xref: /qemu/accel/tcg/user-exec.c (revision b83a80e8)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "tcg/tcg-ldst.h"
31 #include "internal.h"
32 
33 __thread uintptr_t helper_retaddr;
34 
35 //#define DEBUG_SIGNAL
36 
37 /*
38  * Adjust the pc to pass to cpu_restore_state; return the memop type.
39  */
40 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
41 {
42     switch (helper_retaddr) {
43     default:
44         /*
45          * Fault during host memory operation within a helper function.
46          * The helper's host return address, saved here, gives us a
47          * pointer into the generated code that will unwind to the
48          * correct guest pc.
49          */
50         *pc = helper_retaddr;
51         break;
52 
53     case 0:
54         /*
55          * Fault during host memory operation within generated code.
56          * (Or, a unrelated bug within qemu, but we can't tell from here).
57          *
58          * We take the host pc from the signal frame.  However, we cannot
59          * use that value directly.  Within cpu_restore_state_from_tb, we
60          * assume PC comes from GETPC(), as used by the helper functions,
61          * so we adjust the address by -GETPC_ADJ to form an address that
62          * is within the call insn, so that the address does not accidentally
63          * match the beginning of the next guest insn.  However, when the
64          * pc comes from the signal frame it points to the actual faulting
65          * host memory insn and not the return from a call insn.
66          *
67          * Therefore, adjust to compensate for what will be done later
68          * by cpu_restore_state_from_tb.
69          */
70         *pc += GETPC_ADJ;
71         break;
72 
73     case 1:
74         /*
75          * Fault during host read for translation, or loosely, "execution".
76          *
77          * The guest pc is already pointing to the start of the TB for which
78          * code is being generated.  If the guest translator manages the
79          * page crossings correctly, this is exactly the correct address
80          * (and if the translator doesn't handle page boundaries correctly
81          * there's little we can do about that here).  Therefore, do not
82          * trigger the unwinder.
83          *
84          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
85          */
86         mmap_unlock();
87         *pc = 0;
88         return MMU_INST_FETCH;
89     }
90 
91     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
92 }
93 
94 /**
95  * handle_sigsegv_accerr_write:
96  * @cpu: the cpu context
97  * @old_set: the sigset_t from the signal ucontext_t
98  * @host_pc: the host pc, adjusted for the signal
99  * @guest_addr: the guest address of the fault
100  *
101  * Return true if the write fault has been handled, and should be re-tried.
102  *
103  * Note that it is important that we don't call page_unprotect() unless
104  * this is really a "write to nonwriteable page" fault, because
105  * page_unprotect() assumes that if it is called for an access to
106  * a page that's writeable this means we had two threads racing and
107  * another thread got there first and already made the page writeable;
108  * so we will retry the access. If we were to call page_unprotect()
109  * for some other kind of fault that should really be passed to the
110  * guest, we'd end up in an infinite loop of retrying the faulting access.
111  */
112 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
113                                  uintptr_t host_pc, abi_ptr guest_addr)
114 {
115     switch (page_unprotect(guest_addr, host_pc)) {
116     case 0:
117         /*
118          * Fault not caused by a page marked unwritable to protect
119          * cached translations, must be the guest binary's problem.
120          */
121         return false;
122     case 1:
123         /*
124          * Fault caused by protection of cached translation; TBs
125          * invalidated, so resume execution.
126          */
127         return true;
128     case 2:
129         /*
130          * Fault caused by protection of cached translation, and the
131          * currently executing TB was modified and must be exited immediately.
132          */
133         sigprocmask(SIG_SETMASK, old_set, NULL);
134         cpu_loop_exit_noexc(cpu);
135         /* NORETURN */
136     default:
137         g_assert_not_reached();
138     }
139 }
140 
141 static int probe_access_internal(CPUArchState *env, target_ulong addr,
142                                  int fault_size, MMUAccessType access_type,
143                                  bool nonfault, uintptr_t ra)
144 {
145     int acc_flag;
146     bool maperr;
147 
148     switch (access_type) {
149     case MMU_DATA_STORE:
150         acc_flag = PAGE_WRITE_ORG;
151         break;
152     case MMU_DATA_LOAD:
153         acc_flag = PAGE_READ;
154         break;
155     case MMU_INST_FETCH:
156         acc_flag = PAGE_EXEC;
157         break;
158     default:
159         g_assert_not_reached();
160     }
161 
162     if (guest_addr_valid_untagged(addr)) {
163         int page_flags = page_get_flags(addr);
164         if (page_flags & acc_flag) {
165             return 0; /* success */
166         }
167         maperr = !(page_flags & PAGE_VALID);
168     } else {
169         maperr = true;
170     }
171 
172     if (nonfault) {
173         return TLB_INVALID_MASK;
174     }
175 
176     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
177 }
178 
179 int probe_access_flags(CPUArchState *env, target_ulong addr,
180                        MMUAccessType access_type, int mmu_idx,
181                        bool nonfault, void **phost, uintptr_t ra)
182 {
183     int flags;
184 
185     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
186     *phost = flags ? NULL : g2h(env_cpu(env), addr);
187     return flags;
188 }
189 
190 void *probe_access(CPUArchState *env, target_ulong addr, int size,
191                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
192 {
193     int flags;
194 
195     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
196     flags = probe_access_internal(env, addr, size, access_type, false, ra);
197     g_assert(flags == 0);
198 
199     return size ? g2h(env_cpu(env), addr) : NULL;
200 }
201 
202 /* The softmmu versions of these helpers are in cputlb.c.  */
203 
204 /*
205  * Verify that we have passed the correct MemOp to the correct function.
206  *
207  * We could present one function to target code, and dispatch based on
208  * the MemOp, but so far we have worked hard to avoid an indirect function
209  * call along the memory path.
210  */
211 static void validate_memop(MemOpIdx oi, MemOp expected)
212 {
213 #ifdef CONFIG_DEBUG_TCG
214     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
215     assert(have == expected);
216 #endif
217 }
218 
219 void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
220 {
221     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
222 }
223 
224 void helper_unaligned_st(CPUArchState *env, target_ulong addr)
225 {
226     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
227 }
228 
229 static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
230                             MemOpIdx oi, uintptr_t ra, MMUAccessType type)
231 {
232     MemOp mop = get_memop(oi);
233     int a_bits = get_alignment_bits(mop);
234     void *ret;
235 
236     /* Enforce guest required alignment.  */
237     if (unlikely(addr & ((1 << a_bits) - 1))) {
238         cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
239     }
240 
241     ret = g2h(env_cpu(env), addr);
242     set_helper_retaddr(ra);
243     return ret;
244 }
245 
246 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
247                     MemOpIdx oi, uintptr_t ra)
248 {
249     void *haddr;
250     uint8_t ret;
251 
252     validate_memop(oi, MO_UB);
253     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
254     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
255     ret = ldub_p(haddr);
256     clear_helper_retaddr();
257     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
258     return ret;
259 }
260 
261 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
262                         MemOpIdx oi, uintptr_t ra)
263 {
264     void *haddr;
265     uint16_t ret;
266 
267     validate_memop(oi, MO_BEUW);
268     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
269     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
270     ret = lduw_be_p(haddr);
271     clear_helper_retaddr();
272     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
273     return ret;
274 }
275 
276 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
277                         MemOpIdx oi, uintptr_t ra)
278 {
279     void *haddr;
280     uint32_t ret;
281 
282     validate_memop(oi, MO_BEUL);
283     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
284     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
285     ret = ldl_be_p(haddr);
286     clear_helper_retaddr();
287     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
288     return ret;
289 }
290 
291 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
292                         MemOpIdx oi, uintptr_t ra)
293 {
294     void *haddr;
295     uint64_t ret;
296 
297     validate_memop(oi, MO_BEUQ);
298     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
299     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
300     ret = ldq_be_p(haddr);
301     clear_helper_retaddr();
302     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
303     return ret;
304 }
305 
306 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
307                         MemOpIdx oi, uintptr_t ra)
308 {
309     void *haddr;
310     uint16_t ret;
311 
312     validate_memop(oi, MO_LEUW);
313     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
314     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
315     ret = lduw_le_p(haddr);
316     clear_helper_retaddr();
317     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
318     return ret;
319 }
320 
321 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
322                         MemOpIdx oi, uintptr_t ra)
323 {
324     void *haddr;
325     uint32_t ret;
326 
327     validate_memop(oi, MO_LEUL);
328     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
329     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
330     ret = ldl_le_p(haddr);
331     clear_helper_retaddr();
332     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
333     return ret;
334 }
335 
336 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
337                         MemOpIdx oi, uintptr_t ra)
338 {
339     void *haddr;
340     uint64_t ret;
341 
342     validate_memop(oi, MO_LEUQ);
343     trace_guest_ld_before_exec(env_cpu(env), addr, oi);
344     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
345     ret = ldq_le_p(haddr);
346     clear_helper_retaddr();
347     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
348     return ret;
349 }
350 
351 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
352                  MemOpIdx oi, uintptr_t ra)
353 {
354     void *haddr;
355 
356     validate_memop(oi, MO_UB);
357     trace_guest_st_before_exec(env_cpu(env), addr, oi);
358     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
359     stb_p(haddr, val);
360     clear_helper_retaddr();
361     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
362 }
363 
364 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
365                     MemOpIdx oi, uintptr_t ra)
366 {
367     void *haddr;
368 
369     validate_memop(oi, MO_BEUW);
370     trace_guest_st_before_exec(env_cpu(env), addr, oi);
371     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
372     stw_be_p(haddr, val);
373     clear_helper_retaddr();
374     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
375 }
376 
377 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
378                     MemOpIdx oi, uintptr_t ra)
379 {
380     void *haddr;
381 
382     validate_memop(oi, MO_BEUL);
383     trace_guest_st_before_exec(env_cpu(env), addr, oi);
384     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
385     stl_be_p(haddr, val);
386     clear_helper_retaddr();
387     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
388 }
389 
390 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
391                     MemOpIdx oi, uintptr_t ra)
392 {
393     void *haddr;
394 
395     validate_memop(oi, MO_BEUQ);
396     trace_guest_st_before_exec(env_cpu(env), addr, oi);
397     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
398     stq_be_p(haddr, val);
399     clear_helper_retaddr();
400     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
401 }
402 
403 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
404                     MemOpIdx oi, uintptr_t ra)
405 {
406     void *haddr;
407 
408     validate_memop(oi, MO_LEUW);
409     trace_guest_st_before_exec(env_cpu(env), addr, oi);
410     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
411     stw_le_p(haddr, val);
412     clear_helper_retaddr();
413     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
414 }
415 
416 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
417                     MemOpIdx oi, uintptr_t ra)
418 {
419     void *haddr;
420 
421     validate_memop(oi, MO_LEUL);
422     trace_guest_st_before_exec(env_cpu(env), addr, oi);
423     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
424     stl_le_p(haddr, val);
425     clear_helper_retaddr();
426     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
427 }
428 
429 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
430                     MemOpIdx oi, uintptr_t ra)
431 {
432     void *haddr;
433 
434     validate_memop(oi, MO_LEUQ);
435     trace_guest_st_before_exec(env_cpu(env), addr, oi);
436     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
437     stq_le_p(haddr, val);
438     clear_helper_retaddr();
439     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
440 }
441 
442 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
443 {
444     uint32_t ret;
445 
446     set_helper_retaddr(1);
447     ret = ldub_p(g2h_untagged(ptr));
448     clear_helper_retaddr();
449     return ret;
450 }
451 
452 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
453 {
454     uint32_t ret;
455 
456     set_helper_retaddr(1);
457     ret = lduw_p(g2h_untagged(ptr));
458     clear_helper_retaddr();
459     return ret;
460 }
461 
462 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
463 {
464     uint32_t ret;
465 
466     set_helper_retaddr(1);
467     ret = ldl_p(g2h_untagged(ptr));
468     clear_helper_retaddr();
469     return ret;
470 }
471 
472 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
473 {
474     uint64_t ret;
475 
476     set_helper_retaddr(1);
477     ret = ldq_p(g2h_untagged(ptr));
478     clear_helper_retaddr();
479     return ret;
480 }
481 
482 #include "ldst_common.c.inc"
483 
484 /*
485  * Do not allow unaligned operations to proceed.  Return the host address.
486  *
487  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
488  */
489 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
490                                MemOpIdx oi, int size, int prot,
491                                uintptr_t retaddr)
492 {
493     MemOp mop = get_memop(oi);
494     int a_bits = get_alignment_bits(mop);
495     void *ret;
496 
497     /* Enforce guest required alignment.  */
498     if (unlikely(addr & ((1 << a_bits) - 1))) {
499         MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
500         cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
501     }
502 
503     /* Enforce qemu required alignment.  */
504     if (unlikely(addr & (size - 1))) {
505         cpu_loop_exit_atomic(env_cpu(env), retaddr);
506     }
507 
508     ret = g2h(env_cpu(env), addr);
509     set_helper_retaddr(retaddr);
510     return ret;
511 }
512 
513 #include "atomic_common.c.inc"
514 
515 /*
516  * First set of functions passes in OI and RETADDR.
517  * This makes them callable from other helpers.
518  */
519 
520 #define ATOMIC_NAME(X) \
521     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
522 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
523 #define ATOMIC_MMU_IDX MMU_USER_IDX
524 
525 #define DATA_SIZE 1
526 #include "atomic_template.h"
527 
528 #define DATA_SIZE 2
529 #include "atomic_template.h"
530 
531 #define DATA_SIZE 4
532 #include "atomic_template.h"
533 
534 #ifdef CONFIG_ATOMIC64
535 #define DATA_SIZE 8
536 #include "atomic_template.h"
537 #endif
538 
539 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
540 #define DATA_SIZE 16
541 #include "atomic_template.h"
542 #endif
543