap(buf, size - size2);
1096             }
1097             size = size2;
1098             break;
1099         }
1100         buf = buf2;
1101     }
1102 #endif
1103 
1104     /* Request large pages for the buffer.  */
1105     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106 
1107     return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110 
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115     if (tcg_ctx->code_gen_buffer == NULL) {
1116         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117         exit(1);
1118     }
1119 }
1120 
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123     const TranslationBlock *a = ap;
1124     const TranslationBlock *b = bp;
1125 
1126     return a->pc == b->pc &&
1127         a->cs_base == b->cs_base &&
1128         a->flags == b->flags &&
1129         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131         a->page_addr[0] == b->page_addr[0] &&
1132         a->page_addr[1] == b->page_addr[1];
1133 }
1134 
1135 static void tb_htable_init(void)
1136 {
1137     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138 
1139     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141 
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143    (in bytes) allocated to the translation buffer. Zero means default
1144    size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147     tcg_allowed = true;
1148     cpu_gen_init();
1149     page_init();
1150     tb_htable_init();
1151     code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153     /* There's no guest base to take into account, so go ahead and
1154        initialize the prologue now.  */
1155     tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158 
1159 /* call with @p->lock held */
1160 static inline void invalidate_page_bitmap(PageDesc *p)
1161 {
1162     assert_page_locked(p);
1163 #ifdef CONFIG_SOFTMMU
1164     g_free(p->code_bitmap);
1165     p->code_bitmap = NULL;
1166     p->code_write_count = 0;
1167 #endif
1168 }
1169 
1170 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1171 static void page_flush_tb_1(int level, void **lp)
1172 {
1173     int i;
1174 
1175     if (*lp == NULL) {
1176         return;
1177     }
1178     if (level == 0) {
1179         PageDesc *pd = *lp;
1180 
1181         for (i = 0; i < V_L2_SIZE; ++i) {
1182             page_lock(&pd[i]);
1183             pd[i].first_tb = (uintptr_t)NULL;
1184             invalidate_page_bitmap(pd + i);
1185             page_unlock(&pd[i]);
1186         }
1187     } else {
1188         void **pp = *lp;
1189 
1190         for (i = 0; i < V_L2_SIZE; ++i) {
1191             page_flush_tb_1(level - 1, pp + i);
1192         }
1193     }
1194 }
1195 
1196 static void page_flush_tb(void)
1197 {
1198     int i, l1_sz = v_l1_size;
1199 
1200     for (i = 0; i < l1_sz; i++) {
1201         page_flush_tb_1(v_l2_levels, l1_map + i);
1202     }
1203 }
1204 
1205 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1206 {
1207     const TranslationBlock *tb = value;
1208     size_t *size = data;
1209 
1210     *size += tb->tc.size;
1211     return false;
1212 }
1213 
1214 /* flush all the translation blocks */
1215 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1216 {
1217     bool did_flush = false;
1218 
1219     mmap_lock();
1220     /* If it is already been done on request of another CPU,
1221      * just retry.
1222      */
1223     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1224         goto done;
1225     }
1226     did_flush = true;
1227 
1228     if (DEBUG_TB_FLUSH_GATE) {
1229         size_t nb_tbs = tcg_nb_tbs();
1230         size_t host_size = 0;
1231 
1232         tcg_tb_foreach(tb_host_size_iter, &host_size);
1233         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1234                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1235     }
1236 
1237     CPU_FOREACH(cpu) {
1238         cpu_tb_jmp_cache_clear(cpu);
1239     }
1240 
1241     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1242     page_flush_tb();
1243 
1244     tcg_region_reset_all();
1245     /* XXX: flush processor icache at this point if cache flush is
1246        expensive */
1247     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1248 
1249 done:
1250     mmap_unlock();
1251     if (did_flush) {
1252         qemu_plugin_flush_cb();
1253     }
1254 }
1255 
1256 void tb_flush(CPUState *cpu)
1257 {
1258     if (tcg_enabled()) {
1259         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1260 
1261         if (cpu_in_exclusive_context(cpu)) {
1262             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1263         } else {
1264             async_safe_run_on_cpu(cpu, do_tb_flush,
1265                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1266         }
1267     }
1268 }
1269 
1270 /*
1271  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1272  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1273  * and let the optimizer get rid of them by wrapping their user-only callers
1274  * with if (DEBUG_TB_CHECK_GATE).
1275  */
1276 #ifdef CONFIG_USER_ONLY
1277 
1278 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1279 {
1280     TranslationBlock *tb = p;
1281     target_ulong addr = *(target_ulong *)userp;
1282 
1283     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1284         printf("ERROR invalidate: address=" TARGET_FMT_lx
1285                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1286     }
1287 }
1288 
1289 /* verify that all the pages have correct rights for code
1290  *
1291  * Called with mmap_lock held.
1292  */
1293 static void tb_invalidate_check(target_ulong address)
1294 {
1295     address &= TARGET_PAGE_MASK;
1296     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1297 }
1298 
1299 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1300 {
1301     TranslationBlock *tb = p;
1302     int flags1, flags2;
1303 
1304     flags1 = page_get_flags(tb->pc);
1305     flags2 = page_get_flags(tb->pc + tb->size - 1);
1306     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1307         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1308                (long)tb->pc, tb->size, flags1, flags2);
1309     }
1310 }
1311 
1312 /* verify that all the pages have correct rights for code */
1313 static void tb_page_check(void)
1314 {
1315     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1316 }
1317 
1318 #endif /* CONFIG_USER_ONLY */
1319 
1320 /*
1321  * user-mode: call with mmap_lock held
1322  * !user-mode: call with @pd->lock held
1323  */
1324 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1325 {
1326     TranslationBlock *tb1;
1327     uintptr_t *pprev;
1328     unsigned int n1;
1329 
1330     assert_page_locked(pd);
1331     pprev = &pd->first_tb;
1332     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1333         if (tb1 == tb) {
1334             *pprev = tb1->page_next[n1];
1335             return;
1336         }
1337         pprev = &tb1->page_next[n1];
1338     }
1339     g_assert_not_reached();
1340 }
1341 
1342 /* remove @orig from its @n_orig-th jump list */
1343 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1344 {
1345     uintptr_t ptr, ptr_locked;
1346     TranslationBlock *dest;
1347     TranslationBlock *tb;
1348     uintptr_t *pprev;
1349     int n;
1350 
1351     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1352     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1353     dest = (TranslationBlock *)(ptr & ~1);
1354     if (dest == NULL) {
1355         return;
1356     }
1357 
1358     qemu_spin_lock(&dest->jmp_lock);
1359     /*
1360      * While acquiring the lock, the jump might have been removed if the
1361      * destination TB was invalidated; check again.
1362      */
1363     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1364     if (ptr_locked != ptr) {
1365         qemu_spin_unlock(&dest->jmp_lock);
1366         /*
1367          * The only possibility is that the jump was unlinked via
1368          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1369          * because we set the LSB above.
1370          */
1371         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1372         return;
1373     }
1374     /*
1375      * We first acquired the lock, and since the destination pointer matches,
1376      * we know for sure that @orig is in the jmp list.
1377      */
1378     pprev = &dest->jmp_list_head;
1379     TB_FOR_EACH_JMP(dest, tb, n) {
1380         if (tb == orig && n == n_orig) {
1381             *pprev = tb->jmp_list_next[n];
1382             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1383             qemu_spin_unlock(&dest->jmp_lock);
1384             return;
1385         }
1386         pprev = &tb->jmp_list_next[n];
1387     }
1388     g_assert_not_reached();
1389 }
1390 
1391 /* reset the jump entry 'n' of a TB so that it is not chained to
1392    another TB */
1393 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1394 {
1395     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1396     tb_set_jmp_target(tb, n, addr);
1397 }
1398 
1399 /* remove any jumps to the TB */
1400 static inline void tb_jmp_unlink(TranslationBlock *dest)
1401 {
1402     TranslationBlock *tb;
1403     int n;
1404 
1405     qemu_spin_lock(&dest->jmp_lock);
1406 
1407     TB_FOR_EACH_JMP(dest, tb, n) {
1408         tb_reset_jump(tb, n);
1409         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1410         /* No need to clear the list entry; setting the dest ptr is enough */
1411     }
1412     dest->jmp_list_head = (uintptr_t)NULL;
1413 
1414     qemu_spin_unlock(&dest->jmp_lock);
1415 }
1416 
1417 /*
1418  * In user-mode, call with mmap_lock held.
1419  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1420  * locks held.
1421  */
1422 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1423 {
1424     CPUState *cpu;
1425     PageDesc *p;
1426     uint32_t h;
1427     tb_page_addr_t phys_pc;
1428 
1429     assert_memory_lock();
1430 
1431     /* make sure no further incoming jumps will be chained to this TB */
1432     qemu_spin_lock(&tb->jmp_lock);
1433     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1434     qemu_spin_unlock(&tb->jmp_lock);
1435 
1436     /* remove the TB from the hash list */
1437     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1438     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1439                      tb->trace_vcpu_dstate);
1440     if (!(tb->cflags & CF_NOCACHE) &&
1441         !qht_remove(&tb_ctx.htable, tb, h)) {
1442         return;
1443     }
1444 
1445     /* remove the TB from the page list */
1446     if (rm_from_page_list) {
1447         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1448         tb_page_remove(p, tb);
1449         invalidate_page_bitmap(p);
1450         if (tb->page_addr[1] != -1) {
1451             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1452             tb_page_remove(p, tb);
1453             invalidate_page_bitmap(p);
1454         }
1455     }
1456 
1457     /* remove the TB from the hash list */
1458     h = tb_jmp_cache_hash_func(tb->pc);
1459     CPU_FOREACH(cpu) {
1460         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1461             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1462         }
1463     }
1464 
1465     /* suppress this TB from the two jump lists */
1466     tb_remove_from_jmp_list(tb, 0);
1467     tb_remove_from_jmp_list(tb, 1);
1468 
1469     /* suppress any remaining jumps to this TB */
1470     tb_jmp_unlink(tb);
1471 
1472     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1473                tcg_ctx->tb_phys_invalidate_count + 1);
1474 }
1475 
1476 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1477 {
1478     do_tb_phys_invalidate(tb, true);
1479 }
1480 
1481 /* invalidate one TB
1482  *
1483  * Called with mmap_lock held in user-mode.
1484  */
1485 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1486 {
1487     if (page_addr == -1 && tb->page_addr[0] != -1) {
1488         page_lock_tb(tb);
1489         do_tb_phys_invalidate(tb, true);
1490         page_unlock_tb(tb);
1491     } else {
1492         do_tb_phys_invalidate(tb, false);
1493     }
1494 }
1495 
1496 #ifdef CONFIG_SOFTMMU
1497 /* call with @p->lock held */
1498 static void build_page_bitmap(PageDesc *p)
1499 {
1500     int n, tb_start, tb_end;
1501     TranslationBlock *tb;
1502 
1503     assert_page_locked(p);
1504     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1505 
1506     PAGE_FOR_EACH_TB(p, tb, n) {
1507         /* NOTE: this is subtle as a TB may span two physical pages */
1508         if (n == 0) {
1509             /* NOTE: tb_end may be after the end of the page, but
1510                it is not a problem */
1511             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1512             tb_end = tb_start + tb->size;
1513             if (tb_end > TARGET_PAGE_SIZE) {
1514                 tb_end = TARGET_PAGE_SIZE;
1515              }
1516         } else {
1517             tb_start = 0;
1518             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1519         }
1520         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1521     }
1522 }
1523 #endif
1524 
1525 /* add the tb in the target page and protect it if necessary
1526  *
1527  * Called with mmap_lock held for user-mode emulation.
1528  * Called with @p->lock held in !user-mode.
1529  */
1530 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1531                                unsigned int n, tb_page_addr_t page_addr)
1532 {
1533 #ifndef CONFIG_USER_ONLY
1534     bool page_already_protected;
1535 #endif
1536 
1537     assert_page_locked(p);
1538 
1539     tb->page_addr[n] = page_addr;
1540     tb->page_next[n] = p->first_tb;
1541 #ifndef CONFIG_USER_ONLY
1542     page_already_protected = p->first_tb != (uintptr_t)NULL;
1543 #endif
1544     p->first_tb = (uintptr_t)tb | n;
1545     invalidate_page_bitmap(p);
1546 
1547 #if defined(CONFIG_USER_ONLY)
1548     if (p->flags & PAGE_WRITE) {
1549         target_ulong addr;
1550         PageDesc *p2;
1551         int prot;
1552 
1553         /* force the host page as non writable (writes will have a
1554            page fault + mprotect overhead) */
1555         page_addr &= qemu_host_page_mask;
1556         prot = 0;
1557         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1558             addr += TARGET_PAGE_SIZE) {
1559 
1560             p2 = page_find(addr >> TARGET_PAGE_BITS);
1561             if (!p2) {
1562                 continue;
1563             }
1564             prot |= p2->flags;
1565             p2->flags &= ~PAGE_WRITE;
1566           }
1567         mprotect(g2h(page_addr), qemu_host_page_size,
1568                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1569         if (DEBUG_TB_INVALIDATE_GATE) {
1570             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1571         }
1572     }
1573 #else
1574     /* if some code is already present, then the pages are already
1575        protected. So we handle the case where only the first TB is
1576        allocated in a physical page */
1577     if (!page_already_protected) {
1578         tlb_protect_code(page_addr);
1579     }
1580 #endif
1581 }
1582 
1583 /* add a new TB and link it to the physical page tables. phys_page2 is
1584  * (-1) to indicate that only one page contains the TB.
1585  *
1586  * Called with mmap_lock held for user-mode emulation.
1587  *
1588  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1589  * Note that in !user-mode, another thread might have already added a TB
1590  * for the same block of guest code that @tb corresponds to. In that case,
1591  * the caller should discard the original @tb, and use instead the returned TB.
1592  */
1593 static TranslationBlock *
1594 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1595              tb_page_addr_t phys_page2)
1596 {
1597     PageDesc *p;
1598     PageDesc *p2 = NULL;
1599 
1600     assert_memory_lock();
1601 
1602     if (phys_pc == -1) {
1603         /*
1604          * If the TB is not associated with a physical RAM page then
1605          * it must be a temporary one-insn TB, and we have nothing to do
1606          * except fill in the page_addr[] fields.
1607          */
1608         assert(tb->cflags & CF_NOCACHE);
1609         tb->page_addr[0] = tb->page_addr[1] = -1;
1610         return tb;
1611     }
1612 
1613     /*
1614      * Add the TB to the page list, acquiring first the pages's locks.
1615      * We keep the locks held until after inserting the TB in the hash table,
1616      * so that if the insertion fails we know for sure that the TBs are still
1617      * in the page descriptors.
1618      * Note that inserting into the hash table first isn't an option, since
1619      * we can only insert TBs that are fully initialized.
1620      */
1621     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1622     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1623     if (p2) {
1624         tb_page_add(p2, tb, 1, phys_page2);
1625     } else {
1626         tb->page_addr[1] = -1;
1627     }
1628 
1629     if (!(tb->cflags & CF_NOCACHE)) {
1630         void *existing_tb = NULL;
1631         uint32_t h;
1632 
1633         /* add in the hash table */
1634         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1635                          tb->trace_vcpu_dstate);
1636         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1637 
1638         /* remove TB from the page(s) if we couldn't insert it */
1639         if (unlikely(existing_tb)) {
1640             tb_page_remove(p, tb);
1641             invalidate_page_bitmap(p);
1642             if (p2) {
1643                 tb_page_remove(p2, tb);
1644                 invalidate_page_bitmap(p2);
1645             }
1646             tb = existing_tb;
1647         }
1648     }
1649 
1650     if (p2 && p2 != p) {
1651         page_unlock(p2);
1652     }
1653     page_unlock(p);
1654 
1655 #ifdef CONFIG_USER_ONLY
1656     if (DEBUG_TB_CHECK_GATE) {
1657         tb_page_check();
1658     }
1659 #endif
1660     return tb;
1661 }
1662 
1663 /* Called with mmap_lock held for user mode emulation.  */
1664 TranslationBlock *tb_gen_code(CPUState *cpu,
1665                               target_ulong pc, target_ulong cs_base,
1666                               uint32_t flags, int cflags)
1667 {
1668     CPUArchState *env = cpu->env_ptr;
1669     TranslationBlock *tb, *existing_tb;
1670     tb_page_addr_t phys_pc, phys_page2;
1671     target_ulong virt_page2;
1672     tcg_insn_unit *gen_code_buf;
1673     int gen_code_size, search_size, max_insns;
1674 #ifdef CONFIG_PROFILER
1675     TCGProfile *prof = &tcg_ctx->prof;
1676     int64_t ti;
1677 #endif
1678 
1679     assert_memory_lock();
1680 
1681     phys_pc = get_page_addr_code(env, pc);
1682 
1683     if (phys_pc == -1) {
1684         /* Generate a temporary TB with 1 insn in it */
1685         cflags &= ~CF_COUNT_MASK;
1686         cflags |= CF_NOCACHE | 1;
1687     }
1688 
1689     cflags &= ~CF_CLUSTER_MASK;
1690     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1691 
1692     max_insns = cflags & CF_COUNT_MASK;
1693     if (max_insns == 0) {
1694         max_insns = CF_COUNT_MASK;
1695     }
1696     if (max_insns > TCG_MAX_INSNS) {
1697         max_insns = TCG_MAX_INSNS;
1698     }
1699     if (cpu->singlestep_enabled || singlestep) {
1700         max_insns = 1;
1701     }
1702 
1703  buffer_overflow:
1704     tb = tcg_tb_alloc(tcg_ctx);
1705     if (unlikely(!tb)) {
1706         /* flush must be done */
1707         tb_flush(cpu);
1708         mmap_unlock();
1709         /* Make the execution loop process the flush as soon as possible.  */
1710         cpu->exception_index = EXCP_INTERRUPT;
1711         cpu_loop_exit(cpu);
1712     }
1713 
1714     gen_code_buf = tcg_ctx->code_gen_ptr;
1715     tb->tc.ptr = gen_code_buf;
1716     tb->pc = pc;
1717     tb->cs_base = cs_base;
1718     tb->flags = flags;
1719     tb->cflags = cflags;
1720     tb->orig_tb = NULL;
1721     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1722     tcg_ctx->tb_cflags = cflags;
1723  tb_overflow:
1724 
1725 #ifdef CONFIG_PROFILER
1726     /* includes aborted translations because of exceptions */
1727     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1728     ti = profile_getclock();
1729 #endif
1730 
1731     tcg_func_start(tcg_ctx);
1732 
1733     tcg_ctx->cpu = env_cpu(env);
1734     gen_intermediate_code(cpu, tb, max_insns);
1735     tcg_ctx->cpu = NULL;
1736 
1737     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1738 
1739     /* generate machine code */
1740     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1741     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1742     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1743     if (TCG_TARGET_HAS_direct_jump) {
1744         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1745         tcg_ctx->tb_jmp_target_addr = NULL;
1746     } else {
1747         tcg_ctx->tb_jmp_insn_offset = NULL;
1748         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1749     }
1750 
1751 #ifdef CONFIG_PROFILER
1752     atomic_set(&prof->tb_count, prof->tb_count + 1);
1753     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1754     ti = profile_getclock();
1755 #endif
1756 
1757     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1758     if (unlikely(gen_code_size < 0)) {
1759         switch (gen_code_size) {
1760         case -1:
1761             /*
1762              * Overflow of code_gen_buffer, or the current slice of it.
1763              *
1764              * TODO: We don't need to re-do gen_intermediate_code, nor
1765              * should we re-do the tcg optimization currently hidden
1766              * inside tcg_gen_code.  All that should be required is to
1767              * flush the TBs, allocate a new TB, re-initialize it per
1768              * above, and re-do the actual code generation.
1769              */
1770             goto buffer_overflow;
1771 
1772         case -2:
1773             /*
1774              * The code generated for the TranslationBlock is too large.
1775              * The maximum size allowed by the unwind info is 64k.
1776              * There may be stricter constraints from relocations
1777              * in the tcg backend.
1778              *
1779              * Try again with half as many insns as we attempted this time.
1780              * If a single insn overflows, there's a bug somewhere...
1781              */
1782             max_insns = tb->icount;
1783             assert(max_insns > 1);
1784             max_insns /= 2;
1785             goto tb_overflow;
1786 
1787         default:
1788             g_assert_not_reached();
1789         }
1790     }
1791     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1792     if (unlikely(search_size < 0)) {
1793         goto buffer_overflow;
1794     }
1795     tb->tc.size = gen_code_size;
1796 
1797 #ifdef CONFIG_PROFILER
1798     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1799     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1800     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1801     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1802 #endif
1803 
1804 #ifdef DEBUG_DISAS
1805     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1806         qemu_log_in_addr_range(tb->pc)) {
1807         FILE *logfile = qemu_log_lock();
1808         qemu_log("OUT: [size=%d]\n", gen_code_size);
1809         if (tcg_ctx->data_gen_ptr) {
1810             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1811             size_t data_size = gen_code_size - code_size;
1812             size_t i;
1813 
1814             log_disas(tb->tc.ptr, code_size);
1815 
1816             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1817                 if (sizeof(tcg_target_ulong) == 8) {
1818                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1819                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1820                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1821                 } else {
1822                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1823                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1825                 }
1826             }
1827         } else {
1828             log_disas(tb->tc.ptr, gen_code_size);
1829         }
1830         qemu_log("\n");
1831         qemu_log_flush();
1832         qemu_log_unlock(logfile);
1833     }
1834 #endif
1835 
1836     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1837         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1838                  CODE_GEN_ALIGN));
1839 
1840     /* init jump list */
1841     qemu_spin_init(&tb->jmp_lock);
1842     tb->jmp_list_head = (uintptr_t)NULL;
1843     tb->jmp_list_next[0] = (uintptr_t)NULL;
1844     tb->jmp_list_next[1] = (uintptr_t)NULL;
1845     tb->jmp_dest[0] = (uintptr_t)NULL;
1846     tb->jmp_dest[1] = (uintptr_t)NULL;
1847 
1848     /* init original jump addresses which have been set during tcg_gen_code() */
1849     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1850         tb_reset_jump(tb, 0);
1851     }
1852     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1853         tb_reset_jump(tb, 1);
1854     }
1855 
1856     /* check next page if needed */
1857     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1858     phys_page2 = -1;
1859     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1860         phys_page2 = get_page_addr_code(env, virt_page2);
1861     }
1862     /*
1863      * No explicit memory barrier is required -- tb_link_page() makes the
1864      * TB visible in a consistent state.
1865      */
1866     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1867     /* if the TB already exists, discard what we just translated */
1868     if (unlikely(existing_tb != tb)) {
1869         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1870 
1871         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1872         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1873         return existing_tb;
1874     }
1875     tcg_tb_insert(tb);
1876     return tb;
1877 }
1878 
1879 /*
1880  * @p must be non-NULL.
1881  * user-mode: call with mmap_lock held.
1882  * !user-mode: call with all @pages locked.
1883  */
1884 static void
1885 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1886                                       PageDesc *p, tb_page_addr_t start,
1887                                       tb_page_addr_t end,
1888                                       uintptr_t retaddr)
1889 {
1890     TranslationBlock *tb;
1891     tb_page_addr_t tb_start, tb_end;
1892     int n;
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894     CPUState *cpu = current_cpu;
1895     CPUArchState *env = NULL;
1896     bool current_tb_not_found = retaddr != 0;
1897     bool current_tb_modified = false;
1898     TranslationBlock *current_tb = NULL;
1899     target_ulong current_pc = 0;
1900     target_ulong current_cs_base = 0;
1901     uint32_t current_flags = 0;
1902 #endif /* TARGET_HAS_PRECISE_SMC */
1903 
1904     assert_page_locked(p);
1905 
1906 #if defined(TARGET_HAS_PRECISE_SMC)
1907     if (cpu != NULL) {
1908         env = cpu->env_ptr;
1909     }
1910 #endif
1911 
1912     /* we remove all the TBs in the range [start, end[ */
1913     /* XXX: see if in some cases it could be faster to invalidate all
1914        the code */
1915     PAGE_FOR_EACH_TB(p, tb, n) {
1916         assert_page_locked(p);
1917         /* NOTE: this is subtle as a TB may span two physical pages */
1918         if (n == 0) {
1919             /* NOTE: tb_end may be after the end of the page, but
1920                it is not a problem */
1921             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1922             tb_end = tb_start + tb->size;
1923         } else {
1924             tb_start = tb->page_addr[1];
1925             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1926         }
1927         if (!(tb_end <= start || tb_start >= end)) {
1928 #ifdef TARGET_HAS_PRECISE_SMC
1929             if (current_tb_not_found) {
1930                 current_tb_not_found = false;
1931                 /* now we have a real cpu fault */
1932                 current_tb = tcg_tb_lookup(retaddr);
1933             }
1934             if (current_tb == tb &&
1935                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1936                 /*
1937                  * If we are modifying the current TB, we must stop
1938                  * its execution. We could be more precise by checking
1939                  * that the modification is after the current PC, but it
1940                  * would require a specialized function to partially
1941                  * restore the CPU state.
1942                  */
1943                 current_tb_modified = true;
1944                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1945                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1946                                      &current_flags);
1947             }
1948 #endif /* TARGET_HAS_PRECISE_SMC */
1949             tb_phys_invalidate__locked(tb);
1950         }
1951     }
1952 #if !defined(CONFIG_USER_ONLY)
1953     /* if no code remaining, no need to continue to use slow writes */
1954     if (!p->first_tb) {
1955         invalidate_page_bitmap(p);
1956         tlb_unprotect_code(start);
1957     }
1958 #endif
1959 #ifdef TARGET_HAS_PRECISE_SMC
1960     if (current_tb_modified) {
1961         page_collection_unlock(pages);
1962         /* Force execution of one insn next time.  */
1963         cpu->cflags_next_tb = 1 | curr_cflags();
1964         mmap_unlock();
1965         cpu_loop_exit_noexc(cpu);
1966     }
1967 #endif
1968 }
1969 
1970 /*
1971  * Invalidate all TBs which intersect with the target physical address range
1972  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1973  * 'is_cpu_write_access' should be true if called from a real cpu write
1974  * access: the virtual CPU will exit the current TB if code is modified inside
1975  * this TB.
1976  *
1977  * Called with mmap_lock held for user-mode emulation
1978  */
1979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1980 {
1981     struct page_collection *pages;
1982     PageDesc *p;
1983 
1984     assert_memory_lock();
1985 
1986     p = page_find(start >> TARGET_PAGE_BITS);
1987     if (p == NULL) {
1988         return;
1989     }
1990     pages = page_collection_lock(start, end);
1991     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1992     page_collection_unlock(pages);
1993 }
1994 
1995 /*
1996  * Invalidate all TBs which intersect with the target physical address range
1997  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1998  * 'is_cpu_write_access' should be true if called from a real cpu write
1999  * access: the virtual CPU will exit the current TB if code is modified inside
2000  * this TB.
2001  *
2002  * Called with mmap_lock held for user-mode emulation.
2003  */
2004 #ifdef CONFIG_SOFTMMU
2005 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2006 #else
2007 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2008 #endif
2009 {
2010     struct page_collection *pages;
2011     tb_page_addr_t next;
2012 
2013     assert_memory_lock();
2014 
2015     pages = page_collection_lock(start, end);
2016     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2017          start < end;
2018          start = next, next += TARGET_PAGE_SIZE) {
2019         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2020         tb_page_addr_t bound = MIN(next, end);
2021 
2022         if (pd == NULL) {
2023             continue;
2024         }
2025         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2026     }
2027     page_collection_unlock(pages);
2028 }
2029 
2030 #ifdef CONFIG_SOFTMMU
2031 /* len must be <= 8 and start must be a multiple of len.
2032  * Called via softmmu_template.h when code areas are written to with
2033  * iothread mutex not held.
2034  *
2035  * Call with all @pages in the range [@start, @start + len[ locked.
2036  */
2037 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2038                                   tb_page_addr_t start, int len,
2039                                   uintptr_t retaddr)
2040 {
2041     PageDesc *p;
2042 
2043     assert_memory_lock();
2044 
2045     p = page_find(start >> TARGET_PAGE_BITS);
2046     if (!p) {
2047         return;
2048     }
2049 
2050     assert_page_locked(p);
2051     if (!p->code_bitmap &&
2052         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2053         build_page_bitmap(p);
2054     }
2055     if (p->code_bitmap) {
2056         unsigned int nr;
2057         unsigned long b;
2058 
2059         nr = start & ~TARGET_PAGE_MASK;
2060         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2061         if (b & ((1 << len) - 1)) {
2062             goto do_invalidate;
2063         }
2064     } else {
2065     do_invalidate:
2066         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2067                                               retaddr);
2068     }
2069 }
2070 #else
2071 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2072  * host PC of the faulting store instruction that caused this invalidate.
2073  * Returns true if the caller needs to abort execution of the current
2074  * TB (because it was modified by this store and the guest CPU has
2075  * precise-SMC semantics).
2076  */
2077 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2078 {
2079     TranslationBlock *tb;
2080     PageDesc *p;
2081     int n;
2082 #ifdef TARGET_HAS_PRECISE_SMC
2083     TranslationBlock *current_tb = NULL;
2084     CPUState *cpu = current_cpu;
2085     CPUArchState *env = NULL;
2086     int current_tb_modified = 0;
2087     target_ulong current_pc = 0;
2088     target_ulong current_cs_base = 0;
2089     uint32_t current_flags = 0;
2090 #endif
2091 
2092     assert_memory_lock();
2093 
2094     addr &= TARGET_PAGE_MASK;
2095     p = page_find(addr >> TARGET_PAGE_BITS);
2096     if (!p) {
2097         return false;
2098     }
2099 
2100 #ifdef TARGET_HAS_PRECISE_SMC
2101     if (p->first_tb && pc != 0) {
2102         current_tb = tcg_tb_lookup(pc);
2103     }
2104     if (cpu != NULL) {
2105         env = cpu->env_ptr;
2106     }
2107 #endif
2108     assert_page_locked(p);
2109     PAGE_FOR_EACH_TB(p, tb, n) {
2110 #ifdef TARGET_HAS_PRECISE_SMC
2111         if (current_tb == tb &&
2112             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2113                 /* If we are modifying the current TB, we must stop
2114                    its execution. We could be more precise by checking
2115                    that the modification is after the current PC, but it
2116                    would require a specialized function to partially
2117                    restore the CPU state */
2118 
2119             current_tb_modified = 1;
2120             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2121             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2122                                  &current_flags);
2123         }
2124 #endif /* TARGET_HAS_PRECISE_SMC */
2125         tb_phys_invalidate(tb, addr);
2126     }
2127     p->first_tb = (uintptr_t)NULL;
2128 #ifdef TARGET_HAS_PRECISE_SMC
2129     if (current_tb_modified) {
2130         /* Force execution of one insn next time.  */
2131         cpu->cflags_next_tb = 1 | curr_cflags();
2132         return true;
2133     }
2134 #endif
2135 
2136     return false;
2137 }
2138 #endif
2139 
2140 /* user-mode: call with mmap_lock held */
2141 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2142 {
2143     TranslationBlock *tb;
2144 
2145     assert_memory_lock();
2146 
2147     tb = tcg_tb_lookup(retaddr);
2148     if (tb) {
2149         /* We can use retranslation to find the PC.  */
2150         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2151         tb_phys_invalidate(tb, -1);
2152     } else {
2153         /* The exception probably happened in a helper.  The CPU state should
2154            have been saved before calling it. Fetch the PC from there.  */
2155         CPUArchState *env = cpu->env_ptr;
2156         target_ulong pc, cs_base;
2157         tb_page_addr_t addr;
2158         uint32_t flags;
2159 
2160         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2161         addr = get_page_addr_code(env, pc);
2162         if (addr != -1) {
2163             tb_invalidate_phys_range(addr, addr + 1);
2164         }
2165     }
2166 }
2167 
2168 #ifndef CONFIG_USER_ONLY
2169 /* in deterministic execution mode, instructions doing device I/Os
2170  * must be at the end of the TB.
2171  *
2172  * Called by softmmu_template.h, with iothread mutex not held.
2173  */
2174 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2175 {
2176 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2177     CPUArchState *env = cpu->env_ptr;
2178 #endif
2179     TranslationBlock *tb;
2180     uint32_t n;
2181 
2182     tb = tcg_tb_lookup(retaddr);
2183     if (!tb) {
2184         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2185                   (void *)retaddr);
2186     }
2187     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2188 
2189     /* On MIPS and SH, delay slot instructions can only be restarted if
2190        they were already the first instruction in the TB.  If this is not
2191        the first instruction in a TB then re-execute the preceding
2192        branch.  */
2193     n = 1;
2194 #if defined(TARGET_MIPS)
2195     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2196         && env->active_tc.PC != tb->pc) {
2197         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2198         cpu_neg(cpu)->icount_decr.u16.low++;
2199         env->hflags &= ~MIPS_HFLAG_BMASK;
2200         n = 2;
2201     }
2202 #elif defined(TARGET_SH4)
2203     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2204         && env->pc != tb->pc) {
2205         env->pc -= 2;
2206         cpu_neg(cpu)->icount_decr.u16.low++;
2207         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2208         n = 2;
2209     }
2210 #endif
2211 
2212     /* Generate a new TB executing the I/O insn.  */
2213     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2214 
2215     if (tb_cflags(tb) & CF_NOCACHE) {
2216         if (tb->orig_tb) {
2217             /* Invalidate original TB if this TB was generated in
2218              * cpu_exec_nocache() */
2219             tb_phys_invalidate(tb->orig_tb, -1);
2220         }
2221         tcg_tb_remove(tb);
2222     }
2223 
2224     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2225      * the first in the TB) then we end up generating a whole new TB and
2226      *  repeating the fault, which is horribly inefficient.
2227      *  Better would be to execute just this insn uncached, or generate a
2228      *  second new TB.
2229      */
2230     cpu_loop_exit_noexc(cpu);
2231 }
2232 
2233 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2234 {
2235     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2236 
2237     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2238         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2239     }
2240 }
2241 
2242 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2243 {
2244     /* Discard jump cache entries for any tb which might potentially
2245        overlap the flushed page.  */
2246     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2247     tb_jmp_cache_clear_page(cpu, addr);
2248 }
2249 
2250 static void print_qht_statistics(struct qht_stats hst)
2251 {
2252     uint32_t hgram_opts;
2253     size_t hgram_bins;
2254     char *hgram;
2255 
2256     if (!hst.head_buckets) {
2257         return;
2258     }
2259     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2260                 hst.used_head_buckets, hst.head_buckets,
2261                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2262 
2263     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2264     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2265     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2266         hgram_opts |= QDIST_PR_NODECIMAL;
2267     }
2268     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2269     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2270                 qdist_avg(&hst.occupancy) * 100, hgram);
2271     g_free(hgram);
2272 
2273     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2274     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2275     if (hgram_bins > 10) {
2276         hgram_bins = 10;
2277     } else {
2278         hgram_bins = 0;
2279         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2280     }
2281     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2282     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2283                 qdist_avg(&hst.chain), hgram);
2284     g_free(hgram);
2285 }
2286 
2287 struct tb_tree_stats {
2288     size_t nb_tbs;
2289     size_t host_size;
2290     size_t target_size;
2291     size_t max_target_size;
2292     size_t direct_jmp_count;
2293     size_t direct_jmp2_count;
2294     size_t cross_page;
2295 };
2296 
2297 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2298 {
2299     const TranslationBlock *tb = value;
2300     struct tb_tree_stats *tst = data;
2301 
2302     tst->nb_tbs++;
2303     tst->host_size += tb->tc.size;
2304     tst->target_size += tb->size;
2305     if (tb->size > tst->max_target_size) {
2306         tst->max_target_size = tb->size;
2307     }
2308     if (tb->page_addr[1] != -1) {
2309         tst->cross_page++;
2310     }
2311     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2312         tst->direct_jmp_count++;
2313         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2314             tst->direct_jmp2_count++;
2315         }
2316     }
2317     return false;
2318 }
2319 
2320 void dump_exec_info(void)
2321 {
2322     struct tb_tree_stats tst = {};
2323     struct qht_stats hst;
2324     size_t nb_tbs, flush_full, flush_part, flush_elide;
2325 
2326     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2327     nb_tbs = tst.nb_tbs;
2328     /* XXX: avoid using doubles ? */
2329     qemu_printf("Translation buffer state:\n");
2330     /*
2331      * Report total code size including the padding and TB structs;
2332      * otherwise users might think "-tb-size" is not honoured.
2333      * For avg host size we use the precise numbers from tb_tree_stats though.
2334      */
2335     qemu_printf("gen code size       %zu/%zu\n",
2336                 tcg_code_size(), tcg_code_capacity());
2337     qemu_printf("TB count            %zu\n", nb_tbs);
2338     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2339                 nb_tbs ? tst.target_size / nb_tbs : 0,
2340                 tst.max_target_size);
2341     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2342                 nb_tbs ? tst.host_size / nb_tbs : 0,
2343                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2344     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2345                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2346     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2347                 tst.direct_jmp_count,
2348                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2349                 tst.direct_jmp2_count,
2350                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2351 
2352     qht_statistics_init(&tb_ctx.htable, &hst);
2353     print_qht_statistics(hst);
2354     qht_statistics_destroy(&hst);
2355 
2356     qemu_printf("\nStatistics:\n");
2357     qemu_printf("TB flush count      %u\n",
2358                 atomic_read(&tb_ctx.tb_flush_count));
2359     qemu_printf("TB invalidate count %zu\n",
2360                 tcg_tb_phys_invalidate_count());
2361 
2362     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2363     qemu_printf("TLB full flushes    %zu\n", flush_full);
2364     qemu_printf("TLB partial flushes %zu\n", flush_part);
2365     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2366     tcg_dump_info();
2367 }
2368 
2369 void dump_opcount_info(void)
2370 {
2371     tcg_dump_op_count();
2372 }
2373 
2374 #else /* CONFIG_USER_ONLY */
2375 
2376 void cpu_interrupt(CPUState *cpu, int mask)
2377 {
2378     g_assert(qemu_mutex_iothread_locked());
2379     cpu->interrupt_request |= mask;
2380     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2381 }
2382 
2383 /*
2384  * Walks guest process memory "regions" one by one
2385  * and calls callback function 'fn' for each region.
2386  */
2387 struct walk_memory_regions_data {
2388     walk_memory_regions_fn fn;
2389     void *priv;
2390     target_ulong start;
2391     int prot;
2392 };
2393 
2394 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2395                                    target_ulong end, int new_prot)
2396 {
2397     if (data->start != -1u) {
2398         int rc = data->fn(data->priv, data->start, end, data->prot);
2399         if (rc != 0) {
2400             return rc;
2401         }
2402     }
2403 
2404     data->start = (new_prot ? end : -1u);
2405     data->prot = new_prot;
2406 
2407     return 0;
2408 }
2409 
2410 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2411                                  target_ulong base, int level, void **lp)
2412 {
2413     target_ulong pa;
2414     int i, rc;
2415 
2416     if (*lp == NULL) {
2417         return walk_memory_regions_end(data, base, 0);
2418     }
2419 
2420     if (level == 0) {
2421         PageDesc *pd = *lp;
2422 
2423         for (i = 0; i < V_L2_SIZE; ++i) {
2424             int prot = pd[i].flags;
2425 
2426             pa = base | (i << TARGET_PAGE_BITS);
2427             if (prot != data->prot) {
2428                 rc = walk_memory_regions_end(data, pa, prot);
2429                 if (rc != 0) {
2430                     return rc;
2431                 }
2432             }
2433         }
2434     } else {
2435         void **pp = *lp;
2436 
2437         for (i = 0; i < V_L2_SIZE; ++i) {
2438             pa = base | ((target_ulong)i <<
2439                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2440             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2441             if (rc != 0) {
2442                 return rc;
2443             }
2444         }
2445     }
2446 
2447     return 0;
2448 }
2449 
2450 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2451 {
2452     struct walk_memory_regions_data data;
2453     uintptr_t i, l1_sz = v_l1_size;
2454 
2455     data.fn = fn;
2456     data.priv = priv;
2457     data.start = -1u;
2458     data.prot = 0;
2459 
2460     for (i = 0; i < l1_sz; i++) {
2461         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2462         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2463         if (rc != 0) {
2464             return rc;
2465         }
2466     }
2467 
2468     return walk_memory_regions_end(&data, 0, 0);
2469 }
2470 
2471 static int dump_region(void *priv, target_ulong start,
2472     target_ulong end, unsigned long prot)
2473 {
2474     FILE *f = (FILE *)priv;
2475 
2476     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2477         " "TARGET_FMT_lx" %c%c%c\n",
2478         start, end, end - start,
2479         ((prot & PAGE_READ) ? 'r' : '-'),
2480         ((prot & PAGE_WRITE) ? 'w' : '-'),
2481         ((prot & PAGE_EXEC) ? 'x' : '-'));
2482 
2483     return 0;
2484 }
2485 
2486 /* dump memory mappings */
2487 void page_dump(FILE *f)
2488 {
2489     const int length = sizeof(target_ulong) * 2;
2490     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2491             length, "start", length, "end", length, "size", "prot");
2492     walk_memory_regions(f, dump_region);
2493 }
2494 
2495 int page_get_flags(target_ulong address)
2496 {
2497     PageDesc *p;
2498 
2499     p = page_find(address >> TARGET_PAGE_BITS);
2500     if (!p) {
2501         return 0;
2502     }
2503     return p->flags;
2504 }
2505 
2506 /* Modify the flags of a page and invalidate the code if necessary.
2507    The flag PAGE_WRITE_ORG is positioned automatically depending
2508    on PAGE_WRITE.  The mmap_lock should already be held.  */
2509 void page_set_flags(target_ulong start, target_ulong end, int flags)
2510 {
2511     target_ulong addr, len;
2512 
2513     /* This function should never be called with addresses outside the
2514        guest address space.  If this assert fires, it probably indicates
2515        a missing call to h2g_valid.  */
2516 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2517     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2518 #endif
2519     assert(start < end);
2520     assert_memory_lock();
2521 
2522     start = start & TARGET_PAGE_MASK;
2523     end = TARGET_PAGE_ALIGN(end);
2524 
2525     if (flags & PAGE_WRITE) {
2526         flags |= PAGE_WRITE_ORG;
2527     }
2528 
2529     for (addr = start, len = end - start;
2530          len != 0;
2531          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2532         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2533 
2534         /* If the write protection bit is set, then we invalidate
2535            the code inside.  */
2536         if (!(p->flags & PAGE_WRITE) &&
2537             (flags & PAGE_WRITE) &&
2538             p->first_tb) {
2539             tb_invalidate_phys_page(addr, 0);
2540         }
2541         p->flags = flags;
2542     }
2543 }
2544 
2545 int page_check_range(target_ulong start, target_ulong len, int flags)
2546 {
2547     PageDesc *p;
2548     target_ulong end;
2549     target_ulong addr;
2550 
2551     /* This function should never be called with addresses outside the
2552        guest address space.  If this assert fires, it probably indicates
2553        a missing call to h2g_valid.  */
2554 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2555     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2556 #endif
2557 
2558     if (len == 0) {
2559         return 0;
2560     }
2561     if (start + len - 1 < start) {
2562         /* We've wrapped around.  */
2563         return -1;
2564     }
2565 
2566     /* must do before we loose bits in the next step */
2567     end = TARGET_PAGE_ALIGN(start + len);
2568     start = start & TARGET_PAGE_MASK;
2569 
2570     for (addr = start, len = end - start;
2571          len != 0;
2572          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2573         p = page_find(addr >> TARGET_PAGE_BITS);
2574         if (!p) {
2575             return -1;
2576         }
2577         if (!(p->flags & PAGE_VALID)) {
2578             return -1;
2579         }
2580 
2581         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2582             return -1;
2583         }
2584         if (flags & PAGE_WRITE) {
2585             if (!(p->flags & PAGE_WRITE_ORG)) {
2586                 return -1;
2587             }
2588             /* unprotect the page if it was put read-only because it
2589                contains translated code */
2590             if (!(p->flags & PAGE_WRITE)) {
2591                 if (!page_unprotect(addr, 0)) {
2592                     return -1;
2593                 }
2594             }
2595         }
2596     }
2597     return 0;
2598 }
2599 
2600 /* called from signal handler: invalidate the code and unprotect the
2601  * page. Return 0 if the fault was not handled, 1 if it was handled,
2602  * and 2 if it was handled but the caller must cause the TB to be
2603  * immediately exited. (We can only return 2 if the 'pc' argument is
2604  * non-zero.)
2605  */
2606 int page_unprotect(target_ulong address, uintptr_t pc)
2607 {
2608     unsigned int prot;
2609     bool current_tb_invalidated;
2610     PageDesc *p;
2611     target_ulong host_start, host_end, addr;
2612 
2613     /* Technically this isn't safe inside a signal handler.  However we
2614        know this only ever happens in a synchronous SEGV handler, so in
2615        practice it seems to be ok.  */
2616     mmap_lock();
2617 
2618     p = page_find(address >> TARGET_PAGE_BITS);
2619     if (!p) {
2620         mmap_unlock();
2621         return 0;
2622     }
2623 
2624     /* if the page was really writable, then we change its
2625        protection back to writable */
2626     if (p->flags & PAGE_WRITE_ORG) {
2627         current_tb_invalidated = false;
2628         if (p->flags & PAGE_WRITE) {
2629             /* If the page is actually marked WRITE then assume this is because
2630              * this thread raced with another one which got here first and
2631              * set the page to PAGE_WRITE and did the TB invalidate for us.
2632              */
2633 #ifdef TARGET_HAS_PRECISE_SMC
2634             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2635             if (current_tb) {
2636                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2637             }
2638 #endif
2639         } else {
2640             host_start = address & qemu_host_page_mask;
2641             host_end = host_start + qemu_host_page_size;
2642 
2643             prot = 0;
2644             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2645                 p = page_find(addr >> TARGET_PAGE_BITS);
2646                 p->flags |= PAGE_WRITE;
2647                 prot |= p->flags;
2648 
2649                 /* and since the content will be modified, we must invalidate
2650                    the corresponding translated code. */
2651                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2652 #ifdef CONFIG_USER_ONLY
2653                 if (DEBUG_TB_CHECK_GATE) {
2654                     tb_invalidate_check(addr);
2655                 }
2656 #endif
2657             }
2658             mprotect((void *)g2h(host_start), qemu_host_page_size,
2659                      prot & PAGE_BITS);
2660         }
2661         mmap_unlock();
2662         /* If current TB was invalidated return to main loop */
2663         return current_tb_invalidated ? 2 : 1;
2664     }
2665     mmap_unlock();
2666     return 0;
2667 }
2668 #endif /* CONFIG_USER_ONLY */
2669 
2670 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2671 void tcg_flush_softmmu_tlb(CPUState *cs)
2672 {
2673 #ifdef CONFIG_SOFTMMU
2674     tlb_flush(cs);
2675 #endif
2676 }
2677