xref: /qemu/block/block-copy.c (revision d0fb9657)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
29 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
30 
31 static coroutine_fn int block_copy_task_entry(AioTask *task);
32 
33 typedef struct BlockCopyCallState {
34     /* IN parameters. Initialized in block_copy_async() and never changed. */
35     BlockCopyState *s;
36     int64_t offset;
37     int64_t bytes;
38     int max_workers;
39     int64_t max_chunk;
40     bool ignore_ratelimit;
41     BlockCopyAsyncCallbackFunc cb;
42     void *cb_opaque;
43 
44     /* Coroutine where async block-copy is running */
45     Coroutine *co;
46 
47     /* To reference all call states from BlockCopyState */
48     QLIST_ENTRY(BlockCopyCallState) list;
49 
50     /* State */
51     int ret;
52     bool finished;
53     QemuCoSleep sleep;
54     bool cancelled;
55 
56     /* OUT parameters */
57     bool error_is_read;
58 } BlockCopyCallState;
59 
60 typedef struct BlockCopyTask {
61     AioTask task;
62 
63     BlockCopyState *s;
64     BlockCopyCallState *call_state;
65     int64_t offset;
66     int64_t bytes;
67     bool zeroes;
68     QLIST_ENTRY(BlockCopyTask) list;
69     CoQueue wait_queue; /* coroutines blocked on this task */
70 } BlockCopyTask;
71 
72 static int64_t task_end(BlockCopyTask *task)
73 {
74     return task->offset + task->bytes;
75 }
76 
77 typedef struct BlockCopyState {
78     /*
79      * BdrvChild objects are not owned or managed by block-copy. They are
80      * provided by block-copy user and user is responsible for appropriate
81      * permissions on these children.
82      */
83     BdrvChild *source;
84     BdrvChild *target;
85     BdrvDirtyBitmap *copy_bitmap;
86     int64_t in_flight_bytes;
87     int64_t cluster_size;
88     bool use_copy_range;
89     int64_t copy_size;
90     uint64_t len;
91     QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
92     QLIST_HEAD(, BlockCopyCallState) calls;
93 
94     BdrvRequestFlags write_flags;
95 
96     /*
97      * skip_unallocated:
98      *
99      * Used by sync=top jobs, which first scan the source node for unallocated
100      * areas and clear them in the copy_bitmap.  During this process, the bitmap
101      * is thus not fully initialized: It may still have bits set for areas that
102      * are unallocated and should actually not be copied.
103      *
104      * This is indicated by skip_unallocated.
105      *
106      * In this case, block_copy() will query the source’s allocation status,
107      * skip unallocated regions, clear them in the copy_bitmap, and invoke
108      * block_copy_reset_unallocated() every time it does.
109      */
110     bool skip_unallocated;
111 
112     ProgressMeter *progress;
113 
114     SharedResource *mem;
115 
116     uint64_t speed;
117     RateLimit rate_limit;
118 } BlockCopyState;
119 
120 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
121                                             int64_t offset, int64_t bytes)
122 {
123     BlockCopyTask *t;
124 
125     QLIST_FOREACH(t, &s->tasks, list) {
126         if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
127             return t;
128         }
129     }
130 
131     return NULL;
132 }
133 
134 /*
135  * If there are no intersecting tasks return false. Otherwise, wait for the
136  * first found intersecting tasks to finish and return true.
137  */
138 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
139                                              int64_t bytes)
140 {
141     BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
142 
143     if (!task) {
144         return false;
145     }
146 
147     qemu_co_queue_wait(&task->wait_queue, NULL);
148 
149     return true;
150 }
151 
152 /*
153  * Search for the first dirty area in offset/bytes range and create task at
154  * the beginning of it.
155  */
156 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
157                                              BlockCopyCallState *call_state,
158                                              int64_t offset, int64_t bytes)
159 {
160     BlockCopyTask *task;
161     int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
162 
163     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
164                                            offset, offset + bytes,
165                                            max_chunk, &offset, &bytes))
166     {
167         return NULL;
168     }
169 
170     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
171     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
172 
173     /* region is dirty, so no existent tasks possible in it */
174     assert(!find_conflicting_task(s, offset, bytes));
175 
176     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
177     s->in_flight_bytes += bytes;
178 
179     task = g_new(BlockCopyTask, 1);
180     *task = (BlockCopyTask) {
181         .task.func = block_copy_task_entry,
182         .s = s,
183         .call_state = call_state,
184         .offset = offset,
185         .bytes = bytes,
186     };
187     qemu_co_queue_init(&task->wait_queue);
188     QLIST_INSERT_HEAD(&s->tasks, task, list);
189 
190     return task;
191 }
192 
193 /*
194  * block_copy_task_shrink
195  *
196  * Drop the tail of the task to be handled later. Set dirty bits back and
197  * wake up all tasks waiting for us (may be some of them are not intersecting
198  * with shrunk task)
199  */
200 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
201                                                 int64_t new_bytes)
202 {
203     if (new_bytes == task->bytes) {
204         return;
205     }
206 
207     assert(new_bytes > 0 && new_bytes < task->bytes);
208 
209     task->s->in_flight_bytes -= task->bytes - new_bytes;
210     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
211                           task->offset + new_bytes, task->bytes - new_bytes);
212 
213     task->bytes = new_bytes;
214     qemu_co_queue_restart_all(&task->wait_queue);
215 }
216 
217 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
218 {
219     task->s->in_flight_bytes -= task->bytes;
220     if (ret < 0) {
221         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
222     }
223     QLIST_REMOVE(task, list);
224     qemu_co_queue_restart_all(&task->wait_queue);
225 }
226 
227 void block_copy_state_free(BlockCopyState *s)
228 {
229     if (!s) {
230         return;
231     }
232 
233     ratelimit_destroy(&s->rate_limit);
234     bdrv_release_dirty_bitmap(s->copy_bitmap);
235     shres_destroy(s->mem);
236     g_free(s);
237 }
238 
239 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
240 {
241     return MIN_NON_ZERO(INT_MAX,
242                         MIN_NON_ZERO(source->bs->bl.max_transfer,
243                                      target->bs->bl.max_transfer));
244 }
245 
246 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
247                                      int64_t cluster_size, bool use_copy_range,
248                                      BdrvRequestFlags write_flags, Error **errp)
249 {
250     BlockCopyState *s;
251     BdrvDirtyBitmap *copy_bitmap;
252 
253     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
254                                            errp);
255     if (!copy_bitmap) {
256         return NULL;
257     }
258     bdrv_disable_dirty_bitmap(copy_bitmap);
259 
260     s = g_new(BlockCopyState, 1);
261     *s = (BlockCopyState) {
262         .source = source,
263         .target = target,
264         .copy_bitmap = copy_bitmap,
265         .cluster_size = cluster_size,
266         .len = bdrv_dirty_bitmap_size(copy_bitmap),
267         .write_flags = write_flags,
268         .mem = shres_create(BLOCK_COPY_MAX_MEM),
269     };
270 
271     if (block_copy_max_transfer(source, target) < cluster_size) {
272         /*
273          * copy_range does not respect max_transfer. We don't want to bother
274          * with requests smaller than block-copy cluster size, so fallback to
275          * buffered copying (read and write respect max_transfer on their
276          * behalf).
277          */
278         s->use_copy_range = false;
279         s->copy_size = cluster_size;
280     } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
281         /* Compression supports only cluster-size writes and no copy-range. */
282         s->use_copy_range = false;
283         s->copy_size = cluster_size;
284     } else {
285         /*
286          * We enable copy-range, but keep small copy_size, until first
287          * successful copy_range (look at block_copy_do_copy).
288          */
289         s->use_copy_range = use_copy_range;
290         s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
291     }
292 
293     ratelimit_init(&s->rate_limit);
294     QLIST_INIT(&s->tasks);
295     QLIST_INIT(&s->calls);
296 
297     return s;
298 }
299 
300 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
301 {
302     s->progress = pm;
303 }
304 
305 /*
306  * Takes ownership of @task
307  *
308  * If pool is NULL directly run the task, otherwise schedule it into the pool.
309  *
310  * Returns: task.func return code if pool is NULL
311  *          otherwise -ECANCELED if pool status is bad
312  *          otherwise 0 (successfully scheduled)
313  */
314 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
315                                             BlockCopyTask *task)
316 {
317     if (!pool) {
318         int ret = task->task.func(&task->task);
319 
320         g_free(task);
321         return ret;
322     }
323 
324     aio_task_pool_wait_slot(pool);
325     if (aio_task_pool_status(pool) < 0) {
326         co_put_to_shres(task->s->mem, task->bytes);
327         block_copy_task_end(task, -ECANCELED);
328         g_free(task);
329         return -ECANCELED;
330     }
331 
332     aio_task_pool_start_task(pool, &task->task);
333 
334     return 0;
335 }
336 
337 /*
338  * block_copy_do_copy
339  *
340  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
341  * s->len only to cover last cluster when s->len is not aligned to clusters.
342  *
343  * No sync here: nor bitmap neighter intersecting requests handling, only copy.
344  *
345  * Returns 0 on success.
346  */
347 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
348                                            int64_t offset, int64_t bytes,
349                                            bool zeroes, bool *error_is_read)
350 {
351     int ret;
352     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
353     void *bounce_buffer = NULL;
354 
355     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
356     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
357     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
358     assert(offset < s->len);
359     assert(offset + bytes <= s->len ||
360            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
361     assert(nbytes < INT_MAX);
362 
363     if (zeroes) {
364         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
365                                     ~BDRV_REQ_WRITE_COMPRESSED);
366         if (ret < 0) {
367             trace_block_copy_write_zeroes_fail(s, offset, ret);
368             *error_is_read = false;
369         }
370         return ret;
371     }
372 
373     if (s->use_copy_range) {
374         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
375                                  0, s->write_flags);
376         if (ret < 0) {
377             trace_block_copy_copy_range_fail(s, offset, ret);
378             s->use_copy_range = false;
379             s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
380             /* Fallback to read+write with allocated buffer */
381         } else {
382             if (s->use_copy_range) {
383                 /*
384                  * Successful copy-range. Now increase copy_size.  copy_range
385                  * does not respect max_transfer (it's a TODO), so we factor
386                  * that in here.
387                  *
388                  * Note: we double-check s->use_copy_range for the case when
389                  * parallel block-copy request unsets it during previous
390                  * bdrv_co_copy_range call.
391                  */
392                 s->copy_size =
393                         MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
394                             QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
395                                                                     s->target),
396                                             s->cluster_size));
397             }
398             goto out;
399         }
400     }
401 
402     /*
403      * In case of failed copy_range request above, we may proceed with buffered
404      * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
405      * be properly limited, so don't care too much. Moreover the most likely
406      * case (copy_range is unsupported for the configuration, so the very first
407      * copy_range request fails) is handled by setting large copy_size only
408      * after first successful copy_range.
409      */
410 
411     bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
412 
413     ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
414     if (ret < 0) {
415         trace_block_copy_read_fail(s, offset, ret);
416         *error_is_read = true;
417         goto out;
418     }
419 
420     ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
421                          s->write_flags);
422     if (ret < 0) {
423         trace_block_copy_write_fail(s, offset, ret);
424         *error_is_read = false;
425         goto out;
426     }
427 
428 out:
429     qemu_vfree(bounce_buffer);
430 
431     return ret;
432 }
433 
434 static coroutine_fn int block_copy_task_entry(AioTask *task)
435 {
436     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
437     bool error_is_read = false;
438     int ret;
439 
440     ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
441                              &error_is_read);
442     if (ret < 0 && !t->call_state->ret) {
443         t->call_state->ret = ret;
444         t->call_state->error_is_read = error_is_read;
445     } else {
446         progress_work_done(t->s->progress, t->bytes);
447     }
448     co_put_to_shres(t->s->mem, t->bytes);
449     block_copy_task_end(t, ret);
450 
451     return ret;
452 }
453 
454 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
455                                    int64_t bytes, int64_t *pnum)
456 {
457     int64_t num;
458     BlockDriverState *base;
459     int ret;
460 
461     if (s->skip_unallocated) {
462         base = bdrv_backing_chain_next(s->source->bs);
463     } else {
464         base = NULL;
465     }
466 
467     ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
468                                   NULL, NULL);
469     if (ret < 0 || num < s->cluster_size) {
470         /*
471          * On error or if failed to obtain large enough chunk just fallback to
472          * copy one cluster.
473          */
474         num = s->cluster_size;
475         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
476     } else if (offset + num == s->len) {
477         num = QEMU_ALIGN_UP(num, s->cluster_size);
478     } else {
479         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
480     }
481 
482     *pnum = num;
483     return ret;
484 }
485 
486 /*
487  * Check if the cluster starting at offset is allocated or not.
488  * return via pnum the number of contiguous clusters sharing this allocation.
489  */
490 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
491                                            int64_t *pnum)
492 {
493     BlockDriverState *bs = s->source->bs;
494     int64_t count, total_count = 0;
495     int64_t bytes = s->len - offset;
496     int ret;
497 
498     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
499 
500     while (true) {
501         ret = bdrv_is_allocated(bs, offset, bytes, &count);
502         if (ret < 0) {
503             return ret;
504         }
505 
506         total_count += count;
507 
508         if (ret || count == 0) {
509             /*
510              * ret: partial segment(s) are considered allocated.
511              * otherwise: unallocated tail is treated as an entire segment.
512              */
513             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
514             return ret;
515         }
516 
517         /* Unallocated segment(s) with uncertain following segment(s) */
518         if (total_count >= s->cluster_size) {
519             *pnum = total_count / s->cluster_size;
520             return 0;
521         }
522 
523         offset += count;
524         bytes -= count;
525     }
526 }
527 
528 /*
529  * Reset bits in copy_bitmap starting at offset if they represent unallocated
530  * data in the image. May reset subsequent contiguous bits.
531  * @return 0 when the cluster at @offset was unallocated,
532  *         1 otherwise, and -ret on error.
533  */
534 int64_t block_copy_reset_unallocated(BlockCopyState *s,
535                                      int64_t offset, int64_t *count)
536 {
537     int ret;
538     int64_t clusters, bytes;
539 
540     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
541     if (ret < 0) {
542         return ret;
543     }
544 
545     bytes = clusters * s->cluster_size;
546 
547     if (!ret) {
548         bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
549         progress_set_remaining(s->progress,
550                                bdrv_get_dirty_count(s->copy_bitmap) +
551                                s->in_flight_bytes);
552     }
553 
554     *count = bytes;
555     return ret;
556 }
557 
558 /*
559  * block_copy_dirty_clusters
560  *
561  * Copy dirty clusters in @offset/@bytes range.
562  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
563  * clusters found and -errno on failure.
564  */
565 static int coroutine_fn
566 block_copy_dirty_clusters(BlockCopyCallState *call_state)
567 {
568     BlockCopyState *s = call_state->s;
569     int64_t offset = call_state->offset;
570     int64_t bytes = call_state->bytes;
571 
572     int ret = 0;
573     bool found_dirty = false;
574     int64_t end = offset + bytes;
575     AioTaskPool *aio = NULL;
576 
577     /*
578      * block_copy() user is responsible for keeping source and target in same
579      * aio context
580      */
581     assert(bdrv_get_aio_context(s->source->bs) ==
582            bdrv_get_aio_context(s->target->bs));
583 
584     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
585     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
586 
587     while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
588         BlockCopyTask *task;
589         int64_t status_bytes;
590 
591         task = block_copy_task_create(s, call_state, offset, bytes);
592         if (!task) {
593             /* No more dirty bits in the bitmap */
594             trace_block_copy_skip_range(s, offset, bytes);
595             break;
596         }
597         if (task->offset > offset) {
598             trace_block_copy_skip_range(s, offset, task->offset - offset);
599         }
600 
601         found_dirty = true;
602 
603         ret = block_copy_block_status(s, task->offset, task->bytes,
604                                       &status_bytes);
605         assert(ret >= 0); /* never fail */
606         if (status_bytes < task->bytes) {
607             block_copy_task_shrink(task, status_bytes);
608         }
609         if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
610             block_copy_task_end(task, 0);
611             progress_set_remaining(s->progress,
612                                    bdrv_get_dirty_count(s->copy_bitmap) +
613                                    s->in_flight_bytes);
614             trace_block_copy_skip_range(s, task->offset, task->bytes);
615             offset = task_end(task);
616             bytes = end - offset;
617             g_free(task);
618             continue;
619         }
620         task->zeroes = ret & BDRV_BLOCK_ZERO;
621 
622         if (s->speed) {
623             if (!call_state->ignore_ratelimit) {
624                 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
625                 if (ns > 0) {
626                     block_copy_task_end(task, -EAGAIN);
627                     g_free(task);
628                     qemu_co_sleep_ns_wakeable(&call_state->sleep,
629                                               QEMU_CLOCK_REALTIME, ns);
630                     continue;
631                 }
632             }
633 
634             ratelimit_calculate_delay(&s->rate_limit, task->bytes);
635         }
636 
637         trace_block_copy_process(s, task->offset);
638 
639         co_get_from_shres(s->mem, task->bytes);
640 
641         offset = task_end(task);
642         bytes = end - offset;
643 
644         if (!aio && bytes) {
645             aio = aio_task_pool_new(call_state->max_workers);
646         }
647 
648         ret = block_copy_task_run(aio, task);
649         if (ret < 0) {
650             goto out;
651         }
652     }
653 
654 out:
655     if (aio) {
656         aio_task_pool_wait_all(aio);
657 
658         /*
659          * We are not really interested in -ECANCELED returned from
660          * block_copy_task_run. If it fails, it means some task already failed
661          * for real reason, let's return first failure.
662          * Still, assert that we don't rewrite failure by success.
663          *
664          * Note: ret may be positive here because of block-status result.
665          */
666         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
667         ret = aio_task_pool_status(aio);
668 
669         aio_task_pool_free(aio);
670     }
671 
672     return ret < 0 ? ret : found_dirty;
673 }
674 
675 void block_copy_kick(BlockCopyCallState *call_state)
676 {
677     qemu_co_sleep_wake(&call_state->sleep);
678 }
679 
680 /*
681  * block_copy_common
682  *
683  * Copy requested region, accordingly to dirty bitmap.
684  * Collaborate with parallel block_copy requests: if they succeed it will help
685  * us. If they fail, we will retry not-copied regions. So, if we return error,
686  * it means that some I/O operation failed in context of _this_ block_copy call,
687  * not some parallel operation.
688  */
689 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
690 {
691     int ret;
692 
693     QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
694 
695     do {
696         ret = block_copy_dirty_clusters(call_state);
697 
698         if (ret == 0 && !call_state->cancelled) {
699             ret = block_copy_wait_one(call_state->s, call_state->offset,
700                                       call_state->bytes);
701         }
702 
703         /*
704          * We retry in two cases:
705          * 1. Some progress done
706          *    Something was copied, which means that there were yield points
707          *    and some new dirty bits may have appeared (due to failed parallel
708          *    block-copy requests).
709          * 2. We have waited for some intersecting block-copy request
710          *    It may have failed and produced new dirty bits.
711          */
712     } while (ret > 0 && !call_state->cancelled);
713 
714     call_state->finished = true;
715 
716     if (call_state->cb) {
717         call_state->cb(call_state->cb_opaque);
718     }
719 
720     QLIST_REMOVE(call_state, list);
721 
722     return ret;
723 }
724 
725 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
726                             bool ignore_ratelimit)
727 {
728     BlockCopyCallState call_state = {
729         .s = s,
730         .offset = start,
731         .bytes = bytes,
732         .ignore_ratelimit = ignore_ratelimit,
733         .max_workers = BLOCK_COPY_MAX_WORKERS,
734     };
735 
736     return block_copy_common(&call_state);
737 }
738 
739 static void coroutine_fn block_copy_async_co_entry(void *opaque)
740 {
741     block_copy_common(opaque);
742 }
743 
744 BlockCopyCallState *block_copy_async(BlockCopyState *s,
745                                      int64_t offset, int64_t bytes,
746                                      int max_workers, int64_t max_chunk,
747                                      BlockCopyAsyncCallbackFunc cb,
748                                      void *cb_opaque)
749 {
750     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
751 
752     *call_state = (BlockCopyCallState) {
753         .s = s,
754         .offset = offset,
755         .bytes = bytes,
756         .max_workers = max_workers,
757         .max_chunk = max_chunk,
758         .cb = cb,
759         .cb_opaque = cb_opaque,
760 
761         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
762     };
763 
764     qemu_coroutine_enter(call_state->co);
765 
766     return call_state;
767 }
768 
769 void block_copy_call_free(BlockCopyCallState *call_state)
770 {
771     if (!call_state) {
772         return;
773     }
774 
775     assert(call_state->finished);
776     g_free(call_state);
777 }
778 
779 bool block_copy_call_finished(BlockCopyCallState *call_state)
780 {
781     return call_state->finished;
782 }
783 
784 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
785 {
786     return call_state->finished && !call_state->cancelled &&
787         call_state->ret == 0;
788 }
789 
790 bool block_copy_call_failed(BlockCopyCallState *call_state)
791 {
792     return call_state->finished && !call_state->cancelled &&
793         call_state->ret < 0;
794 }
795 
796 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
797 {
798     return call_state->cancelled;
799 }
800 
801 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
802 {
803     assert(call_state->finished);
804     if (error_is_read) {
805         *error_is_read = call_state->error_is_read;
806     }
807     return call_state->ret;
808 }
809 
810 void block_copy_call_cancel(BlockCopyCallState *call_state)
811 {
812     call_state->cancelled = true;
813     block_copy_kick(call_state);
814 }
815 
816 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
817 {
818     return s->copy_bitmap;
819 }
820 
821 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
822 {
823     s->skip_unallocated = skip;
824 }
825 
826 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
827 {
828     s->speed = speed;
829     if (speed > 0) {
830         ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
831     }
832 
833     /*
834      * Note: it's good to kick all call states from here, but it should be done
835      * only from a coroutine, to not crash if s->calls list changed while
836      * entering one call. So for now, the only user of this function kicks its
837      * only one call_state by hand.
838      */
839 }
840