xref: /qemu/accel/tcg/translate-all.c (revision e6798f06)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu-common.h"
22 #define NO_CPU_IO_DEFS
23 #include "cpu.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #if defined(CONFIG_USER_ONLY)
29 #include "qemu.h"
30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
31 #include <sys/param.h>
32 #if __FreeBSD_version >= 700104
33 #define HAVE_KINFO_GETVMMAP
34 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
35 #include <sys/proc.h>
36 #include <machine/profile.h>
37 #define _KERNEL
38 #include <sys/user.h>
39 #undef _KERNEL
40 #undef sigqueue
41 #include <libutil.h>
42 #endif
43 #endif
44 #else
45 #include "exec/ram_addr.h"
46 #endif
47 
48 #include "exec/cputlb.h"
49 #include "exec/tb-hash.h"
50 #include "translate-all.h"
51 #include "qemu/bitmap.h"
52 #include "qemu/error-report.h"
53 #include "qemu/timer.h"
54 #include "qemu/main-loop.h"
55 #include "exec/log.h"
56 #include "sysemu/cpus.h"
57 
58 /* #define DEBUG_TB_INVALIDATE */
59 /* #define DEBUG_TB_FLUSH */
60 /* make various TB consistency checks */
61 /* #define DEBUG_TB_CHECK */
62 
63 #ifdef DEBUG_TB_INVALIDATE
64 #define DEBUG_TB_INVALIDATE_GATE 1
65 #else
66 #define DEBUG_TB_INVALIDATE_GATE 0
67 #endif
68 
69 #ifdef DEBUG_TB_FLUSH
70 #define DEBUG_TB_FLUSH_GATE 1
71 #else
72 #define DEBUG_TB_FLUSH_GATE 0
73 #endif
74 
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation.  */
77 #undef DEBUG_TB_CHECK
78 #endif
79 
80 #ifdef DEBUG_TB_CHECK
81 #define DEBUG_TB_CHECK_GATE 1
82 #else
83 #define DEBUG_TB_CHECK_GATE 0
84 #endif
85 
86 /* Access to the various translations structures need to be serialised via locks
87  * for consistency.
88  * In user-mode emulation access to the memory related structures are protected
89  * with mmap_lock.
90  * In !user-mode we use per-page locks.
91  */
92 #ifdef CONFIG_SOFTMMU
93 #define assert_memory_lock()
94 #else
95 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
96 #endif
97 
98 #define SMC_BITMAP_USE_THRESHOLD 10
99 
100 typedef struct PageDesc {
101     /* list of TBs intersecting this ram page */
102     uintptr_t first_tb;
103 #ifdef CONFIG_SOFTMMU
104     /* in order to optimize self modifying code, we count the number
105        of lookups we do to a given page to use a bitmap */
106     unsigned long *code_bitmap;
107     unsigned int code_write_count;
108 #else
109     unsigned long flags;
110 #endif
111 #ifndef CONFIG_USER_ONLY
112     QemuSpin lock;
113 #endif
114 } PageDesc;
115 
116 /**
117  * struct page_entry - page descriptor entry
118  * @pd:     pointer to the &struct PageDesc of the page this entry represents
119  * @index:  page index of the page
120  * @locked: whether the page is locked
121  *
122  * This struct helps us keep track of the locked state of a page, without
123  * bloating &struct PageDesc.
124  *
125  * A page lock protects accesses to all fields of &struct PageDesc.
126  *
127  * See also: &struct page_collection.
128  */
129 struct page_entry {
130     PageDesc *pd;
131     tb_page_addr_t index;
132     bool locked;
133 };
134 
135 /**
136  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
137  * @tree:   Binary search tree (BST) of the pages, with key == page index
138  * @max:    Pointer to the page in @tree with the highest page index
139  *
140  * To avoid deadlock we lock pages in ascending order of page index.
141  * When operating on a set of pages, we need to keep track of them so that
142  * we can lock them in order and also unlock them later. For this we collect
143  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
144  * @tree implementation we use does not provide an O(1) operation to obtain the
145  * highest-ranked element, we use @max to keep track of the inserted page
146  * with the highest index. This is valuable because if a page is not in
147  * the tree and its index is higher than @max's, then we can lock it
148  * without breaking the locking order rule.
149  *
150  * Note on naming: 'struct page_set' would be shorter, but we already have a few
151  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
152  *
153  * See also: page_collection_lock().
154  */
155 struct page_collection {
156     GTree *tree;
157     struct page_entry *max;
158 };
159 
160 /* list iterators for lists of tagged pointers in TranslationBlock */
161 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
162     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
163          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
164              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
165 
166 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
167     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
168 
169 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
170     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
171 
172 /* In system mode we want L1_MAP to be based on ram offsets,
173    while in user mode we want it to be based on virtual addresses.  */
174 #if !defined(CONFIG_USER_ONLY)
175 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
176 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
177 #else
178 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
179 #endif
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
182 #endif
183 
184 /* Size of the L2 (and L3, etc) page tables.  */
185 #define V_L2_BITS 10
186 #define V_L2_SIZE (1 << V_L2_BITS)
187 
188 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
189 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
190                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
191                   * BITS_PER_BYTE);
192 
193 /*
194  * L1 Mapping properties
195  */
196 static int v_l1_size;
197 static int v_l1_shift;
198 static int v_l2_levels;
199 
200 /* The bottom level has pointers to PageDesc, and is indexed by
201  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
202  */
203 #define V_L1_MIN_BITS 4
204 #define V_L1_MAX_BITS (V_L2_BITS + 3)
205 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
206 
207 static void *l1_map[V_L1_MAX_SIZE];
208 
209 /* code generation context */
210 TCGContext tcg_init_ctx;
211 __thread TCGContext *tcg_ctx;
212 TBContext tb_ctx;
213 bool parallel_cpus;
214 
215 static void page_table_config_init(void)
216 {
217     uint32_t v_l1_bits;
218 
219     assert(TARGET_PAGE_BITS);
220     /* The bits remaining after N lower levels of page tables.  */
221     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
222     if (v_l1_bits < V_L1_MIN_BITS) {
223         v_l1_bits += V_L2_BITS;
224     }
225 
226     v_l1_size = 1 << v_l1_bits;
227     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
228     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
229 
230     assert(v_l1_bits <= V_L1_MAX_BITS);
231     assert(v_l1_shift % V_L2_BITS == 0);
232     assert(v_l2_levels >= 0);
233 }
234 
235 void cpu_gen_init(void)
236 {
237     tcg_context_init(&tcg_init_ctx);
238 }
239 
240 /* Encode VAL as a signed leb128 sequence at P.
241    Return P incremented past the encoded value.  */
242 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
243 {
244     int more, byte;
245 
246     do {
247         byte = val & 0x7f;
248         val >>= 7;
249         more = !((val == 0 && (byte & 0x40) == 0)
250                  || (val == -1 && (byte & 0x40) != 0));
251         if (more) {
252             byte |= 0x80;
253         }
254         *p++ = byte;
255     } while (more);
256 
257     return p;
258 }
259 
260 /* Decode a signed leb128 sequence at *PP; increment *PP past the
261    decoded value.  Return the decoded value.  */
262 static target_long decode_sleb128(uint8_t **pp)
263 {
264     uint8_t *p = *pp;
265     target_long val = 0;
266     int byte, shift = 0;
267 
268     do {
269         byte = *p++;
270         val |= (target_ulong)(byte & 0x7f) << shift;
271         shift += 7;
272     } while (byte & 0x80);
273     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
274         val |= -(target_ulong)1 << shift;
275     }
276 
277     *pp = p;
278     return val;
279 }
280 
281 /* Encode the data collected about the instructions while compiling TB.
282    Place the data at BLOCK, and return the number of bytes consumed.
283 
284    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
285    which come from the target's insn_start data, followed by a uintptr_t
286    which comes from the host pc of the end of the code implementing the insn.
287 
288    Each line of the table is encoded as sleb128 deltas from the previous
289    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
290    That is, the first column is seeded with the guest pc, the last column
291    with the host pc, and the middle columns with zeros.  */
292 
293 static int encode_search(TranslationBlock *tb, uint8_t *block)
294 {
295     uint8_t *highwater = tcg_ctx->code_gen_highwater;
296     uint8_t *p = block;
297     int i, j, n;
298 
299     for (i = 0, n = tb->icount; i < n; ++i) {
300         target_ulong prev;
301 
302         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
303             if (i == 0) {
304                 prev = (j == 0 ? tb->pc : 0);
305             } else {
306                 prev = tcg_ctx->gen_insn_data[i - 1][j];
307             }
308             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
309         }
310         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
311         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
312 
313         /* Test for (pending) buffer overflow.  The assumption is that any
314            one row beginning below the high water mark cannot overrun
315            the buffer completely.  Thus we can test for overflow after
316            encoding a row without having to check during encoding.  */
317         if (unlikely(p > highwater)) {
318             return -1;
319         }
320     }
321 
322     return p - block;
323 }
324 
325 /* The cpu state corresponding to 'searched_pc' is restored.
326  * When reset_icount is true, current TB will be interrupted and
327  * icount should be recalculated.
328  */
329 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
330                                      uintptr_t searched_pc, bool reset_icount)
331 {
332     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
333     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
334     CPUArchState *env = cpu->env_ptr;
335     uint8_t *p = tb->tc.ptr + tb->tc.size;
336     int i, j, num_insns = tb->icount;
337 #ifdef CONFIG_PROFILER
338     TCGProfile *prof = &tcg_ctx->prof;
339     int64_t ti = profile_getclock();
340 #endif
341 
342     searched_pc -= GETPC_ADJ;
343 
344     if (searched_pc < host_pc) {
345         return -1;
346     }
347 
348     /* Reconstruct the stored insn data while looking for the point at
349        which the end of the insn exceeds the searched_pc.  */
350     for (i = 0; i < num_insns; ++i) {
351         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
352             data[j] += decode_sleb128(&p);
353         }
354         host_pc += decode_sleb128(&p);
355         if (host_pc > searched_pc) {
356             goto found;
357         }
358     }
359     return -1;
360 
361  found:
362     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
363         assert(use_icount);
364         /* Reset the cycle counter to the start of the block
365            and shift if to the number of actually executed instructions */
366         cpu->icount_decr.u16.low += num_insns - i;
367     }
368     restore_state_to_opc(env, tb, data);
369 
370 #ifdef CONFIG_PROFILER
371     atomic_set(&prof->restore_time,
372                 prof->restore_time + profile_getclock() - ti);
373     atomic_set(&prof->restore_count, prof->restore_count + 1);
374 #endif
375     return 0;
376 }
377 
378 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
379 {
380     TranslationBlock *tb;
381     bool r = false;
382     uintptr_t check_offset;
383 
384     /* The host_pc has to be in the region of current code buffer. If
385      * it is not we will not be able to resolve it here. The two cases
386      * where host_pc will not be correct are:
387      *
388      *  - fault during translation (instruction fetch)
389      *  - fault from helper (not using GETPC() macro)
390      *
391      * Either way we need return early as we can't resolve it here.
392      *
393      * We are using unsigned arithmetic so if host_pc <
394      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
395      * above the code_gen_buffer_size
396      */
397     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
398 
399     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
400         tb = tcg_tb_lookup(host_pc);
401         if (tb) {
402             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
403             if (tb_cflags(tb) & CF_NOCACHE) {
404                 /* one-shot translation, invalidate it immediately */
405                 tb_phys_invalidate(tb, -1);
406                 tcg_tb_remove(tb);
407             }
408             r = true;
409         }
410     }
411 
412     return r;
413 }
414 
415 static void page_init(void)
416 {
417     page_size_init();
418     page_table_config_init();
419 
420 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
421     {
422 #ifdef HAVE_KINFO_GETVMMAP
423         struct kinfo_vmentry *freep;
424         int i, cnt;
425 
426         freep = kinfo_getvmmap(getpid(), &cnt);
427         if (freep) {
428             mmap_lock();
429             for (i = 0; i < cnt; i++) {
430                 unsigned long startaddr, endaddr;
431 
432                 startaddr = freep[i].kve_start;
433                 endaddr = freep[i].kve_end;
434                 if (h2g_valid(startaddr)) {
435                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
436 
437                     if (h2g_valid(endaddr)) {
438                         endaddr = h2g(endaddr);
439                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
440                     } else {
441 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
442                         endaddr = ~0ul;
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 #endif
445                     }
446                 }
447             }
448             free(freep);
449             mmap_unlock();
450         }
451 #else
452         FILE *f;
453 
454         last_brk = (unsigned long)sbrk(0);
455 
456         f = fopen("/compat/linux/proc/self/maps", "r");
457         if (f) {
458             mmap_lock();
459 
460             do {
461                 unsigned long startaddr, endaddr;
462                 int n;
463 
464                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
465 
466                 if (n == 2 && h2g_valid(startaddr)) {
467                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
468 
469                     if (h2g_valid(endaddr)) {
470                         endaddr = h2g(endaddr);
471                     } else {
472                         endaddr = ~0ul;
473                     }
474                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
475                 }
476             } while (!feof(f));
477 
478             fclose(f);
479             mmap_unlock();
480         }
481 #endif
482     }
483 #endif
484 }
485 
486 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
487 {
488     PageDesc *pd;
489     void **lp;
490     int i;
491 
492     /* Level 1.  Always allocated.  */
493     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
494 
495     /* Level 2..N-1.  */
496     for (i = v_l2_levels; i > 0; i--) {
497         void **p = atomic_rcu_read(lp);
498 
499         if (p == NULL) {
500             void *existing;
501 
502             if (!alloc) {
503                 return NULL;
504             }
505             p = g_new0(void *, V_L2_SIZE);
506             existing = atomic_cmpxchg(lp, NULL, p);
507             if (unlikely(existing)) {
508                 g_free(p);
509                 p = existing;
510             }
511         }
512 
513         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
514     }
515 
516     pd = atomic_rcu_read(lp);
517     if (pd == NULL) {
518         void *existing;
519 
520         if (!alloc) {
521             return NULL;
522         }
523         pd = g_new0(PageDesc, V_L2_SIZE);
524 #ifndef CONFIG_USER_ONLY
525         {
526             int i;
527 
528             for (i = 0; i < V_L2_SIZE; i++) {
529                 qemu_spin_init(&pd[i].lock);
530             }
531         }
532 #endif
533         existing = atomic_cmpxchg(lp, NULL, pd);
534         if (unlikely(existing)) {
535             g_free(pd);
536             pd = existing;
537         }
538     }
539 
540     return pd + (index & (V_L2_SIZE - 1));
541 }
542 
543 static inline PageDesc *page_find(tb_page_addr_t index)
544 {
545     return page_find_alloc(index, 0);
546 }
547 
548 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
549                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
550 
551 /* In user-mode page locks aren't used; mmap_lock is enough */
552 #ifdef CONFIG_USER_ONLY
553 
554 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
555 
556 static inline void page_lock(PageDesc *pd)
557 { }
558 
559 static inline void page_unlock(PageDesc *pd)
560 { }
561 
562 static inline void page_lock_tb(const TranslationBlock *tb)
563 { }
564 
565 static inline void page_unlock_tb(const TranslationBlock *tb)
566 { }
567 
568 struct page_collection *
569 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
570 {
571     return NULL;
572 }
573 
574 void page_collection_unlock(struct page_collection *set)
575 { }
576 #else /* !CONFIG_USER_ONLY */
577 
578 #ifdef CONFIG_DEBUG_TCG
579 
580 static __thread GHashTable *ht_pages_locked_debug;
581 
582 static void ht_pages_locked_debug_init(void)
583 {
584     if (ht_pages_locked_debug) {
585         return;
586     }
587     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
588 }
589 
590 static bool page_is_locked(const PageDesc *pd)
591 {
592     PageDesc *found;
593 
594     ht_pages_locked_debug_init();
595     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
596     return !!found;
597 }
598 
599 static void page_lock__debug(PageDesc *pd)
600 {
601     ht_pages_locked_debug_init();
602     g_assert(!page_is_locked(pd));
603     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
604 }
605 
606 static void page_unlock__debug(const PageDesc *pd)
607 {
608     bool removed;
609 
610     ht_pages_locked_debug_init();
611     g_assert(page_is_locked(pd));
612     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
613     g_assert(removed);
614 }
615 
616 static void
617 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
618 {
619     if (unlikely(!page_is_locked(pd))) {
620         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
621                      pd, file, line);
622         abort();
623     }
624 }
625 
626 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
627 
628 void assert_no_pages_locked(void)
629 {
630     ht_pages_locked_debug_init();
631     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
632 }
633 
634 #else /* !CONFIG_DEBUG_TCG */
635 
636 #define assert_page_locked(pd)
637 
638 static inline void page_lock__debug(const PageDesc *pd)
639 {
640 }
641 
642 static inline void page_unlock__debug(const PageDesc *pd)
643 {
644 }
645 
646 #endif /* CONFIG_DEBUG_TCG */
647 
648 static inline void page_lock(PageDesc *pd)
649 {
650     page_lock__debug(pd);
651     qemu_spin_lock(&pd->lock);
652 }
653 
654 static inline void page_unlock(PageDesc *pd)
655 {
656     qemu_spin_unlock(&pd->lock);
657     page_unlock__debug(pd);
658 }
659 
660 /* lock the page(s) of a TB in the correct acquisition order */
661 static inline void page_lock_tb(const TranslationBlock *tb)
662 {
663     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
664 }
665 
666 static inline void page_unlock_tb(const TranslationBlock *tb)
667 {
668     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
669 
670     page_unlock(p1);
671     if (unlikely(tb->page_addr[1] != -1)) {
672         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
673 
674         if (p2 != p1) {
675             page_unlock(p2);
676         }
677     }
678 }
679 
680 static inline struct page_entry *
681 page_entry_new(PageDesc *pd, tb_page_addr_t index)
682 {
683     struct page_entry *pe = g_malloc(sizeof(*pe));
684 
685     pe->index = index;
686     pe->pd = pd;
687     pe->locked = false;
688     return pe;
689 }
690 
691 static void page_entry_destroy(gpointer p)
692 {
693     struct page_entry *pe = p;
694 
695     g_assert(pe->locked);
696     page_unlock(pe->pd);
697     g_free(pe);
698 }
699 
700 /* returns false on success */
701 static bool page_entry_trylock(struct page_entry *pe)
702 {
703     bool busy;
704 
705     busy = qemu_spin_trylock(&pe->pd->lock);
706     if (!busy) {
707         g_assert(!pe->locked);
708         pe->locked = true;
709         page_lock__debug(pe->pd);
710     }
711     return busy;
712 }
713 
714 static void do_page_entry_lock(struct page_entry *pe)
715 {
716     page_lock(pe->pd);
717     g_assert(!pe->locked);
718     pe->locked = true;
719 }
720 
721 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
722 {
723     struct page_entry *pe = value;
724 
725     do_page_entry_lock(pe);
726     return FALSE;
727 }
728 
729 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
730 {
731     struct page_entry *pe = value;
732 
733     if (pe->locked) {
734         pe->locked = false;
735         page_unlock(pe->pd);
736     }
737     return FALSE;
738 }
739 
740 /*
741  * Trylock a page, and if successful, add the page to a collection.
742  * Returns true ("busy") if the page could not be locked; false otherwise.
743  */
744 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
745 {
746     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
747     struct page_entry *pe;
748     PageDesc *pd;
749 
750     pe = g_tree_lookup(set->tree, &index);
751     if (pe) {
752         return false;
753     }
754 
755     pd = page_find(index);
756     if (pd == NULL) {
757         return false;
758     }
759 
760     pe = page_entry_new(pd, index);
761     g_tree_insert(set->tree, &pe->index, pe);
762 
763     /*
764      * If this is either (1) the first insertion or (2) a page whose index
765      * is higher than any other so far, just lock the page and move on.
766      */
767     if (set->max == NULL || pe->index > set->max->index) {
768         set->max = pe;
769         do_page_entry_lock(pe);
770         return false;
771     }
772     /*
773      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
774      * locks in order.
775      */
776     return page_entry_trylock(pe);
777 }
778 
779 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
780 {
781     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
782     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
783 
784     if (a == b) {
785         return 0;
786     } else if (a < b) {
787         return -1;
788     }
789     return 1;
790 }
791 
792 /*
793  * Lock a range of pages ([@start,@end[) as well as the pages of all
794  * intersecting TBs.
795  * Locking order: acquire locks in ascending order of page index.
796  */
797 struct page_collection *
798 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
799 {
800     struct page_collection *set = g_malloc(sizeof(*set));
801     tb_page_addr_t index;
802     PageDesc *pd;
803 
804     start >>= TARGET_PAGE_BITS;
805     end   >>= TARGET_PAGE_BITS;
806     g_assert(start <= end);
807 
808     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
809                                 page_entry_destroy);
810     set->max = NULL;
811     assert_no_pages_locked();
812 
813  retry:
814     g_tree_foreach(set->tree, page_entry_lock, NULL);
815 
816     for (index = start; index <= end; index++) {
817         TranslationBlock *tb;
818         int n;
819 
820         pd = page_find(index);
821         if (pd == NULL) {
822             continue;
823         }
824         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
825             g_tree_foreach(set->tree, page_entry_unlock, NULL);
826             goto retry;
827         }
828         assert_page_locked(pd);
829         PAGE_FOR_EACH_TB(pd, tb, n) {
830             if (page_trylock_add(set, tb->page_addr[0]) ||
831                 (tb->page_addr[1] != -1 &&
832                  page_trylock_add(set, tb->page_addr[1]))) {
833                 /* drop all locks, and reacquire in order */
834                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
835                 goto retry;
836             }
837         }
838     }
839     return set;
840 }
841 
842 void page_collection_unlock(struct page_collection *set)
843 {
844     /* entries are unlocked and freed via page_entry_destroy */
845     g_tree_destroy(set->tree);
846     g_free(set);
847 }
848 
849 #endif /* !CONFIG_USER_ONLY */
850 
851 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
852                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
853 {
854     PageDesc *p1, *p2;
855     tb_page_addr_t page1;
856     tb_page_addr_t page2;
857 
858     assert_memory_lock();
859     g_assert(phys1 != -1);
860 
861     page1 = phys1 >> TARGET_PAGE_BITS;
862     page2 = phys2 >> TARGET_PAGE_BITS;
863 
864     p1 = page_find_alloc(page1, alloc);
865     if (ret_p1) {
866         *ret_p1 = p1;
867     }
868     if (likely(phys2 == -1)) {
869         page_lock(p1);
870         return;
871     } else if (page1 == page2) {
872         page_lock(p1);
873         if (ret_p2) {
874             *ret_p2 = p1;
875         }
876         return;
877     }
878     p2 = page_find_alloc(page2, alloc);
879     if (ret_p2) {
880         *ret_p2 = p2;
881     }
882     if (page1 < page2) {
883         page_lock(p1);
884         page_lock(p2);
885     } else {
886         page_lock(p2);
887         page_lock(p1);
888     }
889 }
890 
891 #if defined(CONFIG_USER_ONLY)
892 /* Currently it is not recommended to allocate big chunks of data in
893    user mode. It will change when a dedicated libc will be used.  */
894 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
895    region in which the guest needs to run.  Revisit this.  */
896 #define USE_STATIC_CODE_GEN_BUFFER
897 #endif
898 
899 /* Minimum size of the code gen buffer.  This number is randomly chosen,
900    but not so small that we can't have a fair number of TB's live.  */
901 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
902 
903 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
904    indicated, this is constrained by the range of direct branches on the
905    host cpu, as used by the TCG implementation of goto_tb.  */
906 #if defined(__x86_64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
908 #elif defined(__sparc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
910 #elif defined(__powerpc64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
912 #elif defined(__powerpc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
914 #elif defined(__aarch64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
916 #elif defined(__s390x__)
917   /* We have a +- 4GB range on the branches; leave some slop.  */
918 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
919 #elif defined(__mips__)
920   /* We have a 256MB branch region, but leave room to make sure the
921      main executable is also within that region.  */
922 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
923 #else
924 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
925 #endif
926 
927 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
928 
929 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
930   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
931    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
932 
933 static inline size_t size_code_gen_buffer(size_t tb_size)
934 {
935     /* Size the buffer.  */
936     if (tb_size == 0) {
937 #ifdef USE_STATIC_CODE_GEN_BUFFER
938         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
939 #else
940         /* ??? Needs adjustments.  */
941         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
942            static buffer, we could size this on RESERVED_VA, on the text
943            segment size of the executable, or continue to use the default.  */
944         tb_size = (unsigned long)(ram_size / 4);
945 #endif
946     }
947     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
948         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
949     }
950     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
951         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
952     }
953     return tb_size;
954 }
955 
956 #ifdef __mips__
957 /* In order to use J and JAL within the code_gen_buffer, we require
958    that the buffer not cross a 256MB boundary.  */
959 static inline bool cross_256mb(void *addr, size_t size)
960 {
961     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
962 }
963 
964 /* We weren't able to allocate a buffer without crossing that boundary,
965    so make do with the larger portion of the buffer that doesn't cross.
966    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
967 static inline void *split_cross_256mb(void *buf1, size_t size1)
968 {
969     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
970     size_t size2 = buf1 + size1 - buf2;
971 
972     size1 = buf2 - buf1;
973     if (size1 < size2) {
974         size1 = size2;
975         buf1 = buf2;
976     }
977 
978     tcg_ctx->code_gen_buffer_size = size1;
979     return buf1;
980 }
981 #endif
982 
983 #ifdef USE_STATIC_CODE_GEN_BUFFER
984 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
985     __attribute__((aligned(CODE_GEN_ALIGN)));
986 
987 static inline void *alloc_code_gen_buffer(void)
988 {
989     void *buf = static_code_gen_buffer;
990     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
991     size_t size;
992 
993     /* page-align the beginning and end of the buffer */
994     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
995     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
996 
997     size = end - buf;
998 
999     /* Honor a command-line option limiting the size of the buffer.  */
1000     if (size > tcg_ctx->code_gen_buffer_size) {
1001         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1002                                qemu_real_host_page_size);
1003     }
1004     tcg_ctx->code_gen_buffer_size = size;
1005 
1006 #ifdef __mips__
1007     if (cross_256mb(buf, size)) {
1008         buf = split_cross_256mb(buf, size);
1009         size = tcg_ctx->code_gen_buffer_size;
1010     }
1011 #endif
1012 
1013     if (qemu_mprotect_rwx(buf, size)) {
1014         abort();
1015     }
1016     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1017 
1018     return buf;
1019 }
1020 #elif defined(_WIN32)
1021 static inline void *alloc_code_gen_buffer(void)
1022 {
1023     size_t size = tcg_ctx->code_gen_buffer_size;
1024     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1025                         PAGE_EXECUTE_READWRITE);
1026 }
1027 #else
1028 static inline void *alloc_code_gen_buffer(void)
1029 {
1030     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1031     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1032     uintptr_t start = 0;
1033     size_t size = tcg_ctx->code_gen_buffer_size;
1034     void *buf;
1035 
1036     /* Constrain the position of the buffer based on the host cpu.
1037        Note that these addresses are chosen in concert with the
1038        addresses assigned in the relevant linker script file.  */
1039 # if defined(__PIE__) || defined(__PIC__)
1040     /* Don't bother setting a preferred location if we're building
1041        a position-independent executable.  We're more likely to get
1042        an address near the main executable if we let the kernel
1043        choose the address.  */
1044 # elif defined(__x86_64__) && defined(MAP_32BIT)
1045     /* Force the memory down into low memory with the executable.
1046        Leave the choice of exact location with the kernel.  */
1047     flags |= MAP_32BIT;
1048     /* Cannot expect to map more than 800MB in low memory.  */
1049     if (size > 800u * 1024 * 1024) {
1050         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1051     }
1052 # elif defined(__sparc__)
1053     start = 0x40000000ul;
1054 # elif defined(__s390x__)
1055     start = 0x90000000ul;
1056 # elif defined(__mips__)
1057 #  if _MIPS_SIM == _ABI64
1058     start = 0x128000000ul;
1059 #  else
1060     start = 0x08000000ul;
1061 #  endif
1062 # endif
1063 
1064     buf = mmap((void *)start, size, prot, flags, -1, 0);
1065     if (buf == MAP_FAILED) {
1066         return NULL;
1067     }
1068 
1069 #ifdef __mips__
1070     if (cross_256mb(buf, size)) {
1071         /* Try again, with the original still mapped, to avoid re-acquiring
1072            that 256mb crossing.  This time don't specify an address.  */
1073         size_t size2;
1074         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1075         switch ((int)(buf2 != MAP_FAILED)) {
1076         case 1:
1077             if (!cross_256mb(buf2, size)) {
1078                 /* Success!  Use the new buffer.  */
1079                 munmap(buf, size);
1080                 break;
1081             }
1082             /* Failure.  Work with what we had.  */
1083             munmap(buf2, size);
1084             /* fallthru */
1085         default:
1086             /* Split the original buffer.  Free the smaller half.  */
1087             buf2 = split_cross_256mb(buf, size);
1088             size2 = tcg_ctx->code_gen_buffer_size;
1089             if (buf == buf2) {
1090                 munmap(buf + size2, size - size2);
1091             } else {
1092                 munmap(buf, size - size2);
1093             }
1094             size = size2;
1095             break;
1096         }
1097         buf = buf2;
1098     }
1099 #endif
1100 
1101     /* Request large pages for the buffer.  */
1102     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1103 
1104     return buf;
1105 }
1106 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1107 
1108 static inline void code_gen_alloc(size_t tb_size)
1109 {
1110     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1111     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1112     if (tcg_ctx->code_gen_buffer == NULL) {
1113         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1114         exit(1);
1115     }
1116 }
1117 
1118 static bool tb_cmp(const void *ap, const void *bp)
1119 {
1120     const TranslationBlock *a = ap;
1121     const TranslationBlock *b = bp;
1122 
1123     return a->pc == b->pc &&
1124         a->cs_base == b->cs_base &&
1125         a->flags == b->flags &&
1126         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1127         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1128         a->page_addr[0] == b->page_addr[0] &&
1129         a->page_addr[1] == b->page_addr[1];
1130 }
1131 
1132 static void tb_htable_init(void)
1133 {
1134     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1135 
1136     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1137 }
1138 
1139 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1140    (in bytes) allocated to the translation buffer. Zero means default
1141    size. */
1142 void tcg_exec_init(unsigned long tb_size)
1143 {
1144     tcg_allowed = true;
1145     cpu_gen_init();
1146     page_init();
1147     tb_htable_init();
1148     code_gen_alloc(tb_size);
1149 #if defined(CONFIG_SOFTMMU)
1150     /* There's no guest base to take into account, so go ahead and
1151        initialize the prologue now.  */
1152     tcg_prologue_init(tcg_ctx);
1153 #endif
1154 }
1155 
1156 /*
1157  * Allocate a new translation block. Flush the translation buffer if
1158  * too many translation blocks or too much generated code.
1159  */
1160 static TranslationBlock *tb_alloc(target_ulong pc)
1161 {
1162     TranslationBlock *tb;
1163 
1164     assert_memory_lock();
1165 
1166     tb = tcg_tb_alloc(tcg_ctx);
1167     if (unlikely(tb == NULL)) {
1168         return NULL;
1169     }
1170     return tb;
1171 }
1172 
1173 /* call with @p->lock held */
1174 static inline void invalidate_page_bitmap(PageDesc *p)
1175 {
1176     assert_page_locked(p);
1177 #ifdef CONFIG_SOFTMMU
1178     g_free(p->code_bitmap);
1179     p->code_bitmap = NULL;
1180     p->code_write_count = 0;
1181 #endif
1182 }
1183 
1184 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1185 static void page_flush_tb_1(int level, void **lp)
1186 {
1187     int i;
1188 
1189     if (*lp == NULL) {
1190         return;
1191     }
1192     if (level == 0) {
1193         PageDesc *pd = *lp;
1194 
1195         for (i = 0; i < V_L2_SIZE; ++i) {
1196             page_lock(&pd[i]);
1197             pd[i].first_tb = (uintptr_t)NULL;
1198             invalidate_page_bitmap(pd + i);
1199             page_unlock(&pd[i]);
1200         }
1201     } else {
1202         void **pp = *lp;
1203 
1204         for (i = 0; i < V_L2_SIZE; ++i) {
1205             page_flush_tb_1(level - 1, pp + i);
1206         }
1207     }
1208 }
1209 
1210 static void page_flush_tb(void)
1211 {
1212     int i, l1_sz = v_l1_size;
1213 
1214     for (i = 0; i < l1_sz; i++) {
1215         page_flush_tb_1(v_l2_levels, l1_map + i);
1216     }
1217 }
1218 
1219 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1220 {
1221     const TranslationBlock *tb = value;
1222     size_t *size = data;
1223 
1224     *size += tb->tc.size;
1225     return false;
1226 }
1227 
1228 /* flush all the translation blocks */
1229 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1230 {
1231     mmap_lock();
1232     /* If it is already been done on request of another CPU,
1233      * just retry.
1234      */
1235     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1236         goto done;
1237     }
1238 
1239     if (DEBUG_TB_FLUSH_GATE) {
1240         size_t nb_tbs = tcg_nb_tbs();
1241         size_t host_size = 0;
1242 
1243         tcg_tb_foreach(tb_host_size_iter, &host_size);
1244         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1245                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1246     }
1247 
1248     CPU_FOREACH(cpu) {
1249         cpu_tb_jmp_cache_clear(cpu);
1250     }
1251 
1252     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1253     page_flush_tb();
1254 
1255     tcg_region_reset_all();
1256     /* XXX: flush processor icache at this point if cache flush is
1257        expensive */
1258     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1259 
1260 done:
1261     mmap_unlock();
1262 }
1263 
1264 void tb_flush(CPUState *cpu)
1265 {
1266     if (tcg_enabled()) {
1267         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1268         async_safe_run_on_cpu(cpu, do_tb_flush,
1269                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1270     }
1271 }
1272 
1273 /*
1274  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1275  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1276  * and let the optimizer get rid of them by wrapping their user-only callers
1277  * with if (DEBUG_TB_CHECK_GATE).
1278  */
1279 #ifdef CONFIG_USER_ONLY
1280 
1281 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1282 {
1283     TranslationBlock *tb = p;
1284     target_ulong addr = *(target_ulong *)userp;
1285 
1286     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1287         printf("ERROR invalidate: address=" TARGET_FMT_lx
1288                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1289     }
1290 }
1291 
1292 /* verify that all the pages have correct rights for code
1293  *
1294  * Called with mmap_lock held.
1295  */
1296 static void tb_invalidate_check(target_ulong address)
1297 {
1298     address &= TARGET_PAGE_MASK;
1299     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1300 }
1301 
1302 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1303 {
1304     TranslationBlock *tb = p;
1305     int flags1, flags2;
1306 
1307     flags1 = page_get_flags(tb->pc);
1308     flags2 = page_get_flags(tb->pc + tb->size - 1);
1309     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1310         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1311                (long)tb->pc, tb->size, flags1, flags2);
1312     }
1313 }
1314 
1315 /* verify that all the pages have correct rights for code */
1316 static void tb_page_check(void)
1317 {
1318     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1319 }
1320 
1321 #endif /* CONFIG_USER_ONLY */
1322 
1323 /*
1324  * user-mode: call with mmap_lock held
1325  * !user-mode: call with @pd->lock held
1326  */
1327 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1328 {
1329     TranslationBlock *tb1;
1330     uintptr_t *pprev;
1331     unsigned int n1;
1332 
1333     assert_page_locked(pd);
1334     pprev = &pd->first_tb;
1335     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1336         if (tb1 == tb) {
1337             *pprev = tb1->page_next[n1];
1338             return;
1339         }
1340         pprev = &tb1->page_next[n1];
1341     }
1342     g_assert_not_reached();
1343 }
1344 
1345 /* remove @orig from its @n_orig-th jump list */
1346 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1347 {
1348     uintptr_t ptr, ptr_locked;
1349     TranslationBlock *dest;
1350     TranslationBlock *tb;
1351     uintptr_t *pprev;
1352     int n;
1353 
1354     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1355     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1356     dest = (TranslationBlock *)(ptr & ~1);
1357     if (dest == NULL) {
1358         return;
1359     }
1360 
1361     qemu_spin_lock(&dest->jmp_lock);
1362     /*
1363      * While acquiring the lock, the jump might have been removed if the
1364      * destination TB was invalidated; check again.
1365      */
1366     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1367     if (ptr_locked != ptr) {
1368         qemu_spin_unlock(&dest->jmp_lock);
1369         /*
1370          * The only possibility is that the jump was unlinked via
1371          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1372          * because we set the LSB above.
1373          */
1374         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1375         return;
1376     }
1377     /*
1378      * We first acquired the lock, and since the destination pointer matches,
1379      * we know for sure that @orig is in the jmp list.
1380      */
1381     pprev = &dest->jmp_list_head;
1382     TB_FOR_EACH_JMP(dest, tb, n) {
1383         if (tb == orig && n == n_orig) {
1384             *pprev = tb->jmp_list_next[n];
1385             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1386             qemu_spin_unlock(&dest->jmp_lock);
1387             return;
1388         }
1389         pprev = &tb->jmp_list_next[n];
1390     }
1391     g_assert_not_reached();
1392 }
1393 
1394 /* reset the jump entry 'n' of a TB so that it is not chained to
1395    another TB */
1396 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1397 {
1398     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1399     tb_set_jmp_target(tb, n, addr);
1400 }
1401 
1402 /* remove any jumps to the TB */
1403 static inline void tb_jmp_unlink(TranslationBlock *dest)
1404 {
1405     TranslationBlock *tb;
1406     int n;
1407 
1408     qemu_spin_lock(&dest->jmp_lock);
1409 
1410     TB_FOR_EACH_JMP(dest, tb, n) {
1411         tb_reset_jump(tb, n);
1412         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1413         /* No need to clear the list entry; setting the dest ptr is enough */
1414     }
1415     dest->jmp_list_head = (uintptr_t)NULL;
1416 
1417     qemu_spin_unlock(&dest->jmp_lock);
1418 }
1419 
1420 /*
1421  * In user-mode, call with mmap_lock held.
1422  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1423  * locks held.
1424  */
1425 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1426 {
1427     CPUState *cpu;
1428     PageDesc *p;
1429     uint32_t h;
1430     tb_page_addr_t phys_pc;
1431 
1432     assert_memory_lock();
1433 
1434     /* make sure no further incoming jumps will be chained to this TB */
1435     qemu_spin_lock(&tb->jmp_lock);
1436     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1437     qemu_spin_unlock(&tb->jmp_lock);
1438 
1439     /* remove the TB from the hash list */
1440     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1441     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1442                      tb->trace_vcpu_dstate);
1443     if (!(tb->cflags & CF_NOCACHE) &&
1444         !qht_remove(&tb_ctx.htable, tb, h)) {
1445         return;
1446     }
1447 
1448     /* remove the TB from the page list */
1449     if (rm_from_page_list) {
1450         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1451         tb_page_remove(p, tb);
1452         invalidate_page_bitmap(p);
1453         if (tb->page_addr[1] != -1) {
1454             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1455             tb_page_remove(p, tb);
1456             invalidate_page_bitmap(p);
1457         }
1458     }
1459 
1460     /* remove the TB from the hash list */
1461     h = tb_jmp_cache_hash_func(tb->pc);
1462     CPU_FOREACH(cpu) {
1463         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1464             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1465         }
1466     }
1467 
1468     /* suppress this TB from the two jump lists */
1469     tb_remove_from_jmp_list(tb, 0);
1470     tb_remove_from_jmp_list(tb, 1);
1471 
1472     /* suppress any remaining jumps to this TB */
1473     tb_jmp_unlink(tb);
1474 
1475     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1476                tcg_ctx->tb_phys_invalidate_count + 1);
1477 }
1478 
1479 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1480 {
1481     do_tb_phys_invalidate(tb, true);
1482 }
1483 
1484 /* invalidate one TB
1485  *
1486  * Called with mmap_lock held in user-mode.
1487  */
1488 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1489 {
1490     if (page_addr == -1 && tb->page_addr[0] != -1) {
1491         page_lock_tb(tb);
1492         do_tb_phys_invalidate(tb, true);
1493         page_unlock_tb(tb);
1494     } else {
1495         do_tb_phys_invalidate(tb, false);
1496     }
1497 }
1498 
1499 #ifdef CONFIG_SOFTMMU
1500 /* call with @p->lock held */
1501 static void build_page_bitmap(PageDesc *p)
1502 {
1503     int n, tb_start, tb_end;
1504     TranslationBlock *tb;
1505 
1506     assert_page_locked(p);
1507     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1508 
1509     PAGE_FOR_EACH_TB(p, tb, n) {
1510         /* NOTE: this is subtle as a TB may span two physical pages */
1511         if (n == 0) {
1512             /* NOTE: tb_end may be after the end of the page, but
1513                it is not a problem */
1514             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1515             tb_end = tb_start + tb->size;
1516             if (tb_end > TARGET_PAGE_SIZE) {
1517                 tb_end = TARGET_PAGE_SIZE;
1518              }
1519         } else {
1520             tb_start = 0;
1521             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1522         }
1523         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1524     }
1525 }
1526 #endif
1527 
1528 /* add the tb in the target page and protect it if necessary
1529  *
1530  * Called with mmap_lock held for user-mode emulation.
1531  * Called with @p->lock held in !user-mode.
1532  */
1533 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1534                                unsigned int n, tb_page_addr_t page_addr)
1535 {
1536 #ifndef CONFIG_USER_ONLY
1537     bool page_already_protected;
1538 #endif
1539 
1540     assert_page_locked(p);
1541 
1542     tb->page_addr[n] = page_addr;
1543     tb->page_next[n] = p->first_tb;
1544 #ifndef CONFIG_USER_ONLY
1545     page_already_protected = p->first_tb != (uintptr_t)NULL;
1546 #endif
1547     p->first_tb = (uintptr_t)tb | n;
1548     invalidate_page_bitmap(p);
1549 
1550 #if defined(CONFIG_USER_ONLY)
1551     if (p->flags & PAGE_WRITE) {
1552         target_ulong addr;
1553         PageDesc *p2;
1554         int prot;
1555 
1556         /* force the host page as non writable (writes will have a
1557            page fault + mprotect overhead) */
1558         page_addr &= qemu_host_page_mask;
1559         prot = 0;
1560         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1561             addr += TARGET_PAGE_SIZE) {
1562 
1563             p2 = page_find(addr >> TARGET_PAGE_BITS);
1564             if (!p2) {
1565                 continue;
1566             }
1567             prot |= p2->flags;
1568             p2->flags &= ~PAGE_WRITE;
1569           }
1570         mprotect(g2h(page_addr), qemu_host_page_size,
1571                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1572         if (DEBUG_TB_INVALIDATE_GATE) {
1573             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1574         }
1575     }
1576 #else
1577     /* if some code is already present, then the pages are already
1578        protected. So we handle the case where only the first TB is
1579        allocated in a physical page */
1580     if (!page_already_protected) {
1581         tlb_protect_code(page_addr);
1582     }
1583 #endif
1584 }
1585 
1586 /* add a new TB and link it to the physical page tables. phys_page2 is
1587  * (-1) to indicate that only one page contains the TB.
1588  *
1589  * Called with mmap_lock held for user-mode emulation.
1590  *
1591  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1592  * Note that in !user-mode, another thread might have already added a TB
1593  * for the same block of guest code that @tb corresponds to. In that case,
1594  * the caller should discard the original @tb, and use instead the returned TB.
1595  */
1596 static TranslationBlock *
1597 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1598              tb_page_addr_t phys_page2)
1599 {
1600     PageDesc *p;
1601     PageDesc *p2 = NULL;
1602 
1603     assert_memory_lock();
1604 
1605     if (phys_pc == -1) {
1606         /*
1607          * If the TB is not associated with a physical RAM page then
1608          * it must be a temporary one-insn TB, and we have nothing to do
1609          * except fill in the page_addr[] fields.
1610          */
1611         assert(tb->cflags & CF_NOCACHE);
1612         tb->page_addr[0] = tb->page_addr[1] = -1;
1613         return tb;
1614     }
1615 
1616     /*
1617      * Add the TB to the page list, acquiring first the pages's locks.
1618      * We keep the locks held until after inserting the TB in the hash table,
1619      * so that if the insertion fails we know for sure that the TBs are still
1620      * in the page descriptors.
1621      * Note that inserting into the hash table first isn't an option, since
1622      * we can only insert TBs that are fully initialized.
1623      */
1624     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1625     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1626     if (p2) {
1627         tb_page_add(p2, tb, 1, phys_page2);
1628     } else {
1629         tb->page_addr[1] = -1;
1630     }
1631 
1632     if (!(tb->cflags & CF_NOCACHE)) {
1633         void *existing_tb = NULL;
1634         uint32_t h;
1635 
1636         /* add in the hash table */
1637         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1638                          tb->trace_vcpu_dstate);
1639         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1640 
1641         /* remove TB from the page(s) if we couldn't insert it */
1642         if (unlikely(existing_tb)) {
1643             tb_page_remove(p, tb);
1644             invalidate_page_bitmap(p);
1645             if (p2) {
1646                 tb_page_remove(p2, tb);
1647                 invalidate_page_bitmap(p2);
1648             }
1649             tb = existing_tb;
1650         }
1651     }
1652 
1653     if (p2 && p2 != p) {
1654         page_unlock(p2);
1655     }
1656     page_unlock(p);
1657 
1658 #ifdef CONFIG_USER_ONLY
1659     if (DEBUG_TB_CHECK_GATE) {
1660         tb_page_check();
1661     }
1662 #endif
1663     return tb;
1664 }
1665 
1666 /* Called with mmap_lock held for user mode emulation.  */
1667 TranslationBlock *tb_gen_code(CPUState *cpu,
1668                               target_ulong pc, target_ulong cs_base,
1669                               uint32_t flags, int cflags)
1670 {
1671     CPUArchState *env = cpu->env_ptr;
1672     TranslationBlock *tb, *existing_tb;
1673     tb_page_addr_t phys_pc, phys_page2;
1674     target_ulong virt_page2;
1675     tcg_insn_unit *gen_code_buf;
1676     int gen_code_size, search_size;
1677 #ifdef CONFIG_PROFILER
1678     TCGProfile *prof = &tcg_ctx->prof;
1679     int64_t ti;
1680 #endif
1681     assert_memory_lock();
1682 
1683     phys_pc = get_page_addr_code(env, pc);
1684 
1685     if (phys_pc == -1) {
1686         /* Generate a temporary TB with 1 insn in it */
1687         cflags &= ~CF_COUNT_MASK;
1688         cflags |= CF_NOCACHE | 1;
1689     }
1690 
1691     cflags &= ~CF_CLUSTER_MASK;
1692     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1693 
1694  buffer_overflow:
1695     tb = tb_alloc(pc);
1696     if (unlikely(!tb)) {
1697         /* flush must be done */
1698         tb_flush(cpu);
1699         mmap_unlock();
1700         /* Make the execution loop process the flush as soon as possible.  */
1701         cpu->exception_index = EXCP_INTERRUPT;
1702         cpu_loop_exit(cpu);
1703     }
1704 
1705     gen_code_buf = tcg_ctx->code_gen_ptr;
1706     tb->tc.ptr = gen_code_buf;
1707     tb->pc = pc;
1708     tb->cs_base = cs_base;
1709     tb->flags = flags;
1710     tb->cflags = cflags;
1711     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1712     tcg_ctx->tb_cflags = cflags;
1713 
1714 #ifdef CONFIG_PROFILER
1715     /* includes aborted translations because of exceptions */
1716     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1717     ti = profile_getclock();
1718 #endif
1719 
1720     tcg_func_start(tcg_ctx);
1721 
1722     tcg_ctx->cpu = ENV_GET_CPU(env);
1723     gen_intermediate_code(cpu, tb);
1724     tcg_ctx->cpu = NULL;
1725 
1726     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1727 
1728     /* generate machine code */
1729     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1730     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1731     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1732     if (TCG_TARGET_HAS_direct_jump) {
1733         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1734         tcg_ctx->tb_jmp_target_addr = NULL;
1735     } else {
1736         tcg_ctx->tb_jmp_insn_offset = NULL;
1737         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1738     }
1739 
1740 #ifdef CONFIG_PROFILER
1741     atomic_set(&prof->tb_count, prof->tb_count + 1);
1742     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1743     ti = profile_getclock();
1744 #endif
1745 
1746     /* ??? Overflow could be handled better here.  In particular, we
1747        don't need to re-do gen_intermediate_code, nor should we re-do
1748        the tcg optimization currently hidden inside tcg_gen_code.  All
1749        that should be required is to flush the TBs, allocate a new TB,
1750        re-initialize it per above, and re-do the actual code generation.  */
1751     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1752     if (unlikely(gen_code_size < 0)) {
1753         goto buffer_overflow;
1754     }
1755     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1756     if (unlikely(search_size < 0)) {
1757         goto buffer_overflow;
1758     }
1759     tb->tc.size = gen_code_size;
1760 
1761 #ifdef CONFIG_PROFILER
1762     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1763     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1764     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1765     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1766 #endif
1767 
1768 #ifdef DEBUG_DISAS
1769     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1770         qemu_log_in_addr_range(tb->pc)) {
1771         qemu_log_lock();
1772         qemu_log("OUT: [size=%d]\n", gen_code_size);
1773         if (tcg_ctx->data_gen_ptr) {
1774             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1775             size_t data_size = gen_code_size - code_size;
1776             size_t i;
1777 
1778             log_disas(tb->tc.ptr, code_size);
1779 
1780             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1781                 if (sizeof(tcg_target_ulong) == 8) {
1782                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1783                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1784                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1785                 } else {
1786                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1787                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1788                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1789                 }
1790             }
1791         } else {
1792             log_disas(tb->tc.ptr, gen_code_size);
1793         }
1794         qemu_log("\n");
1795         qemu_log_flush();
1796         qemu_log_unlock();
1797     }
1798 #endif
1799 
1800     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1801         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1802                  CODE_GEN_ALIGN));
1803 
1804     /* init jump list */
1805     qemu_spin_init(&tb->jmp_lock);
1806     tb->jmp_list_head = (uintptr_t)NULL;
1807     tb->jmp_list_next[0] = (uintptr_t)NULL;
1808     tb->jmp_list_next[1] = (uintptr_t)NULL;
1809     tb->jmp_dest[0] = (uintptr_t)NULL;
1810     tb->jmp_dest[1] = (uintptr_t)NULL;
1811 
1812     /* init original jump addresses which have been set during tcg_gen_code() */
1813     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1814         tb_reset_jump(tb, 0);
1815     }
1816     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1817         tb_reset_jump(tb, 1);
1818     }
1819 
1820     /* check next page if needed */
1821     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1822     phys_page2 = -1;
1823     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1824         phys_page2 = get_page_addr_code(env, virt_page2);
1825     }
1826     /*
1827      * No explicit memory barrier is required -- tb_link_page() makes the
1828      * TB visible in a consistent state.
1829      */
1830     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1831     /* if the TB already exists, discard what we just translated */
1832     if (unlikely(existing_tb != tb)) {
1833         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1834 
1835         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1836         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1837         return existing_tb;
1838     }
1839     tcg_tb_insert(tb);
1840     return tb;
1841 }
1842 
1843 /*
1844  * @p must be non-NULL.
1845  * user-mode: call with mmap_lock held.
1846  * !user-mode: call with all @pages locked.
1847  */
1848 static void
1849 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1850                                       PageDesc *p, tb_page_addr_t start,
1851                                       tb_page_addr_t end,
1852                                       int is_cpu_write_access)
1853 {
1854     TranslationBlock *tb;
1855     tb_page_addr_t tb_start, tb_end;
1856     int n;
1857 #ifdef TARGET_HAS_PRECISE_SMC
1858     CPUState *cpu = current_cpu;
1859     CPUArchState *env = NULL;
1860     int current_tb_not_found = is_cpu_write_access;
1861     TranslationBlock *current_tb = NULL;
1862     int current_tb_modified = 0;
1863     target_ulong current_pc = 0;
1864     target_ulong current_cs_base = 0;
1865     uint32_t current_flags = 0;
1866 #endif /* TARGET_HAS_PRECISE_SMC */
1867 
1868     assert_page_locked(p);
1869 
1870 #if defined(TARGET_HAS_PRECISE_SMC)
1871     if (cpu != NULL) {
1872         env = cpu->env_ptr;
1873     }
1874 #endif
1875 
1876     /* we remove all the TBs in the range [start, end[ */
1877     /* XXX: see if in some cases it could be faster to invalidate all
1878        the code */
1879     PAGE_FOR_EACH_TB(p, tb, n) {
1880         assert_page_locked(p);
1881         /* NOTE: this is subtle as a TB may span two physical pages */
1882         if (n == 0) {
1883             /* NOTE: tb_end may be after the end of the page, but
1884                it is not a problem */
1885             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1886             tb_end = tb_start + tb->size;
1887         } else {
1888             tb_start = tb->page_addr[1];
1889             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1890         }
1891         if (!(tb_end <= start || tb_start >= end)) {
1892 #ifdef TARGET_HAS_PRECISE_SMC
1893             if (current_tb_not_found) {
1894                 current_tb_not_found = 0;
1895                 current_tb = NULL;
1896                 if (cpu->mem_io_pc) {
1897                     /* now we have a real cpu fault */
1898                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1899                 }
1900             }
1901             if (current_tb == tb &&
1902                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1903                 /* If we are modifying the current TB, we must stop
1904                 its execution. We could be more precise by checking
1905                 that the modification is after the current PC, but it
1906                 would require a specialized function to partially
1907                 restore the CPU state */
1908 
1909                 current_tb_modified = 1;
1910                 cpu_restore_state_from_tb(cpu, current_tb,
1911                                           cpu->mem_io_pc, true);
1912                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1913                                      &current_flags);
1914             }
1915 #endif /* TARGET_HAS_PRECISE_SMC */
1916             tb_phys_invalidate__locked(tb);
1917         }
1918     }
1919 #if !defined(CONFIG_USER_ONLY)
1920     /* if no code remaining, no need to continue to use slow writes */
1921     if (!p->first_tb) {
1922         invalidate_page_bitmap(p);
1923         tlb_unprotect_code(start);
1924     }
1925 #endif
1926 #ifdef TARGET_HAS_PRECISE_SMC
1927     if (current_tb_modified) {
1928         page_collection_unlock(pages);
1929         /* Force execution of one insn next time.  */
1930         cpu->cflags_next_tb = 1 | curr_cflags();
1931         mmap_unlock();
1932         cpu_loop_exit_noexc(cpu);
1933     }
1934 #endif
1935 }
1936 
1937 /*
1938  * Invalidate all TBs which intersect with the target physical address range
1939  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1940  * 'is_cpu_write_access' should be true if called from a real cpu write
1941  * access: the virtual CPU will exit the current TB if code is modified inside
1942  * this TB.
1943  *
1944  * Called with mmap_lock held for user-mode emulation
1945  */
1946 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1947                                    int is_cpu_write_access)
1948 {
1949     struct page_collection *pages;
1950     PageDesc *p;
1951 
1952     assert_memory_lock();
1953 
1954     p = page_find(start >> TARGET_PAGE_BITS);
1955     if (p == NULL) {
1956         return;
1957     }
1958     pages = page_collection_lock(start, end);
1959     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1960                                           is_cpu_write_access);
1961     page_collection_unlock(pages);
1962 }
1963 
1964 /*
1965  * Invalidate all TBs which intersect with the target physical address range
1966  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1967  * 'is_cpu_write_access' should be true if called from a real cpu write
1968  * access: the virtual CPU will exit the current TB if code is modified inside
1969  * this TB.
1970  *
1971  * Called with mmap_lock held for user-mode emulation.
1972  */
1973 #ifdef CONFIG_SOFTMMU
1974 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1975 #else
1976 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1977 #endif
1978 {
1979     struct page_collection *pages;
1980     tb_page_addr_t next;
1981 
1982     assert_memory_lock();
1983 
1984     pages = page_collection_lock(start, end);
1985     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1986          start < end;
1987          start = next, next += TARGET_PAGE_SIZE) {
1988         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1989         tb_page_addr_t bound = MIN(next, end);
1990 
1991         if (pd == NULL) {
1992             continue;
1993         }
1994         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1995     }
1996     page_collection_unlock(pages);
1997 }
1998 
1999 #ifdef CONFIG_SOFTMMU
2000 /* len must be <= 8 and start must be a multiple of len.
2001  * Called via softmmu_template.h when code areas are written to with
2002  * iothread mutex not held.
2003  *
2004  * Call with all @pages in the range [@start, @start + len[ locked.
2005  */
2006 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2007                                   tb_page_addr_t start, int len)
2008 {
2009     PageDesc *p;
2010 
2011     assert_memory_lock();
2012 
2013     p = page_find(start >> TARGET_PAGE_BITS);
2014     if (!p) {
2015         return;
2016     }
2017 
2018     assert_page_locked(p);
2019     if (!p->code_bitmap &&
2020         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2021         build_page_bitmap(p);
2022     }
2023     if (p->code_bitmap) {
2024         unsigned int nr;
2025         unsigned long b;
2026 
2027         nr = start & ~TARGET_PAGE_MASK;
2028         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2029         if (b & ((1 << len) - 1)) {
2030             goto do_invalidate;
2031         }
2032     } else {
2033     do_invalidate:
2034         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2035     }
2036 }
2037 #else
2038 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2039  * host PC of the faulting store instruction that caused this invalidate.
2040  * Returns true if the caller needs to abort execution of the current
2041  * TB (because it was modified by this store and the guest CPU has
2042  * precise-SMC semantics).
2043  */
2044 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2045 {
2046     TranslationBlock *tb;
2047     PageDesc *p;
2048     int n;
2049 #ifdef TARGET_HAS_PRECISE_SMC
2050     TranslationBlock *current_tb = NULL;
2051     CPUState *cpu = current_cpu;
2052     CPUArchState *env = NULL;
2053     int current_tb_modified = 0;
2054     target_ulong current_pc = 0;
2055     target_ulong current_cs_base = 0;
2056     uint32_t current_flags = 0;
2057 #endif
2058 
2059     assert_memory_lock();
2060 
2061     addr &= TARGET_PAGE_MASK;
2062     p = page_find(addr >> TARGET_PAGE_BITS);
2063     if (!p) {
2064         return false;
2065     }
2066 
2067 #ifdef TARGET_HAS_PRECISE_SMC
2068     if (p->first_tb && pc != 0) {
2069         current_tb = tcg_tb_lookup(pc);
2070     }
2071     if (cpu != NULL) {
2072         env = cpu->env_ptr;
2073     }
2074 #endif
2075     assert_page_locked(p);
2076     PAGE_FOR_EACH_TB(p, tb, n) {
2077 #ifdef TARGET_HAS_PRECISE_SMC
2078         if (current_tb == tb &&
2079             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2080                 /* If we are modifying the current TB, we must stop
2081                    its execution. We could be more precise by checking
2082                    that the modification is after the current PC, but it
2083                    would require a specialized function to partially
2084                    restore the CPU state */
2085 
2086             current_tb_modified = 1;
2087             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2088             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2089                                  &current_flags);
2090         }
2091 #endif /* TARGET_HAS_PRECISE_SMC */
2092         tb_phys_invalidate(tb, addr);
2093     }
2094     p->first_tb = (uintptr_t)NULL;
2095 #ifdef TARGET_HAS_PRECISE_SMC
2096     if (current_tb_modified) {
2097         /* Force execution of one insn next time.  */
2098         cpu->cflags_next_tb = 1 | curr_cflags();
2099         return true;
2100     }
2101 #endif
2102 
2103     return false;
2104 }
2105 #endif
2106 
2107 /* user-mode: call with mmap_lock held */
2108 void tb_check_watchpoint(CPUState *cpu)
2109 {
2110     TranslationBlock *tb;
2111 
2112     assert_memory_lock();
2113 
2114     tb = tcg_tb_lookup(cpu->mem_io_pc);
2115     if (tb) {
2116         /* We can use retranslation to find the PC.  */
2117         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2118         tb_phys_invalidate(tb, -1);
2119     } else {
2120         /* The exception probably happened in a helper.  The CPU state should
2121            have been saved before calling it. Fetch the PC from there.  */
2122         CPUArchState *env = cpu->env_ptr;
2123         target_ulong pc, cs_base;
2124         tb_page_addr_t addr;
2125         uint32_t flags;
2126 
2127         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2128         addr = get_page_addr_code(env, pc);
2129         if (addr != -1) {
2130             tb_invalidate_phys_range(addr, addr + 1);
2131         }
2132     }
2133 }
2134 
2135 #ifndef CONFIG_USER_ONLY
2136 /* in deterministic execution mode, instructions doing device I/Os
2137  * must be at the end of the TB.
2138  *
2139  * Called by softmmu_template.h, with iothread mutex not held.
2140  */
2141 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2142 {
2143 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2144     CPUArchState *env = cpu->env_ptr;
2145 #endif
2146     TranslationBlock *tb;
2147     uint32_t n;
2148 
2149     tb = tcg_tb_lookup(retaddr);
2150     if (!tb) {
2151         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2152                   (void *)retaddr);
2153     }
2154     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2155 
2156     /* On MIPS and SH, delay slot instructions can only be restarted if
2157        they were already the first instruction in the TB.  If this is not
2158        the first instruction in a TB then re-execute the preceding
2159        branch.  */
2160     n = 1;
2161 #if defined(TARGET_MIPS)
2162     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2163         && env->active_tc.PC != tb->pc) {
2164         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2165         cpu->icount_decr.u16.low++;
2166         env->hflags &= ~MIPS_HFLAG_BMASK;
2167         n = 2;
2168     }
2169 #elif defined(TARGET_SH4)
2170     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2171         && env->pc != tb->pc) {
2172         env->pc -= 2;
2173         cpu->icount_decr.u16.low++;
2174         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2175         n = 2;
2176     }
2177 #endif
2178 
2179     /* Generate a new TB executing the I/O insn.  */
2180     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2181 
2182     if (tb_cflags(tb) & CF_NOCACHE) {
2183         if (tb->orig_tb) {
2184             /* Invalidate original TB if this TB was generated in
2185              * cpu_exec_nocache() */
2186             tb_phys_invalidate(tb->orig_tb, -1);
2187         }
2188         tcg_tb_remove(tb);
2189     }
2190 
2191     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2192      * the first in the TB) then we end up generating a whole new TB and
2193      *  repeating the fault, which is horribly inefficient.
2194      *  Better would be to execute just this insn uncached, or generate a
2195      *  second new TB.
2196      */
2197     cpu_loop_exit_noexc(cpu);
2198 }
2199 
2200 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2201 {
2202     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2203 
2204     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2205         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2206     }
2207 }
2208 
2209 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2210 {
2211     /* Discard jump cache entries for any tb which might potentially
2212        overlap the flushed page.  */
2213     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2214     tb_jmp_cache_clear_page(cpu, addr);
2215 }
2216 
2217 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2218                                  struct qht_stats hst)
2219 {
2220     uint32_t hgram_opts;
2221     size_t hgram_bins;
2222     char *hgram;
2223 
2224     if (!hst.head_buckets) {
2225         return;
2226     }
2227     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2228                 hst.used_head_buckets, hst.head_buckets,
2229                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2230 
2231     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2232     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2233     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2234         hgram_opts |= QDIST_PR_NODECIMAL;
2235     }
2236     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2237     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2238                 qdist_avg(&hst.occupancy) * 100, hgram);
2239     g_free(hgram);
2240 
2241     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2242     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2243     if (hgram_bins > 10) {
2244         hgram_bins = 10;
2245     } else {
2246         hgram_bins = 0;
2247         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2248     }
2249     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2250     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2251                 qdist_avg(&hst.chain), hgram);
2252     g_free(hgram);
2253 }
2254 
2255 struct tb_tree_stats {
2256     size_t nb_tbs;
2257     size_t host_size;
2258     size_t target_size;
2259     size_t max_target_size;
2260     size_t direct_jmp_count;
2261     size_t direct_jmp2_count;
2262     size_t cross_page;
2263 };
2264 
2265 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2266 {
2267     const TranslationBlock *tb = value;
2268     struct tb_tree_stats *tst = data;
2269 
2270     tst->nb_tbs++;
2271     tst->host_size += tb->tc.size;
2272     tst->target_size += tb->size;
2273     if (tb->size > tst->max_target_size) {
2274         tst->max_target_size = tb->size;
2275     }
2276     if (tb->page_addr[1] != -1) {
2277         tst->cross_page++;
2278     }
2279     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2280         tst->direct_jmp_count++;
2281         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2282             tst->direct_jmp2_count++;
2283         }
2284     }
2285     return false;
2286 }
2287 
2288 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2289 {
2290     struct tb_tree_stats tst = {};
2291     struct qht_stats hst;
2292     size_t nb_tbs, flush_full, flush_part, flush_elide;
2293 
2294     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2295     nb_tbs = tst.nb_tbs;
2296     /* XXX: avoid using doubles ? */
2297     cpu_fprintf(f, "Translation buffer state:\n");
2298     /*
2299      * Report total code size including the padding and TB structs;
2300      * otherwise users might think "-tb-size" is not honoured.
2301      * For avg host size we use the precise numbers from tb_tree_stats though.
2302      */
2303     cpu_fprintf(f, "gen code size       %zu/%zu\n",
2304                 tcg_code_size(), tcg_code_capacity());
2305     cpu_fprintf(f, "TB count            %zu\n", nb_tbs);
2306     cpu_fprintf(f, "TB avg target size  %zu max=%zu bytes\n",
2307                 nb_tbs ? tst.target_size / nb_tbs : 0,
2308                 tst.max_target_size);
2309     cpu_fprintf(f, "TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2310                 nb_tbs ? tst.host_size / nb_tbs : 0,
2311                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2312     cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2313             nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2314     cpu_fprintf(f, "direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2315                 tst.direct_jmp_count,
2316                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2317                 tst.direct_jmp2_count,
2318                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2319 
2320     qht_statistics_init(&tb_ctx.htable, &hst);
2321     print_qht_statistics(f, cpu_fprintf, hst);
2322     qht_statistics_destroy(&hst);
2323 
2324     cpu_fprintf(f, "\nStatistics:\n");
2325     cpu_fprintf(f, "TB flush count      %u\n",
2326                 atomic_read(&tb_ctx.tb_flush_count));
2327     cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2328 
2329     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2330     cpu_fprintf(f, "TLB full flushes    %zu\n", flush_full);
2331     cpu_fprintf(f, "TLB partial flushes %zu\n", flush_part);
2332     cpu_fprintf(f, "TLB elided flushes  %zu\n", flush_elide);
2333     tcg_dump_info(f, cpu_fprintf);
2334 }
2335 
2336 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2337 {
2338     tcg_dump_op_count(f, cpu_fprintf);
2339 }
2340 
2341 #else /* CONFIG_USER_ONLY */
2342 
2343 void cpu_interrupt(CPUState *cpu, int mask)
2344 {
2345     g_assert(qemu_mutex_iothread_locked());
2346     cpu->interrupt_request |= mask;
2347     atomic_set(&cpu->icount_decr.u16.high, -1);
2348 }
2349 
2350 /*
2351  * Walks guest process memory "regions" one by one
2352  * and calls callback function 'fn' for each region.
2353  */
2354 struct walk_memory_regions_data {
2355     walk_memory_regions_fn fn;
2356     void *priv;
2357     target_ulong start;
2358     int prot;
2359 };
2360 
2361 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2362                                    target_ulong end, int new_prot)
2363 {
2364     if (data->start != -1u) {
2365         int rc = data->fn(data->priv, data->start, end, data->prot);
2366         if (rc != 0) {
2367             return rc;
2368         }
2369     }
2370 
2371     data->start = (new_prot ? end : -1u);
2372     data->prot = new_prot;
2373 
2374     return 0;
2375 }
2376 
2377 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2378                                  target_ulong base, int level, void **lp)
2379 {
2380     target_ulong pa;
2381     int i, rc;
2382 
2383     if (*lp == NULL) {
2384         return walk_memory_regions_end(data, base, 0);
2385     }
2386 
2387     if (level == 0) {
2388         PageDesc *pd = *lp;
2389 
2390         for (i = 0; i < V_L2_SIZE; ++i) {
2391             int prot = pd[i].flags;
2392 
2393             pa = base | (i << TARGET_PAGE_BITS);
2394             if (prot != data->prot) {
2395                 rc = walk_memory_regions_end(data, pa, prot);
2396                 if (rc != 0) {
2397                     return rc;
2398                 }
2399             }
2400         }
2401     } else {
2402         void **pp = *lp;
2403 
2404         for (i = 0; i < V_L2_SIZE; ++i) {
2405             pa = base | ((target_ulong)i <<
2406                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2407             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2408             if (rc != 0) {
2409                 return rc;
2410             }
2411         }
2412     }
2413 
2414     return 0;
2415 }
2416 
2417 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2418 {
2419     struct walk_memory_regions_data data;
2420     uintptr_t i, l1_sz = v_l1_size;
2421 
2422     data.fn = fn;
2423     data.priv = priv;
2424     data.start = -1u;
2425     data.prot = 0;
2426 
2427     for (i = 0; i < l1_sz; i++) {
2428         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2429         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2430         if (rc != 0) {
2431             return rc;
2432         }
2433     }
2434 
2435     return walk_memory_regions_end(&data, 0, 0);
2436 }
2437 
2438 static int dump_region(void *priv, target_ulong start,
2439     target_ulong end, unsigned long prot)
2440 {
2441     FILE *f = (FILE *)priv;
2442 
2443     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2444         " "TARGET_FMT_lx" %c%c%c\n",
2445         start, end, end - start,
2446         ((prot & PAGE_READ) ? 'r' : '-'),
2447         ((prot & PAGE_WRITE) ? 'w' : '-'),
2448         ((prot & PAGE_EXEC) ? 'x' : '-'));
2449 
2450     return 0;
2451 }
2452 
2453 /* dump memory mappings */
2454 void page_dump(FILE *f)
2455 {
2456     const int length = sizeof(target_ulong) * 2;
2457     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2458             length, "start", length, "end", length, "size", "prot");
2459     walk_memory_regions(f, dump_region);
2460 }
2461 
2462 int page_get_flags(target_ulong address)
2463 {
2464     PageDesc *p;
2465 
2466     p = page_find(address >> TARGET_PAGE_BITS);
2467     if (!p) {
2468         return 0;
2469     }
2470     return p->flags;
2471 }
2472 
2473 /* Modify the flags of a page and invalidate the code if necessary.
2474    The flag PAGE_WRITE_ORG is positioned automatically depending
2475    on PAGE_WRITE.  The mmap_lock should already be held.  */
2476 void page_set_flags(target_ulong start, target_ulong end, int flags)
2477 {
2478     target_ulong addr, len;
2479 
2480     /* This function should never be called with addresses outside the
2481        guest address space.  If this assert fires, it probably indicates
2482        a missing call to h2g_valid.  */
2483 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2484     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2485 #endif
2486     assert(start < end);
2487     assert_memory_lock();
2488 
2489     start = start & TARGET_PAGE_MASK;
2490     end = TARGET_PAGE_ALIGN(end);
2491 
2492     if (flags & PAGE_WRITE) {
2493         flags |= PAGE_WRITE_ORG;
2494     }
2495 
2496     for (addr = start, len = end - start;
2497          len != 0;
2498          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2499         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2500 
2501         /* If the write protection bit is set, then we invalidate
2502            the code inside.  */
2503         if (!(p->flags & PAGE_WRITE) &&
2504             (flags & PAGE_WRITE) &&
2505             p->first_tb) {
2506             tb_invalidate_phys_page(addr, 0);
2507         }
2508         p->flags = flags;
2509     }
2510 }
2511 
2512 int page_check_range(target_ulong start, target_ulong len, int flags)
2513 {
2514     PageDesc *p;
2515     target_ulong end;
2516     target_ulong addr;
2517 
2518     /* This function should never be called with addresses outside the
2519        guest address space.  If this assert fires, it probably indicates
2520        a missing call to h2g_valid.  */
2521 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2522     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2523 #endif
2524 
2525     if (len == 0) {
2526         return 0;
2527     }
2528     if (start + len - 1 < start) {
2529         /* We've wrapped around.  */
2530         return -1;
2531     }
2532 
2533     /* must do before we loose bits in the next step */
2534     end = TARGET_PAGE_ALIGN(start + len);
2535     start = start & TARGET_PAGE_MASK;
2536 
2537     for (addr = start, len = end - start;
2538          len != 0;
2539          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2540         p = page_find(addr >> TARGET_PAGE_BITS);
2541         if (!p) {
2542             return -1;
2543         }
2544         if (!(p->flags & PAGE_VALID)) {
2545             return -1;
2546         }
2547 
2548         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2549             return -1;
2550         }
2551         if (flags & PAGE_WRITE) {
2552             if (!(p->flags & PAGE_WRITE_ORG)) {
2553                 return -1;
2554             }
2555             /* unprotect the page if it was put read-only because it
2556                contains translated code */
2557             if (!(p->flags & PAGE_WRITE)) {
2558                 if (!page_unprotect(addr, 0)) {
2559                     return -1;
2560                 }
2561             }
2562         }
2563     }
2564     return 0;
2565 }
2566 
2567 /* called from signal handler: invalidate the code and unprotect the
2568  * page. Return 0 if the fault was not handled, 1 if it was handled,
2569  * and 2 if it was handled but the caller must cause the TB to be
2570  * immediately exited. (We can only return 2 if the 'pc' argument is
2571  * non-zero.)
2572  */
2573 int page_unprotect(target_ulong address, uintptr_t pc)
2574 {
2575     unsigned int prot;
2576     bool current_tb_invalidated;
2577     PageDesc *p;
2578     target_ulong host_start, host_end, addr;
2579 
2580     /* Technically this isn't safe inside a signal handler.  However we
2581        know this only ever happens in a synchronous SEGV handler, so in
2582        practice it seems to be ok.  */
2583     mmap_lock();
2584 
2585     p = page_find(address >> TARGET_PAGE_BITS);
2586     if (!p) {
2587         mmap_unlock();
2588         return 0;
2589     }
2590 
2591     /* if the page was really writable, then we change its
2592        protection back to writable */
2593     if (p->flags & PAGE_WRITE_ORG) {
2594         current_tb_invalidated = false;
2595         if (p->flags & PAGE_WRITE) {
2596             /* If the page is actually marked WRITE then assume this is because
2597              * this thread raced with another one which got here first and
2598              * set the page to PAGE_WRITE and did the TB invalidate for us.
2599              */
2600 #ifdef TARGET_HAS_PRECISE_SMC
2601             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2602             if (current_tb) {
2603                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2604             }
2605 #endif
2606         } else {
2607             host_start = address & qemu_host_page_mask;
2608             host_end = host_start + qemu_host_page_size;
2609 
2610             prot = 0;
2611             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2612                 p = page_find(addr >> TARGET_PAGE_BITS);
2613                 p->flags |= PAGE_WRITE;
2614                 prot |= p->flags;
2615 
2616                 /* and since the content will be modified, we must invalidate
2617                    the corresponding translated code. */
2618                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2619 #ifdef CONFIG_USER_ONLY
2620                 if (DEBUG_TB_CHECK_GATE) {
2621                     tb_invalidate_check(addr);
2622                 }
2623 #endif
2624             }
2625             mprotect((void *)g2h(host_start), qemu_host_page_size,
2626                      prot & PAGE_BITS);
2627         }
2628         mmap_unlock();
2629         /* If current TB was invalidated return to main loop */
2630         return current_tb_invalidated ? 2 : 1;
2631     }
2632     mmap_unlock();
2633     return 0;
2634 }
2635 #endif /* CONFIG_USER_ONLY */
2636 
2637 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2638 void tcg_flush_softmmu_tlb(CPUState *cs)
2639 {
2640 #ifdef CONFIG_SOFTMMU
2641     tlb_flush(cs);
2642 #endif
2643 }
2644