xref: /qemu/block.c (revision aca59af6)
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34 
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44 
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48 
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50 
51 typedef enum {
52     BDRV_REQ_COPY_ON_READ = 0x1,
53     BDRV_REQ_ZERO_WRITE   = 0x2,
54 } BdrvRequestFlags;
55 
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59         BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64                                          int64_t sector_num, int nb_sectors,
65                                          QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71     BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76                                                int64_t sector_num,
77                                                QEMUIOVector *qiov,
78                                                int nb_sectors,
79                                                BlockDriverCompletionFunc *cb,
80                                                void *opaque,
81                                                bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85         bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87         double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89         bool is_write, int64_t *wait);
90 
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92     QTAILQ_HEAD_INITIALIZER(bdrv_states);
93 
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95     QLIST_HEAD_INITIALIZER(bdrv_drivers);
96 
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99 
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102 
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108             filename[1] == ':');
109 }
110 
111 int is_windows_drive(const char *filename)
112 {
113     if (is_windows_drive_prefix(filename) &&
114         filename[2] == '\0')
115         return 1;
116     if (strstart(filename, "\\\\.\\", NULL) ||
117         strstart(filename, "//./", NULL))
118         return 1;
119     return 0;
120 }
121 #endif
122 
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126     bs->io_limits_enabled = false;
127 
128     while (qemu_co_queue_next(&bs->throttled_reqs));
129 
130     if (bs->block_timer) {
131         qemu_del_timer(bs->block_timer);
132         qemu_free_timer(bs->block_timer);
133         bs->block_timer = NULL;
134     }
135 
136     bs->slice_start = 0;
137     bs->slice_end   = 0;
138     bs->slice_time  = 0;
139     memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141 
142 static void bdrv_block_timer(void *opaque)
143 {
144     BlockDriverState *bs = opaque;
145 
146     qemu_co_queue_next(&bs->throttled_reqs);
147 }
148 
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151     qemu_co_queue_init(&bs->throttled_reqs);
152     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153     bs->slice_time  = 5 * BLOCK_IO_SLICE_TIME;
154     bs->slice_start = qemu_get_clock_ns(vm_clock);
155     bs->slice_end   = bs->slice_start + bs->slice_time;
156     memset(&bs->io_base, 0, sizeof(bs->io_base));
157     bs->io_limits_enabled = true;
158 }
159 
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162     BlockIOLimit *io_limits = &bs->io_limits;
163     return io_limits->bps[BLOCK_IO_LIMIT_READ]
164          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166          || io_limits->iops[BLOCK_IO_LIMIT_READ]
167          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170 
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172                                      bool is_write, int nb_sectors)
173 {
174     int64_t wait_time = -1;
175 
176     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177         qemu_co_queue_wait(&bs->throttled_reqs);
178     }
179 
180     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181      * throttled requests will not be dequeued until the current request is
182      * allowed to be serviced. So if the current request still exceeds the
183      * limits, it will be inserted to the head. All requests followed it will
184      * be still in throttled_reqs queue.
185      */
186 
187     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188         qemu_mod_timer(bs->block_timer,
189                        wait_time + qemu_get_clock_ns(vm_clock));
190         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191     }
192 
193     qemu_co_queue_next(&bs->throttled_reqs);
194 }
195 
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200     if (is_windows_drive(path) ||
201         is_windows_drive_prefix(path)) {
202         return 0;
203     }
204 #endif
205 
206     return strchr(path, ':') != NULL;
207 }
208 
209 int path_is_absolute(const char *path)
210 {
211     const char *p;
212 #ifdef _WIN32
213     /* specific case for names like: "\\.\d:" */
214     if (*path == '/' || *path == '\\')
215         return 1;
216 #endif
217     p = strchr(path, ':');
218     if (p)
219         p++;
220     else
221         p = path;
222 #ifdef _WIN32
223     return (*p == '/' || *p == '\\');
224 #else
225     return (*p == '/');
226 #endif
227 }
228 
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230    path to it by considering it is relative to base_path. URL are
231    supported. */
232 void path_combine(char *dest, int dest_size,
233                   const char *base_path,
234                   const char *filename)
235 {
236     const char *p, *p1;
237     int len;
238 
239     if (dest_size <= 0)
240         return;
241     if (path_is_absolute(filename)) {
242         pstrcpy(dest, dest_size, filename);
243     } else {
244         p = strchr(base_path, ':');
245         if (p)
246             p++;
247         else
248             p = base_path;
249         p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251         {
252             const char *p2;
253             p2 = strrchr(base_path, '\\');
254             if (!p1 || p2 > p1)
255                 p1 = p2;
256         }
257 #endif
258         if (p1)
259             p1++;
260         else
261             p1 = base_path;
262         if (p1 > p)
263             p = p1;
264         len = p - base_path;
265         if (len > dest_size - 1)
266             len = dest_size - 1;
267         memcpy(dest, base_path, len);
268         dest[len] = '\0';
269         pstrcat(dest, dest_size, filename);
270     }
271 }
272 
273 void bdrv_register(BlockDriver *bdrv)
274 {
275     /* Block drivers without coroutine functions need emulation */
276     if (!bdrv->bdrv_co_readv) {
277         bdrv->bdrv_co_readv = bdrv_co_readv_em;
278         bdrv->bdrv_co_writev = bdrv_co_writev_em;
279 
280         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281          * the block driver lacks aio we need to emulate that too.
282          */
283         if (!bdrv->bdrv_aio_readv) {
284             /* add AIO emulation layer */
285             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287         }
288     }
289 
290     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292 
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296     BlockDriverState *bs;
297 
298     bs = g_malloc0(sizeof(BlockDriverState));
299     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300     if (device_name[0] != '\0') {
301         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302     }
303     bdrv_iostatus_disable(bs);
304     return bs;
305 }
306 
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309     BlockDriver *drv1;
310     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311         if (!strcmp(drv1->format_name, format_name)) {
312             return drv1;
313         }
314     }
315     return NULL;
316 }
317 
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320     static const char *whitelist[] = {
321         CONFIG_BDRV_WHITELIST
322     };
323     const char **p;
324 
325     if (!whitelist[0])
326         return 1;               /* no whitelist, anything goes */
327 
328     for (p = whitelist; *p; p++) {
329         if (!strcmp(drv->format_name, *p)) {
330             return 1;
331         }
332     }
333     return 0;
334 }
335 
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338     BlockDriver *drv = bdrv_find_format(format_name);
339     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341 
342 int bdrv_create(BlockDriver *drv, const char* filename,
343     QEMUOptionParameter *options)
344 {
345     if (!drv->bdrv_create)
346         return -ENOTSUP;
347 
348     return drv->bdrv_create(filename, options);
349 }
350 
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353     BlockDriver *drv;
354 
355     drv = bdrv_find_protocol(filename);
356     if (drv == NULL) {
357         return -ENOENT;
358     }
359 
360     return bdrv_create(drv, filename, options);
361 }
362 
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366     char temp_dir[MAX_PATH];
367 
368     GetTempPath(MAX_PATH, temp_dir);
369     GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374     int fd;
375     const char *tmpdir;
376     /* XXX: race condition possible */
377     tmpdir = getenv("TMPDIR");
378     if (!tmpdir)
379         tmpdir = "/tmp";
380     snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381     fd = mkstemp(filename);
382     close(fd);
383 }
384 #endif
385 
386 /*
387  * Detect host devices. By convention, /dev/cdrom[N] is always
388  * recognized as a host CDROM.
389  */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392     int score_max = 0, score;
393     BlockDriver *drv = NULL, *d;
394 
395     QLIST_FOREACH(d, &bdrv_drivers, list) {
396         if (d->bdrv_probe_device) {
397             score = d->bdrv_probe_device(filename);
398             if (score > score_max) {
399                 score_max = score;
400                 drv = d;
401             }
402         }
403     }
404 
405     return drv;
406 }
407 
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410     BlockDriver *drv1;
411     char protocol[128];
412     int len;
413     const char *p;
414 
415     /* TODO Drivers without bdrv_file_open must be specified explicitly */
416 
417     /*
418      * XXX(hch): we really should not let host device detection
419      * override an explicit protocol specification, but moving this
420      * later breaks access to device names with colons in them.
421      * Thanks to the brain-dead persistent naming schemes on udev-
422      * based Linux systems those actually are quite common.
423      */
424     drv1 = find_hdev_driver(filename);
425     if (drv1) {
426         return drv1;
427     }
428 
429     if (!path_has_protocol(filename)) {
430         return bdrv_find_format("file");
431     }
432     p = strchr(filename, ':');
433     assert(p != NULL);
434     len = p - filename;
435     if (len > sizeof(protocol) - 1)
436         len = sizeof(protocol) - 1;
437     memcpy(protocol, filename, len);
438     protocol[len] = '\0';
439     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440         if (drv1->protocol_name &&
441             !strcmp(drv1->protocol_name, protocol)) {
442             return drv1;
443         }
444     }
445     return NULL;
446 }
447 
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450     int ret, score, score_max;
451     BlockDriver *drv1, *drv;
452     uint8_t buf[2048];
453     BlockDriverState *bs;
454 
455     ret = bdrv_file_open(&bs, filename, 0);
456     if (ret < 0) {
457         *pdrv = NULL;
458         return ret;
459     }
460 
461     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462     if (bs->sg || !bdrv_is_inserted(bs)) {
463         bdrv_delete(bs);
464         drv = bdrv_find_format("raw");
465         if (!drv) {
466             ret = -ENOENT;
467         }
468         *pdrv = drv;
469         return ret;
470     }
471 
472     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473     bdrv_delete(bs);
474     if (ret < 0) {
475         *pdrv = NULL;
476         return ret;
477     }
478 
479     score_max = 0;
480     drv = NULL;
481     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482         if (drv1->bdrv_probe) {
483             score = drv1->bdrv_probe(buf, ret, filename);
484             if (score > score_max) {
485                 score_max = score;
486                 drv = drv1;
487             }
488         }
489     }
490     if (!drv) {
491         ret = -ENOENT;
492     }
493     *pdrv = drv;
494     return ret;
495 }
496 
497 /**
498  * Set the current 'total_sectors' value
499  */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502     BlockDriver *drv = bs->drv;
503 
504     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505     if (bs->sg)
506         return 0;
507 
508     /* query actual device if possible, otherwise just trust the hint */
509     if (drv->bdrv_getlength) {
510         int64_t length = drv->bdrv_getlength(bs);
511         if (length < 0) {
512             return length;
513         }
514         hint = length >> BDRV_SECTOR_BITS;
515     }
516 
517     bs->total_sectors = hint;
518     return 0;
519 }
520 
521 /**
522  * Set open flags for a given cache mode
523  *
524  * Return 0 on success, -1 if the cache mode was invalid.
525  */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528     *flags &= ~BDRV_O_CACHE_MASK;
529 
530     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532     } else if (!strcmp(mode, "directsync")) {
533         *flags |= BDRV_O_NOCACHE;
534     } else if (!strcmp(mode, "writeback")) {
535         *flags |= BDRV_O_CACHE_WB;
536     } else if (!strcmp(mode, "unsafe")) {
537         *flags |= BDRV_O_CACHE_WB;
538         *flags |= BDRV_O_NO_FLUSH;
539     } else if (!strcmp(mode, "writethrough")) {
540         /* this is the default */
541     } else {
542         return -1;
543     }
544 
545     return 0;
546 }
547 
548 /**
549  * The copy-on-read flag is actually a reference count so multiple users may
550  * use the feature without worrying about clobbering its previous state.
551  * Copy-on-read stays enabled until all users have called to disable it.
552  */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555     bs->copy_on_read++;
556 }
557 
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560     assert(bs->copy_on_read > 0);
561     bs->copy_on_read--;
562 }
563 
564 /*
565  * Common part for opening disk images and files
566  */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568     int flags, BlockDriver *drv)
569 {
570     int ret, open_flags;
571 
572     assert(drv != NULL);
573 
574     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575 
576     bs->file = NULL;
577     bs->total_sectors = 0;
578     bs->encrypted = 0;
579     bs->valid_key = 0;
580     bs->sg = 0;
581     bs->open_flags = flags;
582     bs->growable = 0;
583     bs->buffer_alignment = 512;
584 
585     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587         bdrv_enable_copy_on_read(bs);
588     }
589 
590     pstrcpy(bs->filename, sizeof(bs->filename), filename);
591     bs->backing_file[0] = '\0';
592 
593     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594         return -ENOTSUP;
595     }
596 
597     bs->drv = drv;
598     bs->opaque = g_malloc0(drv->instance_size);
599 
600     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601 
602     /*
603      * Clear flags that are internal to the block layer before opening the
604      * image.
605      */
606     open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607 
608     /*
609      * Snapshots should be writable.
610      */
611     if (bs->is_temporary) {
612         open_flags |= BDRV_O_RDWR;
613     }
614 
615     bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616 
617     /* Open the image, either directly or using a protocol */
618     if (drv->bdrv_file_open) {
619         ret = drv->bdrv_file_open(bs, filename, open_flags);
620     } else {
621         ret = bdrv_file_open(&bs->file, filename, open_flags);
622         if (ret >= 0) {
623             ret = drv->bdrv_open(bs, open_flags);
624         }
625     }
626 
627     if (ret < 0) {
628         goto free_and_fail;
629     }
630 
631     ret = refresh_total_sectors(bs, bs->total_sectors);
632     if (ret < 0) {
633         goto free_and_fail;
634     }
635 
636 #ifndef _WIN32
637     if (bs->is_temporary) {
638         unlink(filename);
639     }
640 #endif
641     return 0;
642 
643 free_and_fail:
644     if (bs->file) {
645         bdrv_delete(bs->file);
646         bs->file = NULL;
647     }
648     g_free(bs->opaque);
649     bs->opaque = NULL;
650     bs->drv = NULL;
651     return ret;
652 }
653 
654 /*
655  * Opens a file using a protocol (file, host_device, nbd, ...)
656  */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659     BlockDriverState *bs;
660     BlockDriver *drv;
661     int ret;
662 
663     drv = bdrv_find_protocol(filename);
664     if (!drv) {
665         return -ENOENT;
666     }
667 
668     bs = bdrv_new("");
669     ret = bdrv_open_common(bs, filename, flags, drv);
670     if (ret < 0) {
671         bdrv_delete(bs);
672         return ret;
673     }
674     bs->growable = 1;
675     *pbs = bs;
676     return 0;
677 }
678 
679 /*
680  * Opens a disk image (raw, qcow2, vmdk, ...)
681  */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683               BlockDriver *drv)
684 {
685     int ret;
686     char tmp_filename[PATH_MAX];
687 
688     if (flags & BDRV_O_SNAPSHOT) {
689         BlockDriverState *bs1;
690         int64_t total_size;
691         int is_protocol = 0;
692         BlockDriver *bdrv_qcow2;
693         QEMUOptionParameter *options;
694         char backing_filename[PATH_MAX];
695 
696         /* if snapshot, we create a temporary backing file and open it
697            instead of opening 'filename' directly */
698 
699         /* if there is a backing file, use it */
700         bs1 = bdrv_new("");
701         ret = bdrv_open(bs1, filename, 0, drv);
702         if (ret < 0) {
703             bdrv_delete(bs1);
704             return ret;
705         }
706         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707 
708         if (bs1->drv && bs1->drv->protocol_name)
709             is_protocol = 1;
710 
711         bdrv_delete(bs1);
712 
713         get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714 
715         /* Real path is meaningless for protocols */
716         if (is_protocol)
717             snprintf(backing_filename, sizeof(backing_filename),
718                      "%s", filename);
719         else if (!realpath(filename, backing_filename))
720             return -errno;
721 
722         bdrv_qcow2 = bdrv_find_format("qcow2");
723         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724 
725         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727         if (drv) {
728             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729                 drv->format_name);
730         }
731 
732         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733         free_option_parameters(options);
734         if (ret < 0) {
735             return ret;
736         }
737 
738         filename = tmp_filename;
739         drv = bdrv_qcow2;
740         bs->is_temporary = 1;
741     }
742 
743     /* Find the right image format driver */
744     if (!drv) {
745         ret = find_image_format(filename, &drv);
746     }
747 
748     if (!drv) {
749         goto unlink_and_fail;
750     }
751 
752     /* Open the image */
753     ret = bdrv_open_common(bs, filename, flags, drv);
754     if (ret < 0) {
755         goto unlink_and_fail;
756     }
757 
758     /* If there is a backing file, use it */
759     if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760         char backing_filename[PATH_MAX];
761         int back_flags;
762         BlockDriver *back_drv = NULL;
763 
764         bs->backing_hd = bdrv_new("");
765 
766         if (path_has_protocol(bs->backing_file)) {
767             pstrcpy(backing_filename, sizeof(backing_filename),
768                     bs->backing_file);
769         } else {
770             path_combine(backing_filename, sizeof(backing_filename),
771                          filename, bs->backing_file);
772         }
773 
774         if (bs->backing_format[0] != '\0') {
775             back_drv = bdrv_find_format(bs->backing_format);
776         }
777 
778         /* backing files always opened read-only */
779         back_flags =
780             flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781 
782         ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783         if (ret < 0) {
784             bdrv_close(bs);
785             return ret;
786         }
787         if (bs->is_temporary) {
788             bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789         } else {
790             /* base image inherits from "parent" */
791             bs->backing_hd->keep_read_only = bs->keep_read_only;
792         }
793     }
794 
795     if (!bdrv_key_required(bs)) {
796         bdrv_dev_change_media_cb(bs, true);
797     }
798 
799     /* throttling disk I/O limits */
800     if (bs->io_limits_enabled) {
801         bdrv_io_limits_enable(bs);
802     }
803 
804     return 0;
805 
806 unlink_and_fail:
807     if (bs->is_temporary) {
808         unlink(filename);
809     }
810     return ret;
811 }
812 
813 void bdrv_close(BlockDriverState *bs)
814 {
815     if (bs->drv) {
816         if (bs == bs_snapshots) {
817             bs_snapshots = NULL;
818         }
819         if (bs->backing_hd) {
820             bdrv_delete(bs->backing_hd);
821             bs->backing_hd = NULL;
822         }
823         bs->drv->bdrv_close(bs);
824         g_free(bs->opaque);
825 #ifdef _WIN32
826         if (bs->is_temporary) {
827             unlink(bs->filename);
828         }
829 #endif
830         bs->opaque = NULL;
831         bs->drv = NULL;
832         bs->copy_on_read = 0;
833 
834         if (bs->file != NULL) {
835             bdrv_close(bs->file);
836         }
837 
838         bdrv_dev_change_media_cb(bs, false);
839     }
840 
841     /*throttling disk I/O limits*/
842     if (bs->io_limits_enabled) {
843         bdrv_io_limits_disable(bs);
844     }
845 }
846 
847 void bdrv_close_all(void)
848 {
849     BlockDriverState *bs;
850 
851     QTAILQ_FOREACH(bs, &bdrv_states, list) {
852         bdrv_close(bs);
853     }
854 }
855 
856 /*
857  * Wait for pending requests to complete across all BlockDriverStates
858  *
859  * This function does not flush data to disk, use bdrv_flush_all() for that
860  * after calling this function.
861  */
862 void bdrv_drain_all(void)
863 {
864     BlockDriverState *bs;
865 
866     qemu_aio_flush();
867 
868     /* If requests are still pending there is a bug somewhere */
869     QTAILQ_FOREACH(bs, &bdrv_states, list) {
870         assert(QLIST_EMPTY(&bs->tracked_requests));
871         assert(qemu_co_queue_empty(&bs->throttled_reqs));
872     }
873 }
874 
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876    Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879     if (bs->device_name[0] != '\0') {
880         QTAILQ_REMOVE(&bdrv_states, bs, list);
881     }
882     bs->device_name[0] = '\0';
883 }
884 
885 /*
886  * Add new bs contents at the top of an image chain while the chain is
887  * live, while keeping required fields on the top layer.
888  *
889  * This will modify the BlockDriverState fields, and swap contents
890  * between bs_new and bs_top. Both bs_new and bs_top are modified.
891  *
892  * This function does not create any image files.
893  */
894 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
895 {
896     BlockDriverState tmp;
897 
898     /* the new bs must not be in bdrv_states */
899     bdrv_make_anon(bs_new);
900 
901     tmp = *bs_new;
902 
903     /* there are some fields that need to stay on the top layer: */
904 
905     /* dev info */
906     tmp.dev_ops           = bs_top->dev_ops;
907     tmp.dev_opaque        = bs_top->dev_opaque;
908     tmp.dev               = bs_top->dev;
909     tmp.buffer_alignment  = bs_top->buffer_alignment;
910     tmp.copy_on_read      = bs_top->copy_on_read;
911 
912     /* i/o timing parameters */
913     tmp.slice_time        = bs_top->slice_time;
914     tmp.slice_start       = bs_top->slice_start;
915     tmp.slice_end         = bs_top->slice_end;
916     tmp.io_limits         = bs_top->io_limits;
917     tmp.io_base           = bs_top->io_base;
918     tmp.throttled_reqs    = bs_top->throttled_reqs;
919     tmp.block_timer       = bs_top->block_timer;
920     tmp.io_limits_enabled = bs_top->io_limits_enabled;
921 
922     /* geometry */
923     tmp.cyls              = bs_top->cyls;
924     tmp.heads             = bs_top->heads;
925     tmp.secs              = bs_top->secs;
926     tmp.translation       = bs_top->translation;
927 
928     /* r/w error */
929     tmp.on_read_error     = bs_top->on_read_error;
930     tmp.on_write_error    = bs_top->on_write_error;
931 
932     /* i/o status */
933     tmp.iostatus_enabled  = bs_top->iostatus_enabled;
934     tmp.iostatus          = bs_top->iostatus;
935 
936     /* keep the same entry in bdrv_states */
937     pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
938     tmp.list = bs_top->list;
939 
940     /* The contents of 'tmp' will become bs_top, as we are
941      * swapping bs_new and bs_top contents. */
942     tmp.backing_hd = bs_new;
943     pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
944 
945     /* swap contents of the fixed new bs and the current top */
946     *bs_new = *bs_top;
947     *bs_top = tmp;
948 
949     /* clear the copied fields in the new backing file */
950     bdrv_detach_dev(bs_new, bs_new->dev);
951 
952     qemu_co_queue_init(&bs_new->throttled_reqs);
953     memset(&bs_new->io_base,   0, sizeof(bs_new->io_base));
954     memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
955     bdrv_iostatus_disable(bs_new);
956 
957     /* we don't use bdrv_io_limits_disable() for this, because we don't want
958      * to affect or delete the block_timer, as it has been moved to bs_top */
959     bs_new->io_limits_enabled = false;
960     bs_new->block_timer       = NULL;
961     bs_new->slice_time        = 0;
962     bs_new->slice_start       = 0;
963     bs_new->slice_end         = 0;
964 }
965 
966 void bdrv_delete(BlockDriverState *bs)
967 {
968     assert(!bs->dev);
969 
970     /* remove from list, if necessary */
971     bdrv_make_anon(bs);
972 
973     bdrv_close(bs);
974     if (bs->file != NULL) {
975         bdrv_delete(bs->file);
976     }
977 
978     assert(bs != bs_snapshots);
979     g_free(bs);
980 }
981 
982 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
983 /* TODO change to DeviceState *dev when all users are qdevified */
984 {
985     if (bs->dev) {
986         return -EBUSY;
987     }
988     bs->dev = dev;
989     bdrv_iostatus_reset(bs);
990     return 0;
991 }
992 
993 /* TODO qdevified devices don't use this, remove when devices are qdevified */
994 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
995 {
996     if (bdrv_attach_dev(bs, dev) < 0) {
997         abort();
998     }
999 }
1000 
1001 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1002 /* TODO change to DeviceState *dev when all users are qdevified */
1003 {
1004     assert(bs->dev == dev);
1005     bs->dev = NULL;
1006     bs->dev_ops = NULL;
1007     bs->dev_opaque = NULL;
1008     bs->buffer_alignment = 512;
1009 }
1010 
1011 /* TODO change to return DeviceState * when all users are qdevified */
1012 void *bdrv_get_attached_dev(BlockDriverState *bs)
1013 {
1014     return bs->dev;
1015 }
1016 
1017 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1018                       void *opaque)
1019 {
1020     bs->dev_ops = ops;
1021     bs->dev_opaque = opaque;
1022     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1023         bs_snapshots = NULL;
1024     }
1025 }
1026 
1027 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1028                                BlockQMPEventAction action, int is_read)
1029 {
1030     QObject *data;
1031     const char *action_str;
1032 
1033     switch (action) {
1034     case BDRV_ACTION_REPORT:
1035         action_str = "report";
1036         break;
1037     case BDRV_ACTION_IGNORE:
1038         action_str = "ignore";
1039         break;
1040     case BDRV_ACTION_STOP:
1041         action_str = "stop";
1042         break;
1043     default:
1044         abort();
1045     }
1046 
1047     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1048                               bdrv->device_name,
1049                               action_str,
1050                               is_read ? "read" : "write");
1051     monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1052 
1053     qobject_decref(data);
1054 }
1055 
1056 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1057 {
1058     QObject *data;
1059 
1060     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1061                               bdrv_get_device_name(bs), ejected);
1062     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1063 
1064     qobject_decref(data);
1065 }
1066 
1067 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1068 {
1069     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1070         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1071         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1072         if (tray_was_closed) {
1073             /* tray open */
1074             bdrv_emit_qmp_eject_event(bs, true);
1075         }
1076         if (load) {
1077             /* tray close */
1078             bdrv_emit_qmp_eject_event(bs, false);
1079         }
1080     }
1081 }
1082 
1083 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1084 {
1085     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1086 }
1087 
1088 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1089 {
1090     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1091         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1092     }
1093 }
1094 
1095 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1096 {
1097     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1098         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1099     }
1100     return false;
1101 }
1102 
1103 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1104 {
1105     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1106         bs->dev_ops->resize_cb(bs->dev_opaque);
1107     }
1108 }
1109 
1110 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1111 {
1112     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1113         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1114     }
1115     return false;
1116 }
1117 
1118 /*
1119  * Run consistency checks on an image
1120  *
1121  * Returns 0 if the check could be completed (it doesn't mean that the image is
1122  * free of errors) or -errno when an internal error occurred. The results of the
1123  * check are stored in res.
1124  */
1125 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1126 {
1127     if (bs->drv->bdrv_check == NULL) {
1128         return -ENOTSUP;
1129     }
1130 
1131     memset(res, 0, sizeof(*res));
1132     return bs->drv->bdrv_check(bs, res);
1133 }
1134 
1135 #define COMMIT_BUF_SECTORS 2048
1136 
1137 /* commit COW file into the raw image */
1138 int bdrv_commit(BlockDriverState *bs)
1139 {
1140     BlockDriver *drv = bs->drv;
1141     BlockDriver *backing_drv;
1142     int64_t sector, total_sectors;
1143     int n, ro, open_flags;
1144     int ret = 0, rw_ret = 0;
1145     uint8_t *buf;
1146     char filename[1024];
1147     BlockDriverState *bs_rw, *bs_ro;
1148 
1149     if (!drv)
1150         return -ENOMEDIUM;
1151 
1152     if (!bs->backing_hd) {
1153         return -ENOTSUP;
1154     }
1155 
1156     if (bs->backing_hd->keep_read_only) {
1157         return -EACCES;
1158     }
1159 
1160     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1161         return -EBUSY;
1162     }
1163 
1164     backing_drv = bs->backing_hd->drv;
1165     ro = bs->backing_hd->read_only;
1166     strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1167     open_flags =  bs->backing_hd->open_flags;
1168 
1169     if (ro) {
1170         /* re-open as RW */
1171         bdrv_delete(bs->backing_hd);
1172         bs->backing_hd = NULL;
1173         bs_rw = bdrv_new("");
1174         rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1175             backing_drv);
1176         if (rw_ret < 0) {
1177             bdrv_delete(bs_rw);
1178             /* try to re-open read-only */
1179             bs_ro = bdrv_new("");
1180             ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1181                 backing_drv);
1182             if (ret < 0) {
1183                 bdrv_delete(bs_ro);
1184                 /* drive not functional anymore */
1185                 bs->drv = NULL;
1186                 return ret;
1187             }
1188             bs->backing_hd = bs_ro;
1189             return rw_ret;
1190         }
1191         bs->backing_hd = bs_rw;
1192     }
1193 
1194     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1195     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1196 
1197     for (sector = 0; sector < total_sectors; sector += n) {
1198         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1199 
1200             if (bdrv_read(bs, sector, buf, n) != 0) {
1201                 ret = -EIO;
1202                 goto ro_cleanup;
1203             }
1204 
1205             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1206                 ret = -EIO;
1207                 goto ro_cleanup;
1208             }
1209         }
1210     }
1211 
1212     if (drv->bdrv_make_empty) {
1213         ret = drv->bdrv_make_empty(bs);
1214         bdrv_flush(bs);
1215     }
1216 
1217     /*
1218      * Make sure all data we wrote to the backing device is actually
1219      * stable on disk.
1220      */
1221     if (bs->backing_hd)
1222         bdrv_flush(bs->backing_hd);
1223 
1224 ro_cleanup:
1225     g_free(buf);
1226 
1227     if (ro) {
1228         /* re-open as RO */
1229         bdrv_delete(bs->backing_hd);
1230         bs->backing_hd = NULL;
1231         bs_ro = bdrv_new("");
1232         ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1233             backing_drv);
1234         if (ret < 0) {
1235             bdrv_delete(bs_ro);
1236             /* drive not functional anymore */
1237             bs->drv = NULL;
1238             return ret;
1239         }
1240         bs->backing_hd = bs_ro;
1241         bs->backing_hd->keep_read_only = 0;
1242     }
1243 
1244     return ret;
1245 }
1246 
1247 int bdrv_commit_all(void)
1248 {
1249     BlockDriverState *bs;
1250 
1251     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1252         int ret = bdrv_commit(bs);
1253         if (ret < 0) {
1254             return ret;
1255         }
1256     }
1257     return 0;
1258 }
1259 
1260 struct BdrvTrackedRequest {
1261     BlockDriverState *bs;
1262     int64_t sector_num;
1263     int nb_sectors;
1264     bool is_write;
1265     QLIST_ENTRY(BdrvTrackedRequest) list;
1266     Coroutine *co; /* owner, used for deadlock detection */
1267     CoQueue wait_queue; /* coroutines blocked on this request */
1268 };
1269 
1270 /**
1271  * Remove an active request from the tracked requests list
1272  *
1273  * This function should be called when a tracked request is completing.
1274  */
1275 static void tracked_request_end(BdrvTrackedRequest *req)
1276 {
1277     QLIST_REMOVE(req, list);
1278     qemu_co_queue_restart_all(&req->wait_queue);
1279 }
1280 
1281 /**
1282  * Add an active request to the tracked requests list
1283  */
1284 static void tracked_request_begin(BdrvTrackedRequest *req,
1285                                   BlockDriverState *bs,
1286                                   int64_t sector_num,
1287                                   int nb_sectors, bool is_write)
1288 {
1289     *req = (BdrvTrackedRequest){
1290         .bs = bs,
1291         .sector_num = sector_num,
1292         .nb_sectors = nb_sectors,
1293         .is_write = is_write,
1294         .co = qemu_coroutine_self(),
1295     };
1296 
1297     qemu_co_queue_init(&req->wait_queue);
1298 
1299     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1300 }
1301 
1302 /**
1303  * Round a region to cluster boundaries
1304  */
1305 static void round_to_clusters(BlockDriverState *bs,
1306                               int64_t sector_num, int nb_sectors,
1307                               int64_t *cluster_sector_num,
1308                               int *cluster_nb_sectors)
1309 {
1310     BlockDriverInfo bdi;
1311 
1312     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1313         *cluster_sector_num = sector_num;
1314         *cluster_nb_sectors = nb_sectors;
1315     } else {
1316         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1317         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1318         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1319                                             nb_sectors, c);
1320     }
1321 }
1322 
1323 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1324                                      int64_t sector_num, int nb_sectors) {
1325     /*        aaaa   bbbb */
1326     if (sector_num >= req->sector_num + req->nb_sectors) {
1327         return false;
1328     }
1329     /* bbbb   aaaa        */
1330     if (req->sector_num >= sector_num + nb_sectors) {
1331         return false;
1332     }
1333     return true;
1334 }
1335 
1336 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1337         int64_t sector_num, int nb_sectors)
1338 {
1339     BdrvTrackedRequest *req;
1340     int64_t cluster_sector_num;
1341     int cluster_nb_sectors;
1342     bool retry;
1343 
1344     /* If we touch the same cluster it counts as an overlap.  This guarantees
1345      * that allocating writes will be serialized and not race with each other
1346      * for the same cluster.  For example, in copy-on-read it ensures that the
1347      * CoR read and write operations are atomic and guest writes cannot
1348      * interleave between them.
1349      */
1350     round_to_clusters(bs, sector_num, nb_sectors,
1351                       &cluster_sector_num, &cluster_nb_sectors);
1352 
1353     do {
1354         retry = false;
1355         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1356             if (tracked_request_overlaps(req, cluster_sector_num,
1357                                          cluster_nb_sectors)) {
1358                 /* Hitting this means there was a reentrant request, for
1359                  * example, a block driver issuing nested requests.  This must
1360                  * never happen since it means deadlock.
1361                  */
1362                 assert(qemu_coroutine_self() != req->co);
1363 
1364                 qemu_co_queue_wait(&req->wait_queue);
1365                 retry = true;
1366                 break;
1367             }
1368         }
1369     } while (retry);
1370 }
1371 
1372 /*
1373  * Return values:
1374  * 0        - success
1375  * -EINVAL  - backing format specified, but no file
1376  * -ENOSPC  - can't update the backing file because no space is left in the
1377  *            image file header
1378  * -ENOTSUP - format driver doesn't support changing the backing file
1379  */
1380 int bdrv_change_backing_file(BlockDriverState *bs,
1381     const char *backing_file, const char *backing_fmt)
1382 {
1383     BlockDriver *drv = bs->drv;
1384 
1385     if (drv->bdrv_change_backing_file != NULL) {
1386         return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1387     } else {
1388         return -ENOTSUP;
1389     }
1390 }
1391 
1392 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1393                                    size_t size)
1394 {
1395     int64_t len;
1396 
1397     if (!bdrv_is_inserted(bs))
1398         return -ENOMEDIUM;
1399 
1400     if (bs->growable)
1401         return 0;
1402 
1403     len = bdrv_getlength(bs);
1404 
1405     if (offset < 0)
1406         return -EIO;
1407 
1408     if ((offset > len) || (len - offset < size))
1409         return -EIO;
1410 
1411     return 0;
1412 }
1413 
1414 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1415                               int nb_sectors)
1416 {
1417     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1418                                    nb_sectors * BDRV_SECTOR_SIZE);
1419 }
1420 
1421 typedef struct RwCo {
1422     BlockDriverState *bs;
1423     int64_t sector_num;
1424     int nb_sectors;
1425     QEMUIOVector *qiov;
1426     bool is_write;
1427     int ret;
1428 } RwCo;
1429 
1430 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1431 {
1432     RwCo *rwco = opaque;
1433 
1434     if (!rwco->is_write) {
1435         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1436                                      rwco->nb_sectors, rwco->qiov, 0);
1437     } else {
1438         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1439                                       rwco->nb_sectors, rwco->qiov, 0);
1440     }
1441 }
1442 
1443 /*
1444  * Process a synchronous request using coroutines
1445  */
1446 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1447                       int nb_sectors, bool is_write)
1448 {
1449     QEMUIOVector qiov;
1450     struct iovec iov = {
1451         .iov_base = (void *)buf,
1452         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1453     };
1454     Coroutine *co;
1455     RwCo rwco = {
1456         .bs = bs,
1457         .sector_num = sector_num,
1458         .nb_sectors = nb_sectors,
1459         .qiov = &qiov,
1460         .is_write = is_write,
1461         .ret = NOT_DONE,
1462     };
1463 
1464     qemu_iovec_init_external(&qiov, &iov, 1);
1465 
1466     if (qemu_in_coroutine()) {
1467         /* Fast-path if already in coroutine context */
1468         bdrv_rw_co_entry(&rwco);
1469     } else {
1470         co = qemu_coroutine_create(bdrv_rw_co_entry);
1471         qemu_coroutine_enter(co, &rwco);
1472         while (rwco.ret == NOT_DONE) {
1473             qemu_aio_wait();
1474         }
1475     }
1476     return rwco.ret;
1477 }
1478 
1479 /* return < 0 if error. See bdrv_write() for the return codes */
1480 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1481               uint8_t *buf, int nb_sectors)
1482 {
1483     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1484 }
1485 
1486 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1487                              int nb_sectors, int dirty)
1488 {
1489     int64_t start, end;
1490     unsigned long val, idx, bit;
1491 
1492     start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1493     end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1494 
1495     for (; start <= end; start++) {
1496         idx = start / (sizeof(unsigned long) * 8);
1497         bit = start % (sizeof(unsigned long) * 8);
1498         val = bs->dirty_bitmap[idx];
1499         if (dirty) {
1500             if (!(val & (1UL << bit))) {
1501                 bs->dirty_count++;
1502                 val |= 1UL << bit;
1503             }
1504         } else {
1505             if (val & (1UL << bit)) {
1506                 bs->dirty_count--;
1507                 val &= ~(1UL << bit);
1508             }
1509         }
1510         bs->dirty_bitmap[idx] = val;
1511     }
1512 }
1513 
1514 /* Return < 0 if error. Important errors are:
1515   -EIO         generic I/O error (may happen for all errors)
1516   -ENOMEDIUM   No media inserted.
1517   -EINVAL      Invalid sector number or nb_sectors
1518   -EACCES      Trying to write a read-only device
1519 */
1520 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1521                const uint8_t *buf, int nb_sectors)
1522 {
1523     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1524 }
1525 
1526 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1527                void *buf, int count1)
1528 {
1529     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1530     int len, nb_sectors, count;
1531     int64_t sector_num;
1532     int ret;
1533 
1534     count = count1;
1535     /* first read to align to sector start */
1536     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1537     if (len > count)
1538         len = count;
1539     sector_num = offset >> BDRV_SECTOR_BITS;
1540     if (len > 0) {
1541         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1542             return ret;
1543         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1544         count -= len;
1545         if (count == 0)
1546             return count1;
1547         sector_num++;
1548         buf += len;
1549     }
1550 
1551     /* read the sectors "in place" */
1552     nb_sectors = count >> BDRV_SECTOR_BITS;
1553     if (nb_sectors > 0) {
1554         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1555             return ret;
1556         sector_num += nb_sectors;
1557         len = nb_sectors << BDRV_SECTOR_BITS;
1558         buf += len;
1559         count -= len;
1560     }
1561 
1562     /* add data from the last sector */
1563     if (count > 0) {
1564         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1565             return ret;
1566         memcpy(buf, tmp_buf, count);
1567     }
1568     return count1;
1569 }
1570 
1571 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1572                 const void *buf, int count1)
1573 {
1574     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1575     int len, nb_sectors, count;
1576     int64_t sector_num;
1577     int ret;
1578 
1579     count = count1;
1580     /* first write to align to sector start */
1581     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1582     if (len > count)
1583         len = count;
1584     sector_num = offset >> BDRV_SECTOR_BITS;
1585     if (len > 0) {
1586         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1587             return ret;
1588         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1589         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1590             return ret;
1591         count -= len;
1592         if (count == 0)
1593             return count1;
1594         sector_num++;
1595         buf += len;
1596     }
1597 
1598     /* write the sectors "in place" */
1599     nb_sectors = count >> BDRV_SECTOR_BITS;
1600     if (nb_sectors > 0) {
1601         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1602             return ret;
1603         sector_num += nb_sectors;
1604         len = nb_sectors << BDRV_SECTOR_BITS;
1605         buf += len;
1606         count -= len;
1607     }
1608 
1609     /* add data from the last sector */
1610     if (count > 0) {
1611         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1612             return ret;
1613         memcpy(tmp_buf, buf, count);
1614         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1615             return ret;
1616     }
1617     return count1;
1618 }
1619 
1620 /*
1621  * Writes to the file and ensures that no writes are reordered across this
1622  * request (acts as a barrier)
1623  *
1624  * Returns 0 on success, -errno in error cases.
1625  */
1626 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1627     const void *buf, int count)
1628 {
1629     int ret;
1630 
1631     ret = bdrv_pwrite(bs, offset, buf, count);
1632     if (ret < 0) {
1633         return ret;
1634     }
1635 
1636     /* No flush needed for cache modes that use O_DSYNC */
1637     if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1638         bdrv_flush(bs);
1639     }
1640 
1641     return 0;
1642 }
1643 
1644 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1645         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1646 {
1647     /* Perform I/O through a temporary buffer so that users who scribble over
1648      * their read buffer while the operation is in progress do not end up
1649      * modifying the image file.  This is critical for zero-copy guest I/O
1650      * where anything might happen inside guest memory.
1651      */
1652     void *bounce_buffer;
1653 
1654     BlockDriver *drv = bs->drv;
1655     struct iovec iov;
1656     QEMUIOVector bounce_qiov;
1657     int64_t cluster_sector_num;
1658     int cluster_nb_sectors;
1659     size_t skip_bytes;
1660     int ret;
1661 
1662     /* Cover entire cluster so no additional backing file I/O is required when
1663      * allocating cluster in the image file.
1664      */
1665     round_to_clusters(bs, sector_num, nb_sectors,
1666                       &cluster_sector_num, &cluster_nb_sectors);
1667 
1668     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1669                                    cluster_sector_num, cluster_nb_sectors);
1670 
1671     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1672     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1673     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1674 
1675     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1676                              &bounce_qiov);
1677     if (ret < 0) {
1678         goto err;
1679     }
1680 
1681     if (drv->bdrv_co_write_zeroes &&
1682         buffer_is_zero(bounce_buffer, iov.iov_len)) {
1683         ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1684                                         cluster_nb_sectors);
1685     } else {
1686         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1687                                   &bounce_qiov);
1688     }
1689 
1690     if (ret < 0) {
1691         /* It might be okay to ignore write errors for guest requests.  If this
1692          * is a deliberate copy-on-read then we don't want to ignore the error.
1693          * Simply report it in all cases.
1694          */
1695         goto err;
1696     }
1697 
1698     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1699     qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1700                            nb_sectors * BDRV_SECTOR_SIZE);
1701 
1702 err:
1703     qemu_vfree(bounce_buffer);
1704     return ret;
1705 }
1706 
1707 /*
1708  * Handle a read request in coroutine context
1709  */
1710 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1711     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1712     BdrvRequestFlags flags)
1713 {
1714     BlockDriver *drv = bs->drv;
1715     BdrvTrackedRequest req;
1716     int ret;
1717 
1718     if (!drv) {
1719         return -ENOMEDIUM;
1720     }
1721     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1722         return -EIO;
1723     }
1724 
1725     /* throttling disk read I/O */
1726     if (bs->io_limits_enabled) {
1727         bdrv_io_limits_intercept(bs, false, nb_sectors);
1728     }
1729 
1730     if (bs->copy_on_read) {
1731         flags |= BDRV_REQ_COPY_ON_READ;
1732     }
1733     if (flags & BDRV_REQ_COPY_ON_READ) {
1734         bs->copy_on_read_in_flight++;
1735     }
1736 
1737     if (bs->copy_on_read_in_flight) {
1738         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1739     }
1740 
1741     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1742 
1743     if (flags & BDRV_REQ_COPY_ON_READ) {
1744         int pnum;
1745 
1746         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1747         if (ret < 0) {
1748             goto out;
1749         }
1750 
1751         if (!ret || pnum != nb_sectors) {
1752             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1753             goto out;
1754         }
1755     }
1756 
1757     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1758 
1759 out:
1760     tracked_request_end(&req);
1761 
1762     if (flags & BDRV_REQ_COPY_ON_READ) {
1763         bs->copy_on_read_in_flight--;
1764     }
1765 
1766     return ret;
1767 }
1768 
1769 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1770     int nb_sectors, QEMUIOVector *qiov)
1771 {
1772     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1773 
1774     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1775 }
1776 
1777 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1778     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1779 {
1780     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1781 
1782     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1783                             BDRV_REQ_COPY_ON_READ);
1784 }
1785 
1786 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1787     int64_t sector_num, int nb_sectors)
1788 {
1789     BlockDriver *drv = bs->drv;
1790     QEMUIOVector qiov;
1791     struct iovec iov;
1792     int ret;
1793 
1794     /* First try the efficient write zeroes operation */
1795     if (drv->bdrv_co_write_zeroes) {
1796         return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1797     }
1798 
1799     /* Fall back to bounce buffer if write zeroes is unsupported */
1800     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
1801     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1802     memset(iov.iov_base, 0, iov.iov_len);
1803     qemu_iovec_init_external(&qiov, &iov, 1);
1804 
1805     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1806 
1807     qemu_vfree(iov.iov_base);
1808     return ret;
1809 }
1810 
1811 /*
1812  * Handle a write request in coroutine context
1813  */
1814 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1815     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1816     BdrvRequestFlags flags)
1817 {
1818     BlockDriver *drv = bs->drv;
1819     BdrvTrackedRequest req;
1820     int ret;
1821 
1822     if (!bs->drv) {
1823         return -ENOMEDIUM;
1824     }
1825     if (bs->read_only) {
1826         return -EACCES;
1827     }
1828     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1829         return -EIO;
1830     }
1831 
1832     /* throttling disk write I/O */
1833     if (bs->io_limits_enabled) {
1834         bdrv_io_limits_intercept(bs, true, nb_sectors);
1835     }
1836 
1837     if (bs->copy_on_read_in_flight) {
1838         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1839     }
1840 
1841     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1842 
1843     if (flags & BDRV_REQ_ZERO_WRITE) {
1844         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1845     } else {
1846         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1847     }
1848 
1849     if (bs->dirty_bitmap) {
1850         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1851     }
1852 
1853     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1854         bs->wr_highest_sector = sector_num + nb_sectors - 1;
1855     }
1856 
1857     tracked_request_end(&req);
1858 
1859     return ret;
1860 }
1861 
1862 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1863     int nb_sectors, QEMUIOVector *qiov)
1864 {
1865     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1866 
1867     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1868 }
1869 
1870 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1871                                       int64_t sector_num, int nb_sectors)
1872 {
1873     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1874 
1875     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1876                              BDRV_REQ_ZERO_WRITE);
1877 }
1878 
1879 /**
1880  * Truncate file to 'offset' bytes (needed only for file protocols)
1881  */
1882 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1883 {
1884     BlockDriver *drv = bs->drv;
1885     int ret;
1886     if (!drv)
1887         return -ENOMEDIUM;
1888     if (!drv->bdrv_truncate)
1889         return -ENOTSUP;
1890     if (bs->read_only)
1891         return -EACCES;
1892     if (bdrv_in_use(bs))
1893         return -EBUSY;
1894     ret = drv->bdrv_truncate(bs, offset);
1895     if (ret == 0) {
1896         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1897         bdrv_dev_resize_cb(bs);
1898     }
1899     return ret;
1900 }
1901 
1902 /**
1903  * Length of a allocated file in bytes. Sparse files are counted by actual
1904  * allocated space. Return < 0 if error or unknown.
1905  */
1906 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1907 {
1908     BlockDriver *drv = bs->drv;
1909     if (!drv) {
1910         return -ENOMEDIUM;
1911     }
1912     if (drv->bdrv_get_allocated_file_size) {
1913         return drv->bdrv_get_allocated_file_size(bs);
1914     }
1915     if (bs->file) {
1916         return bdrv_get_allocated_file_size(bs->file);
1917     }
1918     return -ENOTSUP;
1919 }
1920 
1921 /**
1922  * Length of a file in bytes. Return < 0 if error or unknown.
1923  */
1924 int64_t bdrv_getlength(BlockDriverState *bs)
1925 {
1926     BlockDriver *drv = bs->drv;
1927     if (!drv)
1928         return -ENOMEDIUM;
1929 
1930     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1931         if (drv->bdrv_getlength) {
1932             return drv->bdrv_getlength(bs);
1933         }
1934     }
1935     return bs->total_sectors * BDRV_SECTOR_SIZE;
1936 }
1937 
1938 /* return 0 as number of sectors if no device present or error */
1939 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1940 {
1941     int64_t length;
1942     length = bdrv_getlength(bs);
1943     if (length < 0)
1944         length = 0;
1945     else
1946         length = length >> BDRV_SECTOR_BITS;
1947     *nb_sectors_ptr = length;
1948 }
1949 
1950 struct partition {
1951         uint8_t boot_ind;           /* 0x80 - active */
1952         uint8_t head;               /* starting head */
1953         uint8_t sector;             /* starting sector */
1954         uint8_t cyl;                /* starting cylinder */
1955         uint8_t sys_ind;            /* What partition type */
1956         uint8_t end_head;           /* end head */
1957         uint8_t end_sector;         /* end sector */
1958         uint8_t end_cyl;            /* end cylinder */
1959         uint32_t start_sect;        /* starting sector counting from 0 */
1960         uint32_t nr_sects;          /* nr of sectors in partition */
1961 } QEMU_PACKED;
1962 
1963 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1964 static int guess_disk_lchs(BlockDriverState *bs,
1965                            int *pcylinders, int *pheads, int *psectors)
1966 {
1967     uint8_t buf[BDRV_SECTOR_SIZE];
1968     int ret, i, heads, sectors, cylinders;
1969     struct partition *p;
1970     uint32_t nr_sects;
1971     uint64_t nb_sectors;
1972 
1973     bdrv_get_geometry(bs, &nb_sectors);
1974 
1975     ret = bdrv_read(bs, 0, buf, 1);
1976     if (ret < 0)
1977         return -1;
1978     /* test msdos magic */
1979     if (buf[510] != 0x55 || buf[511] != 0xaa)
1980         return -1;
1981     for(i = 0; i < 4; i++) {
1982         p = ((struct partition *)(buf + 0x1be)) + i;
1983         nr_sects = le32_to_cpu(p->nr_sects);
1984         if (nr_sects && p->end_head) {
1985             /* We make the assumption that the partition terminates on
1986                a cylinder boundary */
1987             heads = p->end_head + 1;
1988             sectors = p->end_sector & 63;
1989             if (sectors == 0)
1990                 continue;
1991             cylinders = nb_sectors / (heads * sectors);
1992             if (cylinders < 1 || cylinders > 16383)
1993                 continue;
1994             *pheads = heads;
1995             *psectors = sectors;
1996             *pcylinders = cylinders;
1997 #if 0
1998             printf("guessed geometry: LCHS=%d %d %d\n",
1999                    cylinders, heads, sectors);
2000 #endif
2001             return 0;
2002         }
2003     }
2004     return -1;
2005 }
2006 
2007 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2008 {
2009     int translation, lba_detected = 0;
2010     int cylinders, heads, secs;
2011     uint64_t nb_sectors;
2012 
2013     /* if a geometry hint is available, use it */
2014     bdrv_get_geometry(bs, &nb_sectors);
2015     bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2016     translation = bdrv_get_translation_hint(bs);
2017     if (cylinders != 0) {
2018         *pcyls = cylinders;
2019         *pheads = heads;
2020         *psecs = secs;
2021     } else {
2022         if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2023             if (heads > 16) {
2024                 /* if heads > 16, it means that a BIOS LBA
2025                    translation was active, so the default
2026                    hardware geometry is OK */
2027                 lba_detected = 1;
2028                 goto default_geometry;
2029             } else {
2030                 *pcyls = cylinders;
2031                 *pheads = heads;
2032                 *psecs = secs;
2033                 /* disable any translation to be in sync with
2034                    the logical geometry */
2035                 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2036                     bdrv_set_translation_hint(bs,
2037                                               BIOS_ATA_TRANSLATION_NONE);
2038                 }
2039             }
2040         } else {
2041         default_geometry:
2042             /* if no geometry, use a standard physical disk geometry */
2043             cylinders = nb_sectors / (16 * 63);
2044 
2045             if (cylinders > 16383)
2046                 cylinders = 16383;
2047             else if (cylinders < 2)
2048                 cylinders = 2;
2049             *pcyls = cylinders;
2050             *pheads = 16;
2051             *psecs = 63;
2052             if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2053                 if ((*pcyls * *pheads) <= 131072) {
2054                     bdrv_set_translation_hint(bs,
2055                                               BIOS_ATA_TRANSLATION_LARGE);
2056                 } else {
2057                     bdrv_set_translation_hint(bs,
2058                                               BIOS_ATA_TRANSLATION_LBA);
2059                 }
2060             }
2061         }
2062         bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2063     }
2064 }
2065 
2066 void bdrv_set_geometry_hint(BlockDriverState *bs,
2067                             int cyls, int heads, int secs)
2068 {
2069     bs->cyls = cyls;
2070     bs->heads = heads;
2071     bs->secs = secs;
2072 }
2073 
2074 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2075 {
2076     bs->translation = translation;
2077 }
2078 
2079 void bdrv_get_geometry_hint(BlockDriverState *bs,
2080                             int *pcyls, int *pheads, int *psecs)
2081 {
2082     *pcyls = bs->cyls;
2083     *pheads = bs->heads;
2084     *psecs = bs->secs;
2085 }
2086 
2087 /* throttling disk io limits */
2088 void bdrv_set_io_limits(BlockDriverState *bs,
2089                         BlockIOLimit *io_limits)
2090 {
2091     bs->io_limits = *io_limits;
2092     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2093 }
2094 
2095 /* Recognize floppy formats */
2096 typedef struct FDFormat {
2097     FDriveType drive;
2098     uint8_t last_sect;
2099     uint8_t max_track;
2100     uint8_t max_head;
2101     FDriveRate rate;
2102 } FDFormat;
2103 
2104 static const FDFormat fd_formats[] = {
2105     /* First entry is default format */
2106     /* 1.44 MB 3"1/2 floppy disks */
2107     { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2108     { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2109     { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2110     { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2111     { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2112     { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2113     { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2114     { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2115     /* 2.88 MB 3"1/2 floppy disks */
2116     { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2117     { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2118     { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2119     { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2120     { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2121     /* 720 kB 3"1/2 floppy disks */
2122     { FDRIVE_DRV_144,  9, 80, 1, FDRIVE_RATE_250K, },
2123     { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2124     { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2125     { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2126     { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2127     { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2128     /* 1.2 MB 5"1/4 floppy disks */
2129     { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2130     { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2131     { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2132     { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2133     { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2134     /* 720 kB 5"1/4 floppy disks */
2135     { FDRIVE_DRV_120,  9, 80, 1, FDRIVE_RATE_250K, },
2136     { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2137     /* 360 kB 5"1/4 floppy disks */
2138     { FDRIVE_DRV_120,  9, 40, 1, FDRIVE_RATE_300K, },
2139     { FDRIVE_DRV_120,  9, 40, 0, FDRIVE_RATE_300K, },
2140     { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2141     { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2142     /* 320 kB 5"1/4 floppy disks */
2143     { FDRIVE_DRV_120,  8, 40, 1, FDRIVE_RATE_250K, },
2144     { FDRIVE_DRV_120,  8, 40, 0, FDRIVE_RATE_250K, },
2145     /* 360 kB must match 5"1/4 better than 3"1/2... */
2146     { FDRIVE_DRV_144,  9, 80, 0, FDRIVE_RATE_250K, },
2147     /* end */
2148     { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2149 };
2150 
2151 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2152                                    int *max_track, int *last_sect,
2153                                    FDriveType drive_in, FDriveType *drive,
2154                                    FDriveRate *rate)
2155 {
2156     const FDFormat *parse;
2157     uint64_t nb_sectors, size;
2158     int i, first_match, match;
2159 
2160     bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2161     if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2162         /* User defined disk */
2163         *rate = FDRIVE_RATE_500K;
2164     } else {
2165         bdrv_get_geometry(bs, &nb_sectors);
2166         match = -1;
2167         first_match = -1;
2168         for (i = 0; ; i++) {
2169             parse = &fd_formats[i];
2170             if (parse->drive == FDRIVE_DRV_NONE) {
2171                 break;
2172             }
2173             if (drive_in == parse->drive ||
2174                 drive_in == FDRIVE_DRV_NONE) {
2175                 size = (parse->max_head + 1) * parse->max_track *
2176                     parse->last_sect;
2177                 if (nb_sectors == size) {
2178                     match = i;
2179                     break;
2180                 }
2181                 if (first_match == -1) {
2182                     first_match = i;
2183                 }
2184             }
2185         }
2186         if (match == -1) {
2187             if (first_match == -1) {
2188                 match = 1;
2189             } else {
2190                 match = first_match;
2191             }
2192             parse = &fd_formats[match];
2193         }
2194         *nb_heads = parse->max_head + 1;
2195         *max_track = parse->max_track;
2196         *last_sect = parse->last_sect;
2197         *drive = parse->drive;
2198         *rate = parse->rate;
2199     }
2200 }
2201 
2202 int bdrv_get_translation_hint(BlockDriverState *bs)
2203 {
2204     return bs->translation;
2205 }
2206 
2207 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2208                        BlockErrorAction on_write_error)
2209 {
2210     bs->on_read_error = on_read_error;
2211     bs->on_write_error = on_write_error;
2212 }
2213 
2214 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2215 {
2216     return is_read ? bs->on_read_error : bs->on_write_error;
2217 }
2218 
2219 int bdrv_is_read_only(BlockDriverState *bs)
2220 {
2221     return bs->read_only;
2222 }
2223 
2224 int bdrv_is_sg(BlockDriverState *bs)
2225 {
2226     return bs->sg;
2227 }
2228 
2229 int bdrv_enable_write_cache(BlockDriverState *bs)
2230 {
2231     return bs->enable_write_cache;
2232 }
2233 
2234 int bdrv_is_encrypted(BlockDriverState *bs)
2235 {
2236     if (bs->backing_hd && bs->backing_hd->encrypted)
2237         return 1;
2238     return bs->encrypted;
2239 }
2240 
2241 int bdrv_key_required(BlockDriverState *bs)
2242 {
2243     BlockDriverState *backing_hd = bs->backing_hd;
2244 
2245     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2246         return 1;
2247     return (bs->encrypted && !bs->valid_key);
2248 }
2249 
2250 int bdrv_set_key(BlockDriverState *bs, const char *key)
2251 {
2252     int ret;
2253     if (bs->backing_hd && bs->backing_hd->encrypted) {
2254         ret = bdrv_set_key(bs->backing_hd, key);
2255         if (ret < 0)
2256             return ret;
2257         if (!bs->encrypted)
2258             return 0;
2259     }
2260     if (!bs->encrypted) {
2261         return -EINVAL;
2262     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2263         return -ENOMEDIUM;
2264     }
2265     ret = bs->drv->bdrv_set_key(bs, key);
2266     if (ret < 0) {
2267         bs->valid_key = 0;
2268     } else if (!bs->valid_key) {
2269         bs->valid_key = 1;
2270         /* call the change callback now, we skipped it on open */
2271         bdrv_dev_change_media_cb(bs, true);
2272     }
2273     return ret;
2274 }
2275 
2276 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2277 {
2278     if (!bs->drv) {
2279         buf[0] = '\0';
2280     } else {
2281         pstrcpy(buf, buf_size, bs->drv->format_name);
2282     }
2283 }
2284 
2285 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2286                          void *opaque)
2287 {
2288     BlockDriver *drv;
2289 
2290     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2291         it(opaque, drv->format_name);
2292     }
2293 }
2294 
2295 BlockDriverState *bdrv_find(const char *name)
2296 {
2297     BlockDriverState *bs;
2298 
2299     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2300         if (!strcmp(name, bs->device_name)) {
2301             return bs;
2302         }
2303     }
2304     return NULL;
2305 }
2306 
2307 BlockDriverState *bdrv_next(BlockDriverState *bs)
2308 {
2309     if (!bs) {
2310         return QTAILQ_FIRST(&bdrv_states);
2311     }
2312     return QTAILQ_NEXT(bs, list);
2313 }
2314 
2315 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2316 {
2317     BlockDriverState *bs;
2318 
2319     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2320         it(opaque, bs);
2321     }
2322 }
2323 
2324 const char *bdrv_get_device_name(BlockDriverState *bs)
2325 {
2326     return bs->device_name;
2327 }
2328 
2329 void bdrv_flush_all(void)
2330 {
2331     BlockDriverState *bs;
2332 
2333     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2334         if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2335             bdrv_flush(bs);
2336         }
2337     }
2338 }
2339 
2340 int bdrv_has_zero_init(BlockDriverState *bs)
2341 {
2342     assert(bs->drv);
2343 
2344     if (bs->drv->bdrv_has_zero_init) {
2345         return bs->drv->bdrv_has_zero_init(bs);
2346     }
2347 
2348     return 1;
2349 }
2350 
2351 typedef struct BdrvCoIsAllocatedData {
2352     BlockDriverState *bs;
2353     int64_t sector_num;
2354     int nb_sectors;
2355     int *pnum;
2356     int ret;
2357     bool done;
2358 } BdrvCoIsAllocatedData;
2359 
2360 /*
2361  * Returns true iff the specified sector is present in the disk image. Drivers
2362  * not implementing the functionality are assumed to not support backing files,
2363  * hence all their sectors are reported as allocated.
2364  *
2365  * If 'sector_num' is beyond the end of the disk image the return value is 0
2366  * and 'pnum' is set to 0.
2367  *
2368  * 'pnum' is set to the number of sectors (including and immediately following
2369  * the specified sector) that are known to be in the same
2370  * allocated/unallocated state.
2371  *
2372  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2373  * beyond the end of the disk image it will be clamped.
2374  */
2375 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2376                                       int nb_sectors, int *pnum)
2377 {
2378     int64_t n;
2379 
2380     if (sector_num >= bs->total_sectors) {
2381         *pnum = 0;
2382         return 0;
2383     }
2384 
2385     n = bs->total_sectors - sector_num;
2386     if (n < nb_sectors) {
2387         nb_sectors = n;
2388     }
2389 
2390     if (!bs->drv->bdrv_co_is_allocated) {
2391         *pnum = nb_sectors;
2392         return 1;
2393     }
2394 
2395     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2396 }
2397 
2398 /* Coroutine wrapper for bdrv_is_allocated() */
2399 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2400 {
2401     BdrvCoIsAllocatedData *data = opaque;
2402     BlockDriverState *bs = data->bs;
2403 
2404     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2405                                      data->pnum);
2406     data->done = true;
2407 }
2408 
2409 /*
2410  * Synchronous wrapper around bdrv_co_is_allocated().
2411  *
2412  * See bdrv_co_is_allocated() for details.
2413  */
2414 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2415                       int *pnum)
2416 {
2417     Coroutine *co;
2418     BdrvCoIsAllocatedData data = {
2419         .bs = bs,
2420         .sector_num = sector_num,
2421         .nb_sectors = nb_sectors,
2422         .pnum = pnum,
2423         .done = false,
2424     };
2425 
2426     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2427     qemu_coroutine_enter(co, &data);
2428     while (!data.done) {
2429         qemu_aio_wait();
2430     }
2431     return data.ret;
2432 }
2433 
2434 BlockInfoList *qmp_query_block(Error **errp)
2435 {
2436     BlockInfoList *head = NULL, *cur_item = NULL;
2437     BlockDriverState *bs;
2438 
2439     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2440         BlockInfoList *info = g_malloc0(sizeof(*info));
2441 
2442         info->value = g_malloc0(sizeof(*info->value));
2443         info->value->device = g_strdup(bs->device_name);
2444         info->value->type = g_strdup("unknown");
2445         info->value->locked = bdrv_dev_is_medium_locked(bs);
2446         info->value->removable = bdrv_dev_has_removable_media(bs);
2447 
2448         if (bdrv_dev_has_removable_media(bs)) {
2449             info->value->has_tray_open = true;
2450             info->value->tray_open = bdrv_dev_is_tray_open(bs);
2451         }
2452 
2453         if (bdrv_iostatus_is_enabled(bs)) {
2454             info->value->has_io_status = true;
2455             info->value->io_status = bs->iostatus;
2456         }
2457 
2458         if (bs->drv) {
2459             info->value->has_inserted = true;
2460             info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2461             info->value->inserted->file = g_strdup(bs->filename);
2462             info->value->inserted->ro = bs->read_only;
2463             info->value->inserted->drv = g_strdup(bs->drv->format_name);
2464             info->value->inserted->encrypted = bs->encrypted;
2465             if (bs->backing_file[0]) {
2466                 info->value->inserted->has_backing_file = true;
2467                 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2468             }
2469 
2470             if (bs->io_limits_enabled) {
2471                 info->value->inserted->bps =
2472                                bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2473                 info->value->inserted->bps_rd =
2474                                bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2475                 info->value->inserted->bps_wr =
2476                                bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2477                 info->value->inserted->iops =
2478                                bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2479                 info->value->inserted->iops_rd =
2480                                bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2481                 info->value->inserted->iops_wr =
2482                                bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2483             }
2484         }
2485 
2486         /* XXX: waiting for the qapi to support GSList */
2487         if (!cur_item) {
2488             head = cur_item = info;
2489         } else {
2490             cur_item->next = info;
2491             cur_item = info;
2492         }
2493     }
2494 
2495     return head;
2496 }
2497 
2498 /* Consider exposing this as a full fledged QMP command */
2499 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2500 {
2501     BlockStats *s;
2502 
2503     s = g_malloc0(sizeof(*s));
2504 
2505     if (bs->device_name[0]) {
2506         s->has_device = true;
2507         s->device = g_strdup(bs->device_name);
2508     }
2509 
2510     s->stats = g_malloc0(sizeof(*s->stats));
2511     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2512     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2513     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2514     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2515     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2516     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2517     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2518     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2519     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2520 
2521     if (bs->file) {
2522         s->has_parent = true;
2523         s->parent = qmp_query_blockstat(bs->file, NULL);
2524     }
2525 
2526     return s;
2527 }
2528 
2529 BlockStatsList *qmp_query_blockstats(Error **errp)
2530 {
2531     BlockStatsList *head = NULL, *cur_item = NULL;
2532     BlockDriverState *bs;
2533 
2534     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2535         BlockStatsList *info = g_malloc0(sizeof(*info));
2536         info->value = qmp_query_blockstat(bs, NULL);
2537 
2538         /* XXX: waiting for the qapi to support GSList */
2539         if (!cur_item) {
2540             head = cur_item = info;
2541         } else {
2542             cur_item->next = info;
2543             cur_item = info;
2544         }
2545     }
2546 
2547     return head;
2548 }
2549 
2550 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2551 {
2552     if (bs->backing_hd && bs->backing_hd->encrypted)
2553         return bs->backing_file;
2554     else if (bs->encrypted)
2555         return bs->filename;
2556     else
2557         return NULL;
2558 }
2559 
2560 void bdrv_get_backing_filename(BlockDriverState *bs,
2561                                char *filename, int filename_size)
2562 {
2563     pstrcpy(filename, filename_size, bs->backing_file);
2564 }
2565 
2566 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2567                           const uint8_t *buf, int nb_sectors)
2568 {
2569     BlockDriver *drv = bs->drv;
2570     if (!drv)
2571         return -ENOMEDIUM;
2572     if (!drv->bdrv_write_compressed)
2573         return -ENOTSUP;
2574     if (bdrv_check_request(bs, sector_num, nb_sectors))
2575         return -EIO;
2576 
2577     if (bs->dirty_bitmap) {
2578         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2579     }
2580 
2581     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2582 }
2583 
2584 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2585 {
2586     BlockDriver *drv = bs->drv;
2587     if (!drv)
2588         return -ENOMEDIUM;
2589     if (!drv->bdrv_get_info)
2590         return -ENOTSUP;
2591     memset(bdi, 0, sizeof(*bdi));
2592     return drv->bdrv_get_info(bs, bdi);
2593 }
2594 
2595 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2596                       int64_t pos, int size)
2597 {
2598     BlockDriver *drv = bs->drv;
2599     if (!drv)
2600         return -ENOMEDIUM;
2601     if (drv->bdrv_save_vmstate)
2602         return drv->bdrv_save_vmstate(bs, buf, pos, size);
2603     if (bs->file)
2604         return bdrv_save_vmstate(bs->file, buf, pos, size);
2605     return -ENOTSUP;
2606 }
2607 
2608 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2609                       int64_t pos, int size)
2610 {
2611     BlockDriver *drv = bs->drv;
2612     if (!drv)
2613         return -ENOMEDIUM;
2614     if (drv->bdrv_load_vmstate)
2615         return drv->bdrv_load_vmstate(bs, buf, pos, size);
2616     if (bs->file)
2617         return bdrv_load_vmstate(bs->file, buf, pos, size);
2618     return -ENOTSUP;
2619 }
2620 
2621 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2622 {
2623     BlockDriver *drv = bs->drv;
2624 
2625     if (!drv || !drv->bdrv_debug_event) {
2626         return;
2627     }
2628 
2629     return drv->bdrv_debug_event(bs, event);
2630 
2631 }
2632 
2633 /**************************************************************/
2634 /* handling of snapshots */
2635 
2636 int bdrv_can_snapshot(BlockDriverState *bs)
2637 {
2638     BlockDriver *drv = bs->drv;
2639     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2640         return 0;
2641     }
2642 
2643     if (!drv->bdrv_snapshot_create) {
2644         if (bs->file != NULL) {
2645             return bdrv_can_snapshot(bs->file);
2646         }
2647         return 0;
2648     }
2649 
2650     return 1;
2651 }
2652 
2653 int bdrv_is_snapshot(BlockDriverState *bs)
2654 {
2655     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2656 }
2657 
2658 BlockDriverState *bdrv_snapshots(void)
2659 {
2660     BlockDriverState *bs;
2661 
2662     if (bs_snapshots) {
2663         return bs_snapshots;
2664     }
2665 
2666     bs = NULL;
2667     while ((bs = bdrv_next(bs))) {
2668         if (bdrv_can_snapshot(bs)) {
2669             bs_snapshots = bs;
2670             return bs;
2671         }
2672     }
2673     return NULL;
2674 }
2675 
2676 int bdrv_snapshot_create(BlockDriverState *bs,
2677                          QEMUSnapshotInfo *sn_info)
2678 {
2679     BlockDriver *drv = bs->drv;
2680     if (!drv)
2681         return -ENOMEDIUM;
2682     if (drv->bdrv_snapshot_create)
2683         return drv->bdrv_snapshot_create(bs, sn_info);
2684     if (bs->file)
2685         return bdrv_snapshot_create(bs->file, sn_info);
2686     return -ENOTSUP;
2687 }
2688 
2689 int bdrv_snapshot_goto(BlockDriverState *bs,
2690                        const char *snapshot_id)
2691 {
2692     BlockDriver *drv = bs->drv;
2693     int ret, open_ret;
2694 
2695     if (!drv)
2696         return -ENOMEDIUM;
2697     if (drv->bdrv_snapshot_goto)
2698         return drv->bdrv_snapshot_goto(bs, snapshot_id);
2699 
2700     if (bs->file) {
2701         drv->bdrv_close(bs);
2702         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2703         open_ret = drv->bdrv_open(bs, bs->open_flags);
2704         if (open_ret < 0) {
2705             bdrv_delete(bs->file);
2706             bs->drv = NULL;
2707             return open_ret;
2708         }
2709         return ret;
2710     }
2711 
2712     return -ENOTSUP;
2713 }
2714 
2715 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2716 {
2717     BlockDriver *drv = bs->drv;
2718     if (!drv)
2719         return -ENOMEDIUM;
2720     if (drv->bdrv_snapshot_delete)
2721         return drv->bdrv_snapshot_delete(bs, snapshot_id);
2722     if (bs->file)
2723         return bdrv_snapshot_delete(bs->file, snapshot_id);
2724     return -ENOTSUP;
2725 }
2726 
2727 int bdrv_snapshot_list(BlockDriverState *bs,
2728                        QEMUSnapshotInfo **psn_info)
2729 {
2730     BlockDriver *drv = bs->drv;
2731     if (!drv)
2732         return -ENOMEDIUM;
2733     if (drv->bdrv_snapshot_list)
2734         return drv->bdrv_snapshot_list(bs, psn_info);
2735     if (bs->file)
2736         return bdrv_snapshot_list(bs->file, psn_info);
2737     return -ENOTSUP;
2738 }
2739 
2740 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2741         const char *snapshot_name)
2742 {
2743     BlockDriver *drv = bs->drv;
2744     if (!drv) {
2745         return -ENOMEDIUM;
2746     }
2747     if (!bs->read_only) {
2748         return -EINVAL;
2749     }
2750     if (drv->bdrv_snapshot_load_tmp) {
2751         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2752     }
2753     return -ENOTSUP;
2754 }
2755 
2756 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2757         const char *backing_file)
2758 {
2759     if (!bs->drv) {
2760         return NULL;
2761     }
2762 
2763     if (bs->backing_hd) {
2764         if (strcmp(bs->backing_file, backing_file) == 0) {
2765             return bs->backing_hd;
2766         } else {
2767             return bdrv_find_backing_image(bs->backing_hd, backing_file);
2768         }
2769     }
2770 
2771     return NULL;
2772 }
2773 
2774 #define NB_SUFFIXES 4
2775 
2776 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2777 {
2778     static const char suffixes[NB_SUFFIXES] = "KMGT";
2779     int64_t base;
2780     int i;
2781 
2782     if (size <= 999) {
2783         snprintf(buf, buf_size, "%" PRId64, size);
2784     } else {
2785         base = 1024;
2786         for(i = 0; i < NB_SUFFIXES; i++) {
2787             if (size < (10 * base)) {
2788                 snprintf(buf, buf_size, "%0.1f%c",
2789                          (double)size / base,
2790                          suffixes[i]);
2791                 break;
2792             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2793                 snprintf(buf, buf_size, "%" PRId64 "%c",
2794                          ((size + (base >> 1)) / base),
2795                          suffixes[i]);
2796                 break;
2797             }
2798             base = base * 1024;
2799         }
2800     }
2801     return buf;
2802 }
2803 
2804 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2805 {
2806     char buf1[128], date_buf[128], clock_buf[128];
2807 #ifdef _WIN32
2808     struct tm *ptm;
2809 #else
2810     struct tm tm;
2811 #endif
2812     time_t ti;
2813     int64_t secs;
2814 
2815     if (!sn) {
2816         snprintf(buf, buf_size,
2817                  "%-10s%-20s%7s%20s%15s",
2818                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2819     } else {
2820         ti = sn->date_sec;
2821 #ifdef _WIN32
2822         ptm = localtime(&ti);
2823         strftime(date_buf, sizeof(date_buf),
2824                  "%Y-%m-%d %H:%M:%S", ptm);
2825 #else
2826         localtime_r(&ti, &tm);
2827         strftime(date_buf, sizeof(date_buf),
2828                  "%Y-%m-%d %H:%M:%S", &tm);
2829 #endif
2830         secs = sn->vm_clock_nsec / 1000000000;
2831         snprintf(clock_buf, sizeof(clock_buf),
2832                  "%02d:%02d:%02d.%03d",
2833                  (int)(secs / 3600),
2834                  (int)((secs / 60) % 60),
2835                  (int)(secs % 60),
2836                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
2837         snprintf(buf, buf_size,
2838                  "%-10s%-20s%7s%20s%15s",
2839                  sn->id_str, sn->name,
2840                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2841                  date_buf,
2842                  clock_buf);
2843     }
2844     return buf;
2845 }
2846 
2847 /**************************************************************/
2848 /* async I/Os */
2849 
2850 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2851                                  QEMUIOVector *qiov, int nb_sectors,
2852                                  BlockDriverCompletionFunc *cb, void *opaque)
2853 {
2854     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2855 
2856     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2857                                  cb, opaque, false);
2858 }
2859 
2860 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2861                                   QEMUIOVector *qiov, int nb_sectors,
2862                                   BlockDriverCompletionFunc *cb, void *opaque)
2863 {
2864     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2865 
2866     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2867                                  cb, opaque, true);
2868 }
2869 
2870 
2871 typedef struct MultiwriteCB {
2872     int error;
2873     int num_requests;
2874     int num_callbacks;
2875     struct {
2876         BlockDriverCompletionFunc *cb;
2877         void *opaque;
2878         QEMUIOVector *free_qiov;
2879     } callbacks[];
2880 } MultiwriteCB;
2881 
2882 static void multiwrite_user_cb(MultiwriteCB *mcb)
2883 {
2884     int i;
2885 
2886     for (i = 0; i < mcb->num_callbacks; i++) {
2887         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2888         if (mcb->callbacks[i].free_qiov) {
2889             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2890         }
2891         g_free(mcb->callbacks[i].free_qiov);
2892     }
2893 }
2894 
2895 static void multiwrite_cb(void *opaque, int ret)
2896 {
2897     MultiwriteCB *mcb = opaque;
2898 
2899     trace_multiwrite_cb(mcb, ret);
2900 
2901     if (ret < 0 && !mcb->error) {
2902         mcb->error = ret;
2903     }
2904 
2905     mcb->num_requests--;
2906     if (mcb->num_requests == 0) {
2907         multiwrite_user_cb(mcb);
2908         g_free(mcb);
2909     }
2910 }
2911 
2912 static int multiwrite_req_compare(const void *a, const void *b)
2913 {
2914     const BlockRequest *req1 = a, *req2 = b;
2915 
2916     /*
2917      * Note that we can't simply subtract req2->sector from req1->sector
2918      * here as that could overflow the return value.
2919      */
2920     if (req1->sector > req2->sector) {
2921         return 1;
2922     } else if (req1->sector < req2->sector) {
2923         return -1;
2924     } else {
2925         return 0;
2926     }
2927 }
2928 
2929 /*
2930  * Takes a bunch of requests and tries to merge them. Returns the number of
2931  * requests that remain after merging.
2932  */
2933 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2934     int num_reqs, MultiwriteCB *mcb)
2935 {
2936     int i, outidx;
2937 
2938     // Sort requests by start sector
2939     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2940 
2941     // Check if adjacent requests touch the same clusters. If so, combine them,
2942     // filling up gaps with zero sectors.
2943     outidx = 0;
2944     for (i = 1; i < num_reqs; i++) {
2945         int merge = 0;
2946         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2947 
2948         // Handle exactly sequential writes and overlapping writes.
2949         if (reqs[i].sector <= oldreq_last) {
2950             merge = 1;
2951         }
2952 
2953         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2954             merge = 0;
2955         }
2956 
2957         if (merge) {
2958             size_t size;
2959             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2960             qemu_iovec_init(qiov,
2961                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2962 
2963             // Add the first request to the merged one. If the requests are
2964             // overlapping, drop the last sectors of the first request.
2965             size = (reqs[i].sector - reqs[outidx].sector) << 9;
2966             qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2967 
2968             // We should need to add any zeros between the two requests
2969             assert (reqs[i].sector <= oldreq_last);
2970 
2971             // Add the second request
2972             qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2973 
2974             reqs[outidx].nb_sectors = qiov->size >> 9;
2975             reqs[outidx].qiov = qiov;
2976 
2977             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2978         } else {
2979             outidx++;
2980             reqs[outidx].sector     = reqs[i].sector;
2981             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2982             reqs[outidx].qiov       = reqs[i].qiov;
2983         }
2984     }
2985 
2986     return outidx + 1;
2987 }
2988 
2989 /*
2990  * Submit multiple AIO write requests at once.
2991  *
2992  * On success, the function returns 0 and all requests in the reqs array have
2993  * been submitted. In error case this function returns -1, and any of the
2994  * requests may or may not be submitted yet. In particular, this means that the
2995  * callback will be called for some of the requests, for others it won't. The
2996  * caller must check the error field of the BlockRequest to wait for the right
2997  * callbacks (if error != 0, no callback will be called).
2998  *
2999  * The implementation may modify the contents of the reqs array, e.g. to merge
3000  * requests. However, the fields opaque and error are left unmodified as they
3001  * are used to signal failure for a single request to the caller.
3002  */
3003 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3004 {
3005     MultiwriteCB *mcb;
3006     int i;
3007 
3008     /* don't submit writes if we don't have a medium */
3009     if (bs->drv == NULL) {
3010         for (i = 0; i < num_reqs; i++) {
3011             reqs[i].error = -ENOMEDIUM;
3012         }
3013         return -1;
3014     }
3015 
3016     if (num_reqs == 0) {
3017         return 0;
3018     }
3019 
3020     // Create MultiwriteCB structure
3021     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3022     mcb->num_requests = 0;
3023     mcb->num_callbacks = num_reqs;
3024 
3025     for (i = 0; i < num_reqs; i++) {
3026         mcb->callbacks[i].cb = reqs[i].cb;
3027         mcb->callbacks[i].opaque = reqs[i].opaque;
3028     }
3029 
3030     // Check for mergable requests
3031     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3032 
3033     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3034 
3035     /* Run the aio requests. */
3036     mcb->num_requests = num_reqs;
3037     for (i = 0; i < num_reqs; i++) {
3038         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3039             reqs[i].nb_sectors, multiwrite_cb, mcb);
3040     }
3041 
3042     return 0;
3043 }
3044 
3045 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3046 {
3047     acb->pool->cancel(acb);
3048 }
3049 
3050 /* block I/O throttling */
3051 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3052                  bool is_write, double elapsed_time, uint64_t *wait)
3053 {
3054     uint64_t bps_limit = 0;
3055     double   bytes_limit, bytes_base, bytes_res;
3056     double   slice_time, wait_time;
3057 
3058     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3059         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3060     } else if (bs->io_limits.bps[is_write]) {
3061         bps_limit = bs->io_limits.bps[is_write];
3062     } else {
3063         if (wait) {
3064             *wait = 0;
3065         }
3066 
3067         return false;
3068     }
3069 
3070     slice_time = bs->slice_end - bs->slice_start;
3071     slice_time /= (NANOSECONDS_PER_SECOND);
3072     bytes_limit = bps_limit * slice_time;
3073     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3074     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3075         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3076     }
3077 
3078     /* bytes_base: the bytes of data which have been read/written; and
3079      *             it is obtained from the history statistic info.
3080      * bytes_res: the remaining bytes of data which need to be read/written.
3081      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3082      *             the total time for completing reading/writting all data.
3083      */
3084     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3085 
3086     if (bytes_base + bytes_res <= bytes_limit) {
3087         if (wait) {
3088             *wait = 0;
3089         }
3090 
3091         return false;
3092     }
3093 
3094     /* Calc approx time to dispatch */
3095     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3096 
3097     /* When the I/O rate at runtime exceeds the limits,
3098      * bs->slice_end need to be extended in order that the current statistic
3099      * info can be kept until the timer fire, so it is increased and tuned
3100      * based on the result of experiment.
3101      */
3102     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3103     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3104     if (wait) {
3105         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3106     }
3107 
3108     return true;
3109 }
3110 
3111 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3112                              double elapsed_time, uint64_t *wait)
3113 {
3114     uint64_t iops_limit = 0;
3115     double   ios_limit, ios_base;
3116     double   slice_time, wait_time;
3117 
3118     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3119         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3120     } else if (bs->io_limits.iops[is_write]) {
3121         iops_limit = bs->io_limits.iops[is_write];
3122     } else {
3123         if (wait) {
3124             *wait = 0;
3125         }
3126 
3127         return false;
3128     }
3129 
3130     slice_time = bs->slice_end - bs->slice_start;
3131     slice_time /= (NANOSECONDS_PER_SECOND);
3132     ios_limit  = iops_limit * slice_time;
3133     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3134     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3135         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3136     }
3137 
3138     if (ios_base + 1 <= ios_limit) {
3139         if (wait) {
3140             *wait = 0;
3141         }
3142 
3143         return false;
3144     }
3145 
3146     /* Calc approx time to dispatch */
3147     wait_time = (ios_base + 1) / iops_limit;
3148     if (wait_time > elapsed_time) {
3149         wait_time = wait_time - elapsed_time;
3150     } else {
3151         wait_time = 0;
3152     }
3153 
3154     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3155     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3156     if (wait) {
3157         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3158     }
3159 
3160     return true;
3161 }
3162 
3163 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3164                            bool is_write, int64_t *wait)
3165 {
3166     int64_t  now, max_wait;
3167     uint64_t bps_wait = 0, iops_wait = 0;
3168     double   elapsed_time;
3169     int      bps_ret, iops_ret;
3170 
3171     now = qemu_get_clock_ns(vm_clock);
3172     if ((bs->slice_start < now)
3173         && (bs->slice_end > now)) {
3174         bs->slice_end = now + bs->slice_time;
3175     } else {
3176         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3177         bs->slice_start = now;
3178         bs->slice_end   = now + bs->slice_time;
3179 
3180         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3181         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3182 
3183         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3184         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3185     }
3186 
3187     elapsed_time  = now - bs->slice_start;
3188     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3189 
3190     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3191                                       is_write, elapsed_time, &bps_wait);
3192     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3193                                       elapsed_time, &iops_wait);
3194     if (bps_ret || iops_ret) {
3195         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3196         if (wait) {
3197             *wait = max_wait;
3198         }
3199 
3200         now = qemu_get_clock_ns(vm_clock);
3201         if (bs->slice_end < now + max_wait) {
3202             bs->slice_end = now + max_wait;
3203         }
3204 
3205         return true;
3206     }
3207 
3208     if (wait) {
3209         *wait = 0;
3210     }
3211 
3212     return false;
3213 }
3214 
3215 /**************************************************************/
3216 /* async block device emulation */
3217 
3218 typedef struct BlockDriverAIOCBSync {
3219     BlockDriverAIOCB common;
3220     QEMUBH *bh;
3221     int ret;
3222     /* vector translation state */
3223     QEMUIOVector *qiov;
3224     uint8_t *bounce;
3225     int is_write;
3226 } BlockDriverAIOCBSync;
3227 
3228 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3229 {
3230     BlockDriverAIOCBSync *acb =
3231         container_of(blockacb, BlockDriverAIOCBSync, common);
3232     qemu_bh_delete(acb->bh);
3233     acb->bh = NULL;
3234     qemu_aio_release(acb);
3235 }
3236 
3237 static AIOPool bdrv_em_aio_pool = {
3238     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3239     .cancel             = bdrv_aio_cancel_em,
3240 };
3241 
3242 static void bdrv_aio_bh_cb(void *opaque)
3243 {
3244     BlockDriverAIOCBSync *acb = opaque;
3245 
3246     if (!acb->is_write)
3247         qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3248     qemu_vfree(acb->bounce);
3249     acb->common.cb(acb->common.opaque, acb->ret);
3250     qemu_bh_delete(acb->bh);
3251     acb->bh = NULL;
3252     qemu_aio_release(acb);
3253 }
3254 
3255 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3256                                             int64_t sector_num,
3257                                             QEMUIOVector *qiov,
3258                                             int nb_sectors,
3259                                             BlockDriverCompletionFunc *cb,
3260                                             void *opaque,
3261                                             int is_write)
3262 
3263 {
3264     BlockDriverAIOCBSync *acb;
3265 
3266     acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3267     acb->is_write = is_write;
3268     acb->qiov = qiov;
3269     acb->bounce = qemu_blockalign(bs, qiov->size);
3270     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3271 
3272     if (is_write) {
3273         qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3274         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3275     } else {
3276         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3277     }
3278 
3279     qemu_bh_schedule(acb->bh);
3280 
3281     return &acb->common;
3282 }
3283 
3284 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3285         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3286         BlockDriverCompletionFunc *cb, void *opaque)
3287 {
3288     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3289 }
3290 
3291 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3292         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3293         BlockDriverCompletionFunc *cb, void *opaque)
3294 {
3295     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3296 }
3297 
3298 
3299 typedef struct BlockDriverAIOCBCoroutine {
3300     BlockDriverAIOCB common;
3301     BlockRequest req;
3302     bool is_write;
3303     QEMUBH* bh;
3304 } BlockDriverAIOCBCoroutine;
3305 
3306 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3307 {
3308     qemu_aio_flush();
3309 }
3310 
3311 static AIOPool bdrv_em_co_aio_pool = {
3312     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3313     .cancel             = bdrv_aio_co_cancel_em,
3314 };
3315 
3316 static void bdrv_co_em_bh(void *opaque)
3317 {
3318     BlockDriverAIOCBCoroutine *acb = opaque;
3319 
3320     acb->common.cb(acb->common.opaque, acb->req.error);
3321     qemu_bh_delete(acb->bh);
3322     qemu_aio_release(acb);
3323 }
3324 
3325 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3326 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3327 {
3328     BlockDriverAIOCBCoroutine *acb = opaque;
3329     BlockDriverState *bs = acb->common.bs;
3330 
3331     if (!acb->is_write) {
3332         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3333             acb->req.nb_sectors, acb->req.qiov, 0);
3334     } else {
3335         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3336             acb->req.nb_sectors, acb->req.qiov, 0);
3337     }
3338 
3339     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3340     qemu_bh_schedule(acb->bh);
3341 }
3342 
3343 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3344                                                int64_t sector_num,
3345                                                QEMUIOVector *qiov,
3346                                                int nb_sectors,
3347                                                BlockDriverCompletionFunc *cb,
3348                                                void *opaque,
3349                                                bool is_write)
3350 {
3351     Coroutine *co;
3352     BlockDriverAIOCBCoroutine *acb;
3353 
3354     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3355     acb->req.sector = sector_num;
3356     acb->req.nb_sectors = nb_sectors;
3357     acb->req.qiov = qiov;
3358     acb->is_write = is_write;
3359 
3360     co = qemu_coroutine_create(bdrv_co_do_rw);
3361     qemu_coroutine_enter(co, acb);
3362 
3363     return &acb->common;
3364 }
3365 
3366 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3367 {
3368     BlockDriverAIOCBCoroutine *acb = opaque;
3369     BlockDriverState *bs = acb->common.bs;
3370 
3371     acb->req.error = bdrv_co_flush(bs);
3372     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3373     qemu_bh_schedule(acb->bh);
3374 }
3375 
3376 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3377         BlockDriverCompletionFunc *cb, void *opaque)
3378 {
3379     trace_bdrv_aio_flush(bs, opaque);
3380 
3381     Coroutine *co;
3382     BlockDriverAIOCBCoroutine *acb;
3383 
3384     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3385     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3386     qemu_coroutine_enter(co, acb);
3387 
3388     return &acb->common;
3389 }
3390 
3391 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3392 {
3393     BlockDriverAIOCBCoroutine *acb = opaque;
3394     BlockDriverState *bs = acb->common.bs;
3395 
3396     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3397     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3398     qemu_bh_schedule(acb->bh);
3399 }
3400 
3401 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3402         int64_t sector_num, int nb_sectors,
3403         BlockDriverCompletionFunc *cb, void *opaque)
3404 {
3405     Coroutine *co;
3406     BlockDriverAIOCBCoroutine *acb;
3407 
3408     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3409 
3410     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3411     acb->req.sector = sector_num;
3412     acb->req.nb_sectors = nb_sectors;
3413     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3414     qemu_coroutine_enter(co, acb);
3415 
3416     return &acb->common;
3417 }
3418 
3419 void bdrv_init(void)
3420 {
3421     module_call_init(MODULE_INIT_BLOCK);
3422 }
3423 
3424 void bdrv_init_with_whitelist(void)
3425 {
3426     use_bdrv_whitelist = 1;
3427     bdrv_init();
3428 }
3429 
3430 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3431                    BlockDriverCompletionFunc *cb, void *opaque)
3432 {
3433     BlockDriverAIOCB *acb;
3434 
3435     if (pool->free_aiocb) {
3436         acb = pool->free_aiocb;
3437         pool->free_aiocb = acb->next;
3438     } else {
3439         acb = g_malloc0(pool->aiocb_size);
3440         acb->pool = pool;
3441     }
3442     acb->bs = bs;
3443     acb->cb = cb;
3444     acb->opaque = opaque;
3445     return acb;
3446 }
3447 
3448 void qemu_aio_release(void *p)
3449 {
3450     BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3451     AIOPool *pool = acb->pool;
3452     acb->next = pool->free_aiocb;
3453     pool->free_aiocb = acb;
3454 }
3455 
3456 /**************************************************************/
3457 /* Coroutine block device emulation */
3458 
3459 typedef struct CoroutineIOCompletion {
3460     Coroutine *coroutine;
3461     int ret;
3462 } CoroutineIOCompletion;
3463 
3464 static void bdrv_co_io_em_complete(void *opaque, int ret)
3465 {
3466     CoroutineIOCompletion *co = opaque;
3467 
3468     co->ret = ret;
3469     qemu_coroutine_enter(co->coroutine, NULL);
3470 }
3471 
3472 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3473                                       int nb_sectors, QEMUIOVector *iov,
3474                                       bool is_write)
3475 {
3476     CoroutineIOCompletion co = {
3477         .coroutine = qemu_coroutine_self(),
3478     };
3479     BlockDriverAIOCB *acb;
3480 
3481     if (is_write) {
3482         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3483                                        bdrv_co_io_em_complete, &co);
3484     } else {
3485         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3486                                       bdrv_co_io_em_complete, &co);
3487     }
3488 
3489     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3490     if (!acb) {
3491         return -EIO;
3492     }
3493     qemu_coroutine_yield();
3494 
3495     return co.ret;
3496 }
3497 
3498 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3499                                          int64_t sector_num, int nb_sectors,
3500                                          QEMUIOVector *iov)
3501 {
3502     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3503 }
3504 
3505 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3506                                          int64_t sector_num, int nb_sectors,
3507                                          QEMUIOVector *iov)
3508 {
3509     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3510 }
3511 
3512 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3513 {
3514     RwCo *rwco = opaque;
3515 
3516     rwco->ret = bdrv_co_flush(rwco->bs);
3517 }
3518 
3519 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3520 {
3521     int ret;
3522 
3523     if (!bs->drv) {
3524         return 0;
3525     }
3526 
3527     /* Write back cached data to the OS even with cache=unsafe */
3528     if (bs->drv->bdrv_co_flush_to_os) {
3529         ret = bs->drv->bdrv_co_flush_to_os(bs);
3530         if (ret < 0) {
3531             return ret;
3532         }
3533     }
3534 
3535     /* But don't actually force it to the disk with cache=unsafe */
3536     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3537         return 0;
3538     }
3539 
3540     if (bs->drv->bdrv_co_flush_to_disk) {
3541         return bs->drv->bdrv_co_flush_to_disk(bs);
3542     } else if (bs->drv->bdrv_aio_flush) {
3543         BlockDriverAIOCB *acb;
3544         CoroutineIOCompletion co = {
3545             .coroutine = qemu_coroutine_self(),
3546         };
3547 
3548         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3549         if (acb == NULL) {
3550             return -EIO;
3551         } else {
3552             qemu_coroutine_yield();
3553             return co.ret;
3554         }
3555     } else {
3556         /*
3557          * Some block drivers always operate in either writethrough or unsafe
3558          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3559          * know how the server works (because the behaviour is hardcoded or
3560          * depends on server-side configuration), so we can't ensure that
3561          * everything is safe on disk. Returning an error doesn't work because
3562          * that would break guests even if the server operates in writethrough
3563          * mode.
3564          *
3565          * Let's hope the user knows what he's doing.
3566          */
3567         return 0;
3568     }
3569 }
3570 
3571 void bdrv_invalidate_cache(BlockDriverState *bs)
3572 {
3573     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3574         bs->drv->bdrv_invalidate_cache(bs);
3575     }
3576 }
3577 
3578 void bdrv_invalidate_cache_all(void)
3579 {
3580     BlockDriverState *bs;
3581 
3582     QTAILQ_FOREACH(bs, &bdrv_states, list) {
3583         bdrv_invalidate_cache(bs);
3584     }
3585 }
3586 
3587 int bdrv_flush(BlockDriverState *bs)
3588 {
3589     Coroutine *co;
3590     RwCo rwco = {
3591         .bs = bs,
3592         .ret = NOT_DONE,
3593     };
3594 
3595     if (qemu_in_coroutine()) {
3596         /* Fast-path if already in coroutine context */
3597         bdrv_flush_co_entry(&rwco);
3598     } else {
3599         co = qemu_coroutine_create(bdrv_flush_co_entry);
3600         qemu_coroutine_enter(co, &rwco);
3601         while (rwco.ret == NOT_DONE) {
3602             qemu_aio_wait();
3603         }
3604     }
3605 
3606     return rwco.ret;
3607 }
3608 
3609 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3610 {
3611     RwCo *rwco = opaque;
3612 
3613     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3614 }
3615 
3616 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3617                                  int nb_sectors)
3618 {
3619     if (!bs->drv) {
3620         return -ENOMEDIUM;
3621     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3622         return -EIO;
3623     } else if (bs->read_only) {
3624         return -EROFS;
3625     } else if (bs->drv->bdrv_co_discard) {
3626         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3627     } else if (bs->drv->bdrv_aio_discard) {
3628         BlockDriverAIOCB *acb;
3629         CoroutineIOCompletion co = {
3630             .coroutine = qemu_coroutine_self(),
3631         };
3632 
3633         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3634                                         bdrv_co_io_em_complete, &co);
3635         if (acb == NULL) {
3636             return -EIO;
3637         } else {
3638             qemu_coroutine_yield();
3639             return co.ret;
3640         }
3641     } else {
3642         return 0;
3643     }
3644 }
3645 
3646 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3647 {
3648     Coroutine *co;
3649     RwCo rwco = {
3650         .bs = bs,
3651         .sector_num = sector_num,
3652         .nb_sectors = nb_sectors,
3653         .ret = NOT_DONE,
3654     };
3655 
3656     if (qemu_in_coroutine()) {
3657         /* Fast-path if already in coroutine context */
3658         bdrv_discard_co_entry(&rwco);
3659     } else {
3660         co = qemu_coroutine_create(bdrv_discard_co_entry);
3661         qemu_coroutine_enter(co, &rwco);
3662         while (rwco.ret == NOT_DONE) {
3663             qemu_aio_wait();
3664         }
3665     }
3666 
3667     return rwco.ret;
3668 }
3669 
3670 /**************************************************************/
3671 /* removable device support */
3672 
3673 /**
3674  * Return TRUE if the media is present
3675  */
3676 int bdrv_is_inserted(BlockDriverState *bs)
3677 {
3678     BlockDriver *drv = bs->drv;
3679 
3680     if (!drv)
3681         return 0;
3682     if (!drv->bdrv_is_inserted)
3683         return 1;
3684     return drv->bdrv_is_inserted(bs);
3685 }
3686 
3687 /**
3688  * Return whether the media changed since the last call to this
3689  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
3690  */
3691 int bdrv_media_changed(BlockDriverState *bs)
3692 {
3693     BlockDriver *drv = bs->drv;
3694 
3695     if (drv && drv->bdrv_media_changed) {
3696         return drv->bdrv_media_changed(bs);
3697     }
3698     return -ENOTSUP;
3699 }
3700 
3701 /**
3702  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3703  */
3704 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3705 {
3706     BlockDriver *drv = bs->drv;
3707 
3708     if (drv && drv->bdrv_eject) {
3709         drv->bdrv_eject(bs, eject_flag);
3710     }
3711 
3712     if (bs->device_name[0] != '\0') {
3713         bdrv_emit_qmp_eject_event(bs, eject_flag);
3714     }
3715 }
3716 
3717 /**
3718  * Lock or unlock the media (if it is locked, the user won't be able
3719  * to eject it manually).
3720  */
3721 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3722 {
3723     BlockDriver *drv = bs->drv;
3724 
3725     trace_bdrv_lock_medium(bs, locked);
3726 
3727     if (drv && drv->bdrv_lock_medium) {
3728         drv->bdrv_lock_medium(bs, locked);
3729     }
3730 }
3731 
3732 /* needed for generic scsi interface */
3733 
3734 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3735 {
3736     BlockDriver *drv = bs->drv;
3737 
3738     if (drv && drv->bdrv_ioctl)
3739         return drv->bdrv_ioctl(bs, req, buf);
3740     return -ENOTSUP;
3741 }
3742 
3743 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3744         unsigned long int req, void *buf,
3745         BlockDriverCompletionFunc *cb, void *opaque)
3746 {
3747     BlockDriver *drv = bs->drv;
3748 
3749     if (drv && drv->bdrv_aio_ioctl)
3750         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3751     return NULL;
3752 }
3753 
3754 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3755 {
3756     bs->buffer_alignment = align;
3757 }
3758 
3759 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3760 {
3761     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3762 }
3763 
3764 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3765 {
3766     int64_t bitmap_size;
3767 
3768     bs->dirty_count = 0;
3769     if (enable) {
3770         if (!bs->dirty_bitmap) {
3771             bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3772                     BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3773             bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3774 
3775             bs->dirty_bitmap = g_malloc0(bitmap_size);
3776         }
3777     } else {
3778         if (bs->dirty_bitmap) {
3779             g_free(bs->dirty_bitmap);
3780             bs->dirty_bitmap = NULL;
3781         }
3782     }
3783 }
3784 
3785 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3786 {
3787     int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3788 
3789     if (bs->dirty_bitmap &&
3790         (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3791         return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3792             (1UL << (chunk % (sizeof(unsigned long) * 8))));
3793     } else {
3794         return 0;
3795     }
3796 }
3797 
3798 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3799                       int nr_sectors)
3800 {
3801     set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3802 }
3803 
3804 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3805 {
3806     return bs->dirty_count;
3807 }
3808 
3809 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3810 {
3811     assert(bs->in_use != in_use);
3812     bs->in_use = in_use;
3813 }
3814 
3815 int bdrv_in_use(BlockDriverState *bs)
3816 {
3817     return bs->in_use;
3818 }
3819 
3820 void bdrv_iostatus_enable(BlockDriverState *bs)
3821 {
3822     bs->iostatus_enabled = true;
3823     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3824 }
3825 
3826 /* The I/O status is only enabled if the drive explicitly
3827  * enables it _and_ the VM is configured to stop on errors */
3828 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3829 {
3830     return (bs->iostatus_enabled &&
3831            (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3832             bs->on_write_error == BLOCK_ERR_STOP_ANY    ||
3833             bs->on_read_error == BLOCK_ERR_STOP_ANY));
3834 }
3835 
3836 void bdrv_iostatus_disable(BlockDriverState *bs)
3837 {
3838     bs->iostatus_enabled = false;
3839 }
3840 
3841 void bdrv_iostatus_reset(BlockDriverState *bs)
3842 {
3843     if (bdrv_iostatus_is_enabled(bs)) {
3844         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3845     }
3846 }
3847 
3848 /* XXX: Today this is set by device models because it makes the implementation
3849    quite simple. However, the block layer knows about the error, so it's
3850    possible to implement this without device models being involved */
3851 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3852 {
3853     if (bdrv_iostatus_is_enabled(bs) &&
3854         bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3855         assert(error >= 0);
3856         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3857                                          BLOCK_DEVICE_IO_STATUS_FAILED;
3858     }
3859 }
3860 
3861 void
3862 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3863         enum BlockAcctType type)
3864 {
3865     assert(type < BDRV_MAX_IOTYPE);
3866 
3867     cookie->bytes = bytes;
3868     cookie->start_time_ns = get_clock();
3869     cookie->type = type;
3870 }
3871 
3872 void
3873 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3874 {
3875     assert(cookie->type < BDRV_MAX_IOTYPE);
3876 
3877     bs->nr_bytes[cookie->type] += cookie->bytes;
3878     bs->nr_ops[cookie->type]++;
3879     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3880 }
3881 
3882 int bdrv_img_create(const char *filename, const char *fmt,
3883                     const char *base_filename, const char *base_fmt,
3884                     char *options, uint64_t img_size, int flags)
3885 {
3886     QEMUOptionParameter *param = NULL, *create_options = NULL;
3887     QEMUOptionParameter *backing_fmt, *backing_file, *size;
3888     BlockDriverState *bs = NULL;
3889     BlockDriver *drv, *proto_drv;
3890     BlockDriver *backing_drv = NULL;
3891     int ret = 0;
3892 
3893     /* Find driver and parse its options */
3894     drv = bdrv_find_format(fmt);
3895     if (!drv) {
3896         error_report("Unknown file format '%s'", fmt);
3897         ret = -EINVAL;
3898         goto out;
3899     }
3900 
3901     proto_drv = bdrv_find_protocol(filename);
3902     if (!proto_drv) {
3903         error_report("Unknown protocol '%s'", filename);
3904         ret = -EINVAL;
3905         goto out;
3906     }
3907 
3908     create_options = append_option_parameters(create_options,
3909                                               drv->create_options);
3910     create_options = append_option_parameters(create_options,
3911                                               proto_drv->create_options);
3912 
3913     /* Create parameter list with default values */
3914     param = parse_option_parameters("", create_options, param);
3915 
3916     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3917 
3918     /* Parse -o options */
3919     if (options) {
3920         param = parse_option_parameters(options, create_options, param);
3921         if (param == NULL) {
3922             error_report("Invalid options for file format '%s'.", fmt);
3923             ret = -EINVAL;
3924             goto out;
3925         }
3926     }
3927 
3928     if (base_filename) {
3929         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3930                                  base_filename)) {
3931             error_report("Backing file not supported for file format '%s'",
3932                          fmt);
3933             ret = -EINVAL;
3934             goto out;
3935         }
3936     }
3937 
3938     if (base_fmt) {
3939         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3940             error_report("Backing file format not supported for file "
3941                          "format '%s'", fmt);
3942             ret = -EINVAL;
3943             goto out;
3944         }
3945     }
3946 
3947     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3948     if (backing_file && backing_file->value.s) {
3949         if (!strcmp(filename, backing_file->value.s)) {
3950             error_report("Error: Trying to create an image with the "
3951                          "same filename as the backing file");
3952             ret = -EINVAL;
3953             goto out;
3954         }
3955     }
3956 
3957     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3958     if (backing_fmt && backing_fmt->value.s) {
3959         backing_drv = bdrv_find_format(backing_fmt->value.s);
3960         if (!backing_drv) {
3961             error_report("Unknown backing file format '%s'",
3962                          backing_fmt->value.s);
3963             ret = -EINVAL;
3964             goto out;
3965         }
3966     }
3967 
3968     // The size for the image must always be specified, with one exception:
3969     // If we are using a backing file, we can obtain the size from there
3970     size = get_option_parameter(param, BLOCK_OPT_SIZE);
3971     if (size && size->value.n == -1) {
3972         if (backing_file && backing_file->value.s) {
3973             uint64_t size;
3974             char buf[32];
3975 
3976             bs = bdrv_new("");
3977 
3978             ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3979             if (ret < 0) {
3980                 error_report("Could not open '%s'", backing_file->value.s);
3981                 goto out;
3982             }
3983             bdrv_get_geometry(bs, &size);
3984             size *= 512;
3985 
3986             snprintf(buf, sizeof(buf), "%" PRId64, size);
3987             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3988         } else {
3989             error_report("Image creation needs a size parameter");
3990             ret = -EINVAL;
3991             goto out;
3992         }
3993     }
3994 
3995     printf("Formatting '%s', fmt=%s ", filename, fmt);
3996     print_option_parameters(param);
3997     puts("");
3998 
3999     ret = bdrv_create(drv, filename, param);
4000 
4001     if (ret < 0) {
4002         if (ret == -ENOTSUP) {
4003             error_report("Formatting or formatting option not supported for "
4004                          "file format '%s'", fmt);
4005         } else if (ret == -EFBIG) {
4006             error_report("The image size is too large for file format '%s'",
4007                          fmt);
4008         } else {
4009             error_report("%s: error while creating %s: %s", filename, fmt,
4010                          strerror(-ret));
4011         }
4012     }
4013 
4014 out:
4015     free_option_parameters(create_options);
4016     free_option_parameters(param);
4017 
4018     if (bs) {
4019         bdrv_delete(bs);
4020     }
4021 
4022     return ret;
4023 }
4024 
4025 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4026                        BlockDriverCompletionFunc *cb, void *opaque)
4027 {
4028     BlockJob *job;
4029 
4030     if (bs->job || bdrv_in_use(bs)) {
4031         return NULL;
4032     }
4033     bdrv_set_in_use(bs, 1);
4034 
4035     job = g_malloc0(job_type->instance_size);
4036     job->job_type      = job_type;
4037     job->bs            = bs;
4038     job->cb            = cb;
4039     job->opaque        = opaque;
4040     bs->job = job;
4041     return job;
4042 }
4043 
4044 void block_job_complete(BlockJob *job, int ret)
4045 {
4046     BlockDriverState *bs = job->bs;
4047 
4048     assert(bs->job == job);
4049     job->cb(job->opaque, ret);
4050     bs->job = NULL;
4051     g_free(job);
4052     bdrv_set_in_use(bs, 0);
4053 }
4054 
4055 int block_job_set_speed(BlockJob *job, int64_t value)
4056 {
4057     if (!job->job_type->set_speed) {
4058         return -ENOTSUP;
4059     }
4060     return job->job_type->set_speed(job, value);
4061 }
4062 
4063 void block_job_cancel(BlockJob *job)
4064 {
4065     job->cancelled = true;
4066 }
4067 
4068 bool block_job_is_cancelled(BlockJob *job)
4069 {
4070     return job->cancelled;
4071 }
4072