xref: /qemu/accel/tcg/translate-all.c (revision f898ee0f)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23 
24 
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/ram_addr.h"
50 #endif
51 
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/error-report.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
60 #include "sysemu/cpus.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /* In system mode we want L1_MAP to be based on ram offsets,
177    while in user mode we want it to be based on virtual addresses.  */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187 
188 /* Size of the L2 (and L3, etc) page tables.  */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191 
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
195                   * BITS_PER_BYTE);
196 
197 /*
198  * L1 Mapping properties
199  */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203 
204 /* The bottom level has pointers to PageDesc, and is indexed by
205  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206  */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 
211 static void *l1_map[V_L1_MAX_SIZE];
212 
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218 
219 static void page_table_config_init(void)
220 {
221     uint32_t v_l1_bits;
222 
223     assert(TARGET_PAGE_BITS);
224     /* The bits remaining after N lower levels of page tables.  */
225     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226     if (v_l1_bits < V_L1_MIN_BITS) {
227         v_l1_bits += V_L2_BITS;
228     }
229 
230     v_l1_size = 1 << v_l1_bits;
231     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 
234     assert(v_l1_bits <= V_L1_MAX_BITS);
235     assert(v_l1_shift % V_L2_BITS == 0);
236     assert(v_l2_levels >= 0);
237 }
238 
239 void cpu_gen_init(void)
240 {
241     tcg_context_init(&tcg_init_ctx);
242 }
243 
244 /* Encode VAL as a signed leb128 sequence at P.
245    Return P incremented past the encoded value.  */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248     int more, byte;
249 
250     do {
251         byte = val & 0x7f;
252         val >>= 7;
253         more = !((val == 0 && (byte & 0x40) == 0)
254                  || (val == -1 && (byte & 0x40) != 0));
255         if (more) {
256             byte |= 0x80;
257         }
258         *p++ = byte;
259     } while (more);
260 
261     return p;
262 }
263 
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265    decoded value.  Return the decoded value.  */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268     uint8_t *p = *pp;
269     target_long val = 0;
270     int byte, shift = 0;
271 
272     do {
273         byte = *p++;
274         val |= (target_ulong)(byte & 0x7f) << shift;
275         shift += 7;
276     } while (byte & 0x80);
277     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278         val |= -(target_ulong)1 << shift;
279     }
280 
281     *pp = p;
282     return val;
283 }
284 
285 /* Encode the data collected about the instructions while compiling TB.
286    Place the data at BLOCK, and return the number of bytes consumed.
287 
288    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289    which come from the target's insn_start data, followed by a uintptr_t
290    which comes from the host pc of the end of the code implementing the insn.
291 
292    Each line of the table is encoded as sleb128 deltas from the previous
293    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294    That is, the first column is seeded with the guest pc, the last column
295    with the host pc, and the middle columns with zeros.  */
296 
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299     uint8_t *highwater = tcg_ctx->code_gen_highwater;
300     uint8_t *p = block;
301     int i, j, n;
302 
303     for (i = 0, n = tb->icount; i < n; ++i) {
304         target_ulong prev;
305 
306         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307             if (i == 0) {
308                 prev = (j == 0 ? tb->pc : 0);
309             } else {
310                 prev = tcg_ctx->gen_insn_data[i - 1][j];
311             }
312             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313         }
314         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 
317         /* Test for (pending) buffer overflow.  The assumption is that any
318            one row beginning below the high water mark cannot overrun
319            the buffer completely.  Thus we can test for overflow after
320            encoding a row without having to check during encoding.  */
321         if (unlikely(p > highwater)) {
322             return -1;
323         }
324     }
325 
326     return p - block;
327 }
328 
329 /* The cpu state corresponding to 'searched_pc' is restored.
330  * When reset_icount is true, current TB will be interrupted and
331  * icount should be recalculated.
332  */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334                                      uintptr_t searched_pc, bool reset_icount)
335 {
336     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338     CPUArchState *env = cpu->env_ptr;
339     uint8_t *p = tb->tc.ptr + tb->tc.size;
340     int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342     TCGProfile *prof = &tcg_ctx->prof;
343     int64_t ti = profile_getclock();
344 #endif
345 
346     searched_pc -= GETPC_ADJ;
347 
348     if (searched_pc < host_pc) {
349         return -1;
350     }
351 
352     /* Reconstruct the stored insn data while looking for the point at
353        which the end of the insn exceeds the searched_pc.  */
354     for (i = 0; i < num_insns; ++i) {
355         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356             data[j] += decode_sleb128(&p);
357         }
358         host_pc += decode_sleb128(&p);
359         if (host_pc > searched_pc) {
360             goto found;
361         }
362     }
363     return -1;
364 
365  found:
366     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367         assert(use_icount);
368         /* Reset the cycle counter to the start of the block
369            and shift if to the number of actually executed instructions */
370         cpu->icount_decr.u16.low += num_insns - i;
371     }
372     restore_state_to_opc(env, tb, data);
373 
374 #ifdef CONFIG_PROFILER
375     atomic_set(&prof->restore_time,
376                 prof->restore_time + profile_getclock() - ti);
377     atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379     return 0;
380 }
381 
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384     TranslationBlock *tb;
385     bool r = false;
386     uintptr_t check_offset;
387 
388     /* The host_pc has to be in the region of current code buffer. If
389      * it is not we will not be able to resolve it here. The two cases
390      * where host_pc will not be correct are:
391      *
392      *  - fault during translation (instruction fetch)
393      *  - fault from helper (not using GETPC() macro)
394      *
395      * Either way we need return early as we can't resolve it here.
396      *
397      * We are using unsigned arithmetic so if host_pc <
398      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399      * above the code_gen_buffer_size
400      */
401     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 
403     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404         tb = tcg_tb_lookup(host_pc);
405         if (tb) {
406             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407             if (tb_cflags(tb) & CF_NOCACHE) {
408                 /* one-shot translation, invalidate it immediately */
409                 tb_phys_invalidate(tb, -1);
410                 tcg_tb_remove(tb);
411             }
412             r = true;
413         }
414     }
415 
416     return r;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = atomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = atomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = atomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = atomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539             g_free(pd);
540             pd = existing;
541         }
542     }
543 
544     return pd + (index & (V_L2_SIZE - 1));
545 }
546 
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549     return page_find_alloc(index, 0);
550 }
551 
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557 
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 
560 static inline void page_lock(PageDesc *pd)
561 { }
562 
563 static inline void page_unlock(PageDesc *pd)
564 { }
565 
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568 
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571 
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575     return NULL;
576 }
577 
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581 
582 #ifdef CONFIG_DEBUG_TCG
583 
584 static __thread GHashTable *ht_pages_locked_debug;
585 
586 static void ht_pages_locked_debug_init(void)
587 {
588     if (ht_pages_locked_debug) {
589         return;
590     }
591     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593 
594 static bool page_is_locked(const PageDesc *pd)
595 {
596     PageDesc *found;
597 
598     ht_pages_locked_debug_init();
599     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600     return !!found;
601 }
602 
603 static void page_lock__debug(PageDesc *pd)
604 {
605     ht_pages_locked_debug_init();
606     g_assert(!page_is_locked(pd));
607     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609 
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612     bool removed;
613 
614     ht_pages_locked_debug_init();
615     g_assert(page_is_locked(pd));
616     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617     g_assert(removed);
618 }
619 
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623     if (unlikely(!page_is_locked(pd))) {
624         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625                      pd, file, line);
626         abort();
627     }
628 }
629 
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 
632 void assert_no_pages_locked(void)
633 {
634     ht_pages_locked_debug_init();
635     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637 
638 #else /* !CONFIG_DEBUG_TCG */
639 
640 #define assert_page_locked(pd)
641 
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645 
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649 
650 #endif /* CONFIG_DEBUG_TCG */
651 
652 static inline void page_lock(PageDesc *pd)
653 {
654     page_lock__debug(pd);
655     qemu_spin_lock(&pd->lock);
656 }
657 
658 static inline void page_unlock(PageDesc *pd)
659 {
660     qemu_spin_unlock(&pd->lock);
661     page_unlock__debug(pd);
662 }
663 
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669 
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673 
674     page_unlock(p1);
675     if (unlikely(tb->page_addr[1] != -1)) {
676         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677 
678         if (p2 != p1) {
679             page_unlock(p2);
680         }
681     }
682 }
683 
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687     struct page_entry *pe = g_malloc(sizeof(*pe));
688 
689     pe->index = index;
690     pe->pd = pd;
691     pe->locked = false;
692     return pe;
693 }
694 
695 static void page_entry_destroy(gpointer p)
696 {
697     struct page_entry *pe = p;
698 
699     g_assert(pe->locked);
700     page_unlock(pe->pd);
701     g_free(pe);
702 }
703 
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707     bool busy;
708 
709     busy = qemu_spin_trylock(&pe->pd->lock);
710     if (!busy) {
711         g_assert(!pe->locked);
712         pe->locked = true;
713         page_lock__debug(pe->pd);
714     }
715     return busy;
716 }
717 
718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720     page_lock(pe->pd);
721     g_assert(!pe->locked);
722     pe->locked = true;
723 }
724 
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727     struct page_entry *pe = value;
728 
729     do_page_entry_lock(pe);
730     return FALSE;
731 }
732 
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735     struct page_entry *pe = value;
736 
737     if (pe->locked) {
738         pe->locked = false;
739         page_unlock(pe->pd);
740     }
741     return FALSE;
742 }
743 
744 /*
745  * Trylock a page, and if successful, add the page to a collection.
746  * Returns true ("busy") if the page could not be locked; false otherwise.
747  */
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751     struct page_entry *pe;
752     PageDesc *pd;
753 
754     pe = g_tree_lookup(set->tree, &index);
755     if (pe) {
756         return false;
757     }
758 
759     pd = page_find(index);
760     if (pd == NULL) {
761         return false;
762     }
763 
764     pe = page_entry_new(pd, index);
765     g_tree_insert(set->tree, &pe->index, pe);
766 
767     /*
768      * If this is either (1) the first insertion or (2) a page whose index
769      * is higher than any other so far, just lock the page and move on.
770      */
771     if (set->max == NULL || pe->index > set->max->index) {
772         set->max = pe;
773         do_page_entry_lock(pe);
774         return false;
775     }
776     /*
777      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778      * locks in order.
779      */
780     return page_entry_trylock(pe);
781 }
782 
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787 
788     if (a == b) {
789         return 0;
790     } else if (a < b) {
791         return -1;
792     }
793     return 1;
794 }
795 
796 /*
797  * Lock a range of pages ([@start,@end[) as well as the pages of all
798  * intersecting TBs.
799  * Locking order: acquire locks in ascending order of page index.
800  */
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804     struct page_collection *set = g_malloc(sizeof(*set));
805     tb_page_addr_t index;
806     PageDesc *pd;
807 
808     start >>= TARGET_PAGE_BITS;
809     end   >>= TARGET_PAGE_BITS;
810     g_assert(start <= end);
811 
812     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813                                 page_entry_destroy);
814     set->max = NULL;
815     assert_no_pages_locked();
816 
817  retry:
818     g_tree_foreach(set->tree, page_entry_lock, NULL);
819 
820     for (index = start; index <= end; index++) {
821         TranslationBlock *tb;
822         int n;
823 
824         pd = page_find(index);
825         if (pd == NULL) {
826             continue;
827         }
828         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829             g_tree_foreach(set->tree, page_entry_unlock, NULL);
830             goto retry;
831         }
832         assert_page_locked(pd);
833         PAGE_FOR_EACH_TB(pd, tb, n) {
834             if (page_trylock_add(set, tb->page_addr[0]) ||
835                 (tb->page_addr[1] != -1 &&
836                  page_trylock_add(set, tb->page_addr[1]))) {
837                 /* drop all locks, and reacquire in order */
838                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839                 goto retry;
840             }
841         }
842     }
843     return set;
844 }
845 
846 void page_collection_unlock(struct page_collection *set)
847 {
848     /* entries are unlocked and freed via page_entry_destroy */
849     g_tree_destroy(set->tree);
850     g_free(set);
851 }
852 
853 #endif /* !CONFIG_USER_ONLY */
854 
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858     PageDesc *p1, *p2;
859     tb_page_addr_t page1;
860     tb_page_addr_t page2;
861 
862     assert_memory_lock();
863     g_assert(phys1 != -1);
864 
865     page1 = phys1 >> TARGET_PAGE_BITS;
866     page2 = phys2 >> TARGET_PAGE_BITS;
867 
868     p1 = page_find_alloc(page1, alloc);
869     if (ret_p1) {
870         *ret_p1 = p1;
871     }
872     if (likely(phys2 == -1)) {
873         page_lock(p1);
874         return;
875     } else if (page1 == page2) {
876         page_lock(p1);
877         if (ret_p2) {
878             *ret_p2 = p1;
879         }
880         return;
881     }
882     p2 = page_find_alloc(page2, alloc);
883     if (ret_p2) {
884         *ret_p2 = p2;
885     }
886     if (page1 < page2) {
887         page_lock(p1);
888         page_lock(p2);
889     } else {
890         page_lock(p2);
891         page_lock(p1);
892     }
893 }
894 
895 #if defined(CONFIG_USER_ONLY)
896 /* Currently it is not recommended to allocate big chunks of data in
897    user mode. It will change when a dedicated libc will be used.  */
898 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
899    region in which the guest needs to run.  Revisit this.  */
900 #define USE_STATIC_CODE_GEN_BUFFER
901 #endif
902 
903 /* Minimum size of the code gen buffer.  This number is randomly chosen,
904    but not so small that we can't have a fair number of TB's live.  */
905 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
906 
907 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
908    indicated, this is constrained by the range of direct branches on the
909    host cpu, as used by the TCG implementation of goto_tb.  */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
920 #elif defined(__s390x__)
921   /* We have a +- 4GB range on the branches; leave some slop.  */
922 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
923 #elif defined(__mips__)
924   /* We have a 256MB branch region, but leave room to make sure the
925      main executable is also within that region.  */
926 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
929 #endif
930 
931 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
932 
933 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
934   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
935    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
936 
937 static inline size_t size_code_gen_buffer(size_t tb_size)
938 {
939     /* Size the buffer.  */
940     if (tb_size == 0) {
941 #ifdef USE_STATIC_CODE_GEN_BUFFER
942         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
943 #else
944         /* ??? Needs adjustments.  */
945         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
946            static buffer, we could size this on RESERVED_VA, on the text
947            segment size of the executable, or continue to use the default.  */
948         tb_size = (unsigned long)(ram_size / 4);
949 #endif
950     }
951     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
952         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
953     }
954     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
955         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
956     }
957     return tb_size;
958 }
959 
960 #ifdef __mips__
961 /* In order to use J and JAL within the code_gen_buffer, we require
962    that the buffer not cross a 256MB boundary.  */
963 static inline bool cross_256mb(void *addr, size_t size)
964 {
965     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
966 }
967 
968 /* We weren't able to allocate a buffer without crossing that boundary,
969    so make do with the larger portion of the buffer that doesn't cross.
970    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
971 static inline void *split_cross_256mb(void *buf1, size_t size1)
972 {
973     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
974     size_t size2 = buf1 + size1 - buf2;
975 
976     size1 = buf2 - buf1;
977     if (size1 < size2) {
978         size1 = size2;
979         buf1 = buf2;
980     }
981 
982     tcg_ctx->code_gen_buffer_size = size1;
983     return buf1;
984 }
985 #endif
986 
987 #ifdef USE_STATIC_CODE_GEN_BUFFER
988 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
989     __attribute__((aligned(CODE_GEN_ALIGN)));
990 
991 static inline void *alloc_code_gen_buffer(void)
992 {
993     void *buf = static_code_gen_buffer;
994     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
995     size_t size;
996 
997     /* page-align the beginning and end of the buffer */
998     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
999     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1000 
1001     size = end - buf;
1002 
1003     /* Honor a command-line option limiting the size of the buffer.  */
1004     if (size > tcg_ctx->code_gen_buffer_size) {
1005         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1006                                qemu_real_host_page_size);
1007     }
1008     tcg_ctx->code_gen_buffer_size = size;
1009 
1010 #ifdef __mips__
1011     if (cross_256mb(buf, size)) {
1012         buf = split_cross_256mb(buf, size);
1013         size = tcg_ctx->code_gen_buffer_size;
1014     }
1015 #endif
1016 
1017     if (qemu_mprotect_rwx(buf, size)) {
1018         abort();
1019     }
1020     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1021 
1022     return buf;
1023 }
1024 #elif defined(_WIN32)
1025 static inline void *alloc_code_gen_buffer(void)
1026 {
1027     size_t size = tcg_ctx->code_gen_buffer_size;
1028     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1029                         PAGE_EXECUTE_READWRITE);
1030 }
1031 #else
1032 static inline void *alloc_code_gen_buffer(void)
1033 {
1034     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1035     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1036     uintptr_t start = 0;
1037     size_t size = tcg_ctx->code_gen_buffer_size;
1038     void *buf;
1039 
1040     /* Constrain the position of the buffer based on the host cpu.
1041        Note that these addresses are chosen in concert with the
1042        addresses assigned in the relevant linker script file.  */
1043 # if defined(__PIE__) || defined(__PIC__)
1044     /* Don't bother setting a preferred location if we're building
1045        a position-independent executable.  We're more likely to get
1046        an address near the main executable if we let the kernel
1047        choose the address.  */
1048 # elif defined(__x86_64__) && defined(MAP_32BIT)
1049     /* Force the memory down into low memory with the executable.
1050        Leave the choice of exact location with the kernel.  */
1051     flags |= MAP_32BIT;
1052     /* Cannot expect to map more than 800MB in low memory.  */
1053     if (size > 800u * 1024 * 1024) {
1054         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1055     }
1056 # elif defined(__sparc__)
1057     start = 0x40000000ul;
1058 # elif defined(__s390x__)
1059     start = 0x90000000ul;
1060 # elif defined(__mips__)
1061 #  if _MIPS_SIM == _ABI64
1062     start = 0x128000000ul;
1063 #  else
1064     start = 0x08000000ul;
1065 #  endif
1066 # endif
1067 
1068     buf = mmap((void *)start, size, prot, flags, -1, 0);
1069     if (buf == MAP_FAILED) {
1070         return NULL;
1071     }
1072 
1073 #ifdef __mips__
1074     if (cross_256mb(buf, size)) {
1075         /* Try again, with the original still mapped, to avoid re-acquiring
1076            that 256mb crossing.  This time don't specify an address.  */
1077         size_t size2;
1078         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1079         switch ((int)(buf2 != MAP_FAILED)) {
1080         case 1:
1081             if (!cross_256mb(buf2, size)) {
1082                 /* Success!  Use the new buffer.  */
1083                 munmap(buf, size);
1084                 break;
1085             }
1086             /* Failure.  Work with what we had.  */
1087             munmap(buf2, size);
1088             /* fallthru */
1089         default:
1090             /* Split the original buffer.  Free the smaller half.  */
1091             buf2 = split_cross_256mb(buf, size);
1092             size2 = tcg_ctx->code_gen_buffer_size;
1093             if (buf == buf2) {
1094                 munmap(buf + size2, size - size2);
1095             } else {
1096                 munmap(buf, size - size2);
1097             }
1098             size = size2;
1099             break;
1100         }
1101         buf = buf2;
1102     }
1103 #endif
1104 
1105     /* Request large pages for the buffer.  */
1106     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1107 
1108     return buf;
1109 }
1110 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1111 
1112 static inline void code_gen_alloc(size_t tb_size)
1113 {
1114     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1115     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1116     if (tcg_ctx->code_gen_buffer == NULL) {
1117         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1118         exit(1);
1119     }
1120 }
1121 
1122 static bool tb_cmp(const void *ap, const void *bp)
1123 {
1124     const TranslationBlock *a = ap;
1125     const TranslationBlock *b = bp;
1126 
1127     return a->pc == b->pc &&
1128         a->cs_base == b->cs_base &&
1129         a->flags == b->flags &&
1130         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1131         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1132         a->page_addr[0] == b->page_addr[0] &&
1133         a->page_addr[1] == b->page_addr[1];
1134 }
1135 
1136 static void tb_htable_init(void)
1137 {
1138     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1139 
1140     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1141 }
1142 
1143 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1144    (in bytes) allocated to the translation buffer. Zero means default
1145    size. */
1146 void tcg_exec_init(unsigned long tb_size)
1147 {
1148     tcg_allowed = true;
1149     cpu_gen_init();
1150     page_init();
1151     tb_htable_init();
1152     code_gen_alloc(tb_size);
1153 #if defined(CONFIG_SOFTMMU)
1154     /* There's no guest base to take into account, so go ahead and
1155        initialize the prologue now.  */
1156     tcg_prologue_init(tcg_ctx);
1157 #endif
1158 }
1159 
1160 /*
1161  * Allocate a new translation block. Flush the translation buffer if
1162  * too many translation blocks or too much generated code.
1163  */
1164 static TranslationBlock *tb_alloc(target_ulong pc)
1165 {
1166     TranslationBlock *tb;
1167 
1168     assert_memory_lock();
1169 
1170     tb = tcg_tb_alloc(tcg_ctx);
1171     if (unlikely(tb == NULL)) {
1172         return NULL;
1173     }
1174     return tb;
1175 }
1176 
1177 /* call with @p->lock held */
1178 static inline void invalidate_page_bitmap(PageDesc *p)
1179 {
1180     assert_page_locked(p);
1181 #ifdef CONFIG_SOFTMMU
1182     g_free(p->code_bitmap);
1183     p->code_bitmap = NULL;
1184     p->code_write_count = 0;
1185 #endif
1186 }
1187 
1188 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1189 static void page_flush_tb_1(int level, void **lp)
1190 {
1191     int i;
1192 
1193     if (*lp == NULL) {
1194         return;
1195     }
1196     if (level == 0) {
1197         PageDesc *pd = *lp;
1198 
1199         for (i = 0; i < V_L2_SIZE; ++i) {
1200             page_lock(&pd[i]);
1201             pd[i].first_tb = (uintptr_t)NULL;
1202             invalidate_page_bitmap(pd + i);
1203             page_unlock(&pd[i]);
1204         }
1205     } else {
1206         void **pp = *lp;
1207 
1208         for (i = 0; i < V_L2_SIZE; ++i) {
1209             page_flush_tb_1(level - 1, pp + i);
1210         }
1211     }
1212 }
1213 
1214 static void page_flush_tb(void)
1215 {
1216     int i, l1_sz = v_l1_size;
1217 
1218     for (i = 0; i < l1_sz; i++) {
1219         page_flush_tb_1(v_l2_levels, l1_map + i);
1220     }
1221 }
1222 
1223 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1224 {
1225     const TranslationBlock *tb = value;
1226     size_t *size = data;
1227 
1228     *size += tb->tc.size;
1229     return false;
1230 }
1231 
1232 /* flush all the translation blocks */
1233 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1234 {
1235     mmap_lock();
1236     /* If it is already been done on request of another CPU,
1237      * just retry.
1238      */
1239     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1240         goto done;
1241     }
1242 
1243     if (DEBUG_TB_FLUSH_GATE) {
1244         size_t nb_tbs = tcg_nb_tbs();
1245         size_t host_size = 0;
1246 
1247         tcg_tb_foreach(tb_host_size_iter, &host_size);
1248         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1249                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1250     }
1251 
1252     CPU_FOREACH(cpu) {
1253         cpu_tb_jmp_cache_clear(cpu);
1254     }
1255 
1256     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1257     page_flush_tb();
1258 
1259     tcg_region_reset_all();
1260     /* XXX: flush processor icache at this point if cache flush is
1261        expensive */
1262     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1263 
1264 done:
1265     mmap_unlock();
1266 }
1267 
1268 void tb_flush(CPUState *cpu)
1269 {
1270     if (tcg_enabled()) {
1271         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1272         async_safe_run_on_cpu(cpu, do_tb_flush,
1273                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1274     }
1275 }
1276 
1277 /*
1278  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1279  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1280  * and let the optimizer get rid of them by wrapping their user-only callers
1281  * with if (DEBUG_TB_CHECK_GATE).
1282  */
1283 #ifdef CONFIG_USER_ONLY
1284 
1285 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1286 {
1287     TranslationBlock *tb = p;
1288     target_ulong addr = *(target_ulong *)userp;
1289 
1290     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1291         printf("ERROR invalidate: address=" TARGET_FMT_lx
1292                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1293     }
1294 }
1295 
1296 /* verify that all the pages have correct rights for code
1297  *
1298  * Called with mmap_lock held.
1299  */
1300 static void tb_invalidate_check(target_ulong address)
1301 {
1302     address &= TARGET_PAGE_MASK;
1303     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1304 }
1305 
1306 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1307 {
1308     TranslationBlock *tb = p;
1309     int flags1, flags2;
1310 
1311     flags1 = page_get_flags(tb->pc);
1312     flags2 = page_get_flags(tb->pc + tb->size - 1);
1313     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1314         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1315                (long)tb->pc, tb->size, flags1, flags2);
1316     }
1317 }
1318 
1319 /* verify that all the pages have correct rights for code */
1320 static void tb_page_check(void)
1321 {
1322     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1323 }
1324 
1325 #endif /* CONFIG_USER_ONLY */
1326 
1327 /*
1328  * user-mode: call with mmap_lock held
1329  * !user-mode: call with @pd->lock held
1330  */
1331 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1332 {
1333     TranslationBlock *tb1;
1334     uintptr_t *pprev;
1335     unsigned int n1;
1336 
1337     assert_page_locked(pd);
1338     pprev = &pd->first_tb;
1339     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1340         if (tb1 == tb) {
1341             *pprev = tb1->page_next[n1];
1342             return;
1343         }
1344         pprev = &tb1->page_next[n1];
1345     }
1346     g_assert_not_reached();
1347 }
1348 
1349 /* remove @orig from its @n_orig-th jump list */
1350 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1351 {
1352     uintptr_t ptr, ptr_locked;
1353     TranslationBlock *dest;
1354     TranslationBlock *tb;
1355     uintptr_t *pprev;
1356     int n;
1357 
1358     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1359     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1360     dest = (TranslationBlock *)(ptr & ~1);
1361     if (dest == NULL) {
1362         return;
1363     }
1364 
1365     qemu_spin_lock(&dest->jmp_lock);
1366     /*
1367      * While acquiring the lock, the jump might have been removed if the
1368      * destination TB was invalidated; check again.
1369      */
1370     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1371     if (ptr_locked != ptr) {
1372         qemu_spin_unlock(&dest->jmp_lock);
1373         /*
1374          * The only possibility is that the jump was unlinked via
1375          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1376          * because we set the LSB above.
1377          */
1378         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1379         return;
1380     }
1381     /*
1382      * We first acquired the lock, and since the destination pointer matches,
1383      * we know for sure that @orig is in the jmp list.
1384      */
1385     pprev = &dest->jmp_list_head;
1386     TB_FOR_EACH_JMP(dest, tb, n) {
1387         if (tb == orig && n == n_orig) {
1388             *pprev = tb->jmp_list_next[n];
1389             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1390             qemu_spin_unlock(&dest->jmp_lock);
1391             return;
1392         }
1393         pprev = &tb->jmp_list_next[n];
1394     }
1395     g_assert_not_reached();
1396 }
1397 
1398 /* reset the jump entry 'n' of a TB so that it is not chained to
1399    another TB */
1400 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1401 {
1402     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1403     tb_set_jmp_target(tb, n, addr);
1404 }
1405 
1406 /* remove any jumps to the TB */
1407 static inline void tb_jmp_unlink(TranslationBlock *dest)
1408 {
1409     TranslationBlock *tb;
1410     int n;
1411 
1412     qemu_spin_lock(&dest->jmp_lock);
1413 
1414     TB_FOR_EACH_JMP(dest, tb, n) {
1415         tb_reset_jump(tb, n);
1416         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1417         /* No need to clear the list entry; setting the dest ptr is enough */
1418     }
1419     dest->jmp_list_head = (uintptr_t)NULL;
1420 
1421     qemu_spin_unlock(&dest->jmp_lock);
1422 }
1423 
1424 /*
1425  * In user-mode, call with mmap_lock held.
1426  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1427  * locks held.
1428  */
1429 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1430 {
1431     CPUState *cpu;
1432     PageDesc *p;
1433     uint32_t h;
1434     tb_page_addr_t phys_pc;
1435 
1436     assert_memory_lock();
1437 
1438     /* make sure no further incoming jumps will be chained to this TB */
1439     qemu_spin_lock(&tb->jmp_lock);
1440     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1441     qemu_spin_unlock(&tb->jmp_lock);
1442 
1443     /* remove the TB from the hash list */
1444     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1445     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1446                      tb->trace_vcpu_dstate);
1447     if (!(tb->cflags & CF_NOCACHE) &&
1448         !qht_remove(&tb_ctx.htable, tb, h)) {
1449         return;
1450     }
1451 
1452     /* remove the TB from the page list */
1453     if (rm_from_page_list) {
1454         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1455         tb_page_remove(p, tb);
1456         invalidate_page_bitmap(p);
1457         if (tb->page_addr[1] != -1) {
1458             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1459             tb_page_remove(p, tb);
1460             invalidate_page_bitmap(p);
1461         }
1462     }
1463 
1464     /* remove the TB from the hash list */
1465     h = tb_jmp_cache_hash_func(tb->pc);
1466     CPU_FOREACH(cpu) {
1467         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1468             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1469         }
1470     }
1471 
1472     /* suppress this TB from the two jump lists */
1473     tb_remove_from_jmp_list(tb, 0);
1474     tb_remove_from_jmp_list(tb, 1);
1475 
1476     /* suppress any remaining jumps to this TB */
1477     tb_jmp_unlink(tb);
1478 
1479     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1480                tcg_ctx->tb_phys_invalidate_count + 1);
1481 }
1482 
1483 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1484 {
1485     do_tb_phys_invalidate(tb, true);
1486 }
1487 
1488 /* invalidate one TB
1489  *
1490  * Called with mmap_lock held in user-mode.
1491  */
1492 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1493 {
1494     if (page_addr == -1 && tb->page_addr[0] != -1) {
1495         page_lock_tb(tb);
1496         do_tb_phys_invalidate(tb, true);
1497         page_unlock_tb(tb);
1498     } else {
1499         do_tb_phys_invalidate(tb, false);
1500     }
1501 }
1502 
1503 #ifdef CONFIG_SOFTMMU
1504 /* call with @p->lock held */
1505 static void build_page_bitmap(PageDesc *p)
1506 {
1507     int n, tb_start, tb_end;
1508     TranslationBlock *tb;
1509 
1510     assert_page_locked(p);
1511     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1512 
1513     PAGE_FOR_EACH_TB(p, tb, n) {
1514         /* NOTE: this is subtle as a TB may span two physical pages */
1515         if (n == 0) {
1516             /* NOTE: tb_end may be after the end of the page, but
1517                it is not a problem */
1518             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1519             tb_end = tb_start + tb->size;
1520             if (tb_end > TARGET_PAGE_SIZE) {
1521                 tb_end = TARGET_PAGE_SIZE;
1522              }
1523         } else {
1524             tb_start = 0;
1525             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1526         }
1527         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1528     }
1529 }
1530 #endif
1531 
1532 /* add the tb in the target page and protect it if necessary
1533  *
1534  * Called with mmap_lock held for user-mode emulation.
1535  * Called with @p->lock held in !user-mode.
1536  */
1537 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1538                                unsigned int n, tb_page_addr_t page_addr)
1539 {
1540 #ifndef CONFIG_USER_ONLY
1541     bool page_already_protected;
1542 #endif
1543 
1544     assert_page_locked(p);
1545 
1546     tb->page_addr[n] = page_addr;
1547     tb->page_next[n] = p->first_tb;
1548 #ifndef CONFIG_USER_ONLY
1549     page_already_protected = p->first_tb != (uintptr_t)NULL;
1550 #endif
1551     p->first_tb = (uintptr_t)tb | n;
1552     invalidate_page_bitmap(p);
1553 
1554 #if defined(CONFIG_USER_ONLY)
1555     if (p->flags & PAGE_WRITE) {
1556         target_ulong addr;
1557         PageDesc *p2;
1558         int prot;
1559 
1560         /* force the host page as non writable (writes will have a
1561            page fault + mprotect overhead) */
1562         page_addr &= qemu_host_page_mask;
1563         prot = 0;
1564         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1565             addr += TARGET_PAGE_SIZE) {
1566 
1567             p2 = page_find(addr >> TARGET_PAGE_BITS);
1568             if (!p2) {
1569                 continue;
1570             }
1571             prot |= p2->flags;
1572             p2->flags &= ~PAGE_WRITE;
1573           }
1574         mprotect(g2h(page_addr), qemu_host_page_size,
1575                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1576         if (DEBUG_TB_INVALIDATE_GATE) {
1577             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1578         }
1579     }
1580 #else
1581     /* if some code is already present, then the pages are already
1582        protected. So we handle the case where only the first TB is
1583        allocated in a physical page */
1584     if (!page_already_protected) {
1585         tlb_protect_code(page_addr);
1586     }
1587 #endif
1588 }
1589 
1590 /* add a new TB and link it to the physical page tables. phys_page2 is
1591  * (-1) to indicate that only one page contains the TB.
1592  *
1593  * Called with mmap_lock held for user-mode emulation.
1594  *
1595  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1596  * Note that in !user-mode, another thread might have already added a TB
1597  * for the same block of guest code that @tb corresponds to. In that case,
1598  * the caller should discard the original @tb, and use instead the returned TB.
1599  */
1600 static TranslationBlock *
1601 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1602              tb_page_addr_t phys_page2)
1603 {
1604     PageDesc *p;
1605     PageDesc *p2 = NULL;
1606 
1607     assert_memory_lock();
1608 
1609     if (phys_pc == -1) {
1610         /*
1611          * If the TB is not associated with a physical RAM page then
1612          * it must be a temporary one-insn TB, and we have nothing to do
1613          * except fill in the page_addr[] fields.
1614          */
1615         assert(tb->cflags & CF_NOCACHE);
1616         tb->page_addr[0] = tb->page_addr[1] = -1;
1617         return tb;
1618     }
1619 
1620     /*
1621      * Add the TB to the page list, acquiring first the pages's locks.
1622      * We keep the locks held until after inserting the TB in the hash table,
1623      * so that if the insertion fails we know for sure that the TBs are still
1624      * in the page descriptors.
1625      * Note that inserting into the hash table first isn't an option, since
1626      * we can only insert TBs that are fully initialized.
1627      */
1628     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1629     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1630     if (p2) {
1631         tb_page_add(p2, tb, 1, phys_page2);
1632     } else {
1633         tb->page_addr[1] = -1;
1634     }
1635 
1636     if (!(tb->cflags & CF_NOCACHE)) {
1637         void *existing_tb = NULL;
1638         uint32_t h;
1639 
1640         /* add in the hash table */
1641         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1642                          tb->trace_vcpu_dstate);
1643         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1644 
1645         /* remove TB from the page(s) if we couldn't insert it */
1646         if (unlikely(existing_tb)) {
1647             tb_page_remove(p, tb);
1648             invalidate_page_bitmap(p);
1649             if (p2) {
1650                 tb_page_remove(p2, tb);
1651                 invalidate_page_bitmap(p2);
1652             }
1653             tb = existing_tb;
1654         }
1655     }
1656 
1657     if (p2 && p2 != p) {
1658         page_unlock(p2);
1659     }
1660     page_unlock(p);
1661 
1662 #ifdef CONFIG_USER_ONLY
1663     if (DEBUG_TB_CHECK_GATE) {
1664         tb_page_check();
1665     }
1666 #endif
1667     return tb;
1668 }
1669 
1670 /* Called with mmap_lock held for user mode emulation.  */
1671 TranslationBlock *tb_gen_code(CPUState *cpu,
1672                               target_ulong pc, target_ulong cs_base,
1673                               uint32_t flags, int cflags)
1674 {
1675     CPUArchState *env = cpu->env_ptr;
1676     TranslationBlock *tb, *existing_tb;
1677     tb_page_addr_t phys_pc, phys_page2;
1678     target_ulong virt_page2;
1679     tcg_insn_unit *gen_code_buf;
1680     int gen_code_size, search_size;
1681 #ifdef CONFIG_PROFILER
1682     TCGProfile *prof = &tcg_ctx->prof;
1683     int64_t ti;
1684 #endif
1685     assert_memory_lock();
1686 
1687     phys_pc = get_page_addr_code(env, pc);
1688 
1689     if (phys_pc == -1) {
1690         /* Generate a temporary TB with 1 insn in it */
1691         cflags &= ~CF_COUNT_MASK;
1692         cflags |= CF_NOCACHE | 1;
1693     }
1694 
1695  buffer_overflow:
1696     tb = tb_alloc(pc);
1697     if (unlikely(!tb)) {
1698         /* flush must be done */
1699         tb_flush(cpu);
1700         mmap_unlock();
1701         /* Make the execution loop process the flush as soon as possible.  */
1702         cpu->exception_index = EXCP_INTERRUPT;
1703         cpu_loop_exit(cpu);
1704     }
1705 
1706     gen_code_buf = tcg_ctx->code_gen_ptr;
1707     tb->tc.ptr = gen_code_buf;
1708     tb->pc = pc;
1709     tb->cs_base = cs_base;
1710     tb->flags = flags;
1711     tb->cflags = cflags;
1712     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1713     tcg_ctx->tb_cflags = cflags;
1714 
1715 #ifdef CONFIG_PROFILER
1716     /* includes aborted translations because of exceptions */
1717     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1718     ti = profile_getclock();
1719 #endif
1720 
1721     tcg_func_start(tcg_ctx);
1722 
1723     tcg_ctx->cpu = ENV_GET_CPU(env);
1724     gen_intermediate_code(cpu, tb);
1725     tcg_ctx->cpu = NULL;
1726 
1727     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1728 
1729     /* generate machine code */
1730     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1731     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1732     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1733     if (TCG_TARGET_HAS_direct_jump) {
1734         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1735         tcg_ctx->tb_jmp_target_addr = NULL;
1736     } else {
1737         tcg_ctx->tb_jmp_insn_offset = NULL;
1738         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1739     }
1740 
1741 #ifdef CONFIG_PROFILER
1742     atomic_set(&prof->tb_count, prof->tb_count + 1);
1743     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1744     ti = profile_getclock();
1745 #endif
1746 
1747     /* ??? Overflow could be handled better here.  In particular, we
1748        don't need to re-do gen_intermediate_code, nor should we re-do
1749        the tcg optimization currently hidden inside tcg_gen_code.  All
1750        that should be required is to flush the TBs, allocate a new TB,
1751        re-initialize it per above, and re-do the actual code generation.  */
1752     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1753     if (unlikely(gen_code_size < 0)) {
1754         goto buffer_overflow;
1755     }
1756     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1757     if (unlikely(search_size < 0)) {
1758         goto buffer_overflow;
1759     }
1760     tb->tc.size = gen_code_size;
1761 
1762 #ifdef CONFIG_PROFILER
1763     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1764     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1765     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1766     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1767 #endif
1768 
1769 #ifdef DEBUG_DISAS
1770     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1771         qemu_log_in_addr_range(tb->pc)) {
1772         qemu_log_lock();
1773         qemu_log("OUT: [size=%d]\n", gen_code_size);
1774         if (tcg_ctx->data_gen_ptr) {
1775             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1776             size_t data_size = gen_code_size - code_size;
1777             size_t i;
1778 
1779             log_disas(tb->tc.ptr, code_size);
1780 
1781             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1782                 if (sizeof(tcg_target_ulong) == 8) {
1783                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1784                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1785                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1786                 } else {
1787                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1788                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1789                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1790                 }
1791             }
1792         } else {
1793             log_disas(tb->tc.ptr, gen_code_size);
1794         }
1795         qemu_log("\n");
1796         qemu_log_flush();
1797         qemu_log_unlock();
1798     }
1799 #endif
1800 
1801     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1802         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1803                  CODE_GEN_ALIGN));
1804 
1805     /* init jump list */
1806     qemu_spin_init(&tb->jmp_lock);
1807     tb->jmp_list_head = (uintptr_t)NULL;
1808     tb->jmp_list_next[0] = (uintptr_t)NULL;
1809     tb->jmp_list_next[1] = (uintptr_t)NULL;
1810     tb->jmp_dest[0] = (uintptr_t)NULL;
1811     tb->jmp_dest[1] = (uintptr_t)NULL;
1812 
1813     /* init original jump addresses which have been set during tcg_gen_code() */
1814     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1815         tb_reset_jump(tb, 0);
1816     }
1817     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1818         tb_reset_jump(tb, 1);
1819     }
1820 
1821     /* check next page if needed */
1822     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1823     phys_page2 = -1;
1824     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1825         phys_page2 = get_page_addr_code(env, virt_page2);
1826     }
1827     /*
1828      * No explicit memory barrier is required -- tb_link_page() makes the
1829      * TB visible in a consistent state.
1830      */
1831     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1832     /* if the TB already exists, discard what we just translated */
1833     if (unlikely(existing_tb != tb)) {
1834         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1835 
1836         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1837         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1838         return existing_tb;
1839     }
1840     tcg_tb_insert(tb);
1841     return tb;
1842 }
1843 
1844 /*
1845  * @p must be non-NULL.
1846  * user-mode: call with mmap_lock held.
1847  * !user-mode: call with all @pages locked.
1848  */
1849 static void
1850 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1851                                       PageDesc *p, tb_page_addr_t start,
1852                                       tb_page_addr_t end,
1853                                       int is_cpu_write_access)
1854 {
1855     TranslationBlock *tb;
1856     tb_page_addr_t tb_start, tb_end;
1857     int n;
1858 #ifdef TARGET_HAS_PRECISE_SMC
1859     CPUState *cpu = current_cpu;
1860     CPUArchState *env = NULL;
1861     int current_tb_not_found = is_cpu_write_access;
1862     TranslationBlock *current_tb = NULL;
1863     int current_tb_modified = 0;
1864     target_ulong current_pc = 0;
1865     target_ulong current_cs_base = 0;
1866     uint32_t current_flags = 0;
1867 #endif /* TARGET_HAS_PRECISE_SMC */
1868 
1869     assert_page_locked(p);
1870 
1871 #if defined(TARGET_HAS_PRECISE_SMC)
1872     if (cpu != NULL) {
1873         env = cpu->env_ptr;
1874     }
1875 #endif
1876 
1877     /* we remove all the TBs in the range [start, end[ */
1878     /* XXX: see if in some cases it could be faster to invalidate all
1879        the code */
1880     PAGE_FOR_EACH_TB(p, tb, n) {
1881         assert_page_locked(p);
1882         /* NOTE: this is subtle as a TB may span two physical pages */
1883         if (n == 0) {
1884             /* NOTE: tb_end may be after the end of the page, but
1885                it is not a problem */
1886             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1887             tb_end = tb_start + tb->size;
1888         } else {
1889             tb_start = tb->page_addr[1];
1890             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1891         }
1892         if (!(tb_end <= start || tb_start >= end)) {
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894             if (current_tb_not_found) {
1895                 current_tb_not_found = 0;
1896                 current_tb = NULL;
1897                 if (cpu->mem_io_pc) {
1898                     /* now we have a real cpu fault */
1899                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1900                 }
1901             }
1902             if (current_tb == tb &&
1903                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1904                 /* If we are modifying the current TB, we must stop
1905                 its execution. We could be more precise by checking
1906                 that the modification is after the current PC, but it
1907                 would require a specialized function to partially
1908                 restore the CPU state */
1909 
1910                 current_tb_modified = 1;
1911                 cpu_restore_state_from_tb(cpu, current_tb,
1912                                           cpu->mem_io_pc, true);
1913                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1914                                      &current_flags);
1915             }
1916 #endif /* TARGET_HAS_PRECISE_SMC */
1917             tb_phys_invalidate__locked(tb);
1918         }
1919     }
1920 #if !defined(CONFIG_USER_ONLY)
1921     /* if no code remaining, no need to continue to use slow writes */
1922     if (!p->first_tb) {
1923         invalidate_page_bitmap(p);
1924         tlb_unprotect_code(start);
1925     }
1926 #endif
1927 #ifdef TARGET_HAS_PRECISE_SMC
1928     if (current_tb_modified) {
1929         page_collection_unlock(pages);
1930         /* Force execution of one insn next time.  */
1931         cpu->cflags_next_tb = 1 | curr_cflags();
1932         mmap_unlock();
1933         cpu_loop_exit_noexc(cpu);
1934     }
1935 #endif
1936 }
1937 
1938 /*
1939  * Invalidate all TBs which intersect with the target physical address range
1940  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1941  * 'is_cpu_write_access' should be true if called from a real cpu write
1942  * access: the virtual CPU will exit the current TB if code is modified inside
1943  * this TB.
1944  *
1945  * Called with mmap_lock held for user-mode emulation
1946  */
1947 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1948                                    int is_cpu_write_access)
1949 {
1950     struct page_collection *pages;
1951     PageDesc *p;
1952 
1953     assert_memory_lock();
1954 
1955     p = page_find(start >> TARGET_PAGE_BITS);
1956     if (p == NULL) {
1957         return;
1958     }
1959     pages = page_collection_lock(start, end);
1960     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1961                                           is_cpu_write_access);
1962     page_collection_unlock(pages);
1963 }
1964 
1965 /*
1966  * Invalidate all TBs which intersect with the target physical address range
1967  * [start;end[. NOTE: start and end may refer to *different* physical pages.
1968  * 'is_cpu_write_access' should be true if called from a real cpu write
1969  * access: the virtual CPU will exit the current TB if code is modified inside
1970  * this TB.
1971  *
1972  * Called with mmap_lock held for user-mode emulation.
1973  */
1974 #ifdef CONFIG_SOFTMMU
1975 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1976 #else
1977 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1978 #endif
1979 {
1980     struct page_collection *pages;
1981     tb_page_addr_t next;
1982 
1983     assert_memory_lock();
1984 
1985     pages = page_collection_lock(start, end);
1986     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1987          start < end;
1988          start = next, next += TARGET_PAGE_SIZE) {
1989         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1990         tb_page_addr_t bound = MIN(next, end);
1991 
1992         if (pd == NULL) {
1993             continue;
1994         }
1995         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1996     }
1997     page_collection_unlock(pages);
1998 }
1999 
2000 #ifdef CONFIG_SOFTMMU
2001 /* len must be <= 8 and start must be a multiple of len.
2002  * Called via softmmu_template.h when code areas are written to with
2003  * iothread mutex not held.
2004  *
2005  * Call with all @pages in the range [@start, @start + len[ locked.
2006  */
2007 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2008                                   tb_page_addr_t start, int len)
2009 {
2010     PageDesc *p;
2011 
2012     assert_memory_lock();
2013 
2014     p = page_find(start >> TARGET_PAGE_BITS);
2015     if (!p) {
2016         return;
2017     }
2018 
2019     assert_page_locked(p);
2020     if (!p->code_bitmap &&
2021         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2022         build_page_bitmap(p);
2023     }
2024     if (p->code_bitmap) {
2025         unsigned int nr;
2026         unsigned long b;
2027 
2028         nr = start & ~TARGET_PAGE_MASK;
2029         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2030         if (b & ((1 << len) - 1)) {
2031             goto do_invalidate;
2032         }
2033     } else {
2034     do_invalidate:
2035         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2036     }
2037 }
2038 #else
2039 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2040  * host PC of the faulting store instruction that caused this invalidate.
2041  * Returns true if the caller needs to abort execution of the current
2042  * TB (because it was modified by this store and the guest CPU has
2043  * precise-SMC semantics).
2044  */
2045 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2046 {
2047     TranslationBlock *tb;
2048     PageDesc *p;
2049     int n;
2050 #ifdef TARGET_HAS_PRECISE_SMC
2051     TranslationBlock *current_tb = NULL;
2052     CPUState *cpu = current_cpu;
2053     CPUArchState *env = NULL;
2054     int current_tb_modified = 0;
2055     target_ulong current_pc = 0;
2056     target_ulong current_cs_base = 0;
2057     uint32_t current_flags = 0;
2058 #endif
2059 
2060     assert_memory_lock();
2061 
2062     addr &= TARGET_PAGE_MASK;
2063     p = page_find(addr >> TARGET_PAGE_BITS);
2064     if (!p) {
2065         return false;
2066     }
2067 
2068 #ifdef TARGET_HAS_PRECISE_SMC
2069     if (p->first_tb && pc != 0) {
2070         current_tb = tcg_tb_lookup(pc);
2071     }
2072     if (cpu != NULL) {
2073         env = cpu->env_ptr;
2074     }
2075 #endif
2076     assert_page_locked(p);
2077     PAGE_FOR_EACH_TB(p, tb, n) {
2078 #ifdef TARGET_HAS_PRECISE_SMC
2079         if (current_tb == tb &&
2080             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2081                 /* If we are modifying the current TB, we must stop
2082                    its execution. We could be more precise by checking
2083                    that the modification is after the current PC, but it
2084                    would require a specialized function to partially
2085                    restore the CPU state */
2086 
2087             current_tb_modified = 1;
2088             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2089             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2090                                  &current_flags);
2091         }
2092 #endif /* TARGET_HAS_PRECISE_SMC */
2093         tb_phys_invalidate(tb, addr);
2094     }
2095     p->first_tb = (uintptr_t)NULL;
2096 #ifdef TARGET_HAS_PRECISE_SMC
2097     if (current_tb_modified) {
2098         /* Force execution of one insn next time.  */
2099         cpu->cflags_next_tb = 1 | curr_cflags();
2100         return true;
2101     }
2102 #endif
2103 
2104     return false;
2105 }
2106 #endif
2107 
2108 /* user-mode: call with mmap_lock held */
2109 void tb_check_watchpoint(CPUState *cpu)
2110 {
2111     TranslationBlock *tb;
2112 
2113     assert_memory_lock();
2114 
2115     tb = tcg_tb_lookup(cpu->mem_io_pc);
2116     if (tb) {
2117         /* We can use retranslation to find the PC.  */
2118         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2119         tb_phys_invalidate(tb, -1);
2120     } else {
2121         /* The exception probably happened in a helper.  The CPU state should
2122            have been saved before calling it. Fetch the PC from there.  */
2123         CPUArchState *env = cpu->env_ptr;
2124         target_ulong pc, cs_base;
2125         tb_page_addr_t addr;
2126         uint32_t flags;
2127 
2128         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2129         addr = get_page_addr_code(env, pc);
2130         if (addr != -1) {
2131             tb_invalidate_phys_range(addr, addr + 1);
2132         }
2133     }
2134 }
2135 
2136 #ifndef CONFIG_USER_ONLY
2137 /* in deterministic execution mode, instructions doing device I/Os
2138  * must be at the end of the TB.
2139  *
2140  * Called by softmmu_template.h, with iothread mutex not held.
2141  */
2142 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2143 {
2144 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2145     CPUArchState *env = cpu->env_ptr;
2146 #endif
2147     TranslationBlock *tb;
2148     uint32_t n;
2149 
2150     tb = tcg_tb_lookup(retaddr);
2151     if (!tb) {
2152         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2153                   (void *)retaddr);
2154     }
2155     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2156 
2157     /* On MIPS and SH, delay slot instructions can only be restarted if
2158        they were already the first instruction in the TB.  If this is not
2159        the first instruction in a TB then re-execute the preceding
2160        branch.  */
2161     n = 1;
2162 #if defined(TARGET_MIPS)
2163     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2164         && env->active_tc.PC != tb->pc) {
2165         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2166         cpu->icount_decr.u16.low++;
2167         env->hflags &= ~MIPS_HFLAG_BMASK;
2168         n = 2;
2169     }
2170 #elif defined(TARGET_SH4)
2171     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2172         && env->pc != tb->pc) {
2173         env->pc -= 2;
2174         cpu->icount_decr.u16.low++;
2175         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2176         n = 2;
2177     }
2178 #endif
2179 
2180     /* Generate a new TB executing the I/O insn.  */
2181     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2182 
2183     if (tb_cflags(tb) & CF_NOCACHE) {
2184         if (tb->orig_tb) {
2185             /* Invalidate original TB if this TB was generated in
2186              * cpu_exec_nocache() */
2187             tb_phys_invalidate(tb->orig_tb, -1);
2188         }
2189         tcg_tb_remove(tb);
2190     }
2191 
2192     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2193      * the first in the TB) then we end up generating a whole new TB and
2194      *  repeating the fault, which is horribly inefficient.
2195      *  Better would be to execute just this insn uncached, or generate a
2196      *  second new TB.
2197      */
2198     cpu_loop_exit_noexc(cpu);
2199 }
2200 
2201 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2202 {
2203     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2204 
2205     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2206         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2207     }
2208 }
2209 
2210 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2211 {
2212     /* Discard jump cache entries for any tb which might potentially
2213        overlap the flushed page.  */
2214     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2215     tb_jmp_cache_clear_page(cpu, addr);
2216 }
2217 
2218 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2219                                  struct qht_stats hst)
2220 {
2221     uint32_t hgram_opts;
2222     size_t hgram_bins;
2223     char *hgram;
2224 
2225     if (!hst.head_buckets) {
2226         return;
2227     }
2228     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2229                 hst.used_head_buckets, hst.head_buckets,
2230                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2231 
2232     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2233     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2234     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2235         hgram_opts |= QDIST_PR_NODECIMAL;
2236     }
2237     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2238     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2239                 qdist_avg(&hst.occupancy) * 100, hgram);
2240     g_free(hgram);
2241 
2242     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2243     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2244     if (hgram_bins > 10) {
2245         hgram_bins = 10;
2246     } else {
2247         hgram_bins = 0;
2248         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2249     }
2250     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2251     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2252                 qdist_avg(&hst.chain), hgram);
2253     g_free(hgram);
2254 }
2255 
2256 struct tb_tree_stats {
2257     size_t nb_tbs;
2258     size_t host_size;
2259     size_t target_size;
2260     size_t max_target_size;
2261     size_t direct_jmp_count;
2262     size_t direct_jmp2_count;
2263     size_t cross_page;
2264 };
2265 
2266 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2267 {
2268     const TranslationBlock *tb = value;
2269     struct tb_tree_stats *tst = data;
2270 
2271     tst->nb_tbs++;
2272     tst->host_size += tb->tc.size;
2273     tst->target_size += tb->size;
2274     if (tb->size > tst->max_target_size) {
2275         tst->max_target_size = tb->size;
2276     }
2277     if (tb->page_addr[1] != -1) {
2278         tst->cross_page++;
2279     }
2280     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2281         tst->direct_jmp_count++;
2282         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2283             tst->direct_jmp2_count++;
2284         }
2285     }
2286     return false;
2287 }
2288 
2289 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2290 {
2291     struct tb_tree_stats tst = {};
2292     struct qht_stats hst;
2293     size_t nb_tbs, flush_full, flush_part, flush_elide;
2294 
2295     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2296     nb_tbs = tst.nb_tbs;
2297     /* XXX: avoid using doubles ? */
2298     cpu_fprintf(f, "Translation buffer state:\n");
2299     /*
2300      * Report total code size including the padding and TB structs;
2301      * otherwise users might think "-tb-size" is not honoured.
2302      * For avg host size we use the precise numbers from tb_tree_stats though.
2303      */
2304     cpu_fprintf(f, "gen code size       %zu/%zu\n",
2305                 tcg_code_size(), tcg_code_capacity());
2306     cpu_fprintf(f, "TB count            %zu\n", nb_tbs);
2307     cpu_fprintf(f, "TB avg target size  %zu max=%zu bytes\n",
2308                 nb_tbs ? tst.target_size / nb_tbs : 0,
2309                 tst.max_target_size);
2310     cpu_fprintf(f, "TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2311                 nb_tbs ? tst.host_size / nb_tbs : 0,
2312                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2313     cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2314             nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2315     cpu_fprintf(f, "direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2316                 tst.direct_jmp_count,
2317                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2318                 tst.direct_jmp2_count,
2319                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2320 
2321     qht_statistics_init(&tb_ctx.htable, &hst);
2322     print_qht_statistics(f, cpu_fprintf, hst);
2323     qht_statistics_destroy(&hst);
2324 
2325     cpu_fprintf(f, "\nStatistics:\n");
2326     cpu_fprintf(f, "TB flush count      %u\n",
2327                 atomic_read(&tb_ctx.tb_flush_count));
2328     cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2329 
2330     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2331     cpu_fprintf(f, "TLB full flushes    %zu\n", flush_full);
2332     cpu_fprintf(f, "TLB partial flushes %zu\n", flush_part);
2333     cpu_fprintf(f, "TLB elided flushes  %zu\n", flush_elide);
2334     tcg_dump_info(f, cpu_fprintf);
2335 }
2336 
2337 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2338 {
2339     tcg_dump_op_count(f, cpu_fprintf);
2340 }
2341 
2342 #else /* CONFIG_USER_ONLY */
2343 
2344 void cpu_interrupt(CPUState *cpu, int mask)
2345 {
2346     g_assert(qemu_mutex_iothread_locked());
2347     cpu->interrupt_request |= mask;
2348     atomic_set(&cpu->icount_decr.u16.high, -1);
2349 }
2350 
2351 /*
2352  * Walks guest process memory "regions" one by one
2353  * and calls callback function 'fn' for each region.
2354  */
2355 struct walk_memory_regions_data {
2356     walk_memory_regions_fn fn;
2357     void *priv;
2358     target_ulong start;
2359     int prot;
2360 };
2361 
2362 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2363                                    target_ulong end, int new_prot)
2364 {
2365     if (data->start != -1u) {
2366         int rc = data->fn(data->priv, data->start, end, data->prot);
2367         if (rc != 0) {
2368             return rc;
2369         }
2370     }
2371 
2372     data->start = (new_prot ? end : -1u);
2373     data->prot = new_prot;
2374 
2375     return 0;
2376 }
2377 
2378 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2379                                  target_ulong base, int level, void **lp)
2380 {
2381     target_ulong pa;
2382     int i, rc;
2383 
2384     if (*lp == NULL) {
2385         return walk_memory_regions_end(data, base, 0);
2386     }
2387 
2388     if (level == 0) {
2389         PageDesc *pd = *lp;
2390 
2391         for (i = 0; i < V_L2_SIZE; ++i) {
2392             int prot = pd[i].flags;
2393 
2394             pa = base | (i << TARGET_PAGE_BITS);
2395             if (prot != data->prot) {
2396                 rc = walk_memory_regions_end(data, pa, prot);
2397                 if (rc != 0) {
2398                     return rc;
2399                 }
2400             }
2401         }
2402     } else {
2403         void **pp = *lp;
2404 
2405         for (i = 0; i < V_L2_SIZE; ++i) {
2406             pa = base | ((target_ulong)i <<
2407                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2408             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2409             if (rc != 0) {
2410                 return rc;
2411             }
2412         }
2413     }
2414 
2415     return 0;
2416 }
2417 
2418 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2419 {
2420     struct walk_memory_regions_data data;
2421     uintptr_t i, l1_sz = v_l1_size;
2422 
2423     data.fn = fn;
2424     data.priv = priv;
2425     data.start = -1u;
2426     data.prot = 0;
2427 
2428     for (i = 0; i < l1_sz; i++) {
2429         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2430         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2431         if (rc != 0) {
2432             return rc;
2433         }
2434     }
2435 
2436     return walk_memory_regions_end(&data, 0, 0);
2437 }
2438 
2439 static int dump_region(void *priv, target_ulong start,
2440     target_ulong end, unsigned long prot)
2441 {
2442     FILE *f = (FILE *)priv;
2443 
2444     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2445         " "TARGET_FMT_lx" %c%c%c\n",
2446         start, end, end - start,
2447         ((prot & PAGE_READ) ? 'r' : '-'),
2448         ((prot & PAGE_WRITE) ? 'w' : '-'),
2449         ((prot & PAGE_EXEC) ? 'x' : '-'));
2450 
2451     return 0;
2452 }
2453 
2454 /* dump memory mappings */
2455 void page_dump(FILE *f)
2456 {
2457     const int length = sizeof(target_ulong) * 2;
2458     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2459             length, "start", length, "end", length, "size", "prot");
2460     walk_memory_regions(f, dump_region);
2461 }
2462 
2463 int page_get_flags(target_ulong address)
2464 {
2465     PageDesc *p;
2466 
2467     p = page_find(address >> TARGET_PAGE_BITS);
2468     if (!p) {
2469         return 0;
2470     }
2471     return p->flags;
2472 }
2473 
2474 /* Modify the flags of a page and invalidate the code if necessary.
2475    The flag PAGE_WRITE_ORG is positioned automatically depending
2476    on PAGE_WRITE.  The mmap_lock should already be held.  */
2477 void page_set_flags(target_ulong start, target_ulong end, int flags)
2478 {
2479     target_ulong addr, len;
2480 
2481     /* This function should never be called with addresses outside the
2482        guest address space.  If this assert fires, it probably indicates
2483        a missing call to h2g_valid.  */
2484 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2485     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2486 #endif
2487     assert(start < end);
2488     assert_memory_lock();
2489 
2490     start = start & TARGET_PAGE_MASK;
2491     end = TARGET_PAGE_ALIGN(end);
2492 
2493     if (flags & PAGE_WRITE) {
2494         flags |= PAGE_WRITE_ORG;
2495     }
2496 
2497     for (addr = start, len = end - start;
2498          len != 0;
2499          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2500         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2501 
2502         /* If the write protection bit is set, then we invalidate
2503            the code inside.  */
2504         if (!(p->flags & PAGE_WRITE) &&
2505             (flags & PAGE_WRITE) &&
2506             p->first_tb) {
2507             tb_invalidate_phys_page(addr, 0);
2508         }
2509         p->flags = flags;
2510     }
2511 }
2512 
2513 int page_check_range(target_ulong start, target_ulong len, int flags)
2514 {
2515     PageDesc *p;
2516     target_ulong end;
2517     target_ulong addr;
2518 
2519     /* This function should never be called with addresses outside the
2520        guest address space.  If this assert fires, it probably indicates
2521        a missing call to h2g_valid.  */
2522 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2523     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2524 #endif
2525 
2526     if (len == 0) {
2527         return 0;
2528     }
2529     if (start + len - 1 < start) {
2530         /* We've wrapped around.  */
2531         return -1;
2532     }
2533 
2534     /* must do before we loose bits in the next step */
2535     end = TARGET_PAGE_ALIGN(start + len);
2536     start = start & TARGET_PAGE_MASK;
2537 
2538     for (addr = start, len = end - start;
2539          len != 0;
2540          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2541         p = page_find(addr >> TARGET_PAGE_BITS);
2542         if (!p) {
2543             return -1;
2544         }
2545         if (!(p->flags & PAGE_VALID)) {
2546             return -1;
2547         }
2548 
2549         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2550             return -1;
2551         }
2552         if (flags & PAGE_WRITE) {
2553             if (!(p->flags & PAGE_WRITE_ORG)) {
2554                 return -1;
2555             }
2556             /* unprotect the page if it was put read-only because it
2557                contains translated code */
2558             if (!(p->flags & PAGE_WRITE)) {
2559                 if (!page_unprotect(addr, 0)) {
2560                     return -1;
2561                 }
2562             }
2563         }
2564     }
2565     return 0;
2566 }
2567 
2568 /* called from signal handler: invalidate the code and unprotect the
2569  * page. Return 0 if the fault was not handled, 1 if it was handled,
2570  * and 2 if it was handled but the caller must cause the TB to be
2571  * immediately exited. (We can only return 2 if the 'pc' argument is
2572  * non-zero.)
2573  */
2574 int page_unprotect(target_ulong address, uintptr_t pc)
2575 {
2576     unsigned int prot;
2577     bool current_tb_invalidated;
2578     PageDesc *p;
2579     target_ulong host_start, host_end, addr;
2580 
2581     /* Technically this isn't safe inside a signal handler.  However we
2582        know this only ever happens in a synchronous SEGV handler, so in
2583        practice it seems to be ok.  */
2584     mmap_lock();
2585 
2586     p = page_find(address >> TARGET_PAGE_BITS);
2587     if (!p) {
2588         mmap_unlock();
2589         return 0;
2590     }
2591 
2592     /* if the page was really writable, then we change its
2593        protection back to writable */
2594     if (p->flags & PAGE_WRITE_ORG) {
2595         current_tb_invalidated = false;
2596         if (p->flags & PAGE_WRITE) {
2597             /* If the page is actually marked WRITE then assume this is because
2598              * this thread raced with another one which got here first and
2599              * set the page to PAGE_WRITE and did the TB invalidate for us.
2600              */
2601 #ifdef TARGET_HAS_PRECISE_SMC
2602             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2603             if (current_tb) {
2604                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2605             }
2606 #endif
2607         } else {
2608             host_start = address & qemu_host_page_mask;
2609             host_end = host_start + qemu_host_page_size;
2610 
2611             prot = 0;
2612             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2613                 p = page_find(addr >> TARGET_PAGE_BITS);
2614                 p->flags |= PAGE_WRITE;
2615                 prot |= p->flags;
2616 
2617                 /* and since the content will be modified, we must invalidate
2618                    the corresponding translated code. */
2619                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2620 #ifdef CONFIG_USER_ONLY
2621                 if (DEBUG_TB_CHECK_GATE) {
2622                     tb_invalidate_check(addr);
2623                 }
2624 #endif
2625             }
2626             mprotect((void *)g2h(host_start), qemu_host_page_size,
2627                      prot & PAGE_BITS);
2628         }
2629         mmap_unlock();
2630         /* If current TB was invalidated return to main loop */
2631         return current_tb_invalidated ? 2 : 1;
2632     }
2633     mmap_unlock();
2634     return 0;
2635 }
2636 #endif /* CONFIG_USER_ONLY */
2637 
2638 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2639 void tcg_flush_softmmu_tlb(CPUState *cs)
2640 {
2641 #ifdef CONFIG_SOFTMMU
2642     tlb_flush(cs);
2643 #endif
2644 }
2645