xref: /qemu/accel/tcg/user-exec.c (revision 7cebff0d)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "hw/core/tcg-cpu-ops.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg/tcg.h"
25 #include "qemu/bitops.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "trace/mem.h"
32 
33 #undef EAX
34 #undef ECX
35 #undef EDX
36 #undef EBX
37 #undef ESP
38 #undef EBP
39 #undef ESI
40 #undef EDI
41 #undef EIP
42 #ifdef __linux__
43 #include <sys/ucontext.h>
44 #endif
45 
46 __thread uintptr_t helper_retaddr;
47 
48 //#define DEBUG_SIGNAL
49 
50 /* exit the current TB from a signal handler. The host registers are
51    restored in a state compatible with the CPU emulator
52  */
53 static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu,
54                                                       sigset_t *old_set)
55 {
56     /* XXX: use siglongjmp ? */
57     sigprocmask(SIG_SETMASK, old_set, NULL);
58     cpu_loop_exit_noexc(cpu);
59 }
60 
61 /* 'pc' is the host PC at which the exception was raised. 'address' is
62    the effective address of the memory exception. 'is_write' is 1 if a
63    write caused the exception and otherwise 0'. 'old_set' is the
64    signal set which should be restored */
65 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
66                                     int is_write, sigset_t *old_set)
67 {
68     CPUState *cpu = current_cpu;
69     CPUClass *cc;
70     unsigned long address = (unsigned long)info->si_addr;
71     MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
72 
73     switch (helper_retaddr) {
74     default:
75         /*
76          * Fault during host memory operation within a helper function.
77          * The helper's host return address, saved here, gives us a
78          * pointer into the generated code that will unwind to the
79          * correct guest pc.
80          */
81         pc = helper_retaddr;
82         break;
83 
84     case 0:
85         /*
86          * Fault during host memory operation within generated code.
87          * (Or, a unrelated bug within qemu, but we can't tell from here).
88          *
89          * We take the host pc from the signal frame.  However, we cannot
90          * use that value directly.  Within cpu_restore_state_from_tb, we
91          * assume PC comes from GETPC(), as used by the helper functions,
92          * so we adjust the address by -GETPC_ADJ to form an address that
93          * is within the call insn, so that the address does not accidentally
94          * match the beginning of the next guest insn.  However, when the
95          * pc comes from the signal frame it points to the actual faulting
96          * host memory insn and not the return from a call insn.
97          *
98          * Therefore, adjust to compensate for what will be done later
99          * by cpu_restore_state_from_tb.
100          */
101         pc += GETPC_ADJ;
102         break;
103 
104     case 1:
105         /*
106          * Fault during host read for translation, or loosely, "execution".
107          *
108          * The guest pc is already pointing to the start of the TB for which
109          * code is being generated.  If the guest translator manages the
110          * page crossings correctly, this is exactly the correct address
111          * (and if the translator doesn't handle page boundaries correctly
112          * there's little we can do about that here).  Therefore, do not
113          * trigger the unwinder.
114          *
115          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
116          */
117         pc = 0;
118         access_type = MMU_INST_FETCH;
119         mmap_unlock();
120         break;
121     }
122 
123     /* For synchronous signals we expect to be coming from the vCPU
124      * thread (so current_cpu should be valid) and either from running
125      * code or during translation which can fault as we cross pages.
126      *
127      * If neither is true then something has gone wrong and we should
128      * abort rather than try and restart the vCPU execution.
129      */
130     if (!cpu || !cpu->running) {
131         printf("qemu:%s received signal outside vCPU context @ pc=0x%"
132                PRIxPTR "\n",  __func__, pc);
133         abort();
134     }
135 
136 #if defined(DEBUG_SIGNAL)
137     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
138            pc, address, is_write, *(unsigned long *)old_set);
139 #endif
140     /* XXX: locking issue */
141     /* Note that it is important that we don't call page_unprotect() unless
142      * this is really a "write to nonwriteable page" fault, because
143      * page_unprotect() assumes that if it is called for an access to
144      * a page that's writeable this means we had two threads racing and
145      * another thread got there first and already made the page writeable;
146      * so we will retry the access. If we were to call page_unprotect()
147      * for some other kind of fault that should really be passed to the
148      * guest, we'd end up in an infinite loop of retrying the faulting
149      * access.
150      */
151     if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
152         h2g_valid(address)) {
153         switch (page_unprotect(h2g(address), pc)) {
154         case 0:
155             /* Fault not caused by a page marked unwritable to protect
156              * cached translations, must be the guest binary's problem.
157              */
158             break;
159         case 1:
160             /* Fault caused by protection of cached translation; TBs
161              * invalidated, so resume execution.  Retain helper_retaddr
162              * for a possible second fault.
163              */
164             return 1;
165         case 2:
166             /* Fault caused by protection of cached translation, and the
167              * currently executing TB was modified and must be exited
168              * immediately.  Clear helper_retaddr for next execution.
169              */
170             clear_helper_retaddr();
171             cpu_exit_tb_from_sighandler(cpu, old_set);
172             /* NORETURN */
173 
174         default:
175             g_assert_not_reached();
176         }
177     }
178 
179     /* Convert forcefully to guest address space, invalid addresses
180        are still valid segv ones */
181     address = h2g_nocheck(address);
182 
183     /*
184      * There is no way the target can handle this other than raising
185      * an exception.  Undo signal and retaddr state prior to longjmp.
186      */
187     sigprocmask(SIG_SETMASK, old_set, NULL);
188     clear_helper_retaddr();
189 
190     cc = CPU_GET_CLASS(cpu);
191     cc->tcg_ops->tlb_fill(cpu, address, 0, access_type,
192                           MMU_USER_IDX, false, pc);
193     g_assert_not_reached();
194 }
195 
196 static int probe_access_internal(CPUArchState *env, target_ulong addr,
197                                  int fault_size, MMUAccessType access_type,
198                                  bool nonfault, uintptr_t ra)
199 {
200     int flags;
201 
202     switch (access_type) {
203     case MMU_DATA_STORE:
204         flags = PAGE_WRITE;
205         break;
206     case MMU_DATA_LOAD:
207         flags = PAGE_READ;
208         break;
209     case MMU_INST_FETCH:
210         flags = PAGE_EXEC;
211         break;
212     default:
213         g_assert_not_reached();
214     }
215 
216     if (!guest_addr_valid_untagged(addr) ||
217         page_check_range(addr, 1, flags) < 0) {
218         if (nonfault) {
219             return TLB_INVALID_MASK;
220         } else {
221             CPUState *cpu = env_cpu(env);
222             CPUClass *cc = CPU_GET_CLASS(cpu);
223             cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
224                                   MMU_USER_IDX, false, ra);
225             g_assert_not_reached();
226         }
227     }
228     return 0;
229 }
230 
231 int probe_access_flags(CPUArchState *env, target_ulong addr,
232                        MMUAccessType access_type, int mmu_idx,
233                        bool nonfault, void **phost, uintptr_t ra)
234 {
235     int flags;
236 
237     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
238     *phost = flags ? NULL : g2h(env_cpu(env), addr);
239     return flags;
240 }
241 
242 void *probe_access(CPUArchState *env, target_ulong addr, int size,
243                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
244 {
245     int flags;
246 
247     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
248     flags = probe_access_internal(env, addr, size, access_type, false, ra);
249     g_assert(flags == 0);
250 
251     return size ? g2h(env_cpu(env), addr) : NULL;
252 }
253 
254 #if defined(__i386__)
255 
256 #if defined(__NetBSD__)
257 #include <ucontext.h>
258 
259 #define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
260 #define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
261 #define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
262 #define MASK_sig(context)    ((context)->uc_sigmask)
263 #elif defined(__FreeBSD__) || defined(__DragonFly__)
264 #include <ucontext.h>
265 
266 #define EIP_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
267 #define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
268 #define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
269 #define MASK_sig(context)    ((context)->uc_sigmask)
270 #elif defined(__OpenBSD__)
271 #define EIP_sig(context)     ((context)->sc_eip)
272 #define TRAP_sig(context)    ((context)->sc_trapno)
273 #define ERROR_sig(context)   ((context)->sc_err)
274 #define MASK_sig(context)    ((context)->sc_mask)
275 #else
276 #define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
277 #define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
278 #define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
279 #define MASK_sig(context)    ((context)->uc_sigmask)
280 #endif
281 
282 int cpu_signal_handler(int host_signum, void *pinfo,
283                        void *puc)
284 {
285     siginfo_t *info = pinfo;
286 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
287     ucontext_t *uc = puc;
288 #elif defined(__OpenBSD__)
289     struct sigcontext *uc = puc;
290 #else
291     ucontext_t *uc = puc;
292 #endif
293     unsigned long pc;
294     int trapno;
295 
296 #ifndef REG_EIP
297 /* for glibc 2.1 */
298 #define REG_EIP    EIP
299 #define REG_ERR    ERR
300 #define REG_TRAPNO TRAPNO
301 #endif
302     pc = EIP_sig(uc);
303     trapno = TRAP_sig(uc);
304     return handle_cpu_signal(pc, info,
305                              trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
306                              &MASK_sig(uc));
307 }
308 
309 #elif defined(__x86_64__)
310 
311 #ifdef __NetBSD__
312 #define PC_sig(context)       _UC_MACHINE_PC(context)
313 #define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
314 #define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
315 #define MASK_sig(context)     ((context)->uc_sigmask)
316 #elif defined(__OpenBSD__)
317 #define PC_sig(context)       ((context)->sc_rip)
318 #define TRAP_sig(context)     ((context)->sc_trapno)
319 #define ERROR_sig(context)    ((context)->sc_err)
320 #define MASK_sig(context)     ((context)->sc_mask)
321 #elif defined(__FreeBSD__) || defined(__DragonFly__)
322 #include <ucontext.h>
323 
324 #define PC_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
325 #define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
326 #define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
327 #define MASK_sig(context)     ((context)->uc_sigmask)
328 #else
329 #define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
330 #define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
331 #define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
332 #define MASK_sig(context)     ((context)->uc_sigmask)
333 #endif
334 
335 int cpu_signal_handler(int host_signum, void *pinfo,
336                        void *puc)
337 {
338     siginfo_t *info = pinfo;
339     unsigned long pc;
340 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
341     ucontext_t *uc = puc;
342 #elif defined(__OpenBSD__)
343     struct sigcontext *uc = puc;
344 #else
345     ucontext_t *uc = puc;
346 #endif
347 
348     pc = PC_sig(uc);
349     return handle_cpu_signal(pc, info,
350                              TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
351                              &MASK_sig(uc));
352 }
353 
354 #elif defined(_ARCH_PPC)
355 
356 /***********************************************************************
357  * signal context platform-specific definitions
358  * From Wine
359  */
360 #ifdef linux
361 /* All Registers access - only for local access */
362 #define REG_sig(reg_name, context)              \
363     ((context)->uc_mcontext.regs->reg_name)
364 /* Gpr Registers access  */
365 #define GPR_sig(reg_num, context)              REG_sig(gpr[reg_num], context)
366 /* Program counter */
367 #define IAR_sig(context)                       REG_sig(nip, context)
368 /* Machine State Register (Supervisor) */
369 #define MSR_sig(context)                       REG_sig(msr, context)
370 /* Count register */
371 #define CTR_sig(context)                       REG_sig(ctr, context)
372 /* User's integer exception register */
373 #define XER_sig(context)                       REG_sig(xer, context)
374 /* Link register */
375 #define LR_sig(context)                        REG_sig(link, context)
376 /* Condition register */
377 #define CR_sig(context)                        REG_sig(ccr, context)
378 
379 /* Float Registers access  */
380 #define FLOAT_sig(reg_num, context)                                     \
381     (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
382 #define FPSCR_sig(context) \
383     (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
384 /* Exception Registers access */
385 #define DAR_sig(context)                       REG_sig(dar, context)
386 #define DSISR_sig(context)                     REG_sig(dsisr, context)
387 #define TRAP_sig(context)                      REG_sig(trap, context)
388 #endif /* linux */
389 
390 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
391 #include <ucontext.h>
392 #define IAR_sig(context)               ((context)->uc_mcontext.mc_srr0)
393 #define MSR_sig(context)               ((context)->uc_mcontext.mc_srr1)
394 #define CTR_sig(context)               ((context)->uc_mcontext.mc_ctr)
395 #define XER_sig(context)               ((context)->uc_mcontext.mc_xer)
396 #define LR_sig(context)                ((context)->uc_mcontext.mc_lr)
397 #define CR_sig(context)                ((context)->uc_mcontext.mc_cr)
398 /* Exception Registers access */
399 #define DAR_sig(context)               ((context)->uc_mcontext.mc_dar)
400 #define DSISR_sig(context)             ((context)->uc_mcontext.mc_dsisr)
401 #define TRAP_sig(context)              ((context)->uc_mcontext.mc_exc)
402 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
403 
404 int cpu_signal_handler(int host_signum, void *pinfo,
405                        void *puc)
406 {
407     siginfo_t *info = pinfo;
408 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
409     ucontext_t *uc = puc;
410 #else
411     ucontext_t *uc = puc;
412 #endif
413     unsigned long pc;
414     int is_write;
415 
416     pc = IAR_sig(uc);
417     is_write = 0;
418 #if 0
419     /* ppc 4xx case */
420     if (DSISR_sig(uc) & 0x00800000) {
421         is_write = 1;
422     }
423 #else
424     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
425         is_write = 1;
426     }
427 #endif
428     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
429 }
430 
431 #elif defined(__alpha__)
432 
433 int cpu_signal_handler(int host_signum, void *pinfo,
434                            void *puc)
435 {
436     siginfo_t *info = pinfo;
437     ucontext_t *uc = puc;
438     uint32_t *pc = uc->uc_mcontext.sc_pc;
439     uint32_t insn = *pc;
440     int is_write = 0;
441 
442     /* XXX: need kernel patch to get write flag faster */
443     switch (insn >> 26) {
444     case 0x0d: /* stw */
445     case 0x0e: /* stb */
446     case 0x0f: /* stq_u */
447     case 0x24: /* stf */
448     case 0x25: /* stg */
449     case 0x26: /* sts */
450     case 0x27: /* stt */
451     case 0x2c: /* stl */
452     case 0x2d: /* stq */
453     case 0x2e: /* stl_c */
454     case 0x2f: /* stq_c */
455         is_write = 1;
456     }
457 
458     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
459 }
460 #elif defined(__sparc__)
461 
462 int cpu_signal_handler(int host_signum, void *pinfo,
463                        void *puc)
464 {
465     siginfo_t *info = pinfo;
466     int is_write;
467     uint32_t insn;
468 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
469     uint32_t *regs = (uint32_t *)(info + 1);
470     void *sigmask = (regs + 20);
471     /* XXX: is there a standard glibc define ? */
472     unsigned long pc = regs[1];
473 #else
474 #ifdef __linux__
475     struct sigcontext *sc = puc;
476     unsigned long pc = sc->sigc_regs.tpc;
477     void *sigmask = (void *)sc->sigc_mask;
478 #elif defined(__OpenBSD__)
479     struct sigcontext *uc = puc;
480     unsigned long pc = uc->sc_pc;
481     void *sigmask = (void *)(long)uc->sc_mask;
482 #elif defined(__NetBSD__)
483     ucontext_t *uc = puc;
484     unsigned long pc = _UC_MACHINE_PC(uc);
485     void *sigmask = (void *)&uc->uc_sigmask;
486 #endif
487 #endif
488 
489     /* XXX: need kernel patch to get write flag faster */
490     is_write = 0;
491     insn = *(uint32_t *)pc;
492     if ((insn >> 30) == 3) {
493         switch ((insn >> 19) & 0x3f) {
494         case 0x05: /* stb */
495         case 0x15: /* stba */
496         case 0x06: /* sth */
497         case 0x16: /* stha */
498         case 0x04: /* st */
499         case 0x14: /* sta */
500         case 0x07: /* std */
501         case 0x17: /* stda */
502         case 0x0e: /* stx */
503         case 0x1e: /* stxa */
504         case 0x24: /* stf */
505         case 0x34: /* stfa */
506         case 0x27: /* stdf */
507         case 0x37: /* stdfa */
508         case 0x26: /* stqf */
509         case 0x36: /* stqfa */
510         case 0x25: /* stfsr */
511         case 0x3c: /* casa */
512         case 0x3e: /* casxa */
513             is_write = 1;
514             break;
515         }
516     }
517     return handle_cpu_signal(pc, info, is_write, sigmask);
518 }
519 
520 #elif defined(__arm__)
521 
522 #if defined(__NetBSD__)
523 #include <ucontext.h>
524 #include <sys/siginfo.h>
525 #endif
526 
527 int cpu_signal_handler(int host_signum, void *pinfo,
528                        void *puc)
529 {
530     siginfo_t *info = pinfo;
531 #if defined(__NetBSD__)
532     ucontext_t *uc = puc;
533     siginfo_t *si = pinfo;
534 #else
535     ucontext_t *uc = puc;
536 #endif
537     unsigned long pc;
538     uint32_t fsr;
539     int is_write;
540 
541 #if defined(__NetBSD__)
542     pc = uc->uc_mcontext.__gregs[_REG_R15];
543 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
544     pc = uc->uc_mcontext.gregs[R15];
545 #else
546     pc = uc->uc_mcontext.arm_pc;
547 #endif
548 
549 #ifdef __NetBSD__
550     fsr = si->si_trap;
551 #else
552     fsr = uc->uc_mcontext.error_code;
553 #endif
554     /*
555      * In the FSR, bit 11 is WnR, assuming a v6 or
556      * later processor.  On v5 we will always report
557      * this as a read, which will fail later.
558      */
559     is_write = extract32(fsr, 11, 1);
560     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
561 }
562 
563 #elif defined(__aarch64__)
564 
565 #if defined(__NetBSD__)
566 
567 #include <ucontext.h>
568 #include <sys/siginfo.h>
569 
570 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
571 {
572     ucontext_t *uc = puc;
573     siginfo_t *si = pinfo;
574     unsigned long pc;
575     int is_write;
576     uint32_t esr;
577 
578     pc = uc->uc_mcontext.__gregs[_REG_PC];
579     esr = si->si_trap;
580 
581     /*
582      * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
583      * is 0b10010x: then bit 6 is the WnR bit
584      */
585     is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
586     return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
587 }
588 
589 #else
590 
591 #ifndef ESR_MAGIC
592 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
593 #define ESR_MAGIC 0x45535201
594 struct esr_context {
595     struct _aarch64_ctx head;
596     uint64_t esr;
597 };
598 #endif
599 
600 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
601 {
602     return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
603 }
604 
605 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
606 {
607     return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
608 }
609 
610 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
611 {
612     siginfo_t *info = pinfo;
613     ucontext_t *uc = puc;
614     uintptr_t pc = uc->uc_mcontext.pc;
615     bool is_write;
616     struct _aarch64_ctx *hdr;
617     struct esr_context const *esrctx = NULL;
618 
619     /* Find the esr_context, which has the WnR bit in it */
620     for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
621         if (hdr->magic == ESR_MAGIC) {
622             esrctx = (struct esr_context const *)hdr;
623             break;
624         }
625     }
626 
627     if (esrctx) {
628         /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
629         uint64_t esr = esrctx->esr;
630         is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
631     } else {
632         /*
633          * Fall back to parsing instructions; will only be needed
634          * for really ancient (pre-3.16) kernels.
635          */
636         uint32_t insn = *(uint32_t *)pc;
637 
638         is_write = ((insn & 0xbfff0000) == 0x0c000000   /* C3.3.1 */
639                     || (insn & 0xbfe00000) == 0x0c800000   /* C3.3.2 */
640                     || (insn & 0xbfdf0000) == 0x0d000000   /* C3.3.3 */
641                     || (insn & 0xbfc00000) == 0x0d800000   /* C3.3.4 */
642                     || (insn & 0x3f400000) == 0x08000000   /* C3.3.6 */
643                     || (insn & 0x3bc00000) == 0x39000000   /* C3.3.13 */
644                     || (insn & 0x3fc00000) == 0x3d800000   /* ... 128bit */
645                     /* Ignore bits 10, 11 & 21, controlling indexing.  */
646                     || (insn & 0x3bc00000) == 0x38000000   /* C3.3.8-12 */
647                     || (insn & 0x3fe00000) == 0x3c800000   /* ... 128bit */
648                     /* Ignore bits 23 & 24, controlling indexing.  */
649                     || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
650     }
651     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
652 }
653 #endif
654 
655 #elif defined(__s390__)
656 
657 int cpu_signal_handler(int host_signum, void *pinfo,
658                        void *puc)
659 {
660     siginfo_t *info = pinfo;
661     ucontext_t *uc = puc;
662     unsigned long pc;
663     uint16_t *pinsn;
664     int is_write = 0;
665 
666     pc = uc->uc_mcontext.psw.addr;
667 
668     /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
669        of the normal 2 arguments.  The 3rd argument contains the "int_code"
670        from the hardware which does in fact contain the is_write value.
671        The rt signal handler, as far as I can tell, does not give this value
672        at all.  Not that we could get to it from here even if it were.  */
673     /* ??? This is not even close to complete, since it ignores all
674        of the read-modify-write instructions.  */
675     pinsn = (uint16_t *)pc;
676     switch (pinsn[0] >> 8) {
677     case 0x50: /* ST */
678     case 0x42: /* STC */
679     case 0x40: /* STH */
680         is_write = 1;
681         break;
682     case 0xc4: /* RIL format insns */
683         switch (pinsn[0] & 0xf) {
684         case 0xf: /* STRL */
685         case 0xb: /* STGRL */
686         case 0x7: /* STHRL */
687             is_write = 1;
688         }
689         break;
690     case 0xe3: /* RXY format insns */
691         switch (pinsn[2] & 0xff) {
692         case 0x50: /* STY */
693         case 0x24: /* STG */
694         case 0x72: /* STCY */
695         case 0x70: /* STHY */
696         case 0x8e: /* STPQ */
697         case 0x3f: /* STRVH */
698         case 0x3e: /* STRV */
699         case 0x2f: /* STRVG */
700             is_write = 1;
701         }
702         break;
703     }
704     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
705 }
706 
707 #elif defined(__mips__)
708 
709 #if defined(__misp16) || defined(__mips_micromips)
710 #error "Unsupported encoding"
711 #endif
712 
713 int cpu_signal_handler(int host_signum, void *pinfo,
714                        void *puc)
715 {
716     siginfo_t *info = pinfo;
717     ucontext_t *uc = puc;
718     uintptr_t pc = uc->uc_mcontext.pc;
719     uint32_t insn = *(uint32_t *)pc;
720     int is_write = 0;
721 
722     /* Detect all store instructions at program counter. */
723     switch((insn >> 26) & 077) {
724     case 050: /* SB */
725     case 051: /* SH */
726     case 052: /* SWL */
727     case 053: /* SW */
728     case 054: /* SDL */
729     case 055: /* SDR */
730     case 056: /* SWR */
731     case 070: /* SC */
732     case 071: /* SWC1 */
733     case 074: /* SCD */
734     case 075: /* SDC1 */
735     case 077: /* SD */
736 #if !defined(__mips_isa_rev) || __mips_isa_rev < 6
737     case 072: /* SWC2 */
738     case 076: /* SDC2 */
739 #endif
740         is_write = 1;
741         break;
742     case 023: /* COP1X */
743         /* Required in all versions of MIPS64 since
744            MIPS64r1 and subsequent versions of MIPS32r2. */
745         switch (insn & 077) {
746         case 010: /* SWXC1 */
747         case 011: /* SDXC1 */
748         case 015: /* SUXC1 */
749             is_write = 1;
750         }
751         break;
752     }
753 
754     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
755 }
756 
757 #elif defined(__riscv)
758 
759 int cpu_signal_handler(int host_signum, void *pinfo,
760                        void *puc)
761 {
762     siginfo_t *info = pinfo;
763     ucontext_t *uc = puc;
764     greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
765     uint32_t insn = *(uint32_t *)pc;
766     int is_write = 0;
767 
768     /* Detect store by reading the instruction at the program
769        counter. Note: we currently only generate 32-bit
770        instructions so we thus only detect 32-bit stores */
771     switch (((insn >> 0) & 0b11)) {
772     case 3:
773         switch (((insn >> 2) & 0b11111)) {
774         case 8:
775             switch (((insn >> 12) & 0b111)) {
776             case 0: /* sb */
777             case 1: /* sh */
778             case 2: /* sw */
779             case 3: /* sd */
780             case 4: /* sq */
781                 is_write = 1;
782                 break;
783             default:
784                 break;
785             }
786             break;
787         case 9:
788             switch (((insn >> 12) & 0b111)) {
789             case 2: /* fsw */
790             case 3: /* fsd */
791             case 4: /* fsq */
792                 is_write = 1;
793                 break;
794             default:
795                 break;
796             }
797             break;
798         default:
799             break;
800         }
801     }
802 
803     /* Check for compressed instructions */
804     switch (((insn >> 13) & 0b111)) {
805     case 7:
806         switch (insn & 0b11) {
807         case 0: /*c.sd */
808         case 2: /* c.sdsp */
809             is_write = 1;
810             break;
811         default:
812             break;
813         }
814         break;
815     case 6:
816         switch (insn & 0b11) {
817         case 0: /* c.sw */
818         case 3: /* c.swsp */
819             is_write = 1;
820             break;
821         default:
822             break;
823         }
824         break;
825     default:
826         break;
827     }
828 
829     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
830 }
831 
832 #else
833 
834 #error host CPU specific signal handler needed
835 
836 #endif
837 
838 /* The softmmu versions of these helpers are in cputlb.c.  */
839 
840 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
841 {
842     uint32_t ret;
843     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
844 
845     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
846     ret = ldub_p(g2h(env_cpu(env), ptr));
847     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
848     return ret;
849 }
850 
851 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
852 {
853     int ret;
854     uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
855 
856     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
857     ret = ldsb_p(g2h(env_cpu(env), ptr));
858     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
859     return ret;
860 }
861 
862 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
863 {
864     uint32_t ret;
865     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
866 
867     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
868     ret = lduw_be_p(g2h(env_cpu(env), ptr));
869     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
870     return ret;
871 }
872 
873 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
874 {
875     int ret;
876     uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
877 
878     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
879     ret = ldsw_be_p(g2h(env_cpu(env), ptr));
880     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
881     return ret;
882 }
883 
884 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
885 {
886     uint32_t ret;
887     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
888 
889     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
890     ret = ldl_be_p(g2h(env_cpu(env), ptr));
891     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
892     return ret;
893 }
894 
895 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
896 {
897     uint64_t ret;
898     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
899 
900     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
901     ret = ldq_be_p(g2h(env_cpu(env), ptr));
902     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
903     return ret;
904 }
905 
906 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
907 {
908     uint32_t ret;
909     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
910 
911     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
912     ret = lduw_le_p(g2h(env_cpu(env), ptr));
913     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
914     return ret;
915 }
916 
917 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
918 {
919     int ret;
920     uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
921 
922     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
923     ret = ldsw_le_p(g2h(env_cpu(env), ptr));
924     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
925     return ret;
926 }
927 
928 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
929 {
930     uint32_t ret;
931     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
932 
933     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
934     ret = ldl_le_p(g2h(env_cpu(env), ptr));
935     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
936     return ret;
937 }
938 
939 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
940 {
941     uint64_t ret;
942     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
943 
944     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
945     ret = ldq_le_p(g2h(env_cpu(env), ptr));
946     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
947     return ret;
948 }
949 
950 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
951 {
952     uint32_t ret;
953 
954     set_helper_retaddr(retaddr);
955     ret = cpu_ldub_data(env, ptr);
956     clear_helper_retaddr();
957     return ret;
958 }
959 
960 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
961 {
962     int ret;
963 
964     set_helper_retaddr(retaddr);
965     ret = cpu_ldsb_data(env, ptr);
966     clear_helper_retaddr();
967     return ret;
968 }
969 
970 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
971 {
972     uint32_t ret;
973 
974     set_helper_retaddr(retaddr);
975     ret = cpu_lduw_be_data(env, ptr);
976     clear_helper_retaddr();
977     return ret;
978 }
979 
980 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
981 {
982     int ret;
983 
984     set_helper_retaddr(retaddr);
985     ret = cpu_ldsw_be_data(env, ptr);
986     clear_helper_retaddr();
987     return ret;
988 }
989 
990 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
991 {
992     uint32_t ret;
993 
994     set_helper_retaddr(retaddr);
995     ret = cpu_ldl_be_data(env, ptr);
996     clear_helper_retaddr();
997     return ret;
998 }
999 
1000 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1001 {
1002     uint64_t ret;
1003 
1004     set_helper_retaddr(retaddr);
1005     ret = cpu_ldq_be_data(env, ptr);
1006     clear_helper_retaddr();
1007     return ret;
1008 }
1009 
1010 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1011 {
1012     uint32_t ret;
1013 
1014     set_helper_retaddr(retaddr);
1015     ret = cpu_lduw_le_data(env, ptr);
1016     clear_helper_retaddr();
1017     return ret;
1018 }
1019 
1020 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1021 {
1022     int ret;
1023 
1024     set_helper_retaddr(retaddr);
1025     ret = cpu_ldsw_le_data(env, ptr);
1026     clear_helper_retaddr();
1027     return ret;
1028 }
1029 
1030 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1031 {
1032     uint32_t ret;
1033 
1034     set_helper_retaddr(retaddr);
1035     ret = cpu_ldl_le_data(env, ptr);
1036     clear_helper_retaddr();
1037     return ret;
1038 }
1039 
1040 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1041 {
1042     uint64_t ret;
1043 
1044     set_helper_retaddr(retaddr);
1045     ret = cpu_ldq_le_data(env, ptr);
1046     clear_helper_retaddr();
1047     return ret;
1048 }
1049 
1050 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1051 {
1052     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1053 
1054     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1055     stb_p(g2h(env_cpu(env), ptr), val);
1056     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1057 }
1058 
1059 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1060 {
1061     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1062 
1063     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1064     stw_be_p(g2h(env_cpu(env), ptr), val);
1065     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1066 }
1067 
1068 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1069 {
1070     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1071 
1072     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1073     stl_be_p(g2h(env_cpu(env), ptr), val);
1074     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1075 }
1076 
1077 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1078 {
1079     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1080 
1081     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1082     stq_be_p(g2h(env_cpu(env), ptr), val);
1083     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1084 }
1085 
1086 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1087 {
1088     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1089 
1090     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1091     stw_le_p(g2h(env_cpu(env), ptr), val);
1092     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1093 }
1094 
1095 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1096 {
1097     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1098 
1099     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1100     stl_le_p(g2h(env_cpu(env), ptr), val);
1101     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1102 }
1103 
1104 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1105 {
1106     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1107 
1108     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1109     stq_le_p(g2h(env_cpu(env), ptr), val);
1110     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1111 }
1112 
1113 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1114                      uint32_t val, uintptr_t retaddr)
1115 {
1116     set_helper_retaddr(retaddr);
1117     cpu_stb_data(env, ptr, val);
1118     clear_helper_retaddr();
1119 }
1120 
1121 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1122                         uint32_t val, uintptr_t retaddr)
1123 {
1124     set_helper_retaddr(retaddr);
1125     cpu_stw_be_data(env, ptr, val);
1126     clear_helper_retaddr();
1127 }
1128 
1129 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1130                         uint32_t val, uintptr_t retaddr)
1131 {
1132     set_helper_retaddr(retaddr);
1133     cpu_stl_be_data(env, ptr, val);
1134     clear_helper_retaddr();
1135 }
1136 
1137 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1138                         uint64_t val, uintptr_t retaddr)
1139 {
1140     set_helper_retaddr(retaddr);
1141     cpu_stq_be_data(env, ptr, val);
1142     clear_helper_retaddr();
1143 }
1144 
1145 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1146                         uint32_t val, uintptr_t retaddr)
1147 {
1148     set_helper_retaddr(retaddr);
1149     cpu_stw_le_data(env, ptr, val);
1150     clear_helper_retaddr();
1151 }
1152 
1153 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1154                         uint32_t val, uintptr_t retaddr)
1155 {
1156     set_helper_retaddr(retaddr);
1157     cpu_stl_le_data(env, ptr, val);
1158     clear_helper_retaddr();
1159 }
1160 
1161 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1162                         uint64_t val, uintptr_t retaddr)
1163 {
1164     set_helper_retaddr(retaddr);
1165     cpu_stq_le_data(env, ptr, val);
1166     clear_helper_retaddr();
1167 }
1168 
1169 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1170 {
1171     uint32_t ret;
1172 
1173     set_helper_retaddr(1);
1174     ret = ldub_p(g2h_untagged(ptr));
1175     clear_helper_retaddr();
1176     return ret;
1177 }
1178 
1179 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1180 {
1181     uint32_t ret;
1182 
1183     set_helper_retaddr(1);
1184     ret = lduw_p(g2h_untagged(ptr));
1185     clear_helper_retaddr();
1186     return ret;
1187 }
1188 
1189 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1190 {
1191     uint32_t ret;
1192 
1193     set_helper_retaddr(1);
1194     ret = ldl_p(g2h_untagged(ptr));
1195     clear_helper_retaddr();
1196     return ret;
1197 }
1198 
1199 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1200 {
1201     uint64_t ret;
1202 
1203     set_helper_retaddr(1);
1204     ret = ldq_p(g2h_untagged(ptr));
1205     clear_helper_retaddr();
1206     return ret;
1207 }
1208 
1209 /* Do not allow unaligned operations to proceed.  Return the host address.  */
1210 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1211                                int size, uintptr_t retaddr)
1212 {
1213     /* Enforce qemu required alignment.  */
1214     if (unlikely(addr & (size - 1))) {
1215         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1216     }
1217     void *ret = g2h(env_cpu(env), addr);
1218     set_helper_retaddr(retaddr);
1219     return ret;
1220 }
1221 
1222 /* Macro to call the above, with local variables from the use context.  */
1223 #define ATOMIC_MMU_DECLS do {} while (0)
1224 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1225 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1226 #define ATOMIC_MMU_IDX MMU_USER_IDX
1227 
1228 #define ATOMIC_NAME(X)   HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1229 #define EXTRA_ARGS
1230 
1231 #include "atomic_common.c.inc"
1232 
1233 #define DATA_SIZE 1
1234 #include "atomic_template.h"
1235 
1236 #define DATA_SIZE 2
1237 #include "atomic_template.h"
1238 
1239 #define DATA_SIZE 4
1240 #include "atomic_template.h"
1241 
1242 #ifdef CONFIG_ATOMIC64
1243 #define DATA_SIZE 8
1244 #include "atomic_template.h"
1245 #endif
1246 
1247 /* The following is only callable from other helpers, and matches up
1248    with the softmmu version.  */
1249 
1250 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1251 
1252 #undef EXTRA_ARGS
1253 #undef ATOMIC_NAME
1254 #undef ATOMIC_MMU_LOOKUP
1255 
1256 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1257 #define ATOMIC_NAME(X) \
1258     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1259 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1260 
1261 #define DATA_SIZE 16
1262 #include "atomic_template.h"
1263 #endif
1264