xref: /qemu/accel/tcg/translate-all.c (revision d0fb9657)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48 
49 #include "exec/cputlb.h"
50 #include "exec/translate-all.h"
51 #include "qemu/bitmap.h"
52 #include "qemu/error-report.h"
53 #include "qemu/qemu-print.h"
54 #include "qemu/timer.h"
55 #include "qemu/main-loop.h"
56 #include "exec/log.h"
57 #include "sysemu/cpus.h"
58 #include "sysemu/cpu-timers.h"
59 #include "sysemu/tcg.h"
60 #include "qapi/error.h"
61 #include "hw/core/tcg-cpu-ops.h"
62 #include "tb-hash.h"
63 #include "tb-context.h"
64 #include "internal.h"
65 
66 /* #define DEBUG_TB_INVALIDATE */
67 /* #define DEBUG_TB_FLUSH */
68 /* make various TB consistency checks */
69 /* #define DEBUG_TB_CHECK */
70 
71 #ifdef DEBUG_TB_INVALIDATE
72 #define DEBUG_TB_INVALIDATE_GATE 1
73 #else
74 #define DEBUG_TB_INVALIDATE_GATE 0
75 #endif
76 
77 #ifdef DEBUG_TB_FLUSH
78 #define DEBUG_TB_FLUSH_GATE 1
79 #else
80 #define DEBUG_TB_FLUSH_GATE 0
81 #endif
82 
83 #if !defined(CONFIG_USER_ONLY)
84 /* TB consistency checks only implemented for usermode emulation.  */
85 #undef DEBUG_TB_CHECK
86 #endif
87 
88 #ifdef DEBUG_TB_CHECK
89 #define DEBUG_TB_CHECK_GATE 1
90 #else
91 #define DEBUG_TB_CHECK_GATE 0
92 #endif
93 
94 /* Access to the various translations structures need to be serialised via locks
95  * for consistency.
96  * In user-mode emulation access to the memory related structures are protected
97  * with mmap_lock.
98  * In !user-mode we use per-page locks.
99  */
100 #ifdef CONFIG_SOFTMMU
101 #define assert_memory_lock()
102 #else
103 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
104 #endif
105 
106 #define SMC_BITMAP_USE_THRESHOLD 10
107 
108 typedef struct PageDesc {
109     /* list of TBs intersecting this ram page */
110     uintptr_t first_tb;
111 #ifdef CONFIG_SOFTMMU
112     /* in order to optimize self modifying code, we count the number
113        of lookups we do to a given page to use a bitmap */
114     unsigned long *code_bitmap;
115     unsigned int code_write_count;
116 #else
117     unsigned long flags;
118     void *target_data;
119 #endif
120 #ifndef CONFIG_USER_ONLY
121     QemuSpin lock;
122 #endif
123 } PageDesc;
124 
125 /**
126  * struct page_entry - page descriptor entry
127  * @pd:     pointer to the &struct PageDesc of the page this entry represents
128  * @index:  page index of the page
129  * @locked: whether the page is locked
130  *
131  * This struct helps us keep track of the locked state of a page, without
132  * bloating &struct PageDesc.
133  *
134  * A page lock protects accesses to all fields of &struct PageDesc.
135  *
136  * See also: &struct page_collection.
137  */
138 struct page_entry {
139     PageDesc *pd;
140     tb_page_addr_t index;
141     bool locked;
142 };
143 
144 /**
145  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
146  * @tree:   Binary search tree (BST) of the pages, with key == page index
147  * @max:    Pointer to the page in @tree with the highest page index
148  *
149  * To avoid deadlock we lock pages in ascending order of page index.
150  * When operating on a set of pages, we need to keep track of them so that
151  * we can lock them in order and also unlock them later. For this we collect
152  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
153  * @tree implementation we use does not provide an O(1) operation to obtain the
154  * highest-ranked element, we use @max to keep track of the inserted page
155  * with the highest index. This is valuable because if a page is not in
156  * the tree and its index is higher than @max's, then we can lock it
157  * without breaking the locking order rule.
158  *
159  * Note on naming: 'struct page_set' would be shorter, but we already have a few
160  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
161  *
162  * See also: page_collection_lock().
163  */
164 struct page_collection {
165     GTree *tree;
166     struct page_entry *max;
167 };
168 
169 /* list iterators for lists of tagged pointers in TranslationBlock */
170 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
171     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
172          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
173              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
174 
175 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
176     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
177 
178 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
179     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
180 
181 /*
182  * In system mode we want L1_MAP to be based on ram offsets,
183  * while in user mode we want it to be based on virtual addresses.
184  *
185  * TODO: For user mode, see the caveat re host vs guest virtual
186  * address spaces near GUEST_ADDR_MAX.
187  */
188 #if !defined(CONFIG_USER_ONLY)
189 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
190 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
191 #else
192 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
193 #endif
194 #else
195 # define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
196 #endif
197 
198 /* Size of the L2 (and L3, etc) page tables.  */
199 #define V_L2_BITS 10
200 #define V_L2_SIZE (1 << V_L2_BITS)
201 
202 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
203 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
204                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
205                   * BITS_PER_BYTE);
206 
207 /*
208  * L1 Mapping properties
209  */
210 static int v_l1_size;
211 static int v_l1_shift;
212 static int v_l2_levels;
213 
214 /* The bottom level has pointers to PageDesc, and is indexed by
215  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
216  */
217 #define V_L1_MIN_BITS 4
218 #define V_L1_MAX_BITS (V_L2_BITS + 3)
219 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
220 
221 static void *l1_map[V_L1_MAX_SIZE];
222 
223 /* code generation context */
224 TCGContext tcg_init_ctx;
225 __thread TCGContext *tcg_ctx;
226 TBContext tb_ctx;
227 
228 static void page_table_config_init(void)
229 {
230     uint32_t v_l1_bits;
231 
232     assert(TARGET_PAGE_BITS);
233     /* The bits remaining after N lower levels of page tables.  */
234     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
235     if (v_l1_bits < V_L1_MIN_BITS) {
236         v_l1_bits += V_L2_BITS;
237     }
238 
239     v_l1_size = 1 << v_l1_bits;
240     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
241     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
242 
243     assert(v_l1_bits <= V_L1_MAX_BITS);
244     assert(v_l1_shift % V_L2_BITS == 0);
245     assert(v_l2_levels >= 0);
246 }
247 
248 static void cpu_gen_init(void)
249 {
250     tcg_context_init(&tcg_init_ctx);
251 }
252 
253 /* Encode VAL as a signed leb128 sequence at P.
254    Return P incremented past the encoded value.  */
255 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
256 {
257     int more, byte;
258 
259     do {
260         byte = val & 0x7f;
261         val >>= 7;
262         more = !((val == 0 && (byte & 0x40) == 0)
263                  || (val == -1 && (byte & 0x40) != 0));
264         if (more) {
265             byte |= 0x80;
266         }
267         *p++ = byte;
268     } while (more);
269 
270     return p;
271 }
272 
273 /* Decode a signed leb128 sequence at *PP; increment *PP past the
274    decoded value.  Return the decoded value.  */
275 static target_long decode_sleb128(const uint8_t **pp)
276 {
277     const uint8_t *p = *pp;
278     target_long val = 0;
279     int byte, shift = 0;
280 
281     do {
282         byte = *p++;
283         val |= (target_ulong)(byte & 0x7f) << shift;
284         shift += 7;
285     } while (byte & 0x80);
286     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
287         val |= -(target_ulong)1 << shift;
288     }
289 
290     *pp = p;
291     return val;
292 }
293 
294 /* Encode the data collected about the instructions while compiling TB.
295    Place the data at BLOCK, and return the number of bytes consumed.
296 
297    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
298    which come from the target's insn_start data, followed by a uintptr_t
299    which comes from the host pc of the end of the code implementing the insn.
300 
301    Each line of the table is encoded as sleb128 deltas from the previous
302    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
303    That is, the first column is seeded with the guest pc, the last column
304    with the host pc, and the middle columns with zeros.  */
305 
306 static int encode_search(TranslationBlock *tb, uint8_t *block)
307 {
308     uint8_t *highwater = tcg_ctx->code_gen_highwater;
309     uint8_t *p = block;
310     int i, j, n;
311 
312     for (i = 0, n = tb->icount; i < n; ++i) {
313         target_ulong prev;
314 
315         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
316             if (i == 0) {
317                 prev = (j == 0 ? tb->pc : 0);
318             } else {
319                 prev = tcg_ctx->gen_insn_data[i - 1][j];
320             }
321             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
322         }
323         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
324         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
325 
326         /* Test for (pending) buffer overflow.  The assumption is that any
327            one row beginning below the high water mark cannot overrun
328            the buffer completely.  Thus we can test for overflow after
329            encoding a row without having to check during encoding.  */
330         if (unlikely(p > highwater)) {
331             return -1;
332         }
333     }
334 
335     return p - block;
336 }
337 
338 /* The cpu state corresponding to 'searched_pc' is restored.
339  * When reset_icount is true, current TB will be interrupted and
340  * icount should be recalculated.
341  */
342 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
343                                      uintptr_t searched_pc, bool reset_icount)
344 {
345     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
346     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
347     CPUArchState *env = cpu->env_ptr;
348     const uint8_t *p = tb->tc.ptr + tb->tc.size;
349     int i, j, num_insns = tb->icount;
350 #ifdef CONFIG_PROFILER
351     TCGProfile *prof = &tcg_ctx->prof;
352     int64_t ti = profile_getclock();
353 #endif
354 
355     searched_pc -= GETPC_ADJ;
356 
357     if (searched_pc < host_pc) {
358         return -1;
359     }
360 
361     /* Reconstruct the stored insn data while looking for the point at
362        which the end of the insn exceeds the searched_pc.  */
363     for (i = 0; i < num_insns; ++i) {
364         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
365             data[j] += decode_sleb128(&p);
366         }
367         host_pc += decode_sleb128(&p);
368         if (host_pc > searched_pc) {
369             goto found;
370         }
371     }
372     return -1;
373 
374  found:
375     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
376         assert(icount_enabled());
377         /* Reset the cycle counter to the start of the block
378            and shift if to the number of actually executed instructions */
379         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
380     }
381     restore_state_to_opc(env, tb, data);
382 
383 #ifdef CONFIG_PROFILER
384     qatomic_set(&prof->restore_time,
385                 prof->restore_time + profile_getclock() - ti);
386     qatomic_set(&prof->restore_count, prof->restore_count + 1);
387 #endif
388     return 0;
389 }
390 
391 void tb_destroy(TranslationBlock *tb)
392 {
393     qemu_spin_destroy(&tb->jmp_lock);
394 }
395 
396 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
397 {
398     /*
399      * The host_pc has to be in the rx region of the code buffer.
400      * If it is not we will not be able to resolve it here.
401      * The two cases where host_pc will not be correct are:
402      *
403      *  - fault during translation (instruction fetch)
404      *  - fault from helper (not using GETPC() macro)
405      *
406      * Either way we need return early as we can't resolve it here.
407      */
408     if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
409         TranslationBlock *tb = tcg_tb_lookup(host_pc);
410         if (tb) {
411             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
412             return true;
413         }
414     }
415     return false;
416 }
417 
418 static void page_init(void)
419 {
420     page_size_init();
421     page_table_config_init();
422 
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424     {
425 #ifdef HAVE_KINFO_GETVMMAP
426         struct kinfo_vmentry *freep;
427         int i, cnt;
428 
429         freep = kinfo_getvmmap(getpid(), &cnt);
430         if (freep) {
431             mmap_lock();
432             for (i = 0; i < cnt; i++) {
433                 unsigned long startaddr, endaddr;
434 
435                 startaddr = freep[i].kve_start;
436                 endaddr = freep[i].kve_end;
437                 if (h2g_valid(startaddr)) {
438                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439 
440                     if (h2g_valid(endaddr)) {
441                         endaddr = h2g(endaddr);
442                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443                     } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445                         endaddr = ~0ul;
446                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448                     }
449                 }
450             }
451             free(freep);
452             mmap_unlock();
453         }
454 #else
455         FILE *f;
456 
457         last_brk = (unsigned long)sbrk(0);
458 
459         f = fopen("/compat/linux/proc/self/maps", "r");
460         if (f) {
461             mmap_lock();
462 
463             do {
464                 unsigned long startaddr, endaddr;
465                 int n;
466 
467                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468 
469                 if (n == 2 && h2g_valid(startaddr)) {
470                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471 
472                     if (h2g_valid(endaddr)) {
473                         endaddr = h2g(endaddr);
474                     } else {
475                         endaddr = ~0ul;
476                     }
477                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478                 }
479             } while (!feof(f));
480 
481             fclose(f);
482             mmap_unlock();
483         }
484 #endif
485     }
486 #endif
487 }
488 
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491     PageDesc *pd;
492     void **lp;
493     int i;
494 
495     /* Level 1.  Always allocated.  */
496     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497 
498     /* Level 2..N-1.  */
499     for (i = v_l2_levels; i > 0; i--) {
500         void **p = qatomic_rcu_read(lp);
501 
502         if (p == NULL) {
503             void *existing;
504 
505             if (!alloc) {
506                 return NULL;
507             }
508             p = g_new0(void *, V_L2_SIZE);
509             existing = qatomic_cmpxchg(lp, NULL, p);
510             if (unlikely(existing)) {
511                 g_free(p);
512                 p = existing;
513             }
514         }
515 
516         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517     }
518 
519     pd = qatomic_rcu_read(lp);
520     if (pd == NULL) {
521         void *existing;
522 
523         if (!alloc) {
524             return NULL;
525         }
526         pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528         {
529             int i;
530 
531             for (i = 0; i < V_L2_SIZE; i++) {
532                 qemu_spin_init(&pd[i].lock);
533             }
534         }
535 #endif
536         existing = qatomic_cmpxchg(lp, NULL, pd);
537         if (unlikely(existing)) {
538 #ifndef CONFIG_USER_ONLY
539             {
540                 int i;
541 
542                 for (i = 0; i < V_L2_SIZE; i++) {
543                     qemu_spin_destroy(&pd[i].lock);
544                 }
545             }
546 #endif
547             g_free(pd);
548             pd = existing;
549         }
550     }
551 
552     return pd + (index & (V_L2_SIZE - 1));
553 }
554 
555 static inline PageDesc *page_find(tb_page_addr_t index)
556 {
557     return page_find_alloc(index, 0);
558 }
559 
560 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
561                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
562 
563 /* In user-mode page locks aren't used; mmap_lock is enough */
564 #ifdef CONFIG_USER_ONLY
565 
566 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
567 
568 static inline void page_lock(PageDesc *pd)
569 { }
570 
571 static inline void page_unlock(PageDesc *pd)
572 { }
573 
574 static inline void page_lock_tb(const TranslationBlock *tb)
575 { }
576 
577 static inline void page_unlock_tb(const TranslationBlock *tb)
578 { }
579 
580 struct page_collection *
581 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
582 {
583     return NULL;
584 }
585 
586 void page_collection_unlock(struct page_collection *set)
587 { }
588 #else /* !CONFIG_USER_ONLY */
589 
590 #ifdef CONFIG_DEBUG_TCG
591 
592 static __thread GHashTable *ht_pages_locked_debug;
593 
594 static void ht_pages_locked_debug_init(void)
595 {
596     if (ht_pages_locked_debug) {
597         return;
598     }
599     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
600 }
601 
602 static bool page_is_locked(const PageDesc *pd)
603 {
604     PageDesc *found;
605 
606     ht_pages_locked_debug_init();
607     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
608     return !!found;
609 }
610 
611 static void page_lock__debug(PageDesc *pd)
612 {
613     ht_pages_locked_debug_init();
614     g_assert(!page_is_locked(pd));
615     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
616 }
617 
618 static void page_unlock__debug(const PageDesc *pd)
619 {
620     bool removed;
621 
622     ht_pages_locked_debug_init();
623     g_assert(page_is_locked(pd));
624     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
625     g_assert(removed);
626 }
627 
628 static void
629 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
630 {
631     if (unlikely(!page_is_locked(pd))) {
632         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
633                      pd, file, line);
634         abort();
635     }
636 }
637 
638 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
639 
640 void assert_no_pages_locked(void)
641 {
642     ht_pages_locked_debug_init();
643     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
644 }
645 
646 #else /* !CONFIG_DEBUG_TCG */
647 
648 #define assert_page_locked(pd)
649 
650 static inline void page_lock__debug(const PageDesc *pd)
651 {
652 }
653 
654 static inline void page_unlock__debug(const PageDesc *pd)
655 {
656 }
657 
658 #endif /* CONFIG_DEBUG_TCG */
659 
660 static inline void page_lock(PageDesc *pd)
661 {
662     page_lock__debug(pd);
663     qemu_spin_lock(&pd->lock);
664 }
665 
666 static inline void page_unlock(PageDesc *pd)
667 {
668     qemu_spin_unlock(&pd->lock);
669     page_unlock__debug(pd);
670 }
671 
672 /* lock the page(s) of a TB in the correct acquisition order */
673 static inline void page_lock_tb(const TranslationBlock *tb)
674 {
675     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
676 }
677 
678 static inline void page_unlock_tb(const TranslationBlock *tb)
679 {
680     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
681 
682     page_unlock(p1);
683     if (unlikely(tb->page_addr[1] != -1)) {
684         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
685 
686         if (p2 != p1) {
687             page_unlock(p2);
688         }
689     }
690 }
691 
692 static inline struct page_entry *
693 page_entry_new(PageDesc *pd, tb_page_addr_t index)
694 {
695     struct page_entry *pe = g_malloc(sizeof(*pe));
696 
697     pe->index = index;
698     pe->pd = pd;
699     pe->locked = false;
700     return pe;
701 }
702 
703 static void page_entry_destroy(gpointer p)
704 {
705     struct page_entry *pe = p;
706 
707     g_assert(pe->locked);
708     page_unlock(pe->pd);
709     g_free(pe);
710 }
711 
712 /* returns false on success */
713 static bool page_entry_trylock(struct page_entry *pe)
714 {
715     bool busy;
716 
717     busy = qemu_spin_trylock(&pe->pd->lock);
718     if (!busy) {
719         g_assert(!pe->locked);
720         pe->locked = true;
721         page_lock__debug(pe->pd);
722     }
723     return busy;
724 }
725 
726 static void do_page_entry_lock(struct page_entry *pe)
727 {
728     page_lock(pe->pd);
729     g_assert(!pe->locked);
730     pe->locked = true;
731 }
732 
733 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
734 {
735     struct page_entry *pe = value;
736 
737     do_page_entry_lock(pe);
738     return FALSE;
739 }
740 
741 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
742 {
743     struct page_entry *pe = value;
744 
745     if (pe->locked) {
746         pe->locked = false;
747         page_unlock(pe->pd);
748     }
749     return FALSE;
750 }
751 
752 /*
753  * Trylock a page, and if successful, add the page to a collection.
754  * Returns true ("busy") if the page could not be locked; false otherwise.
755  */
756 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
757 {
758     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
759     struct page_entry *pe;
760     PageDesc *pd;
761 
762     pe = g_tree_lookup(set->tree, &index);
763     if (pe) {
764         return false;
765     }
766 
767     pd = page_find(index);
768     if (pd == NULL) {
769         return false;
770     }
771 
772     pe = page_entry_new(pd, index);
773     g_tree_insert(set->tree, &pe->index, pe);
774 
775     /*
776      * If this is either (1) the first insertion or (2) a page whose index
777      * is higher than any other so far, just lock the page and move on.
778      */
779     if (set->max == NULL || pe->index > set->max->index) {
780         set->max = pe;
781         do_page_entry_lock(pe);
782         return false;
783     }
784     /*
785      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
786      * locks in order.
787      */
788     return page_entry_trylock(pe);
789 }
790 
791 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
792 {
793     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
794     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
795 
796     if (a == b) {
797         return 0;
798     } else if (a < b) {
799         return -1;
800     }
801     return 1;
802 }
803 
804 /*
805  * Lock a range of pages ([@start,@end[) as well as the pages of all
806  * intersecting TBs.
807  * Locking order: acquire locks in ascending order of page index.
808  */
809 struct page_collection *
810 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
811 {
812     struct page_collection *set = g_malloc(sizeof(*set));
813     tb_page_addr_t index;
814     PageDesc *pd;
815 
816     start >>= TARGET_PAGE_BITS;
817     end   >>= TARGET_PAGE_BITS;
818     g_assert(start <= end);
819 
820     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
821                                 page_entry_destroy);
822     set->max = NULL;
823     assert_no_pages_locked();
824 
825  retry:
826     g_tree_foreach(set->tree, page_entry_lock, NULL);
827 
828     for (index = start; index <= end; index++) {
829         TranslationBlock *tb;
830         int n;
831 
832         pd = page_find(index);
833         if (pd == NULL) {
834             continue;
835         }
836         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
837             g_tree_foreach(set->tree, page_entry_unlock, NULL);
838             goto retry;
839         }
840         assert_page_locked(pd);
841         PAGE_FOR_EACH_TB(pd, tb, n) {
842             if (page_trylock_add(set, tb->page_addr[0]) ||
843                 (tb->page_addr[1] != -1 &&
844                  page_trylock_add(set, tb->page_addr[1]))) {
845                 /* drop all locks, and reacquire in order */
846                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
847                 goto retry;
848             }
849         }
850     }
851     return set;
852 }
853 
854 void page_collection_unlock(struct page_collection *set)
855 {
856     /* entries are unlocked and freed via page_entry_destroy */
857     g_tree_destroy(set->tree);
858     g_free(set);
859 }
860 
861 #endif /* !CONFIG_USER_ONLY */
862 
863 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
864                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
865 {
866     PageDesc *p1, *p2;
867     tb_page_addr_t page1;
868     tb_page_addr_t page2;
869 
870     assert_memory_lock();
871     g_assert(phys1 != -1);
872 
873     page1 = phys1 >> TARGET_PAGE_BITS;
874     page2 = phys2 >> TARGET_PAGE_BITS;
875 
876     p1 = page_find_alloc(page1, alloc);
877     if (ret_p1) {
878         *ret_p1 = p1;
879     }
880     if (likely(phys2 == -1)) {
881         page_lock(p1);
882         return;
883     } else if (page1 == page2) {
884         page_lock(p1);
885         if (ret_p2) {
886             *ret_p2 = p1;
887         }
888         return;
889     }
890     p2 = page_find_alloc(page2, alloc);
891     if (ret_p2) {
892         *ret_p2 = p2;
893     }
894     if (page1 < page2) {
895         page_lock(p1);
896         page_lock(p2);
897     } else {
898         page_lock(p2);
899         page_lock(p1);
900     }
901 }
902 
903 /* Minimum size of the code gen buffer.  This number is randomly chosen,
904    but not so small that we can't have a fair number of TB's live.  */
905 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
906 
907 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
908    indicated, this is constrained by the range of direct branches on the
909    host cpu, as used by the TCG implementation of goto_tb.  */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
920 #elif defined(__s390x__)
921   /* We have a +- 4GB range on the branches; leave some slop.  */
922 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
923 #elif defined(__mips__)
924   /* We have a 256MB branch region, but leave room to make sure the
925      main executable is also within that region.  */
926 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
929 #endif
930 
931 #if TCG_TARGET_REG_BITS == 32
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
933 #ifdef CONFIG_USER_ONLY
934 /*
935  * For user mode on smaller 32 bit systems we may run into trouble
936  * allocating big chunks of data in the right place. On these systems
937  * we utilise a static code generation buffer directly in the binary.
938  */
939 #define USE_STATIC_CODE_GEN_BUFFER
940 #endif
941 #else /* TCG_TARGET_REG_BITS == 64 */
942 #ifdef CONFIG_USER_ONLY
943 /*
944  * As user-mode emulation typically means running multiple instances
945  * of the translator don't go too nuts with our default code gen
946  * buffer lest we make things too hard for the OS.
947  */
948 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
949 #else
950 /*
951  * We expect most system emulation to run one or two guests per host.
952  * Users running large scale system emulation may want to tweak their
953  * runtime setup via the tb-size control on the command line.
954  */
955 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
956 #endif
957 #endif
958 
959 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
960   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
961    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
962 
963 static size_t size_code_gen_buffer(size_t tb_size)
964 {
965     /* Size the buffer.  */
966     if (tb_size == 0) {
967         size_t phys_mem = qemu_get_host_physmem();
968         if (phys_mem == 0) {
969             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
970         } else {
971             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
972         }
973     }
974     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
975         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
976     }
977     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
978         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
979     }
980     return tb_size;
981 }
982 
983 #ifdef __mips__
984 /* In order to use J and JAL within the code_gen_buffer, we require
985    that the buffer not cross a 256MB boundary.  */
986 static inline bool cross_256mb(void *addr, size_t size)
987 {
988     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
989 }
990 
991 /* We weren't able to allocate a buffer without crossing that boundary,
992    so make do with the larger portion of the buffer that doesn't cross.
993    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
994 static inline void *split_cross_256mb(void *buf1, size_t size1)
995 {
996     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
997     size_t size2 = buf1 + size1 - buf2;
998 
999     size1 = buf2 - buf1;
1000     if (size1 < size2) {
1001         size1 = size2;
1002         buf1 = buf2;
1003     }
1004 
1005     tcg_ctx->code_gen_buffer_size = size1;
1006     return buf1;
1007 }
1008 #endif
1009 
1010 #ifdef USE_STATIC_CODE_GEN_BUFFER
1011 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1012     __attribute__((aligned(CODE_GEN_ALIGN)));
1013 
1014 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1015 {
1016     void *buf, *end;
1017     size_t size;
1018 
1019     if (splitwx > 0) {
1020         error_setg(errp, "jit split-wx not supported");
1021         return false;
1022     }
1023 
1024     /* page-align the beginning and end of the buffer */
1025     buf = static_code_gen_buffer;
1026     end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1027     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1028     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1029 
1030     size = end - buf;
1031 
1032     /* Honor a command-line option limiting the size of the buffer.  */
1033     if (size > tb_size) {
1034         size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1035     }
1036     tcg_ctx->code_gen_buffer_size = size;
1037 
1038 #ifdef __mips__
1039     if (cross_256mb(buf, size)) {
1040         buf = split_cross_256mb(buf, size);
1041         size = tcg_ctx->code_gen_buffer_size;
1042     }
1043 #endif
1044 
1045     if (qemu_mprotect_rwx(buf, size)) {
1046         error_setg_errno(errp, errno, "mprotect of jit buffer");
1047         return false;
1048     }
1049     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1050 
1051     tcg_ctx->code_gen_buffer = buf;
1052     return true;
1053 }
1054 #elif defined(_WIN32)
1055 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1056 {
1057     void *buf;
1058 
1059     if (splitwx > 0) {
1060         error_setg(errp, "jit split-wx not supported");
1061         return false;
1062     }
1063 
1064     buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1065                              PAGE_EXECUTE_READWRITE);
1066     if (buf == NULL) {
1067         error_setg_win32(errp, GetLastError(),
1068                          "allocate %zu bytes for jit buffer", size);
1069         return false;
1070     }
1071 
1072     tcg_ctx->code_gen_buffer = buf;
1073     tcg_ctx->code_gen_buffer_size = size;
1074     return true;
1075 }
1076 #else
1077 static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1078                                        int flags, Error **errp)
1079 {
1080     void *buf;
1081 
1082     buf = mmap(NULL, size, prot, flags, -1, 0);
1083     if (buf == MAP_FAILED) {
1084         error_setg_errno(errp, errno,
1085                          "allocate %zu bytes for jit buffer", size);
1086         return false;
1087     }
1088     tcg_ctx->code_gen_buffer_size = size;
1089 
1090 #ifdef __mips__
1091     if (cross_256mb(buf, size)) {
1092         /*
1093          * Try again, with the original still mapped, to avoid re-acquiring
1094          * the same 256mb crossing.
1095          */
1096         size_t size2;
1097         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1098         switch ((int)(buf2 != MAP_FAILED)) {
1099         case 1:
1100             if (!cross_256mb(buf2, size)) {
1101                 /* Success!  Use the new buffer.  */
1102                 munmap(buf, size);
1103                 break;
1104             }
1105             /* Failure.  Work with what we had.  */
1106             munmap(buf2, size);
1107             /* fallthru */
1108         default:
1109             /* Split the original buffer.  Free the smaller half.  */
1110             buf2 = split_cross_256mb(buf, size);
1111             size2 = tcg_ctx->code_gen_buffer_size;
1112             if (buf == buf2) {
1113                 munmap(buf + size2, size - size2);
1114             } else {
1115                 munmap(buf, size - size2);
1116             }
1117             size = size2;
1118             break;
1119         }
1120         buf = buf2;
1121     }
1122 #endif
1123 
1124     /* Request large pages for the buffer.  */
1125     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1126 
1127     tcg_ctx->code_gen_buffer = buf;
1128     return true;
1129 }
1130 
1131 #ifndef CONFIG_TCG_INTERPRETER
1132 #ifdef CONFIG_POSIX
1133 #include "qemu/memfd.h"
1134 
1135 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1136 {
1137     void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1138     int fd = -1;
1139 
1140 #ifdef __mips__
1141     /* Find space for the RX mapping, vs the 256MiB regions. */
1142     if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1143                                     MAP_PRIVATE | MAP_ANONYMOUS |
1144                                     MAP_NORESERVE, errp)) {
1145         return false;
1146     }
1147     /* The size of the mapping may have been adjusted. */
1148     size = tcg_ctx->code_gen_buffer_size;
1149     buf_rx = tcg_ctx->code_gen_buffer;
1150 #endif
1151 
1152     buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1153     if (buf_rw == NULL) {
1154         goto fail;
1155     }
1156 
1157 #ifdef __mips__
1158     void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1159                      MAP_SHARED | MAP_FIXED, fd, 0);
1160     if (tmp != buf_rx) {
1161         goto fail_rx;
1162     }
1163 #else
1164     buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1165     if (buf_rx == MAP_FAILED) {
1166         goto fail_rx;
1167     }
1168 #endif
1169 
1170     close(fd);
1171     tcg_ctx->code_gen_buffer = buf_rw;
1172     tcg_ctx->code_gen_buffer_size = size;
1173     tcg_splitwx_diff = buf_rx - buf_rw;
1174 
1175     /* Request large pages for the buffer and the splitwx.  */
1176     qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1177     qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1178     return true;
1179 
1180  fail_rx:
1181     error_setg_errno(errp, errno, "failed to map shared memory for execute");
1182  fail:
1183     if (buf_rx != MAP_FAILED) {
1184         munmap(buf_rx, size);
1185     }
1186     if (buf_rw) {
1187         munmap(buf_rw, size);
1188     }
1189     if (fd >= 0) {
1190         close(fd);
1191     }
1192     return false;
1193 }
1194 #endif /* CONFIG_POSIX */
1195 
1196 #ifdef CONFIG_DARWIN
1197 #include <mach/mach.h>
1198 
1199 extern kern_return_t mach_vm_remap(vm_map_t target_task,
1200                                    mach_vm_address_t *target_address,
1201                                    mach_vm_size_t size,
1202                                    mach_vm_offset_t mask,
1203                                    int flags,
1204                                    vm_map_t src_task,
1205                                    mach_vm_address_t src_address,
1206                                    boolean_t copy,
1207                                    vm_prot_t *cur_protection,
1208                                    vm_prot_t *max_protection,
1209                                    vm_inherit_t inheritance);
1210 
1211 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1212 {
1213     kern_return_t ret;
1214     mach_vm_address_t buf_rw, buf_rx;
1215     vm_prot_t cur_prot, max_prot;
1216 
1217     /* Map the read-write portion via normal anon memory. */
1218     if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1219                                     MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1220         return false;
1221     }
1222 
1223     buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1224     buf_rx = 0;
1225     ret = mach_vm_remap(mach_task_self(),
1226                         &buf_rx,
1227                         size,
1228                         0,
1229                         VM_FLAGS_ANYWHERE,
1230                         mach_task_self(),
1231                         buf_rw,
1232                         false,
1233                         &cur_prot,
1234                         &max_prot,
1235                         VM_INHERIT_NONE);
1236     if (ret != KERN_SUCCESS) {
1237         /* TODO: Convert "ret" to a human readable error message. */
1238         error_setg(errp, "vm_remap for jit splitwx failed");
1239         munmap((void *)buf_rw, size);
1240         return false;
1241     }
1242 
1243     if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1244         error_setg_errno(errp, errno, "mprotect for jit splitwx");
1245         munmap((void *)buf_rx, size);
1246         munmap((void *)buf_rw, size);
1247         return false;
1248     }
1249 
1250     tcg_splitwx_diff = buf_rx - buf_rw;
1251     return true;
1252 }
1253 #endif /* CONFIG_DARWIN */
1254 #endif /* CONFIG_TCG_INTERPRETER */
1255 
1256 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1257 {
1258 #ifndef CONFIG_TCG_INTERPRETER
1259 # ifdef CONFIG_DARWIN
1260     return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1261 # endif
1262 # ifdef CONFIG_POSIX
1263     return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1264 # endif
1265 #endif
1266     error_setg(errp, "jit split-wx not supported");
1267     return false;
1268 }
1269 
1270 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1271 {
1272     ERRP_GUARD();
1273     int prot, flags;
1274 
1275     if (splitwx) {
1276         if (alloc_code_gen_buffer_splitwx(size, errp)) {
1277             return true;
1278         }
1279         /*
1280          * If splitwx force-on (1), fail;
1281          * if splitwx default-on (-1), fall through to splitwx off.
1282          */
1283         if (splitwx > 0) {
1284             return false;
1285         }
1286         error_free_or_abort(errp);
1287     }
1288 
1289     prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1290     flags = MAP_PRIVATE | MAP_ANONYMOUS;
1291 #ifdef CONFIG_TCG_INTERPRETER
1292     /* The tcg interpreter does not need execute permission. */
1293     prot = PROT_READ | PROT_WRITE;
1294 #elif defined(CONFIG_DARWIN)
1295     /* Applicable to both iOS and macOS (Apple Silicon). */
1296     if (!splitwx) {
1297         flags |= MAP_JIT;
1298     }
1299 #endif
1300 
1301     return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1302 }
1303 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1304 
1305 static bool tb_cmp(const void *ap, const void *bp)
1306 {
1307     const TranslationBlock *a = ap;
1308     const TranslationBlock *b = bp;
1309 
1310     return a->pc == b->pc &&
1311         a->cs_base == b->cs_base &&
1312         a->flags == b->flags &&
1313         (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
1314         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1315         a->page_addr[0] == b->page_addr[0] &&
1316         a->page_addr[1] == b->page_addr[1];
1317 }
1318 
1319 static void tb_htable_init(void)
1320 {
1321     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1322 
1323     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1324 }
1325 
1326 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1327    (in bytes) allocated to the translation buffer. Zero means default
1328    size. */
1329 void tcg_exec_init(unsigned long tb_size, int splitwx)
1330 {
1331     bool ok;
1332 
1333     tcg_allowed = true;
1334     cpu_gen_init();
1335     page_init();
1336     tb_htable_init();
1337 
1338     ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1339                                splitwx, &error_fatal);
1340     assert(ok);
1341 
1342 #if defined(CONFIG_SOFTMMU)
1343     /* There's no guest base to take into account, so go ahead and
1344        initialize the prologue now.  */
1345     tcg_prologue_init(tcg_ctx);
1346 #endif
1347 }
1348 
1349 /* call with @p->lock held */
1350 static inline void invalidate_page_bitmap(PageDesc *p)
1351 {
1352     assert_page_locked(p);
1353 #ifdef CONFIG_SOFTMMU
1354     g_free(p->code_bitmap);
1355     p->code_bitmap = NULL;
1356     p->code_write_count = 0;
1357 #endif
1358 }
1359 
1360 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1361 static void page_flush_tb_1(int level, void **lp)
1362 {
1363     int i;
1364 
1365     if (*lp == NULL) {
1366         return;
1367     }
1368     if (level == 0) {
1369         PageDesc *pd = *lp;
1370 
1371         for (i = 0; i < V_L2_SIZE; ++i) {
1372             page_lock(&pd[i]);
1373             pd[i].first_tb = (uintptr_t)NULL;
1374             invalidate_page_bitmap(pd + i);
1375             page_unlock(&pd[i]);
1376         }
1377     } else {
1378         void **pp = *lp;
1379 
1380         for (i = 0; i < V_L2_SIZE; ++i) {
1381             page_flush_tb_1(level - 1, pp + i);
1382         }
1383     }
1384 }
1385 
1386 static void page_flush_tb(void)
1387 {
1388     int i, l1_sz = v_l1_size;
1389 
1390     for (i = 0; i < l1_sz; i++) {
1391         page_flush_tb_1(v_l2_levels, l1_map + i);
1392     }
1393 }
1394 
1395 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1396 {
1397     const TranslationBlock *tb = value;
1398     size_t *size = data;
1399 
1400     *size += tb->tc.size;
1401     return false;
1402 }
1403 
1404 /* flush all the translation blocks */
1405 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1406 {
1407     bool did_flush = false;
1408 
1409     mmap_lock();
1410     /* If it is already been done on request of another CPU,
1411      * just retry.
1412      */
1413     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1414         goto done;
1415     }
1416     did_flush = true;
1417 
1418     if (DEBUG_TB_FLUSH_GATE) {
1419         size_t nb_tbs = tcg_nb_tbs();
1420         size_t host_size = 0;
1421 
1422         tcg_tb_foreach(tb_host_size_iter, &host_size);
1423         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1424                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1425     }
1426 
1427     CPU_FOREACH(cpu) {
1428         cpu_tb_jmp_cache_clear(cpu);
1429     }
1430 
1431     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1432     page_flush_tb();
1433 
1434     tcg_region_reset_all();
1435     /* XXX: flush processor icache at this point if cache flush is
1436        expensive */
1437     qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1438 
1439 done:
1440     mmap_unlock();
1441     if (did_flush) {
1442         qemu_plugin_flush_cb();
1443     }
1444 }
1445 
1446 void tb_flush(CPUState *cpu)
1447 {
1448     if (tcg_enabled()) {
1449         unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1450 
1451         if (cpu_in_exclusive_context(cpu)) {
1452             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1453         } else {
1454             async_safe_run_on_cpu(cpu, do_tb_flush,
1455                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1456         }
1457     }
1458 }
1459 
1460 /*
1461  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1462  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1463  * and let the optimizer get rid of them by wrapping their user-only callers
1464  * with if (DEBUG_TB_CHECK_GATE).
1465  */
1466 #ifdef CONFIG_USER_ONLY
1467 
1468 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1469 {
1470     TranslationBlock *tb = p;
1471     target_ulong addr = *(target_ulong *)userp;
1472 
1473     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1474         printf("ERROR invalidate: address=" TARGET_FMT_lx
1475                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1476     }
1477 }
1478 
1479 /* verify that all the pages have correct rights for code
1480  *
1481  * Called with mmap_lock held.
1482  */
1483 static void tb_invalidate_check(target_ulong address)
1484 {
1485     address &= TARGET_PAGE_MASK;
1486     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1487 }
1488 
1489 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1490 {
1491     TranslationBlock *tb = p;
1492     int flags1, flags2;
1493 
1494     flags1 = page_get_flags(tb->pc);
1495     flags2 = page_get_flags(tb->pc + tb->size - 1);
1496     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1497         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1498                (long)tb->pc, tb->size, flags1, flags2);
1499     }
1500 }
1501 
1502 /* verify that all the pages have correct rights for code */
1503 static void tb_page_check(void)
1504 {
1505     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1506 }
1507 
1508 #endif /* CONFIG_USER_ONLY */
1509 
1510 /*
1511  * user-mode: call with mmap_lock held
1512  * !user-mode: call with @pd->lock held
1513  */
1514 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1515 {
1516     TranslationBlock *tb1;
1517     uintptr_t *pprev;
1518     unsigned int n1;
1519 
1520     assert_page_locked(pd);
1521     pprev = &pd->first_tb;
1522     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1523         if (tb1 == tb) {
1524             *pprev = tb1->page_next[n1];
1525             return;
1526         }
1527         pprev = &tb1->page_next[n1];
1528     }
1529     g_assert_not_reached();
1530 }
1531 
1532 /* remove @orig from its @n_orig-th jump list */
1533 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1534 {
1535     uintptr_t ptr, ptr_locked;
1536     TranslationBlock *dest;
1537     TranslationBlock *tb;
1538     uintptr_t *pprev;
1539     int n;
1540 
1541     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1542     ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1543     dest = (TranslationBlock *)(ptr & ~1);
1544     if (dest == NULL) {
1545         return;
1546     }
1547 
1548     qemu_spin_lock(&dest->jmp_lock);
1549     /*
1550      * While acquiring the lock, the jump might have been removed if the
1551      * destination TB was invalidated; check again.
1552      */
1553     ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1554     if (ptr_locked != ptr) {
1555         qemu_spin_unlock(&dest->jmp_lock);
1556         /*
1557          * The only possibility is that the jump was unlinked via
1558          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1559          * because we set the LSB above.
1560          */
1561         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1562         return;
1563     }
1564     /*
1565      * We first acquired the lock, and since the destination pointer matches,
1566      * we know for sure that @orig is in the jmp list.
1567      */
1568     pprev = &dest->jmp_list_head;
1569     TB_FOR_EACH_JMP(dest, tb, n) {
1570         if (tb == orig && n == n_orig) {
1571             *pprev = tb->jmp_list_next[n];
1572             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1573             qemu_spin_unlock(&dest->jmp_lock);
1574             return;
1575         }
1576         pprev = &tb->jmp_list_next[n];
1577     }
1578     g_assert_not_reached();
1579 }
1580 
1581 /* reset the jump entry 'n' of a TB so that it is not chained to
1582    another TB */
1583 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1584 {
1585     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1586     tb_set_jmp_target(tb, n, addr);
1587 }
1588 
1589 /* remove any jumps to the TB */
1590 static inline void tb_jmp_unlink(TranslationBlock *dest)
1591 {
1592     TranslationBlock *tb;
1593     int n;
1594 
1595     qemu_spin_lock(&dest->jmp_lock);
1596 
1597     TB_FOR_EACH_JMP(dest, tb, n) {
1598         tb_reset_jump(tb, n);
1599         qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1600         /* No need to clear the list entry; setting the dest ptr is enough */
1601     }
1602     dest->jmp_list_head = (uintptr_t)NULL;
1603 
1604     qemu_spin_unlock(&dest->jmp_lock);
1605 }
1606 
1607 /*
1608  * In user-mode, call with mmap_lock held.
1609  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1610  * locks held.
1611  */
1612 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1613 {
1614     CPUState *cpu;
1615     PageDesc *p;
1616     uint32_t h;
1617     tb_page_addr_t phys_pc;
1618     uint32_t orig_cflags = tb_cflags(tb);
1619 
1620     assert_memory_lock();
1621 
1622     /* make sure no further incoming jumps will be chained to this TB */
1623     qemu_spin_lock(&tb->jmp_lock);
1624     qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1625     qemu_spin_unlock(&tb->jmp_lock);
1626 
1627     /* remove the TB from the hash list */
1628     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1629     h = tb_hash_func(phys_pc, tb->pc, tb->flags, orig_cflags,
1630                      tb->trace_vcpu_dstate);
1631     if (!qht_remove(&tb_ctx.htable, tb, h)) {
1632         return;
1633     }
1634 
1635     /* remove the TB from the page list */
1636     if (rm_from_page_list) {
1637         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1638         tb_page_remove(p, tb);
1639         invalidate_page_bitmap(p);
1640         if (tb->page_addr[1] != -1) {
1641             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1642             tb_page_remove(p, tb);
1643             invalidate_page_bitmap(p);
1644         }
1645     }
1646 
1647     /* remove the TB from the hash list */
1648     h = tb_jmp_cache_hash_func(tb->pc);
1649     CPU_FOREACH(cpu) {
1650         if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1651             qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1652         }
1653     }
1654 
1655     /* suppress this TB from the two jump lists */
1656     tb_remove_from_jmp_list(tb, 0);
1657     tb_remove_from_jmp_list(tb, 1);
1658 
1659     /* suppress any remaining jumps to this TB */
1660     tb_jmp_unlink(tb);
1661 
1662     qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1663                tcg_ctx->tb_phys_invalidate_count + 1);
1664 }
1665 
1666 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1667 {
1668     qemu_thread_jit_write();
1669     do_tb_phys_invalidate(tb, true);
1670     qemu_thread_jit_execute();
1671 }
1672 
1673 /* invalidate one TB
1674  *
1675  * Called with mmap_lock held in user-mode.
1676  */
1677 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1678 {
1679     if (page_addr == -1 && tb->page_addr[0] != -1) {
1680         page_lock_tb(tb);
1681         do_tb_phys_invalidate(tb, true);
1682         page_unlock_tb(tb);
1683     } else {
1684         do_tb_phys_invalidate(tb, false);
1685     }
1686 }
1687 
1688 #ifdef CONFIG_SOFTMMU
1689 /* call with @p->lock held */
1690 static void build_page_bitmap(PageDesc *p)
1691 {
1692     int n, tb_start, tb_end;
1693     TranslationBlock *tb;
1694 
1695     assert_page_locked(p);
1696     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1697 
1698     PAGE_FOR_EACH_TB(p, tb, n) {
1699         /* NOTE: this is subtle as a TB may span two physical pages */
1700         if (n == 0) {
1701             /* NOTE: tb_end may be after the end of the page, but
1702                it is not a problem */
1703             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1704             tb_end = tb_start + tb->size;
1705             if (tb_end > TARGET_PAGE_SIZE) {
1706                 tb_end = TARGET_PAGE_SIZE;
1707              }
1708         } else {
1709             tb_start = 0;
1710             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1711         }
1712         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1713     }
1714 }
1715 #endif
1716 
1717 /* add the tb in the target page and protect it if necessary
1718  *
1719  * Called with mmap_lock held for user-mode emulation.
1720  * Called with @p->lock held in !user-mode.
1721  */
1722 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1723                                unsigned int n, tb_page_addr_t page_addr)
1724 {
1725 #ifndef CONFIG_USER_ONLY
1726     bool page_already_protected;
1727 #endif
1728 
1729     assert_page_locked(p);
1730 
1731     tb->page_addr[n] = page_addr;
1732     tb->page_next[n] = p->first_tb;
1733 #ifndef CONFIG_USER_ONLY
1734     page_already_protected = p->first_tb != (uintptr_t)NULL;
1735 #endif
1736     p->first_tb = (uintptr_t)tb | n;
1737     invalidate_page_bitmap(p);
1738 
1739 #if defined(CONFIG_USER_ONLY)
1740     if (p->flags & PAGE_WRITE) {
1741         target_ulong addr;
1742         PageDesc *p2;
1743         int prot;
1744 
1745         /* force the host page as non writable (writes will have a
1746            page fault + mprotect overhead) */
1747         page_addr &= qemu_host_page_mask;
1748         prot = 0;
1749         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1750             addr += TARGET_PAGE_SIZE) {
1751 
1752             p2 = page_find(addr >> TARGET_PAGE_BITS);
1753             if (!p2) {
1754                 continue;
1755             }
1756             prot |= p2->flags;
1757             p2->flags &= ~PAGE_WRITE;
1758           }
1759         mprotect(g2h_untagged(page_addr), qemu_host_page_size,
1760                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1761         if (DEBUG_TB_INVALIDATE_GATE) {
1762             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1763         }
1764     }
1765 #else
1766     /* if some code is already present, then the pages are already
1767        protected. So we handle the case where only the first TB is
1768        allocated in a physical page */
1769     if (!page_already_protected) {
1770         tlb_protect_code(page_addr);
1771     }
1772 #endif
1773 }
1774 
1775 /*
1776  * Add a new TB and link it to the physical page tables. phys_page2 is
1777  * (-1) to indicate that only one page contains the TB.
1778  *
1779  * Called with mmap_lock held for user-mode emulation.
1780  *
1781  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1782  * Note that in !user-mode, another thread might have already added a TB
1783  * for the same block of guest code that @tb corresponds to. In that case,
1784  * the caller should discard the original @tb, and use instead the returned TB.
1785  */
1786 static TranslationBlock *
1787 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1788              tb_page_addr_t phys_page2)
1789 {
1790     PageDesc *p;
1791     PageDesc *p2 = NULL;
1792     void *existing_tb = NULL;
1793     uint32_t h;
1794 
1795     assert_memory_lock();
1796     tcg_debug_assert(!(tb->cflags & CF_INVALID));
1797 
1798     /*
1799      * Add the TB to the page list, acquiring first the pages's locks.
1800      * We keep the locks held until after inserting the TB in the hash table,
1801      * so that if the insertion fails we know for sure that the TBs are still
1802      * in the page descriptors.
1803      * Note that inserting into the hash table first isn't an option, since
1804      * we can only insert TBs that are fully initialized.
1805      */
1806     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1807     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1808     if (p2) {
1809         tb_page_add(p2, tb, 1, phys_page2);
1810     } else {
1811         tb->page_addr[1] = -1;
1812     }
1813 
1814     /* add in the hash table */
1815     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags,
1816                      tb->trace_vcpu_dstate);
1817     qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1818 
1819     /* remove TB from the page(s) if we couldn't insert it */
1820     if (unlikely(existing_tb)) {
1821         tb_page_remove(p, tb);
1822         invalidate_page_bitmap(p);
1823         if (p2) {
1824             tb_page_remove(p2, tb);
1825             invalidate_page_bitmap(p2);
1826         }
1827         tb = existing_tb;
1828     }
1829 
1830     if (p2 && p2 != p) {
1831         page_unlock(p2);
1832     }
1833     page_unlock(p);
1834 
1835 #ifdef CONFIG_USER_ONLY
1836     if (DEBUG_TB_CHECK_GATE) {
1837         tb_page_check();
1838     }
1839 #endif
1840     return tb;
1841 }
1842 
1843 /* Called with mmap_lock held for user mode emulation.  */
1844 TranslationBlock *tb_gen_code(CPUState *cpu,
1845                               target_ulong pc, target_ulong cs_base,
1846                               uint32_t flags, int cflags)
1847 {
1848     CPUArchState *env = cpu->env_ptr;
1849     TranslationBlock *tb, *existing_tb;
1850     tb_page_addr_t phys_pc, phys_page2;
1851     target_ulong virt_page2;
1852     tcg_insn_unit *gen_code_buf;
1853     int gen_code_size, search_size, max_insns;
1854 #ifdef CONFIG_PROFILER
1855     TCGProfile *prof = &tcg_ctx->prof;
1856     int64_t ti;
1857 #endif
1858 
1859     assert_memory_lock();
1860     qemu_thread_jit_write();
1861 
1862     phys_pc = get_page_addr_code(env, pc);
1863 
1864     if (phys_pc == -1) {
1865         /* Generate a one-shot TB with 1 insn in it */
1866         cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
1867     }
1868 
1869     max_insns = cflags & CF_COUNT_MASK;
1870     if (max_insns == 0) {
1871         max_insns = CF_COUNT_MASK;
1872     }
1873     if (max_insns > TCG_MAX_INSNS) {
1874         max_insns = TCG_MAX_INSNS;
1875     }
1876     if (cpu->singlestep_enabled || singlestep) {
1877         max_insns = 1;
1878     }
1879 
1880  buffer_overflow:
1881     tb = tcg_tb_alloc(tcg_ctx);
1882     if (unlikely(!tb)) {
1883         /* flush must be done */
1884         tb_flush(cpu);
1885         mmap_unlock();
1886         /* Make the execution loop process the flush as soon as possible.  */
1887         cpu->exception_index = EXCP_INTERRUPT;
1888         cpu_loop_exit(cpu);
1889     }
1890 
1891     gen_code_buf = tcg_ctx->code_gen_ptr;
1892     tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1893     tb->pc = pc;
1894     tb->cs_base = cs_base;
1895     tb->flags = flags;
1896     tb->cflags = cflags;
1897     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1898     tcg_ctx->tb_cflags = cflags;
1899  tb_overflow:
1900 
1901 #ifdef CONFIG_PROFILER
1902     /* includes aborted translations because of exceptions */
1903     qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1904     ti = profile_getclock();
1905 #endif
1906 
1907     gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1908     if (unlikely(gen_code_size != 0)) {
1909         goto error_return;
1910     }
1911 
1912     tcg_func_start(tcg_ctx);
1913 
1914     tcg_ctx->cpu = env_cpu(env);
1915     gen_intermediate_code(cpu, tb, max_insns);
1916     assert(tb->size != 0);
1917     tcg_ctx->cpu = NULL;
1918     max_insns = tb->icount;
1919 
1920     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1921 
1922     /* generate machine code */
1923     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1924     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1925     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1926     if (TCG_TARGET_HAS_direct_jump) {
1927         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1928         tcg_ctx->tb_jmp_target_addr = NULL;
1929     } else {
1930         tcg_ctx->tb_jmp_insn_offset = NULL;
1931         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1932     }
1933 
1934 #ifdef CONFIG_PROFILER
1935     qatomic_set(&prof->tb_count, prof->tb_count + 1);
1936     qatomic_set(&prof->interm_time,
1937                 prof->interm_time + profile_getclock() - ti);
1938     ti = profile_getclock();
1939 #endif
1940 
1941     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1942     if (unlikely(gen_code_size < 0)) {
1943  error_return:
1944         switch (gen_code_size) {
1945         case -1:
1946             /*
1947              * Overflow of code_gen_buffer, or the current slice of it.
1948              *
1949              * TODO: We don't need to re-do gen_intermediate_code, nor
1950              * should we re-do the tcg optimization currently hidden
1951              * inside tcg_gen_code.  All that should be required is to
1952              * flush the TBs, allocate a new TB, re-initialize it per
1953              * above, and re-do the actual code generation.
1954              */
1955             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1956                           "Restarting code generation for "
1957                           "code_gen_buffer overflow\n");
1958             goto buffer_overflow;
1959 
1960         case -2:
1961             /*
1962              * The code generated for the TranslationBlock is too large.
1963              * The maximum size allowed by the unwind info is 64k.
1964              * There may be stricter constraints from relocations
1965              * in the tcg backend.
1966              *
1967              * Try again with half as many insns as we attempted this time.
1968              * If a single insn overflows, there's a bug somewhere...
1969              */
1970             assert(max_insns > 1);
1971             max_insns /= 2;
1972             qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1973                           "Restarting code generation with "
1974                           "smaller translation block (max %d insns)\n",
1975                           max_insns);
1976             goto tb_overflow;
1977 
1978         default:
1979             g_assert_not_reached();
1980         }
1981     }
1982     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1983     if (unlikely(search_size < 0)) {
1984         goto buffer_overflow;
1985     }
1986     tb->tc.size = gen_code_size;
1987 
1988 #ifdef CONFIG_PROFILER
1989     qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1990     qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1991     qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1992     qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1993 #endif
1994 
1995 #ifdef DEBUG_DISAS
1996     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1997         qemu_log_in_addr_range(tb->pc)) {
1998         FILE *logfile = qemu_log_lock();
1999         int code_size, data_size;
2000         const tcg_target_ulong *rx_data_gen_ptr;
2001         size_t chunk_start;
2002         int insn = 0;
2003 
2004         if (tcg_ctx->data_gen_ptr) {
2005             rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2006             code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2007             data_size = gen_code_size - code_size;
2008         } else {
2009             rx_data_gen_ptr = 0;
2010             code_size = gen_code_size;
2011             data_size = 0;
2012         }
2013 
2014         /* Dump header and the first instruction */
2015         qemu_log("OUT: [size=%d]\n", gen_code_size);
2016         qemu_log("  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2017                  tcg_ctx->gen_insn_data[insn][0]);
2018         chunk_start = tcg_ctx->gen_insn_end_off[insn];
2019         log_disas(tb->tc.ptr, chunk_start);
2020 
2021         /*
2022          * Dump each instruction chunk, wrapping up empty chunks into
2023          * the next instruction. The whole array is offset so the
2024          * first entry is the beginning of the 2nd instruction.
2025          */
2026         while (insn < tb->icount) {
2027             size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2028             if (chunk_end > chunk_start) {
2029                 qemu_log("  -- guest addr 0x" TARGET_FMT_lx "\n",
2030                          tcg_ctx->gen_insn_data[insn][0]);
2031                 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2032                 chunk_start = chunk_end;
2033             }
2034             insn++;
2035         }
2036 
2037         if (chunk_start < code_size) {
2038             qemu_log("  -- tb slow paths + alignment\n");
2039             log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2040         }
2041 
2042         /* Finally dump any data we may have after the block */
2043         if (data_size) {
2044             int i;
2045             qemu_log("  data: [size=%d]\n", data_size);
2046             for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2047                 if (sizeof(tcg_target_ulong) == 8) {
2048                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
2049                              (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2050                 } else if (sizeof(tcg_target_ulong) == 4) {
2051                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
2052                              (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2053                 } else {
2054                     qemu_build_not_reached();
2055                 }
2056             }
2057         }
2058         qemu_log("\n");
2059         qemu_log_flush();
2060         qemu_log_unlock(logfile);
2061     }
2062 #endif
2063 
2064     qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2065         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2066                  CODE_GEN_ALIGN));
2067 
2068     /* init jump list */
2069     qemu_spin_init(&tb->jmp_lock);
2070     tb->jmp_list_head = (uintptr_t)NULL;
2071     tb->jmp_list_next[0] = (uintptr_t)NULL;
2072     tb->jmp_list_next[1] = (uintptr_t)NULL;
2073     tb->jmp_dest[0] = (uintptr_t)NULL;
2074     tb->jmp_dest[1] = (uintptr_t)NULL;
2075 
2076     /* init original jump addresses which have been set during tcg_gen_code() */
2077     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2078         tb_reset_jump(tb, 0);
2079     }
2080     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2081         tb_reset_jump(tb, 1);
2082     }
2083 
2084     /*
2085      * If the TB is not associated with a physical RAM page then
2086      * it must be a temporary one-insn TB, and we have nothing to do
2087      * except fill in the page_addr[] fields. Return early before
2088      * attempting to link to other TBs or add to the lookup table.
2089      */
2090     if (phys_pc == -1) {
2091         tb->page_addr[0] = tb->page_addr[1] = -1;
2092         return tb;
2093     }
2094 
2095     /* check next page if needed */
2096     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2097     phys_page2 = -1;
2098     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2099         phys_page2 = get_page_addr_code(env, virt_page2);
2100     }
2101     /*
2102      * No explicit memory barrier is required -- tb_link_page() makes the
2103      * TB visible in a consistent state.
2104      */
2105     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2106     /* if the TB already exists, discard what we just translated */
2107     if (unlikely(existing_tb != tb)) {
2108         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2109 
2110         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2111         qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2112         tb_destroy(tb);
2113         return existing_tb;
2114     }
2115     tcg_tb_insert(tb);
2116     return tb;
2117 }
2118 
2119 /*
2120  * @p must be non-NULL.
2121  * user-mode: call with mmap_lock held.
2122  * !user-mode: call with all @pages locked.
2123  */
2124 static void
2125 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2126                                       PageDesc *p, tb_page_addr_t start,
2127                                       tb_page_addr_t end,
2128                                       uintptr_t retaddr)
2129 {
2130     TranslationBlock *tb;
2131     tb_page_addr_t tb_start, tb_end;
2132     int n;
2133 #ifdef TARGET_HAS_PRECISE_SMC
2134     CPUState *cpu = current_cpu;
2135     CPUArchState *env = NULL;
2136     bool current_tb_not_found = retaddr != 0;
2137     bool current_tb_modified = false;
2138     TranslationBlock *current_tb = NULL;
2139     target_ulong current_pc = 0;
2140     target_ulong current_cs_base = 0;
2141     uint32_t current_flags = 0;
2142 #endif /* TARGET_HAS_PRECISE_SMC */
2143 
2144     assert_page_locked(p);
2145 
2146 #if defined(TARGET_HAS_PRECISE_SMC)
2147     if (cpu != NULL) {
2148         env = cpu->env_ptr;
2149     }
2150 #endif
2151 
2152     /* we remove all the TBs in the range [start, end[ */
2153     /* XXX: see if in some cases it could be faster to invalidate all
2154        the code */
2155     PAGE_FOR_EACH_TB(p, tb, n) {
2156         assert_page_locked(p);
2157         /* NOTE: this is subtle as a TB may span two physical pages */
2158         if (n == 0) {
2159             /* NOTE: tb_end may be after the end of the page, but
2160                it is not a problem */
2161             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2162             tb_end = tb_start + tb->size;
2163         } else {
2164             tb_start = tb->page_addr[1];
2165             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2166         }
2167         if (!(tb_end <= start || tb_start >= end)) {
2168 #ifdef TARGET_HAS_PRECISE_SMC
2169             if (current_tb_not_found) {
2170                 current_tb_not_found = false;
2171                 /* now we have a real cpu fault */
2172                 current_tb = tcg_tb_lookup(retaddr);
2173             }
2174             if (current_tb == tb &&
2175                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2176                 /*
2177                  * If we are modifying the current TB, we must stop
2178                  * its execution. We could be more precise by checking
2179                  * that the modification is after the current PC, but it
2180                  * would require a specialized function to partially
2181                  * restore the CPU state.
2182                  */
2183                 current_tb_modified = true;
2184                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2185                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2186                                      &current_flags);
2187             }
2188 #endif /* TARGET_HAS_PRECISE_SMC */
2189             tb_phys_invalidate__locked(tb);
2190         }
2191     }
2192 #if !defined(CONFIG_USER_ONLY)
2193     /* if no code remaining, no need to continue to use slow writes */
2194     if (!p->first_tb) {
2195         invalidate_page_bitmap(p);
2196         tlb_unprotect_code(start);
2197     }
2198 #endif
2199 #ifdef TARGET_HAS_PRECISE_SMC
2200     if (current_tb_modified) {
2201         page_collection_unlock(pages);
2202         /* Force execution of one insn next time.  */
2203         cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2204         mmap_unlock();
2205         cpu_loop_exit_noexc(cpu);
2206     }
2207 #endif
2208 }
2209 
2210 /*
2211  * Invalidate all TBs which intersect with the target physical address range
2212  * [start;end[. NOTE: start and end must refer to the *same* physical page.
2213  * 'is_cpu_write_access' should be true if called from a real cpu write
2214  * access: the virtual CPU will exit the current TB if code is modified inside
2215  * this TB.
2216  *
2217  * Called with mmap_lock held for user-mode emulation
2218  */
2219 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2220 {
2221     struct page_collection *pages;
2222     PageDesc *p;
2223 
2224     assert_memory_lock();
2225 
2226     p = page_find(start >> TARGET_PAGE_BITS);
2227     if (p == NULL) {
2228         return;
2229     }
2230     pages = page_collection_lock(start, end);
2231     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2232     page_collection_unlock(pages);
2233 }
2234 
2235 /*
2236  * Invalidate all TBs which intersect with the target physical address range
2237  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2238  * 'is_cpu_write_access' should be true if called from a real cpu write
2239  * access: the virtual CPU will exit the current TB if code is modified inside
2240  * this TB.
2241  *
2242  * Called with mmap_lock held for user-mode emulation.
2243  */
2244 #ifdef CONFIG_SOFTMMU
2245 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2246 #else
2247 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2248 #endif
2249 {
2250     struct page_collection *pages;
2251     tb_page_addr_t next;
2252 
2253     assert_memory_lock();
2254 
2255     pages = page_collection_lock(start, end);
2256     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2257          start < end;
2258          start = next, next += TARGET_PAGE_SIZE) {
2259         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2260         tb_page_addr_t bound = MIN(next, end);
2261 
2262         if (pd == NULL) {
2263             continue;
2264         }
2265         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2266     }
2267     page_collection_unlock(pages);
2268 }
2269 
2270 #ifdef CONFIG_SOFTMMU
2271 /* len must be <= 8 and start must be a multiple of len.
2272  * Called via softmmu_template.h when code areas are written to with
2273  * iothread mutex not held.
2274  *
2275  * Call with all @pages in the range [@start, @start + len[ locked.
2276  */
2277 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2278                                   tb_page_addr_t start, int len,
2279                                   uintptr_t retaddr)
2280 {
2281     PageDesc *p;
2282 
2283     assert_memory_lock();
2284 
2285     p = page_find(start >> TARGET_PAGE_BITS);
2286     if (!p) {
2287         return;
2288     }
2289 
2290     assert_page_locked(p);
2291     if (!p->code_bitmap &&
2292         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2293         build_page_bitmap(p);
2294     }
2295     if (p->code_bitmap) {
2296         unsigned int nr;
2297         unsigned long b;
2298 
2299         nr = start & ~TARGET_PAGE_MASK;
2300         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2301         if (b & ((1 << len) - 1)) {
2302             goto do_invalidate;
2303         }
2304     } else {
2305     do_invalidate:
2306         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2307                                               retaddr);
2308     }
2309 }
2310 #else
2311 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2312  * host PC of the faulting store instruction that caused this invalidate.
2313  * Returns true if the caller needs to abort execution of the current
2314  * TB (because it was modified by this store and the guest CPU has
2315  * precise-SMC semantics).
2316  */
2317 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2318 {
2319     TranslationBlock *tb;
2320     PageDesc *p;
2321     int n;
2322 #ifdef TARGET_HAS_PRECISE_SMC
2323     TranslationBlock *current_tb = NULL;
2324     CPUState *cpu = current_cpu;
2325     CPUArchState *env = NULL;
2326     int current_tb_modified = 0;
2327     target_ulong current_pc = 0;
2328     target_ulong current_cs_base = 0;
2329     uint32_t current_flags = 0;
2330 #endif
2331 
2332     assert_memory_lock();
2333 
2334     addr &= TARGET_PAGE_MASK;
2335     p = page_find(addr >> TARGET_PAGE_BITS);
2336     if (!p) {
2337         return false;
2338     }
2339 
2340 #ifdef TARGET_HAS_PRECISE_SMC
2341     if (p->first_tb && pc != 0) {
2342         current_tb = tcg_tb_lookup(pc);
2343     }
2344     if (cpu != NULL) {
2345         env = cpu->env_ptr;
2346     }
2347 #endif
2348     assert_page_locked(p);
2349     PAGE_FOR_EACH_TB(p, tb, n) {
2350 #ifdef TARGET_HAS_PRECISE_SMC
2351         if (current_tb == tb &&
2352             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2353                 /* If we are modifying the current TB, we must stop
2354                    its execution. We could be more precise by checking
2355                    that the modification is after the current PC, but it
2356                    would require a specialized function to partially
2357                    restore the CPU state */
2358 
2359             current_tb_modified = 1;
2360             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2361             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2362                                  &current_flags);
2363         }
2364 #endif /* TARGET_HAS_PRECISE_SMC */
2365         tb_phys_invalidate(tb, addr);
2366     }
2367     p->first_tb = (uintptr_t)NULL;
2368 #ifdef TARGET_HAS_PRECISE_SMC
2369     if (current_tb_modified) {
2370         /* Force execution of one insn next time.  */
2371         cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2372         return true;
2373     }
2374 #endif
2375 
2376     return false;
2377 }
2378 #endif
2379 
2380 /* user-mode: call with mmap_lock held */
2381 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2382 {
2383     TranslationBlock *tb;
2384 
2385     assert_memory_lock();
2386 
2387     tb = tcg_tb_lookup(retaddr);
2388     if (tb) {
2389         /* We can use retranslation to find the PC.  */
2390         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2391         tb_phys_invalidate(tb, -1);
2392     } else {
2393         /* The exception probably happened in a helper.  The CPU state should
2394            have been saved before calling it. Fetch the PC from there.  */
2395         CPUArchState *env = cpu->env_ptr;
2396         target_ulong pc, cs_base;
2397         tb_page_addr_t addr;
2398         uint32_t flags;
2399 
2400         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2401         addr = get_page_addr_code(env, pc);
2402         if (addr != -1) {
2403             tb_invalidate_phys_range(addr, addr + 1);
2404         }
2405     }
2406 }
2407 
2408 #ifndef CONFIG_USER_ONLY
2409 /*
2410  * In deterministic execution mode, instructions doing device I/Os
2411  * must be at the end of the TB.
2412  *
2413  * Called by softmmu_template.h, with iothread mutex not held.
2414  */
2415 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2416 {
2417     TranslationBlock *tb;
2418     CPUClass *cc;
2419     uint32_t n;
2420 
2421     tb = tcg_tb_lookup(retaddr);
2422     if (!tb) {
2423         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2424                   (void *)retaddr);
2425     }
2426     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2427 
2428     /*
2429      * Some guests must re-execute the branch when re-executing a delay
2430      * slot instruction.  When this is the case, adjust icount and N
2431      * to account for the re-execution of the branch.
2432      */
2433     n = 1;
2434     cc = CPU_GET_CLASS(cpu);
2435     if (cc->tcg_ops->io_recompile_replay_branch &&
2436         cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
2437         cpu_neg(cpu)->icount_decr.u16.low++;
2438         n = 2;
2439     }
2440 
2441     /*
2442      * Exit the loop and potentially generate a new TB executing the
2443      * just the I/O insns. We also limit instrumentation to memory
2444      * operations only (which execute after completion) so we don't
2445      * double instrument the instruction.
2446      */
2447     cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
2448 
2449     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2450                            "cpu_io_recompile: rewound execution of TB to "
2451                            TARGET_FMT_lx "\n", tb->pc);
2452 
2453     cpu_loop_exit_noexc(cpu);
2454 }
2455 
2456 static void print_qht_statistics(struct qht_stats hst)
2457 {
2458     uint32_t hgram_opts;
2459     size_t hgram_bins;
2460     char *hgram;
2461 
2462     if (!hst.head_buckets) {
2463         return;
2464     }
2465     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2466                 hst.used_head_buckets, hst.head_buckets,
2467                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2468 
2469     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2470     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2471     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2472         hgram_opts |= QDIST_PR_NODECIMAL;
2473     }
2474     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2475     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2476                 qdist_avg(&hst.occupancy) * 100, hgram);
2477     g_free(hgram);
2478 
2479     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2480     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2481     if (hgram_bins > 10) {
2482         hgram_bins = 10;
2483     } else {
2484         hgram_bins = 0;
2485         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2486     }
2487     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2488     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2489                 qdist_avg(&hst.chain), hgram);
2490     g_free(hgram);
2491 }
2492 
2493 struct tb_tree_stats {
2494     size_t nb_tbs;
2495     size_t host_size;
2496     size_t target_size;
2497     size_t max_target_size;
2498     size_t direct_jmp_count;
2499     size_t direct_jmp2_count;
2500     size_t cross_page;
2501 };
2502 
2503 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2504 {
2505     const TranslationBlock *tb = value;
2506     struct tb_tree_stats *tst = data;
2507 
2508     tst->nb_tbs++;
2509     tst->host_size += tb->tc.size;
2510     tst->target_size += tb->size;
2511     if (tb->size > tst->max_target_size) {
2512         tst->max_target_size = tb->size;
2513     }
2514     if (tb->page_addr[1] != -1) {
2515         tst->cross_page++;
2516     }
2517     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2518         tst->direct_jmp_count++;
2519         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2520             tst->direct_jmp2_count++;
2521         }
2522     }
2523     return false;
2524 }
2525 
2526 void dump_exec_info(void)
2527 {
2528     struct tb_tree_stats tst = {};
2529     struct qht_stats hst;
2530     size_t nb_tbs, flush_full, flush_part, flush_elide;
2531 
2532     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2533     nb_tbs = tst.nb_tbs;
2534     /* XXX: avoid using doubles ? */
2535     qemu_printf("Translation buffer state:\n");
2536     /*
2537      * Report total code size including the padding and TB structs;
2538      * otherwise users might think "-accel tcg,tb-size" is not honoured.
2539      * For avg host size we use the precise numbers from tb_tree_stats though.
2540      */
2541     qemu_printf("gen code size       %zu/%zu\n",
2542                 tcg_code_size(), tcg_code_capacity());
2543     qemu_printf("TB count            %zu\n", nb_tbs);
2544     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2545                 nb_tbs ? tst.target_size / nb_tbs : 0,
2546                 tst.max_target_size);
2547     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2548                 nb_tbs ? tst.host_size / nb_tbs : 0,
2549                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2550     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2551                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2552     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2553                 tst.direct_jmp_count,
2554                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2555                 tst.direct_jmp2_count,
2556                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2557 
2558     qht_statistics_init(&tb_ctx.htable, &hst);
2559     print_qht_statistics(hst);
2560     qht_statistics_destroy(&hst);
2561 
2562     qemu_printf("\nStatistics:\n");
2563     qemu_printf("TB flush count      %u\n",
2564                 qatomic_read(&tb_ctx.tb_flush_count));
2565     qemu_printf("TB invalidate count %zu\n",
2566                 tcg_tb_phys_invalidate_count());
2567 
2568     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2569     qemu_printf("TLB full flushes    %zu\n", flush_full);
2570     qemu_printf("TLB partial flushes %zu\n", flush_part);
2571     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2572     tcg_dump_info();
2573 }
2574 
2575 void dump_opcount_info(void)
2576 {
2577     tcg_dump_op_count();
2578 }
2579 
2580 #else /* CONFIG_USER_ONLY */
2581 
2582 void cpu_interrupt(CPUState *cpu, int mask)
2583 {
2584     g_assert(qemu_mutex_iothread_locked());
2585     cpu->interrupt_request |= mask;
2586     qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2587 }
2588 
2589 /*
2590  * Walks guest process memory "regions" one by one
2591  * and calls callback function 'fn' for each region.
2592  */
2593 struct walk_memory_regions_data {
2594     walk_memory_regions_fn fn;
2595     void *priv;
2596     target_ulong start;
2597     int prot;
2598 };
2599 
2600 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2601                                    target_ulong end, int new_prot)
2602 {
2603     if (data->start != -1u) {
2604         int rc = data->fn(data->priv, data->start, end, data->prot);
2605         if (rc != 0) {
2606             return rc;
2607         }
2608     }
2609 
2610     data->start = (new_prot ? end : -1u);
2611     data->prot = new_prot;
2612 
2613     return 0;
2614 }
2615 
2616 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2617                                  target_ulong base, int level, void **lp)
2618 {
2619     target_ulong pa;
2620     int i, rc;
2621 
2622     if (*lp == NULL) {
2623         return walk_memory_regions_end(data, base, 0);
2624     }
2625 
2626     if (level == 0) {
2627         PageDesc *pd = *lp;
2628 
2629         for (i = 0; i < V_L2_SIZE; ++i) {
2630             int prot = pd[i].flags;
2631 
2632             pa = base | (i << TARGET_PAGE_BITS);
2633             if (prot != data->prot) {
2634                 rc = walk_memory_regions_end(data, pa, prot);
2635                 if (rc != 0) {
2636                     return rc;
2637                 }
2638             }
2639         }
2640     } else {
2641         void **pp = *lp;
2642 
2643         for (i = 0; i < V_L2_SIZE; ++i) {
2644             pa = base | ((target_ulong)i <<
2645                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2646             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2647             if (rc != 0) {
2648                 return rc;
2649             }
2650         }
2651     }
2652 
2653     return 0;
2654 }
2655 
2656 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2657 {
2658     struct walk_memory_regions_data data;
2659     uintptr_t i, l1_sz = v_l1_size;
2660 
2661     data.fn = fn;
2662     data.priv = priv;
2663     data.start = -1u;
2664     data.prot = 0;
2665 
2666     for (i = 0; i < l1_sz; i++) {
2667         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2668         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2669         if (rc != 0) {
2670             return rc;
2671         }
2672     }
2673 
2674     return walk_memory_regions_end(&data, 0, 0);
2675 }
2676 
2677 static int dump_region(void *priv, target_ulong start,
2678     target_ulong end, unsigned long prot)
2679 {
2680     FILE *f = (FILE *)priv;
2681 
2682     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2683         " "TARGET_FMT_lx" %c%c%c\n",
2684         start, end, end - start,
2685         ((prot & PAGE_READ) ? 'r' : '-'),
2686         ((prot & PAGE_WRITE) ? 'w' : '-'),
2687         ((prot & PAGE_EXEC) ? 'x' : '-'));
2688 
2689     return 0;
2690 }
2691 
2692 /* dump memory mappings */
2693 void page_dump(FILE *f)
2694 {
2695     const int length = sizeof(target_ulong) * 2;
2696     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2697             length, "start", length, "end", length, "size", "prot");
2698     walk_memory_regions(f, dump_region);
2699 }
2700 
2701 int page_get_flags(target_ulong address)
2702 {
2703     PageDesc *p;
2704 
2705     p = page_find(address >> TARGET_PAGE_BITS);
2706     if (!p) {
2707         return 0;
2708     }
2709     return p->flags;
2710 }
2711 
2712 /* Modify the flags of a page and invalidate the code if necessary.
2713    The flag PAGE_WRITE_ORG is positioned automatically depending
2714    on PAGE_WRITE.  The mmap_lock should already be held.  */
2715 void page_set_flags(target_ulong start, target_ulong end, int flags)
2716 {
2717     target_ulong addr, len;
2718     bool reset_target_data;
2719 
2720     /* This function should never be called with addresses outside the
2721        guest address space.  If this assert fires, it probably indicates
2722        a missing call to h2g_valid.  */
2723     assert(end - 1 <= GUEST_ADDR_MAX);
2724     assert(start < end);
2725     /* Only set PAGE_ANON with new mappings. */
2726     assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
2727     assert_memory_lock();
2728 
2729     start = start & TARGET_PAGE_MASK;
2730     end = TARGET_PAGE_ALIGN(end);
2731 
2732     if (flags & PAGE_WRITE) {
2733         flags |= PAGE_WRITE_ORG;
2734     }
2735     reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
2736     flags &= ~PAGE_RESET;
2737 
2738     for (addr = start, len = end - start;
2739          len != 0;
2740          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2741         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2742 
2743         /* If the write protection bit is set, then we invalidate
2744            the code inside.  */
2745         if (!(p->flags & PAGE_WRITE) &&
2746             (flags & PAGE_WRITE) &&
2747             p->first_tb) {
2748             tb_invalidate_phys_page(addr, 0);
2749         }
2750         if (reset_target_data) {
2751             g_free(p->target_data);
2752             p->target_data = NULL;
2753             p->flags = flags;
2754         } else {
2755             /* Using mprotect on a page does not change MAP_ANON. */
2756             p->flags = (p->flags & PAGE_ANON) | flags;
2757         }
2758     }
2759 }
2760 
2761 void *page_get_target_data(target_ulong address)
2762 {
2763     PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2764     return p ? p->target_data : NULL;
2765 }
2766 
2767 void *page_alloc_target_data(target_ulong address, size_t size)
2768 {
2769     PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2770     void *ret = NULL;
2771 
2772     if (p->flags & PAGE_VALID) {
2773         ret = p->target_data;
2774         if (!ret) {
2775             p->target_data = ret = g_malloc0(size);
2776         }
2777     }
2778     return ret;
2779 }
2780 
2781 int page_check_range(target_ulong start, target_ulong len, int flags)
2782 {
2783     PageDesc *p;
2784     target_ulong end;
2785     target_ulong addr;
2786 
2787     /* This function should never be called with addresses outside the
2788        guest address space.  If this assert fires, it probably indicates
2789        a missing call to h2g_valid.  */
2790     if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2791         assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2792     }
2793 
2794     if (len == 0) {
2795         return 0;
2796     }
2797     if (start + len - 1 < start) {
2798         /* We've wrapped around.  */
2799         return -1;
2800     }
2801 
2802     /* must do before we loose bits in the next step */
2803     end = TARGET_PAGE_ALIGN(start + len);
2804     start = start & TARGET_PAGE_MASK;
2805 
2806     for (addr = start, len = end - start;
2807          len != 0;
2808          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2809         p = page_find(addr >> TARGET_PAGE_BITS);
2810         if (!p) {
2811             return -1;
2812         }
2813         if (!(p->flags & PAGE_VALID)) {
2814             return -1;
2815         }
2816 
2817         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2818             return -1;
2819         }
2820         if (flags & PAGE_WRITE) {
2821             if (!(p->flags & PAGE_WRITE_ORG)) {
2822                 return -1;
2823             }
2824             /* unprotect the page if it was put read-only because it
2825                contains translated code */
2826             if (!(p->flags & PAGE_WRITE)) {
2827                 if (!page_unprotect(addr, 0)) {
2828                     return -1;
2829                 }
2830             }
2831         }
2832     }
2833     return 0;
2834 }
2835 
2836 /* called from signal handler: invalidate the code and unprotect the
2837  * page. Return 0 if the fault was not handled, 1 if it was handled,
2838  * and 2 if it was handled but the caller must cause the TB to be
2839  * immediately exited. (We can only return 2 if the 'pc' argument is
2840  * non-zero.)
2841  */
2842 int page_unprotect(target_ulong address, uintptr_t pc)
2843 {
2844     unsigned int prot;
2845     bool current_tb_invalidated;
2846     PageDesc *p;
2847     target_ulong host_start, host_end, addr;
2848 
2849     /* Technically this isn't safe inside a signal handler.  However we
2850        know this only ever happens in a synchronous SEGV handler, so in
2851        practice it seems to be ok.  */
2852     mmap_lock();
2853 
2854     p = page_find(address >> TARGET_PAGE_BITS);
2855     if (!p) {
2856         mmap_unlock();
2857         return 0;
2858     }
2859 
2860     /* if the page was really writable, then we change its
2861        protection back to writable */
2862     if (p->flags & PAGE_WRITE_ORG) {
2863         current_tb_invalidated = false;
2864         if (p->flags & PAGE_WRITE) {
2865             /* If the page is actually marked WRITE then assume this is because
2866              * this thread raced with another one which got here first and
2867              * set the page to PAGE_WRITE and did the TB invalidate for us.
2868              */
2869 #ifdef TARGET_HAS_PRECISE_SMC
2870             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2871             if (current_tb) {
2872                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2873             }
2874 #endif
2875         } else {
2876             host_start = address & qemu_host_page_mask;
2877             host_end = host_start + qemu_host_page_size;
2878 
2879             prot = 0;
2880             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2881                 p = page_find(addr >> TARGET_PAGE_BITS);
2882                 p->flags |= PAGE_WRITE;
2883                 prot |= p->flags;
2884 
2885                 /* and since the content will be modified, we must invalidate
2886                    the corresponding translated code. */
2887                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2888 #ifdef CONFIG_USER_ONLY
2889                 if (DEBUG_TB_CHECK_GATE) {
2890                     tb_invalidate_check(addr);
2891                 }
2892 #endif
2893             }
2894             mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
2895                      prot & PAGE_BITS);
2896         }
2897         mmap_unlock();
2898         /* If current TB was invalidated return to main loop */
2899         return current_tb_invalidated ? 2 : 1;
2900     }
2901     mmap_unlock();
2902     return 0;
2903 }
2904 #endif /* CONFIG_USER_ONLY */
2905 
2906 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2907 void tcg_flush_softmmu_tlb(CPUState *cs)
2908 {
2909 #ifdef CONFIG_SOFTMMU
2910     tlb_flush(cs);
2911 #endif
2912 }
2913