xref: /qemu/block/block-copy.c (revision b114a0b9)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
29 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
30 
31 static coroutine_fn int block_copy_task_entry(AioTask *task);
32 
33 typedef struct BlockCopyCallState {
34     /* IN parameters. Initialized in block_copy_async() and never changed. */
35     BlockCopyState *s;
36     int64_t offset;
37     int64_t bytes;
38     int max_workers;
39     int64_t max_chunk;
40     bool ignore_ratelimit;
41     BlockCopyAsyncCallbackFunc cb;
42     void *cb_opaque;
43 
44     /* Coroutine where async block-copy is running */
45     Coroutine *co;
46 
47     /* To reference all call states from BlockCopyState */
48     QLIST_ENTRY(BlockCopyCallState) list;
49 
50     /* State */
51     int ret;
52     bool finished;
53     QemuCoSleep sleep;
54     bool cancelled;
55 
56     /* OUT parameters */
57     bool error_is_read;
58 } BlockCopyCallState;
59 
60 typedef struct BlockCopyTask {
61     AioTask task;
62 
63     BlockCopyState *s;
64     BlockCopyCallState *call_state;
65     int64_t offset;
66     int64_t bytes;
67     bool zeroes;
68     bool copy_range;
69     QLIST_ENTRY(BlockCopyTask) list;
70     CoQueue wait_queue; /* coroutines blocked on this task */
71 } BlockCopyTask;
72 
73 static int64_t task_end(BlockCopyTask *task)
74 {
75     return task->offset + task->bytes;
76 }
77 
78 typedef struct BlockCopyState {
79     /*
80      * BdrvChild objects are not owned or managed by block-copy. They are
81      * provided by block-copy user and user is responsible for appropriate
82      * permissions on these children.
83      */
84     BdrvChild *source;
85     BdrvChild *target;
86     BdrvDirtyBitmap *copy_bitmap;
87     int64_t in_flight_bytes;
88     int64_t cluster_size;
89     bool use_copy_range;
90     int64_t copy_size;
91     uint64_t len;
92     QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
93     QLIST_HEAD(, BlockCopyCallState) calls;
94 
95     BdrvRequestFlags write_flags;
96 
97     /*
98      * skip_unallocated:
99      *
100      * Used by sync=top jobs, which first scan the source node for unallocated
101      * areas and clear them in the copy_bitmap.  During this process, the bitmap
102      * is thus not fully initialized: It may still have bits set for areas that
103      * are unallocated and should actually not be copied.
104      *
105      * This is indicated by skip_unallocated.
106      *
107      * In this case, block_copy() will query the source’s allocation status,
108      * skip unallocated regions, clear them in the copy_bitmap, and invoke
109      * block_copy_reset_unallocated() every time it does.
110      */
111     bool skip_unallocated;
112 
113     ProgressMeter *progress;
114 
115     SharedResource *mem;
116 
117     uint64_t speed;
118     RateLimit rate_limit;
119 } BlockCopyState;
120 
121 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
122                                             int64_t offset, int64_t bytes)
123 {
124     BlockCopyTask *t;
125 
126     QLIST_FOREACH(t, &s->tasks, list) {
127         if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
128             return t;
129         }
130     }
131 
132     return NULL;
133 }
134 
135 /*
136  * If there are no intersecting tasks return false. Otherwise, wait for the
137  * first found intersecting tasks to finish and return true.
138  */
139 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
140                                              int64_t bytes)
141 {
142     BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
143 
144     if (!task) {
145         return false;
146     }
147 
148     qemu_co_queue_wait(&task->wait_queue, NULL);
149 
150     return true;
151 }
152 
153 /*
154  * Search for the first dirty area in offset/bytes range and create task at
155  * the beginning of it.
156  */
157 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
158                                              BlockCopyCallState *call_state,
159                                              int64_t offset, int64_t bytes)
160 {
161     BlockCopyTask *task;
162     int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
163 
164     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
165                                            offset, offset + bytes,
166                                            max_chunk, &offset, &bytes))
167     {
168         return NULL;
169     }
170 
171     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
172     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
173 
174     /* region is dirty, so no existent tasks possible in it */
175     assert(!find_conflicting_task(s, offset, bytes));
176 
177     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
178     s->in_flight_bytes += bytes;
179 
180     task = g_new(BlockCopyTask, 1);
181     *task = (BlockCopyTask) {
182         .task.func = block_copy_task_entry,
183         .s = s,
184         .call_state = call_state,
185         .offset = offset,
186         .bytes = bytes,
187         .copy_range = s->use_copy_range,
188     };
189     qemu_co_queue_init(&task->wait_queue);
190     QLIST_INSERT_HEAD(&s->tasks, task, list);
191 
192     return task;
193 }
194 
195 /*
196  * block_copy_task_shrink
197  *
198  * Drop the tail of the task to be handled later. Set dirty bits back and
199  * wake up all tasks waiting for us (may be some of them are not intersecting
200  * with shrunk task)
201  */
202 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
203                                                 int64_t new_bytes)
204 {
205     if (new_bytes == task->bytes) {
206         return;
207     }
208 
209     assert(new_bytes > 0 && new_bytes < task->bytes);
210 
211     task->s->in_flight_bytes -= task->bytes - new_bytes;
212     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
213                           task->offset + new_bytes, task->bytes - new_bytes);
214 
215     task->bytes = new_bytes;
216     qemu_co_queue_restart_all(&task->wait_queue);
217 }
218 
219 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
220 {
221     task->s->in_flight_bytes -= task->bytes;
222     if (ret < 0) {
223         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
224     }
225     QLIST_REMOVE(task, list);
226     qemu_co_queue_restart_all(&task->wait_queue);
227 }
228 
229 void block_copy_state_free(BlockCopyState *s)
230 {
231     if (!s) {
232         return;
233     }
234 
235     ratelimit_destroy(&s->rate_limit);
236     bdrv_release_dirty_bitmap(s->copy_bitmap);
237     shres_destroy(s->mem);
238     g_free(s);
239 }
240 
241 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
242 {
243     return MIN_NON_ZERO(INT_MAX,
244                         MIN_NON_ZERO(source->bs->bl.max_transfer,
245                                      target->bs->bl.max_transfer));
246 }
247 
248 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
249                                      int64_t cluster_size, bool use_copy_range,
250                                      BdrvRequestFlags write_flags, Error **errp)
251 {
252     BlockCopyState *s;
253     BdrvDirtyBitmap *copy_bitmap;
254 
255     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
256                                            errp);
257     if (!copy_bitmap) {
258         return NULL;
259     }
260     bdrv_disable_dirty_bitmap(copy_bitmap);
261 
262     s = g_new(BlockCopyState, 1);
263     *s = (BlockCopyState) {
264         .source = source,
265         .target = target,
266         .copy_bitmap = copy_bitmap,
267         .cluster_size = cluster_size,
268         .len = bdrv_dirty_bitmap_size(copy_bitmap),
269         .write_flags = write_flags,
270         .mem = shres_create(BLOCK_COPY_MAX_MEM),
271     };
272 
273     if (block_copy_max_transfer(source, target) < cluster_size) {
274         /*
275          * copy_range does not respect max_transfer. We don't want to bother
276          * with requests smaller than block-copy cluster size, so fallback to
277          * buffered copying (read and write respect max_transfer on their
278          * behalf).
279          */
280         s->use_copy_range = false;
281         s->copy_size = cluster_size;
282     } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
283         /* Compression supports only cluster-size writes and no copy-range. */
284         s->use_copy_range = false;
285         s->copy_size = cluster_size;
286     } else {
287         /*
288          * We enable copy-range, but keep small copy_size, until first
289          * successful copy_range (look at block_copy_do_copy).
290          */
291         s->use_copy_range = use_copy_range;
292         s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
293     }
294 
295     ratelimit_init(&s->rate_limit);
296     QLIST_INIT(&s->tasks);
297     QLIST_INIT(&s->calls);
298 
299     return s;
300 }
301 
302 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
303 {
304     s->progress = pm;
305 }
306 
307 /*
308  * Takes ownership of @task
309  *
310  * If pool is NULL directly run the task, otherwise schedule it into the pool.
311  *
312  * Returns: task.func return code if pool is NULL
313  *          otherwise -ECANCELED if pool status is bad
314  *          otherwise 0 (successfully scheduled)
315  */
316 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
317                                             BlockCopyTask *task)
318 {
319     if (!pool) {
320         int ret = task->task.func(&task->task);
321 
322         g_free(task);
323         return ret;
324     }
325 
326     aio_task_pool_wait_slot(pool);
327     if (aio_task_pool_status(pool) < 0) {
328         co_put_to_shres(task->s->mem, task->bytes);
329         block_copy_task_end(task, -ECANCELED);
330         g_free(task);
331         return -ECANCELED;
332     }
333 
334     aio_task_pool_start_task(pool, &task->task);
335 
336     return 0;
337 }
338 
339 /*
340  * block_copy_do_copy
341  *
342  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
343  * s->len only to cover last cluster when s->len is not aligned to clusters.
344  *
345  * No sync here: nor bitmap neighter intersecting requests handling, only copy.
346  *
347  * @copy_range is an in-out argument: if *copy_range is false, copy_range is not
348  * done. If *copy_range is true, copy_range is attempted. If the copy_range
349  * attempt fails, the function falls back to the usual read+write and
350  * *copy_range is set to false. *copy_range and zeroes must not be true
351  * simultaneously.
352  *
353  * Returns 0 on success.
354  */
355 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
356                                            int64_t offset, int64_t bytes,
357                                            bool zeroes, bool *copy_range,
358                                            bool *error_is_read)
359 {
360     int ret;
361     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
362     void *bounce_buffer = NULL;
363 
364     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
365     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
366     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
367     assert(offset < s->len);
368     assert(offset + bytes <= s->len ||
369            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
370     assert(nbytes < INT_MAX);
371     assert(!(*copy_range && zeroes));
372 
373     if (zeroes) {
374         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
375                                     ~BDRV_REQ_WRITE_COMPRESSED);
376         if (ret < 0) {
377             trace_block_copy_write_zeroes_fail(s, offset, ret);
378             *error_is_read = false;
379         }
380         return ret;
381     }
382 
383     if (*copy_range) {
384         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
385                                  0, s->write_flags);
386         if (ret < 0) {
387             trace_block_copy_copy_range_fail(s, offset, ret);
388             *copy_range = false;
389             /* Fallback to read+write with allocated buffer */
390         } else {
391             return 0;
392         }
393     }
394 
395     /*
396      * In case of failed copy_range request above, we may proceed with buffered
397      * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
398      * be properly limited, so don't care too much. Moreover the most likely
399      * case (copy_range is unsupported for the configuration, so the very first
400      * copy_range request fails) is handled by setting large copy_size only
401      * after first successful copy_range.
402      */
403 
404     bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
405 
406     ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
407     if (ret < 0) {
408         trace_block_copy_read_fail(s, offset, ret);
409         *error_is_read = true;
410         goto out;
411     }
412 
413     ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
414                          s->write_flags);
415     if (ret < 0) {
416         trace_block_copy_write_fail(s, offset, ret);
417         *error_is_read = false;
418         goto out;
419     }
420 
421 out:
422     qemu_vfree(bounce_buffer);
423 
424     return ret;
425 }
426 
427 static void block_copy_handle_copy_range_result(BlockCopyState *s,
428                                                 bool is_success)
429 {
430     if (!s->use_copy_range) {
431         /* already disabled */
432         return;
433     }
434 
435     if (is_success) {
436         /*
437          * Successful copy-range. Now increase copy_size.  copy_range
438          * does not respect max_transfer (it's a TODO), so we factor
439          * that in here.
440          */
441         s->copy_size =
442                 MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
443                     QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
444                                                             s->target),
445                                     s->cluster_size));
446     } else {
447         /* Copy-range failed, disable it. */
448         s->use_copy_range = false;
449         s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
450     }
451 }
452 
453 static coroutine_fn int block_copy_task_entry(AioTask *task)
454 {
455     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
456     bool error_is_read = false;
457     bool copy_range = t->copy_range;
458     int ret;
459 
460     ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
461                              &copy_range, &error_is_read);
462     if (t->copy_range) {
463         block_copy_handle_copy_range_result(t->s, copy_range);
464     }
465     if (ret < 0) {
466         if (!t->call_state->ret) {
467             t->call_state->ret = ret;
468             t->call_state->error_is_read = error_is_read;
469         }
470     } else {
471         progress_work_done(t->s->progress, t->bytes);
472     }
473     co_put_to_shres(t->s->mem, t->bytes);
474     block_copy_task_end(t, ret);
475 
476     return ret;
477 }
478 
479 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
480                                    int64_t bytes, int64_t *pnum)
481 {
482     int64_t num;
483     BlockDriverState *base;
484     int ret;
485 
486     if (s->skip_unallocated) {
487         base = bdrv_backing_chain_next(s->source->bs);
488     } else {
489         base = NULL;
490     }
491 
492     ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
493                                   NULL, NULL);
494     if (ret < 0 || num < s->cluster_size) {
495         /*
496          * On error or if failed to obtain large enough chunk just fallback to
497          * copy one cluster.
498          */
499         num = s->cluster_size;
500         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
501     } else if (offset + num == s->len) {
502         num = QEMU_ALIGN_UP(num, s->cluster_size);
503     } else {
504         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
505     }
506 
507     *pnum = num;
508     return ret;
509 }
510 
511 /*
512  * Check if the cluster starting at offset is allocated or not.
513  * return via pnum the number of contiguous clusters sharing this allocation.
514  */
515 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
516                                            int64_t *pnum)
517 {
518     BlockDriverState *bs = s->source->bs;
519     int64_t count, total_count = 0;
520     int64_t bytes = s->len - offset;
521     int ret;
522 
523     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
524 
525     while (true) {
526         ret = bdrv_is_allocated(bs, offset, bytes, &count);
527         if (ret < 0) {
528             return ret;
529         }
530 
531         total_count += count;
532 
533         if (ret || count == 0) {
534             /*
535              * ret: partial segment(s) are considered allocated.
536              * otherwise: unallocated tail is treated as an entire segment.
537              */
538             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
539             return ret;
540         }
541 
542         /* Unallocated segment(s) with uncertain following segment(s) */
543         if (total_count >= s->cluster_size) {
544             *pnum = total_count / s->cluster_size;
545             return 0;
546         }
547 
548         offset += count;
549         bytes -= count;
550     }
551 }
552 
553 /*
554  * Reset bits in copy_bitmap starting at offset if they represent unallocated
555  * data in the image. May reset subsequent contiguous bits.
556  * @return 0 when the cluster at @offset was unallocated,
557  *         1 otherwise, and -ret on error.
558  */
559 int64_t block_copy_reset_unallocated(BlockCopyState *s,
560                                      int64_t offset, int64_t *count)
561 {
562     int ret;
563     int64_t clusters, bytes;
564 
565     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
566     if (ret < 0) {
567         return ret;
568     }
569 
570     bytes = clusters * s->cluster_size;
571 
572     if (!ret) {
573         bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
574         progress_set_remaining(s->progress,
575                                bdrv_get_dirty_count(s->copy_bitmap) +
576                                s->in_flight_bytes);
577     }
578 
579     *count = bytes;
580     return ret;
581 }
582 
583 /*
584  * block_copy_dirty_clusters
585  *
586  * Copy dirty clusters in @offset/@bytes range.
587  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
588  * clusters found and -errno on failure.
589  */
590 static int coroutine_fn
591 block_copy_dirty_clusters(BlockCopyCallState *call_state)
592 {
593     BlockCopyState *s = call_state->s;
594     int64_t offset = call_state->offset;
595     int64_t bytes = call_state->bytes;
596 
597     int ret = 0;
598     bool found_dirty = false;
599     int64_t end = offset + bytes;
600     AioTaskPool *aio = NULL;
601 
602     /*
603      * block_copy() user is responsible for keeping source and target in same
604      * aio context
605      */
606     assert(bdrv_get_aio_context(s->source->bs) ==
607            bdrv_get_aio_context(s->target->bs));
608 
609     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
610     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
611 
612     while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
613         BlockCopyTask *task;
614         int64_t status_bytes;
615 
616         task = block_copy_task_create(s, call_state, offset, bytes);
617         if (!task) {
618             /* No more dirty bits in the bitmap */
619             trace_block_copy_skip_range(s, offset, bytes);
620             break;
621         }
622         if (task->offset > offset) {
623             trace_block_copy_skip_range(s, offset, task->offset - offset);
624         }
625 
626         found_dirty = true;
627 
628         ret = block_copy_block_status(s, task->offset, task->bytes,
629                                       &status_bytes);
630         assert(ret >= 0); /* never fail */
631         if (status_bytes < task->bytes) {
632             block_copy_task_shrink(task, status_bytes);
633         }
634         if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
635             block_copy_task_end(task, 0);
636             progress_set_remaining(s->progress,
637                                    bdrv_get_dirty_count(s->copy_bitmap) +
638                                    s->in_flight_bytes);
639             trace_block_copy_skip_range(s, task->offset, task->bytes);
640             offset = task_end(task);
641             bytes = end - offset;
642             g_free(task);
643             continue;
644         }
645         if (ret & BDRV_BLOCK_ZERO) {
646             task->zeroes = true;
647             task->copy_range = false;
648         }
649 
650         if (s->speed) {
651             if (!call_state->ignore_ratelimit) {
652                 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
653                 if (ns > 0) {
654                     block_copy_task_end(task, -EAGAIN);
655                     g_free(task);
656                     qemu_co_sleep_ns_wakeable(&call_state->sleep,
657                                               QEMU_CLOCK_REALTIME, ns);
658                     continue;
659                 }
660             }
661 
662             ratelimit_calculate_delay(&s->rate_limit, task->bytes);
663         }
664 
665         trace_block_copy_process(s, task->offset);
666 
667         co_get_from_shres(s->mem, task->bytes);
668 
669         offset = task_end(task);
670         bytes = end - offset;
671 
672         if (!aio && bytes) {
673             aio = aio_task_pool_new(call_state->max_workers);
674         }
675 
676         ret = block_copy_task_run(aio, task);
677         if (ret < 0) {
678             goto out;
679         }
680     }
681 
682 out:
683     if (aio) {
684         aio_task_pool_wait_all(aio);
685 
686         /*
687          * We are not really interested in -ECANCELED returned from
688          * block_copy_task_run. If it fails, it means some task already failed
689          * for real reason, let's return first failure.
690          * Still, assert that we don't rewrite failure by success.
691          *
692          * Note: ret may be positive here because of block-status result.
693          */
694         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
695         ret = aio_task_pool_status(aio);
696 
697         aio_task_pool_free(aio);
698     }
699 
700     return ret < 0 ? ret : found_dirty;
701 }
702 
703 void block_copy_kick(BlockCopyCallState *call_state)
704 {
705     qemu_co_sleep_wake(&call_state->sleep);
706 }
707 
708 /*
709  * block_copy_common
710  *
711  * Copy requested region, accordingly to dirty bitmap.
712  * Collaborate with parallel block_copy requests: if they succeed it will help
713  * us. If they fail, we will retry not-copied regions. So, if we return error,
714  * it means that some I/O operation failed in context of _this_ block_copy call,
715  * not some parallel operation.
716  */
717 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
718 {
719     int ret;
720 
721     QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
722 
723     do {
724         ret = block_copy_dirty_clusters(call_state);
725 
726         if (ret == 0 && !call_state->cancelled) {
727             ret = block_copy_wait_one(call_state->s, call_state->offset,
728                                       call_state->bytes);
729         }
730 
731         /*
732          * We retry in two cases:
733          * 1. Some progress done
734          *    Something was copied, which means that there were yield points
735          *    and some new dirty bits may have appeared (due to failed parallel
736          *    block-copy requests).
737          * 2. We have waited for some intersecting block-copy request
738          *    It may have failed and produced new dirty bits.
739          */
740     } while (ret > 0 && !call_state->cancelled);
741 
742     call_state->finished = true;
743 
744     if (call_state->cb) {
745         call_state->cb(call_state->cb_opaque);
746     }
747 
748     QLIST_REMOVE(call_state, list);
749 
750     return ret;
751 }
752 
753 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
754                             bool ignore_ratelimit)
755 {
756     BlockCopyCallState call_state = {
757         .s = s,
758         .offset = start,
759         .bytes = bytes,
760         .ignore_ratelimit = ignore_ratelimit,
761         .max_workers = BLOCK_COPY_MAX_WORKERS,
762     };
763 
764     return block_copy_common(&call_state);
765 }
766 
767 static void coroutine_fn block_copy_async_co_entry(void *opaque)
768 {
769     block_copy_common(opaque);
770 }
771 
772 BlockCopyCallState *block_copy_async(BlockCopyState *s,
773                                      int64_t offset, int64_t bytes,
774                                      int max_workers, int64_t max_chunk,
775                                      BlockCopyAsyncCallbackFunc cb,
776                                      void *cb_opaque)
777 {
778     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
779 
780     *call_state = (BlockCopyCallState) {
781         .s = s,
782         .offset = offset,
783         .bytes = bytes,
784         .max_workers = max_workers,
785         .max_chunk = max_chunk,
786         .cb = cb,
787         .cb_opaque = cb_opaque,
788 
789         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
790     };
791 
792     qemu_coroutine_enter(call_state->co);
793 
794     return call_state;
795 }
796 
797 void block_copy_call_free(BlockCopyCallState *call_state)
798 {
799     if (!call_state) {
800         return;
801     }
802 
803     assert(call_state->finished);
804     g_free(call_state);
805 }
806 
807 bool block_copy_call_finished(BlockCopyCallState *call_state)
808 {
809     return call_state->finished;
810 }
811 
812 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
813 {
814     return call_state->finished && !call_state->cancelled &&
815         call_state->ret == 0;
816 }
817 
818 bool block_copy_call_failed(BlockCopyCallState *call_state)
819 {
820     return call_state->finished && !call_state->cancelled &&
821         call_state->ret < 0;
822 }
823 
824 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
825 {
826     return call_state->cancelled;
827 }
828 
829 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
830 {
831     assert(call_state->finished);
832     if (error_is_read) {
833         *error_is_read = call_state->error_is_read;
834     }
835     return call_state->ret;
836 }
837 
838 void block_copy_call_cancel(BlockCopyCallState *call_state)
839 {
840     call_state->cancelled = true;
841     block_copy_kick(call_state);
842 }
843 
844 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
845 {
846     return s->copy_bitmap;
847 }
848 
849 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
850 {
851     s->skip_unallocated = skip;
852 }
853 
854 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
855 {
856     s->speed = speed;
857     if (speed > 0) {
858         ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
859     }
860 
861     /*
862      * Note: it's good to kick all call states from here, but it should be done
863      * only from a coroutine, to not crash if s->calls list changed while
864      * entering one call. So for now, the only user of this function kicks its
865      * only one call_state by hand.
866      */
867 }
868