xref: /qemu/block/nvme.c (revision 73b49878)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/module.h"
23 #include "qemu/cutils.h"
24 #include "qemu/option.h"
25 #include "qemu/memalign.h"
26 #include "qemu/vfio-helpers.h"
27 #include "block/block-io.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/replay.h"
31 #include "trace.h"
32 
33 #include "block/nvme.h"
34 
35 #define NVME_SQ_ENTRY_BYTES 64
36 #define NVME_CQ_ENTRY_BYTES 16
37 #define NVME_QUEUE_SIZE 128
38 #define NVME_DOORBELL_SIZE 4096
39 
40 /*
41  * We have to leave one slot empty as that is the full queue case where
42  * head == tail + 1.
43  */
44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
45 
46 typedef struct BDRVNVMeState BDRVNVMeState;
47 
48 /* Same index is used for queues and IRQs */
49 #define INDEX_ADMIN     0
50 #define INDEX_IO(n)     (1 + n)
51 
52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
53 enum {
54     MSIX_SHARED_IRQ_IDX = 0,
55     MSIX_IRQ_COUNT = 1
56 };
57 
58 typedef struct {
59     int32_t  head, tail;
60     uint8_t  *queue;
61     uint64_t iova;
62     /* Hardware MMIO register */
63     volatile uint32_t *doorbell;
64 } NVMeQueue;
65 
66 typedef struct {
67     BlockCompletionFunc *cb;
68     void *opaque;
69     int cid;
70     void *prp_list_page;
71     uint64_t prp_list_iova;
72     int free_req_next; /* q->reqs[] index of next free req */
73 } NVMeRequest;
74 
75 typedef struct {
76     QemuMutex   lock;
77 
78     /* Read from I/O code path, initialized under BQL */
79     BDRVNVMeState   *s;
80     int             index;
81 
82     /* Fields protected by BQL */
83     uint8_t     *prp_list_pages;
84 
85     /* Fields protected by @lock */
86     CoQueue     free_req_queue;
87     NVMeQueue   sq, cq;
88     int         cq_phase;
89     int         free_req_head;
90     NVMeRequest reqs[NVME_NUM_REQS];
91     int         need_kick;
92     int         inflight;
93 
94     /* Thread-safe, no lock necessary */
95     QEMUBH      *completion_bh;
96 } NVMeQueuePair;
97 
98 struct BDRVNVMeState {
99     AioContext *aio_context;
100     QEMUVFIOState *vfio;
101     void *bar0_wo_map;
102     /* Memory mapped registers */
103     volatile struct {
104         uint32_t sq_tail;
105         uint32_t cq_head;
106     } *doorbells;
107     /* The submission/completion queue pairs.
108      * [0]: admin queue.
109      * [1..]: io queues.
110      */
111     NVMeQueuePair **queues;
112     unsigned queue_count;
113     size_t page_size;
114     /* How many uint32_t elements does each doorbell entry take. */
115     size_t doorbell_scale;
116     bool write_cache_supported;
117     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
118 
119     uint64_t nsze; /* Namespace size reported by identify command */
120     int nsid;      /* The namespace id to read/write data. */
121     int blkshift;
122 
123     uint64_t max_transfer;
124 
125     bool supports_write_zeroes;
126     bool supports_discard;
127 
128     CoMutex dma_map_lock;
129     CoQueue dma_flush_queue;
130 
131     /* Total size of mapped qiov, accessed under dma_map_lock */
132     int dma_map_count;
133 
134     /* PCI address (required for nvme_refresh_filename()) */
135     char *device;
136 
137     struct {
138         uint64_t completion_errors;
139         uint64_t aligned_accesses;
140         uint64_t unaligned_accesses;
141     } stats;
142 };
143 
144 #define NVME_BLOCK_OPT_DEVICE "device"
145 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
146 
147 static void nvme_process_completion_bh(void *opaque);
148 
149 static QemuOptsList runtime_opts = {
150     .name = "nvme",
151     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
152     .desc = {
153         {
154             .name = NVME_BLOCK_OPT_DEVICE,
155             .type = QEMU_OPT_STRING,
156             .help = "NVMe PCI device address",
157         },
158         {
159             .name = NVME_BLOCK_OPT_NAMESPACE,
160             .type = QEMU_OPT_NUMBER,
161             .help = "NVMe namespace",
162         },
163         { /* end of list */ }
164     },
165 };
166 
167 /* Returns true on success, false on failure. */
168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
169                             unsigned nentries, size_t entry_bytes, Error **errp)
170 {
171     size_t bytes;
172     int r;
173 
174     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
175     q->head = q->tail = 0;
176     q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
177     if (!q->queue) {
178         error_setg(errp, "Cannot allocate queue");
179         return false;
180     }
181     memset(q->queue, 0, bytes);
182     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
183     if (r) {
184         error_prepend(errp, "Cannot map queue: ");
185     }
186     return r == 0;
187 }
188 
189 static void nvme_free_queue(NVMeQueue *q)
190 {
191     qemu_vfree(q->queue);
192 }
193 
194 static void nvme_free_queue_pair(NVMeQueuePair *q)
195 {
196     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
197     if (q->completion_bh) {
198         qemu_bh_delete(q->completion_bh);
199     }
200     nvme_free_queue(&q->sq);
201     nvme_free_queue(&q->cq);
202     qemu_vfree(q->prp_list_pages);
203     qemu_mutex_destroy(&q->lock);
204     g_free(q);
205 }
206 
207 static void nvme_free_req_queue_cb(void *opaque)
208 {
209     NVMeQueuePair *q = opaque;
210 
211     qemu_mutex_lock(&q->lock);
212     while (q->free_req_head != -1 &&
213            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
214         /* Retry waiting requests */
215     }
216     qemu_mutex_unlock(&q->lock);
217 }
218 
219 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
220                                              AioContext *aio_context,
221                                              unsigned idx, size_t size,
222                                              Error **errp)
223 {
224     int i, r;
225     NVMeQueuePair *q;
226     uint64_t prp_list_iova;
227     size_t bytes;
228 
229     q = g_try_new0(NVMeQueuePair, 1);
230     if (!q) {
231         error_setg(errp, "Cannot allocate queue pair");
232         return NULL;
233     }
234     trace_nvme_create_queue_pair(idx, q, size, aio_context,
235                                  event_notifier_get_fd(s->irq_notifier));
236     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
237                           qemu_real_host_page_size());
238     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
239     if (!q->prp_list_pages) {
240         error_setg(errp, "Cannot allocate PRP page list");
241         goto fail;
242     }
243     memset(q->prp_list_pages, 0, bytes);
244     qemu_mutex_init(&q->lock);
245     q->s = s;
246     q->index = idx;
247     qemu_co_queue_init(&q->free_req_queue);
248     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
249     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
250                           false, &prp_list_iova, errp);
251     if (r) {
252         error_prepend(errp, "Cannot map buffer for DMA: ");
253         goto fail;
254     }
255     q->free_req_head = -1;
256     for (i = 0; i < NVME_NUM_REQS; i++) {
257         NVMeRequest *req = &q->reqs[i];
258         req->cid = i + 1;
259         req->free_req_next = q->free_req_head;
260         q->free_req_head = i;
261         req->prp_list_page = q->prp_list_pages + i * s->page_size;
262         req->prp_list_iova = prp_list_iova + i * s->page_size;
263     }
264 
265     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
266         goto fail;
267     }
268     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
269 
270     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
271         goto fail;
272     }
273     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
274 
275     return q;
276 fail:
277     nvme_free_queue_pair(q);
278     return NULL;
279 }
280 
281 /* With q->lock */
282 static void nvme_kick(NVMeQueuePair *q)
283 {
284     BDRVNVMeState *s = q->s;
285 
286     if (!q->need_kick) {
287         return;
288     }
289     trace_nvme_kick(s, q->index);
290     assert(!(q->sq.tail & 0xFF00));
291     /* Fence the write to submission queue entry before notifying the device. */
292     smp_wmb();
293     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
294     q->inflight += q->need_kick;
295     q->need_kick = 0;
296 }
297 
298 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
299 {
300     NVMeRequest *req;
301 
302     req = &q->reqs[q->free_req_head];
303     q->free_req_head = req->free_req_next;
304     req->free_req_next = -1;
305     return req;
306 }
307 
308 /* Return a free request element if any, otherwise return NULL.  */
309 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
310 {
311     QEMU_LOCK_GUARD(&q->lock);
312     if (q->free_req_head == -1) {
313         return NULL;
314     }
315     return nvme_get_free_req_nofail_locked(q);
316 }
317 
318 /*
319  * Wait for a free request to become available if necessary, then
320  * return it.
321  */
322 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
323 {
324     QEMU_LOCK_GUARD(&q->lock);
325 
326     while (q->free_req_head == -1) {
327         trace_nvme_free_req_queue_wait(q->s, q->index);
328         qemu_co_queue_wait(&q->free_req_queue, &q->lock);
329     }
330 
331     return nvme_get_free_req_nofail_locked(q);
332 }
333 
334 /* With q->lock */
335 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
336 {
337     req->free_req_next = q->free_req_head;
338     q->free_req_head = req - q->reqs;
339 }
340 
341 /* With q->lock */
342 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
343 {
344     if (!qemu_co_queue_empty(&q->free_req_queue)) {
345         replay_bh_schedule_oneshot_event(q->s->aio_context,
346                 nvme_free_req_queue_cb, q);
347     }
348 }
349 
350 /* Insert a request in the freelist and wake waiters */
351 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
352 {
353     qemu_mutex_lock(&q->lock);
354     nvme_put_free_req_locked(q, req);
355     nvme_wake_free_req_locked(q);
356     qemu_mutex_unlock(&q->lock);
357 }
358 
359 static inline int nvme_translate_error(const NvmeCqe *c)
360 {
361     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
362     if (status) {
363         trace_nvme_error(le32_to_cpu(c->result),
364                          le16_to_cpu(c->sq_head),
365                          le16_to_cpu(c->sq_id),
366                          le16_to_cpu(c->cid),
367                          le16_to_cpu(status));
368     }
369     switch (status) {
370     case 0:
371         return 0;
372     case 1:
373         return -ENOSYS;
374     case 2:
375         return -EINVAL;
376     default:
377         return -EIO;
378     }
379 }
380 
381 /* With q->lock */
382 static bool nvme_process_completion(NVMeQueuePair *q)
383 {
384     BDRVNVMeState *s = q->s;
385     bool progress = false;
386     NVMeRequest *preq;
387     NVMeRequest req;
388     NvmeCqe *c;
389 
390     trace_nvme_process_completion(s, q->index, q->inflight);
391 
392     /*
393      * Support re-entrancy when a request cb() function invokes aio_poll().
394      * Pending completions must be visible to aio_poll() so that a cb()
395      * function can wait for the completion of another request.
396      *
397      * The aio_poll() loop will execute our BH and we'll resume completion
398      * processing there.
399      */
400     qemu_bh_schedule(q->completion_bh);
401 
402     assert(q->inflight >= 0);
403     while (q->inflight) {
404         int ret;
405         int16_t cid;
406 
407         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
408         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
409             break;
410         }
411         ret = nvme_translate_error(c);
412         if (ret) {
413             s->stats.completion_errors++;
414         }
415         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
416         if (!q->cq.head) {
417             q->cq_phase = !q->cq_phase;
418         }
419         cid = le16_to_cpu(c->cid);
420         if (cid == 0 || cid > NVME_NUM_REQS) {
421             warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32
422                         ", should be within: 1..%u inclusively", cid,
423                         NVME_NUM_REQS);
424             continue;
425         }
426         trace_nvme_complete_command(s, q->index, cid);
427         preq = &q->reqs[cid - 1];
428         req = *preq;
429         assert(req.cid == cid);
430         assert(req.cb);
431         nvme_put_free_req_locked(q, preq);
432         preq->cb = preq->opaque = NULL;
433         q->inflight--;
434         qemu_mutex_unlock(&q->lock);
435         req.cb(req.opaque, ret);
436         qemu_mutex_lock(&q->lock);
437         progress = true;
438     }
439     if (progress) {
440         /* Notify the device so it can post more completions. */
441         smp_mb_release();
442         *q->cq.doorbell = cpu_to_le32(q->cq.head);
443         nvme_wake_free_req_locked(q);
444     }
445 
446     qemu_bh_cancel(q->completion_bh);
447 
448     return progress;
449 }
450 
451 static void nvme_process_completion_bh(void *opaque)
452 {
453     NVMeQueuePair *q = opaque;
454 
455     /*
456      * We're being invoked because a nvme_process_completion() cb() function
457      * called aio_poll(). The callback may be waiting for further completions
458      * so notify the device that it has space to fill in more completions now.
459      */
460     smp_mb_release();
461     *q->cq.doorbell = cpu_to_le32(q->cq.head);
462     nvme_wake_free_req_locked(q);
463 
464     nvme_process_completion(q);
465 }
466 
467 static void nvme_trace_command(const NvmeCmd *cmd)
468 {
469     int i;
470 
471     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
472         return;
473     }
474     for (i = 0; i < 8; ++i) {
475         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
476         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
477                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
478     }
479 }
480 
481 static void nvme_deferred_fn(void *opaque)
482 {
483     NVMeQueuePair *q = opaque;
484 
485     QEMU_LOCK_GUARD(&q->lock);
486     nvme_kick(q);
487     nvme_process_completion(q);
488 }
489 
490 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
491                                 NvmeCmd *cmd, BlockCompletionFunc cb,
492                                 void *opaque)
493 {
494     assert(!req->cb);
495     req->cb = cb;
496     req->opaque = opaque;
497     cmd->cid = cpu_to_le16(req->cid);
498 
499     trace_nvme_submit_command(q->s, q->index, req->cid);
500     nvme_trace_command(cmd);
501     qemu_mutex_lock(&q->lock);
502     memcpy((uint8_t *)q->sq.queue +
503            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
504     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
505     q->need_kick++;
506     qemu_mutex_unlock(&q->lock);
507 
508     defer_call(nvme_deferred_fn, q);
509 }
510 
511 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
512 {
513     int *pret = opaque;
514     *pret = ret;
515     aio_wait_kick();
516 }
517 
518 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
519 {
520     BDRVNVMeState *s = bs->opaque;
521     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
522     AioContext *aio_context = bdrv_get_aio_context(bs);
523     NVMeRequest *req;
524     int ret = -EINPROGRESS;
525     req = nvme_get_free_req_nowait(q);
526     if (!req) {
527         return -EBUSY;
528     }
529     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
530 
531     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
532     return ret;
533 }
534 
535 /* Returns true on success, false on failure. */
536 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
537 {
538     BDRVNVMeState *s = bs->opaque;
539     bool ret = false;
540     QEMU_AUTO_VFREE union {
541         NvmeIdCtrl ctrl;
542         NvmeIdNs ns;
543     } *id = NULL;
544     NvmeLBAF *lbaf;
545     uint16_t oncs;
546     int r;
547     uint64_t iova;
548     NvmeCmd cmd = {
549         .opcode = NVME_ADM_CMD_IDENTIFY,
550         .cdw10 = cpu_to_le32(0x1),
551     };
552     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
553 
554     id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
555     if (!id) {
556         error_setg(errp, "Cannot allocate buffer for identify response");
557         goto out;
558     }
559     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
560     if (r) {
561         error_prepend(errp, "Cannot map buffer for DMA: ");
562         goto out;
563     }
564 
565     memset(id, 0, id_size);
566     cmd.dptr.prp1 = cpu_to_le64(iova);
567     if (nvme_admin_cmd_sync(bs, &cmd)) {
568         error_setg(errp, "Failed to identify controller");
569         goto out;
570     }
571 
572     if (le32_to_cpu(id->ctrl.nn) < namespace) {
573         error_setg(errp, "Invalid namespace");
574         goto out;
575     }
576     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
577     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
578     /* For now the page list buffer per command is one page, to hold at most
579      * s->page_size / sizeof(uint64_t) entries. */
580     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
581                           s->page_size / sizeof(uint64_t) * s->page_size);
582 
583     oncs = le16_to_cpu(id->ctrl.oncs);
584     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
585     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
586 
587     memset(id, 0, id_size);
588     cmd.cdw10 = 0;
589     cmd.nsid = cpu_to_le32(namespace);
590     if (nvme_admin_cmd_sync(bs, &cmd)) {
591         error_setg(errp, "Failed to identify namespace");
592         goto out;
593     }
594 
595     s->nsze = le64_to_cpu(id->ns.nsze);
596     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
597 
598     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
599             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
600                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
601         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
602     }
603 
604     if (lbaf->ms) {
605         error_setg(errp, "Namespaces with metadata are not yet supported");
606         goto out;
607     }
608 
609     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
610         (1 << lbaf->ds) > s->page_size)
611     {
612         error_setg(errp, "Namespace has unsupported block size (2^%d)",
613                    lbaf->ds);
614         goto out;
615     }
616 
617     ret = true;
618     s->blkshift = lbaf->ds;
619 out:
620     qemu_vfio_dma_unmap(s->vfio, id);
621 
622     return ret;
623 }
624 
625 static void nvme_poll_queue(NVMeQueuePair *q)
626 {
627     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
628     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
629 
630     trace_nvme_poll_queue(q->s, q->index);
631     /*
632      * Do an early check for completions. q->lock isn't needed because
633      * nvme_process_completion() only runs in the event loop thread and
634      * cannot race with itself.
635      */
636     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
637         return;
638     }
639 
640     qemu_mutex_lock(&q->lock);
641     while (nvme_process_completion(q)) {
642         /* Keep polling */
643     }
644     qemu_mutex_unlock(&q->lock);
645 }
646 
647 static void nvme_poll_queues(BDRVNVMeState *s)
648 {
649     int i;
650 
651     for (i = 0; i < s->queue_count; i++) {
652         nvme_poll_queue(s->queues[i]);
653     }
654 }
655 
656 static void nvme_handle_event(EventNotifier *n)
657 {
658     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
659                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
660 
661     trace_nvme_handle_event(s);
662     event_notifier_test_and_clear(n);
663     nvme_poll_queues(s);
664 }
665 
666 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
667 {
668     BDRVNVMeState *s = bs->opaque;
669     unsigned n = s->queue_count;
670     NVMeQueuePair *q;
671     NvmeCmd cmd;
672     unsigned queue_size = NVME_QUEUE_SIZE;
673 
674     assert(n <= UINT16_MAX);
675     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
676                                n, queue_size, errp);
677     if (!q) {
678         return false;
679     }
680     cmd = (NvmeCmd) {
681         .opcode = NVME_ADM_CMD_CREATE_CQ,
682         .dptr.prp1 = cpu_to_le64(q->cq.iova),
683         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
684         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
685     };
686     if (nvme_admin_cmd_sync(bs, &cmd)) {
687         error_setg(errp, "Failed to create CQ io queue [%u]", n);
688         goto out_error;
689     }
690     cmd = (NvmeCmd) {
691         .opcode = NVME_ADM_CMD_CREATE_SQ,
692         .dptr.prp1 = cpu_to_le64(q->sq.iova),
693         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
694         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
695     };
696     if (nvme_admin_cmd_sync(bs, &cmd)) {
697         error_setg(errp, "Failed to create SQ io queue [%u]", n);
698         goto out_error;
699     }
700     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
701     s->queues[n] = q;
702     s->queue_count++;
703     return true;
704 out_error:
705     nvme_free_queue_pair(q);
706     return false;
707 }
708 
709 static bool nvme_poll_cb(void *opaque)
710 {
711     EventNotifier *e = opaque;
712     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
713                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
714     int i;
715 
716     for (i = 0; i < s->queue_count; i++) {
717         NVMeQueuePair *q = s->queues[i];
718         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
719         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
720 
721         /*
722          * q->lock isn't needed because nvme_process_completion() only runs in
723          * the event loop thread and cannot race with itself.
724          */
725         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
726             return true;
727         }
728     }
729     return false;
730 }
731 
732 static void nvme_poll_ready(EventNotifier *e)
733 {
734     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
735                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
736 
737     nvme_poll_queues(s);
738 }
739 
740 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
741                      Error **errp)
742 {
743     BDRVNVMeState *s = bs->opaque;
744     NVMeQueuePair *q;
745     AioContext *aio_context = bdrv_get_aio_context(bs);
746     int ret;
747     uint64_t cap;
748     uint32_t ver;
749     uint64_t timeout_ms;
750     uint64_t deadline, now;
751     volatile NvmeBar *regs = NULL;
752 
753     qemu_co_mutex_init(&s->dma_map_lock);
754     qemu_co_queue_init(&s->dma_flush_queue);
755     s->device = g_strdup(device);
756     s->nsid = namespace;
757     s->aio_context = bdrv_get_aio_context(bs);
758     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
759     if (ret) {
760         error_setg(errp, "Failed to init event notifier");
761         return ret;
762     }
763 
764     s->vfio = qemu_vfio_open_pci(device, errp);
765     if (!s->vfio) {
766         ret = -EINVAL;
767         goto out;
768     }
769 
770     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
771                                  PROT_READ | PROT_WRITE, errp);
772     if (!regs) {
773         ret = -EINVAL;
774         goto out;
775     }
776     /* Perform initialize sequence as described in NVMe spec "7.6.1
777      * Initialization". */
778 
779     cap = le64_to_cpu(regs->cap);
780     trace_nvme_controller_capability_raw(cap);
781     trace_nvme_controller_capability("Maximum Queue Entries Supported",
782                                      1 + NVME_CAP_MQES(cap));
783     trace_nvme_controller_capability("Contiguous Queues Required",
784                                      NVME_CAP_CQR(cap));
785     trace_nvme_controller_capability("Doorbell Stride",
786                                      1 << (2 + NVME_CAP_DSTRD(cap)));
787     trace_nvme_controller_capability("Subsystem Reset Supported",
788                                      NVME_CAP_NSSRS(cap));
789     trace_nvme_controller_capability("Memory Page Size Minimum",
790                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
791     trace_nvme_controller_capability("Memory Page Size Maximum",
792                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
793     if (!NVME_CAP_CSS(cap)) {
794         error_setg(errp, "Device doesn't support NVMe command set");
795         ret = -EINVAL;
796         goto out;
797     }
798 
799     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
800     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
801     bs->bl.opt_mem_alignment = s->page_size;
802     bs->bl.request_alignment = s->page_size;
803     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
804 
805     ver = le32_to_cpu(regs->vs);
806     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
807                                        extract32(ver, 8, 8),
808                                        extract32(ver, 0, 8));
809 
810     /* Reset device to get a clean state. */
811     regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
812     /* Wait for CSTS.RDY = 0. */
813     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
814     while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
815         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
816             error_setg(errp, "Timeout while waiting for device to reset (%"
817                              PRId64 " ms)",
818                        timeout_ms);
819             ret = -ETIMEDOUT;
820             goto out;
821         }
822     }
823 
824     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
825                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
826                                            PROT_WRITE, errp);
827     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
828     if (!s->doorbells) {
829         ret = -EINVAL;
830         goto out;
831     }
832 
833     /* Set up admin queue. */
834     s->queues = g_new(NVMeQueuePair *, 1);
835     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
836     if (!q) {
837         ret = -EINVAL;
838         goto out;
839     }
840     s->queues[INDEX_ADMIN] = q;
841     s->queue_count = 1;
842     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
843     regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
844                             ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
845     regs->asq = cpu_to_le64(q->sq.iova);
846     regs->acq = cpu_to_le64(q->cq.iova);
847 
848     /* After setting up all control registers we can enable device now. */
849     regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
850                            (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
851                            CC_EN_MASK);
852     /* Wait for CSTS.RDY = 1. */
853     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
854     deadline = now + timeout_ms * SCALE_MS;
855     while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
856         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
857             error_setg(errp, "Timeout while waiting for device to start (%"
858                              PRId64 " ms)",
859                        timeout_ms);
860             ret = -ETIMEDOUT;
861             goto out;
862         }
863     }
864 
865     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
866                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
867     if (ret) {
868         goto out;
869     }
870     aio_set_event_notifier(bdrv_get_aio_context(bs),
871                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
872                            nvme_handle_event, nvme_poll_cb,
873                            nvme_poll_ready);
874 
875     if (!nvme_identify(bs, namespace, errp)) {
876         ret = -EIO;
877         goto out;
878     }
879 
880     /* Set up command queues. */
881     if (!nvme_add_io_queue(bs, errp)) {
882         ret = -EIO;
883     }
884 out:
885     if (regs) {
886         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
887     }
888 
889     /* Cleaning up is done in nvme_file_open() upon error. */
890     return ret;
891 }
892 
893 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
894  *
895  *     nvme://0000:44:00.0/1
896  *
897  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
898  * is the PCI address, and the last part is the namespace number starting from
899  * 1 according to the NVMe spec. */
900 static void nvme_parse_filename(const char *filename, QDict *options,
901                                 Error **errp)
902 {
903     int pref = strlen("nvme://");
904 
905     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
906         const char *tmp = filename + pref;
907         char *device;
908         const char *namespace;
909         unsigned long ns;
910         const char *slash = strchr(tmp, '/');
911         if (!slash) {
912             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
913             return;
914         }
915         device = g_strndup(tmp, slash - tmp);
916         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
917         g_free(device);
918         namespace = slash + 1;
919         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
920             error_setg(errp, "Invalid namespace '%s', positive number expected",
921                        namespace);
922             return;
923         }
924         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
925                       *namespace ? namespace : "1");
926     }
927 }
928 
929 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
930                                            Error **errp)
931 {
932     int ret;
933     BDRVNVMeState *s = bs->opaque;
934     NvmeCmd cmd = {
935         .opcode = NVME_ADM_CMD_SET_FEATURES,
936         .nsid = cpu_to_le32(s->nsid),
937         .cdw10 = cpu_to_le32(0x06),
938         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
939     };
940 
941     ret = nvme_admin_cmd_sync(bs, &cmd);
942     if (ret) {
943         error_setg(errp, "Failed to configure NVMe write cache");
944     }
945     return ret;
946 }
947 
948 static void nvme_close(BlockDriverState *bs)
949 {
950     BDRVNVMeState *s = bs->opaque;
951 
952     for (unsigned i = 0; i < s->queue_count; ++i) {
953         nvme_free_queue_pair(s->queues[i]);
954     }
955     g_free(s->queues);
956     aio_set_event_notifier(bdrv_get_aio_context(bs),
957                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
958                            NULL, NULL, NULL);
959     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
960     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
961                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
962     qemu_vfio_close(s->vfio);
963 
964     g_free(s->device);
965 }
966 
967 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
968                           Error **errp)
969 {
970     const char *device;
971     QemuOpts *opts;
972     int namespace;
973     int ret;
974     BDRVNVMeState *s = bs->opaque;
975 
976     bs->supported_write_flags = BDRV_REQ_FUA;
977 
978     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
979     qemu_opts_absorb_qdict(opts, options, &error_abort);
980     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
981     if (!device) {
982         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
983         qemu_opts_del(opts);
984         return -EINVAL;
985     }
986 
987     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
988     ret = nvme_init(bs, device, namespace, errp);
989     qemu_opts_del(opts);
990     if (ret) {
991         goto fail;
992     }
993     if (flags & BDRV_O_NOCACHE) {
994         if (!s->write_cache_supported) {
995             error_setg(errp,
996                        "NVMe controller doesn't support write cache configuration");
997             ret = -EINVAL;
998         } else {
999             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
1000                                                   errp);
1001         }
1002         if (ret) {
1003             goto fail;
1004         }
1005     }
1006     return 0;
1007 fail:
1008     nvme_close(bs);
1009     return ret;
1010 }
1011 
1012 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1013 {
1014     BDRVNVMeState *s = bs->opaque;
1015     return s->nsze << s->blkshift;
1016 }
1017 
1018 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1019 {
1020     BDRVNVMeState *s = bs->opaque;
1021     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1022     return UINT32_C(1) << s->blkshift;
1023 }
1024 
1025 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1026 {
1027     uint32_t blocksize = nvme_get_blocksize(bs);
1028     bsz->phys = blocksize;
1029     bsz->log = blocksize;
1030     return 0;
1031 }
1032 
1033 /* Called with s->dma_map_lock */
1034 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1035                                             QEMUIOVector *qiov)
1036 {
1037     int r = 0;
1038     BDRVNVMeState *s = bs->opaque;
1039 
1040     s->dma_map_count -= qiov->size;
1041     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1042         r = qemu_vfio_dma_reset_temporary(s->vfio);
1043         if (!r) {
1044             qemu_co_queue_restart_all(&s->dma_flush_queue);
1045         }
1046     }
1047     return r;
1048 }
1049 
1050 /* Called with s->dma_map_lock */
1051 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1052                                           NVMeRequest *req, QEMUIOVector *qiov)
1053 {
1054     BDRVNVMeState *s = bs->opaque;
1055     uint64_t *pagelist = req->prp_list_page;
1056     int i, j, r;
1057     int entries = 0;
1058     Error *local_err = NULL, **errp = NULL;
1059 
1060     assert(qiov->size);
1061     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1062     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1063     for (i = 0; i < qiov->niov; ++i) {
1064         bool retry = true;
1065         uint64_t iova;
1066         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1067                                    qemu_real_host_page_size());
1068 try_map:
1069         r = qemu_vfio_dma_map(s->vfio,
1070                               qiov->iov[i].iov_base,
1071                               len, true, &iova, errp);
1072         if (r == -ENOSPC) {
1073             /*
1074              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1075              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1076              * mappings available for a container since Linux kernel commit
1077              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1078              * April 2019, see CVE-2019-3882).
1079              *
1080              * This block driver already handles this error path by checking
1081              * for the -ENOMEM error, so we directly replace -ENOSPC by
1082              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1083              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1084              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1085              * to add more storage to the blockdev. Not something we can do
1086              * easily with an IOMMU :)
1087              */
1088             r = -ENOMEM;
1089         }
1090         if (r == -ENOMEM && retry) {
1091             /*
1092              * We exhausted the DMA mappings available for our container:
1093              * recycle the volatile IOVA mappings.
1094              */
1095             retry = false;
1096             trace_nvme_dma_flush_queue_wait(s);
1097             if (s->dma_map_count) {
1098                 trace_nvme_dma_map_flush(s);
1099                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1100             } else {
1101                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1102                 if (r) {
1103                     goto fail;
1104                 }
1105             }
1106             errp = &local_err;
1107 
1108             goto try_map;
1109         }
1110         if (r) {
1111             goto fail;
1112         }
1113 
1114         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1115             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1116         }
1117         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1118                                     qiov->iov[i].iov_len / s->page_size);
1119     }
1120 
1121     s->dma_map_count += qiov->size;
1122 
1123     assert(entries <= s->page_size / sizeof(uint64_t));
1124     switch (entries) {
1125     case 0:
1126         abort();
1127     case 1:
1128         cmd->dptr.prp1 = pagelist[0];
1129         cmd->dptr.prp2 = 0;
1130         break;
1131     case 2:
1132         cmd->dptr.prp1 = pagelist[0];
1133         cmd->dptr.prp2 = pagelist[1];
1134         break;
1135     default:
1136         cmd->dptr.prp1 = pagelist[0];
1137         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1138         break;
1139     }
1140     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1141     for (i = 0; i < entries; ++i) {
1142         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1143     }
1144     return 0;
1145 fail:
1146     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1147      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1148      * because they are already mapped before calling this function; for
1149      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1150      * calling qemu_vfio_dma_reset_temporary when necessary. */
1151     if (local_err) {
1152         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1153     }
1154     return r;
1155 }
1156 
1157 typedef struct {
1158     Coroutine *co;
1159     int ret;
1160     AioContext *ctx;
1161 } NVMeCoData;
1162 
1163 static void nvme_rw_cb_bh(void *opaque)
1164 {
1165     NVMeCoData *data = opaque;
1166     qemu_coroutine_enter(data->co);
1167 }
1168 
1169 static void nvme_rw_cb(void *opaque, int ret)
1170 {
1171     NVMeCoData *data = opaque;
1172     data->ret = ret;
1173     if (!data->co) {
1174         /* The rw coroutine hasn't yielded, don't try to enter. */
1175         return;
1176     }
1177     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1178 }
1179 
1180 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1181                                             uint64_t offset, uint64_t bytes,
1182                                             QEMUIOVector *qiov,
1183                                             bool is_write,
1184                                             int flags)
1185 {
1186     int r;
1187     BDRVNVMeState *s = bs->opaque;
1188     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1189     NVMeRequest *req;
1190 
1191     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1192                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1193     NvmeCmd cmd = {
1194         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1195         .nsid = cpu_to_le32(s->nsid),
1196         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1197         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1198         .cdw12 = cpu_to_le32(cdw12),
1199     };
1200     NVMeCoData data = {
1201         .ctx = bdrv_get_aio_context(bs),
1202         .ret = -EINPROGRESS,
1203     };
1204 
1205     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1206     assert(s->queue_count > 1);
1207     req = nvme_get_free_req(ioq);
1208     assert(req);
1209 
1210     qemu_co_mutex_lock(&s->dma_map_lock);
1211     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1212     qemu_co_mutex_unlock(&s->dma_map_lock);
1213     if (r) {
1214         nvme_put_free_req_and_wake(ioq, req);
1215         return r;
1216     }
1217     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1218 
1219     data.co = qemu_coroutine_self();
1220     while (data.ret == -EINPROGRESS) {
1221         qemu_coroutine_yield();
1222     }
1223 
1224     qemu_co_mutex_lock(&s->dma_map_lock);
1225     r = nvme_cmd_unmap_qiov(bs, qiov);
1226     qemu_co_mutex_unlock(&s->dma_map_lock);
1227     if (r) {
1228         return r;
1229     }
1230 
1231     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1232     return data.ret;
1233 }
1234 
1235 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1236                                      const QEMUIOVector *qiov)
1237 {
1238     int i;
1239     BDRVNVMeState *s = bs->opaque;
1240 
1241     for (i = 0; i < qiov->niov; ++i) {
1242         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1243                                  qemu_real_host_page_size()) ||
1244             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1245             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1246                                       qiov->iov[i].iov_len, s->page_size);
1247             return false;
1248         }
1249     }
1250     return true;
1251 }
1252 
1253 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1254                                     uint64_t offset, uint64_t bytes,
1255                                     QEMUIOVector *qiov, bool is_write,
1256                                     int flags)
1257 {
1258     BDRVNVMeState *s = bs->opaque;
1259     int r;
1260     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1261     QEMUIOVector local_qiov;
1262     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1263     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1264     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1265     assert(bytes <= s->max_transfer);
1266     if (nvme_qiov_aligned(bs, qiov)) {
1267         s->stats.aligned_accesses++;
1268         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1269     }
1270     s->stats.unaligned_accesses++;
1271     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1272     buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1273 
1274     if (!buf) {
1275         return -ENOMEM;
1276     }
1277     qemu_iovec_init(&local_qiov, 1);
1278     if (is_write) {
1279         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1280     }
1281     qemu_iovec_add(&local_qiov, buf, bytes);
1282     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1283     qemu_iovec_destroy(&local_qiov);
1284     if (!r && !is_write) {
1285         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1286     }
1287     return r;
1288 }
1289 
1290 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1291                                        int64_t offset, int64_t bytes,
1292                                        QEMUIOVector *qiov,
1293                                        BdrvRequestFlags flags)
1294 {
1295     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1296 }
1297 
1298 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1299                                         int64_t offset, int64_t bytes,
1300                                         QEMUIOVector *qiov,
1301                                         BdrvRequestFlags flags)
1302 {
1303     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1304 }
1305 
1306 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1307 {
1308     BDRVNVMeState *s = bs->opaque;
1309     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1310     NVMeRequest *req;
1311     NvmeCmd cmd = {
1312         .opcode = NVME_CMD_FLUSH,
1313         .nsid = cpu_to_le32(s->nsid),
1314     };
1315     NVMeCoData data = {
1316         .ctx = bdrv_get_aio_context(bs),
1317         .ret = -EINPROGRESS,
1318     };
1319 
1320     assert(s->queue_count > 1);
1321     req = nvme_get_free_req(ioq);
1322     assert(req);
1323     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1324 
1325     data.co = qemu_coroutine_self();
1326     if (data.ret == -EINPROGRESS) {
1327         qemu_coroutine_yield();
1328     }
1329 
1330     return data.ret;
1331 }
1332 
1333 
1334 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1335                                               int64_t offset,
1336                                               int64_t bytes,
1337                                               BdrvRequestFlags flags)
1338 {
1339     BDRVNVMeState *s = bs->opaque;
1340     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1341     NVMeRequest *req;
1342     uint32_t cdw12;
1343 
1344     if (!s->supports_write_zeroes) {
1345         return -ENOTSUP;
1346     }
1347 
1348     if (bytes == 0) {
1349         return 0;
1350     }
1351 
1352     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1353     /*
1354      * We should not lose information. pwrite_zeroes_alignment and
1355      * max_pwrite_zeroes guarantees it.
1356      */
1357     assert(((cdw12 + 1) << s->blkshift) == bytes);
1358 
1359     NvmeCmd cmd = {
1360         .opcode = NVME_CMD_WRITE_ZEROES,
1361         .nsid = cpu_to_le32(s->nsid),
1362         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1363         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1364     };
1365 
1366     NVMeCoData data = {
1367         .ctx = bdrv_get_aio_context(bs),
1368         .ret = -EINPROGRESS,
1369     };
1370 
1371     if (flags & BDRV_REQ_MAY_UNMAP) {
1372         cdw12 |= (1 << 25);
1373     }
1374 
1375     if (flags & BDRV_REQ_FUA) {
1376         cdw12 |= (1 << 30);
1377     }
1378 
1379     cmd.cdw12 = cpu_to_le32(cdw12);
1380 
1381     trace_nvme_write_zeroes(s, offset, bytes, flags);
1382     assert(s->queue_count > 1);
1383     req = nvme_get_free_req(ioq);
1384     assert(req);
1385 
1386     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1387 
1388     data.co = qemu_coroutine_self();
1389     while (data.ret == -EINPROGRESS) {
1390         qemu_coroutine_yield();
1391     }
1392 
1393     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1394     return data.ret;
1395 }
1396 
1397 
1398 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1399                                          int64_t offset,
1400                                          int64_t bytes)
1401 {
1402     BDRVNVMeState *s = bs->opaque;
1403     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1404     NVMeRequest *req;
1405     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1406     QEMUIOVector local_qiov;
1407     int ret;
1408 
1409     NvmeCmd cmd = {
1410         .opcode = NVME_CMD_DSM,
1411         .nsid = cpu_to_le32(s->nsid),
1412         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1413         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1414     };
1415 
1416     NVMeCoData data = {
1417         .ctx = bdrv_get_aio_context(bs),
1418         .ret = -EINPROGRESS,
1419     };
1420 
1421     if (!s->supports_discard) {
1422         return -ENOTSUP;
1423     }
1424 
1425     assert(s->queue_count > 1);
1426 
1427     /*
1428      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1429      * defined in nvme_refresh_limits().
1430      */
1431     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1432     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1433     assert((bytes >> s->blkshift) <= UINT32_MAX);
1434 
1435     buf = qemu_try_memalign(s->page_size, s->page_size);
1436     if (!buf) {
1437         return -ENOMEM;
1438     }
1439     memset(buf, 0, s->page_size);
1440     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1441     buf->slba = cpu_to_le64(offset >> s->blkshift);
1442     buf->cattr = 0;
1443 
1444     qemu_iovec_init(&local_qiov, 1);
1445     qemu_iovec_add(&local_qiov, buf, 4096);
1446 
1447     req = nvme_get_free_req(ioq);
1448     assert(req);
1449 
1450     qemu_co_mutex_lock(&s->dma_map_lock);
1451     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1452     qemu_co_mutex_unlock(&s->dma_map_lock);
1453 
1454     if (ret) {
1455         nvme_put_free_req_and_wake(ioq, req);
1456         goto out;
1457     }
1458 
1459     trace_nvme_dsm(s, offset, bytes);
1460 
1461     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1462 
1463     data.co = qemu_coroutine_self();
1464     while (data.ret == -EINPROGRESS) {
1465         qemu_coroutine_yield();
1466     }
1467 
1468     qemu_co_mutex_lock(&s->dma_map_lock);
1469     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1470     qemu_co_mutex_unlock(&s->dma_map_lock);
1471 
1472     if (ret) {
1473         goto out;
1474     }
1475 
1476     ret = data.ret;
1477     trace_nvme_dsm_done(s, offset, bytes, ret);
1478 out:
1479     qemu_iovec_destroy(&local_qiov);
1480     return ret;
1481 
1482 }
1483 
1484 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1485                                          bool exact, PreallocMode prealloc,
1486                                          BdrvRequestFlags flags, Error **errp)
1487 {
1488     int64_t cur_length;
1489 
1490     if (prealloc != PREALLOC_MODE_OFF) {
1491         error_setg(errp, "Unsupported preallocation mode '%s'",
1492                    PreallocMode_str(prealloc));
1493         return -ENOTSUP;
1494     }
1495 
1496     cur_length = nvme_co_getlength(bs);
1497     if (offset != cur_length && exact) {
1498         error_setg(errp, "Cannot resize NVMe devices");
1499         return -ENOTSUP;
1500     } else if (offset > cur_length) {
1501         error_setg(errp, "Cannot grow NVMe devices");
1502         return -EINVAL;
1503     }
1504 
1505     return 0;
1506 }
1507 
1508 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1509                                BlockReopenQueue *queue, Error **errp)
1510 {
1511     return 0;
1512 }
1513 
1514 static void nvme_refresh_filename(BlockDriverState *bs)
1515 {
1516     BDRVNVMeState *s = bs->opaque;
1517 
1518     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1519              s->device, s->nsid);
1520 }
1521 
1522 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1523 {
1524     BDRVNVMeState *s = bs->opaque;
1525 
1526     bs->bl.opt_mem_alignment = s->page_size;
1527     bs->bl.request_alignment = s->page_size;
1528     bs->bl.max_transfer = s->max_transfer;
1529 
1530     /*
1531      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1532      * at most 0xFFFF
1533      */
1534     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1535     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1536                                          1UL << s->blkshift);
1537 
1538     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1539     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1540                                     1UL << s->blkshift);
1541 }
1542 
1543 static void nvme_detach_aio_context(BlockDriverState *bs)
1544 {
1545     BDRVNVMeState *s = bs->opaque;
1546 
1547     for (unsigned i = 0; i < s->queue_count; i++) {
1548         NVMeQueuePair *q = s->queues[i];
1549 
1550         qemu_bh_delete(q->completion_bh);
1551         q->completion_bh = NULL;
1552     }
1553 
1554     aio_set_event_notifier(bdrv_get_aio_context(bs),
1555                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1556                            NULL, NULL, NULL);
1557 }
1558 
1559 static void nvme_attach_aio_context(BlockDriverState *bs,
1560                                     AioContext *new_context)
1561 {
1562     BDRVNVMeState *s = bs->opaque;
1563 
1564     s->aio_context = new_context;
1565     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1566                            nvme_handle_event, nvme_poll_cb,
1567                            nvme_poll_ready);
1568 
1569     for (unsigned i = 0; i < s->queue_count; i++) {
1570         NVMeQueuePair *q = s->queues[i];
1571 
1572         q->completion_bh =
1573             aio_bh_new(new_context, nvme_process_completion_bh, q);
1574     }
1575 }
1576 
1577 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1578                               Error **errp)
1579 {
1580     int ret;
1581     BDRVNVMeState *s = bs->opaque;
1582 
1583     /*
1584      * FIXME: we may run out of IOVA addresses after repeated
1585      * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1586      * doesn't reclaim addresses for fixed mappings.
1587      */
1588     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1589     return ret == 0;
1590 }
1591 
1592 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1593 {
1594     BDRVNVMeState *s = bs->opaque;
1595 
1596     qemu_vfio_dma_unmap(s->vfio, host);
1597 }
1598 
1599 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1600 {
1601     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1602     BDRVNVMeState *s = bs->opaque;
1603 
1604     stats->driver = BLOCKDEV_DRIVER_NVME;
1605     stats->u.nvme = (BlockStatsSpecificNvme) {
1606         .completion_errors = s->stats.completion_errors,
1607         .aligned_accesses = s->stats.aligned_accesses,
1608         .unaligned_accesses = s->stats.unaligned_accesses,
1609     };
1610 
1611     return stats;
1612 }
1613 
1614 static const char *const nvme_strong_runtime_opts[] = {
1615     NVME_BLOCK_OPT_DEVICE,
1616     NVME_BLOCK_OPT_NAMESPACE,
1617 
1618     NULL
1619 };
1620 
1621 static BlockDriver bdrv_nvme = {
1622     .format_name              = "nvme",
1623     .protocol_name            = "nvme",
1624     .instance_size            = sizeof(BDRVNVMeState),
1625 
1626     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1627     .create_opts              = &bdrv_create_opts_simple,
1628 
1629     .bdrv_parse_filename      = nvme_parse_filename,
1630     .bdrv_file_open           = nvme_file_open,
1631     .bdrv_close               = nvme_close,
1632     .bdrv_co_getlength        = nvme_co_getlength,
1633     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1634     .bdrv_co_truncate         = nvme_co_truncate,
1635 
1636     .bdrv_co_preadv           = nvme_co_preadv,
1637     .bdrv_co_pwritev          = nvme_co_pwritev,
1638 
1639     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1640     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1641 
1642     .bdrv_co_flush_to_disk    = nvme_co_flush,
1643     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1644 
1645     .bdrv_refresh_filename    = nvme_refresh_filename,
1646     .bdrv_refresh_limits      = nvme_refresh_limits,
1647     .strong_runtime_opts      = nvme_strong_runtime_opts,
1648     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1649 
1650     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1651     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1652 
1653     .bdrv_register_buf        = nvme_register_buf,
1654     .bdrv_unregister_buf      = nvme_unregister_buf,
1655 };
1656 
1657 static void bdrv_nvme_init(void)
1658 {
1659     bdrv_register(&bdrv_nvme);
1660 }
1661 
1662 block_init(bdrv_nvme_init);
1663