xref: /qemu/block/nvme.c (revision dd154c4d)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
24 #include "trace.h"
25 
26 #include "block/nvme.h"
27 
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
32 
33 typedef struct {
34     int32_t  head, tail;
35     uint8_t  *queue;
36     uint64_t iova;
37     /* Hardware MMIO register */
38     volatile uint32_t *doorbell;
39 } NVMeQueue;
40 
41 typedef struct {
42     BlockCompletionFunc *cb;
43     void *opaque;
44     int cid;
45     void *prp_list_page;
46     uint64_t prp_list_iova;
47     bool busy;
48 } NVMeRequest;
49 
50 typedef struct {
51     CoQueue     free_req_queue;
52     QemuMutex   lock;
53 
54     /* Fields protected by BQL */
55     int         index;
56     uint8_t     *prp_list_pages;
57 
58     /* Fields protected by @lock */
59     NVMeQueue   sq, cq;
60     int         cq_phase;
61     NVMeRequest reqs[NVME_QUEUE_SIZE];
62     bool        busy;
63     int         need_kick;
64     int         inflight;
65 } NVMeQueuePair;
66 
67 /* Memory mapped registers */
68 typedef volatile struct {
69     uint64_t cap;
70     uint32_t vs;
71     uint32_t intms;
72     uint32_t intmc;
73     uint32_t cc;
74     uint32_t reserved0;
75     uint32_t csts;
76     uint32_t nssr;
77     uint32_t aqa;
78     uint64_t asq;
79     uint64_t acq;
80     uint32_t cmbloc;
81     uint32_t cmbsz;
82     uint8_t  reserved1[0xec0];
83     uint8_t  cmd_set_specfic[0x100];
84     uint32_t doorbells[];
85 } NVMeRegs;
86 
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
88 
89 typedef struct {
90     AioContext *aio_context;
91     QEMUVFIOState *vfio;
92     NVMeRegs *regs;
93     /* The submission/completion queue pairs.
94      * [0]: admin queue.
95      * [1..]: io queues.
96      */
97     NVMeQueuePair **queues;
98     int nr_queues;
99     size_t page_size;
100     /* How many uint32_t elements does each doorbell entry take. */
101     size_t doorbell_scale;
102     bool write_cache_supported;
103     EventNotifier irq_notifier;
104     uint64_t nsze; /* Namespace size reported by identify command */
105     int nsid;      /* The namespace id to read/write data. */
106     uint64_t max_transfer;
107     bool plugged;
108 
109     CoMutex dma_map_lock;
110     CoQueue dma_flush_queue;
111 
112     /* Total size of mapped qiov, accessed under dma_map_lock */
113     int dma_map_count;
114 
115     /* PCI address (required for nvme_refresh_filename()) */
116     char *device;
117 } BDRVNVMeState;
118 
119 #define NVME_BLOCK_OPT_DEVICE "device"
120 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
121 
122 static QemuOptsList runtime_opts = {
123     .name = "nvme",
124     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
125     .desc = {
126         {
127             .name = NVME_BLOCK_OPT_DEVICE,
128             .type = QEMU_OPT_STRING,
129             .help = "NVMe PCI device address",
130         },
131         {
132             .name = NVME_BLOCK_OPT_NAMESPACE,
133             .type = QEMU_OPT_NUMBER,
134             .help = "NVMe namespace",
135         },
136         { /* end of list */ }
137     },
138 };
139 
140 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
141                             int nentries, int entry_bytes, Error **errp)
142 {
143     BDRVNVMeState *s = bs->opaque;
144     size_t bytes;
145     int r;
146 
147     bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
148     q->head = q->tail = 0;
149     q->queue = qemu_try_blockalign0(bs, bytes);
150 
151     if (!q->queue) {
152         error_setg(errp, "Cannot allocate queue");
153         return;
154     }
155     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
156     if (r) {
157         error_setg(errp, "Cannot map queue");
158     }
159 }
160 
161 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
162 {
163     qemu_vfree(q->prp_list_pages);
164     qemu_vfree(q->sq.queue);
165     qemu_vfree(q->cq.queue);
166     qemu_mutex_destroy(&q->lock);
167     g_free(q);
168 }
169 
170 static void nvme_free_req_queue_cb(void *opaque)
171 {
172     NVMeQueuePair *q = opaque;
173 
174     qemu_mutex_lock(&q->lock);
175     while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
176         /* Retry all pending requests */
177     }
178     qemu_mutex_unlock(&q->lock);
179 }
180 
181 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
182                                              int idx, int size,
183                                              Error **errp)
184 {
185     int i, r;
186     BDRVNVMeState *s = bs->opaque;
187     Error *local_err = NULL;
188     NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
189     uint64_t prp_list_iova;
190 
191     qemu_mutex_init(&q->lock);
192     q->index = idx;
193     qemu_co_queue_init(&q->free_req_queue);
194     q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
195     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
196                           s->page_size * NVME_QUEUE_SIZE,
197                           false, &prp_list_iova);
198     if (r) {
199         goto fail;
200     }
201     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
202         NVMeRequest *req = &q->reqs[i];
203         req->cid = i + 1;
204         req->prp_list_page = q->prp_list_pages + i * s->page_size;
205         req->prp_list_iova = prp_list_iova + i * s->page_size;
206     }
207     nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
208     if (local_err) {
209         error_propagate(errp, local_err);
210         goto fail;
211     }
212     q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
213 
214     nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
215     if (local_err) {
216         error_propagate(errp, local_err);
217         goto fail;
218     }
219     q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
220 
221     return q;
222 fail:
223     nvme_free_queue_pair(bs, q);
224     return NULL;
225 }
226 
227 /* With q->lock */
228 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
229 {
230     if (s->plugged || !q->need_kick) {
231         return;
232     }
233     trace_nvme_kick(s, q->index);
234     assert(!(q->sq.tail & 0xFF00));
235     /* Fence the write to submission queue entry before notifying the device. */
236     smp_wmb();
237     *q->sq.doorbell = cpu_to_le32(q->sq.tail);
238     q->inflight += q->need_kick;
239     q->need_kick = 0;
240 }
241 
242 /* Find a free request element if any, otherwise:
243  * a) if in coroutine context, try to wait for one to become available;
244  * b) if not in coroutine, return NULL;
245  */
246 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
247 {
248     int i;
249     NVMeRequest *req = NULL;
250 
251     qemu_mutex_lock(&q->lock);
252     while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
253         /* We have to leave one slot empty as that is the full queue case (head
254          * == tail + 1). */
255         if (qemu_in_coroutine()) {
256             trace_nvme_free_req_queue_wait(q);
257             qemu_co_queue_wait(&q->free_req_queue, &q->lock);
258         } else {
259             qemu_mutex_unlock(&q->lock);
260             return NULL;
261         }
262     }
263     for (i = 0; i < NVME_QUEUE_SIZE; i++) {
264         if (!q->reqs[i].busy) {
265             q->reqs[i].busy = true;
266             req = &q->reqs[i];
267             break;
268         }
269     }
270     /* We have checked inflight and need_kick while holding q->lock, so one
271      * free req must be available. */
272     assert(req);
273     qemu_mutex_unlock(&q->lock);
274     return req;
275 }
276 
277 static inline int nvme_translate_error(const NvmeCqe *c)
278 {
279     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
280     if (status) {
281         trace_nvme_error(le32_to_cpu(c->result),
282                          le16_to_cpu(c->sq_head),
283                          le16_to_cpu(c->sq_id),
284                          le16_to_cpu(c->cid),
285                          le16_to_cpu(status));
286     }
287     switch (status) {
288     case 0:
289         return 0;
290     case 1:
291         return -ENOSYS;
292     case 2:
293         return -EINVAL;
294     default:
295         return -EIO;
296     }
297 }
298 
299 /* With q->lock */
300 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
301 {
302     bool progress = false;
303     NVMeRequest *preq;
304     NVMeRequest req;
305     NvmeCqe *c;
306 
307     trace_nvme_process_completion(s, q->index, q->inflight);
308     if (q->busy || s->plugged) {
309         trace_nvme_process_completion_queue_busy(s, q->index);
310         return false;
311     }
312     q->busy = true;
313     assert(q->inflight >= 0);
314     while (q->inflight) {
315         int16_t cid;
316         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
317         if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
318             break;
319         }
320         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
321         if (!q->cq.head) {
322             q->cq_phase = !q->cq_phase;
323         }
324         cid = le16_to_cpu(c->cid);
325         if (cid == 0 || cid > NVME_QUEUE_SIZE) {
326             fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
327                     cid);
328             continue;
329         }
330         assert(cid <= NVME_QUEUE_SIZE);
331         trace_nvme_complete_command(s, q->index, cid);
332         preq = &q->reqs[cid - 1];
333         req = *preq;
334         assert(req.cid == cid);
335         assert(req.cb);
336         preq->busy = false;
337         preq->cb = preq->opaque = NULL;
338         qemu_mutex_unlock(&q->lock);
339         req.cb(req.opaque, nvme_translate_error(c));
340         qemu_mutex_lock(&q->lock);
341         c->cid = cpu_to_le16(0);
342         q->inflight--;
343         /* Flip Phase Tag bit. */
344         c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
345         progress = true;
346     }
347     if (progress) {
348         /* Notify the device so it can post more completions. */
349         smp_mb_release();
350         *q->cq.doorbell = cpu_to_le32(q->cq.head);
351         if (!qemu_co_queue_empty(&q->free_req_queue)) {
352             aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
353         }
354     }
355     q->busy = false;
356     return progress;
357 }
358 
359 static void nvme_trace_command(const NvmeCmd *cmd)
360 {
361     int i;
362 
363     for (i = 0; i < 8; ++i) {
364         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
365         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
366                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
367     }
368 }
369 
370 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
371                                 NVMeRequest *req,
372                                 NvmeCmd *cmd, BlockCompletionFunc cb,
373                                 void *opaque)
374 {
375     assert(!req->cb);
376     req->cb = cb;
377     req->opaque = opaque;
378     cmd->cid = cpu_to_le32(req->cid);
379 
380     trace_nvme_submit_command(s, q->index, req->cid);
381     nvme_trace_command(cmd);
382     qemu_mutex_lock(&q->lock);
383     memcpy((uint8_t *)q->sq.queue +
384            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
385     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
386     q->need_kick++;
387     nvme_kick(s, q);
388     nvme_process_completion(s, q);
389     qemu_mutex_unlock(&q->lock);
390 }
391 
392 static void nvme_cmd_sync_cb(void *opaque, int ret)
393 {
394     int *pret = opaque;
395     *pret = ret;
396     aio_wait_kick();
397 }
398 
399 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
400                          NvmeCmd *cmd)
401 {
402     NVMeRequest *req;
403     BDRVNVMeState *s = bs->opaque;
404     int ret = -EINPROGRESS;
405     req = nvme_get_free_req(q);
406     if (!req) {
407         return -EBUSY;
408     }
409     nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
410 
411     BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
412     return ret;
413 }
414 
415 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
416 {
417     BDRVNVMeState *s = bs->opaque;
418     NvmeIdCtrl *idctrl;
419     NvmeIdNs *idns;
420     uint8_t *resp;
421     int r;
422     uint64_t iova;
423     NvmeCmd cmd = {
424         .opcode = NVME_ADM_CMD_IDENTIFY,
425         .cdw10 = cpu_to_le32(0x1),
426     };
427 
428     resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
429     if (!resp) {
430         error_setg(errp, "Cannot allocate buffer for identify response");
431         goto out;
432     }
433     idctrl = (NvmeIdCtrl *)resp;
434     idns = (NvmeIdNs *)resp;
435     r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
436     if (r) {
437         error_setg(errp, "Cannot map buffer for DMA");
438         goto out;
439     }
440     cmd.prp1 = cpu_to_le64(iova);
441 
442     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
443         error_setg(errp, "Failed to identify controller");
444         goto out;
445     }
446 
447     if (le32_to_cpu(idctrl->nn) < namespace) {
448         error_setg(errp, "Invalid namespace");
449         goto out;
450     }
451     s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
452     s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
453     /* For now the page list buffer per command is one page, to hold at most
454      * s->page_size / sizeof(uint64_t) entries. */
455     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
456                           s->page_size / sizeof(uint64_t) * s->page_size);
457 
458     memset(resp, 0, 4096);
459 
460     cmd.cdw10 = 0;
461     cmd.nsid = cpu_to_le32(namespace);
462     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
463         error_setg(errp, "Failed to identify namespace");
464         goto out;
465     }
466 
467     s->nsze = le64_to_cpu(idns->nsze);
468 
469 out:
470     qemu_vfio_dma_unmap(s->vfio, resp);
471     qemu_vfree(resp);
472 }
473 
474 static bool nvme_poll_queues(BDRVNVMeState *s)
475 {
476     bool progress = false;
477     int i;
478 
479     for (i = 0; i < s->nr_queues; i++) {
480         NVMeQueuePair *q = s->queues[i];
481         qemu_mutex_lock(&q->lock);
482         while (nvme_process_completion(s, q)) {
483             /* Keep polling */
484             progress = true;
485         }
486         qemu_mutex_unlock(&q->lock);
487     }
488     return progress;
489 }
490 
491 static void nvme_handle_event(EventNotifier *n)
492 {
493     BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
494 
495     trace_nvme_handle_event(s);
496     event_notifier_test_and_clear(n);
497     nvme_poll_queues(s);
498 }
499 
500 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
501 {
502     BDRVNVMeState *s = bs->opaque;
503     int n = s->nr_queues;
504     NVMeQueuePair *q;
505     NvmeCmd cmd;
506     int queue_size = NVME_QUEUE_SIZE;
507 
508     q = nvme_create_queue_pair(bs, n, queue_size, errp);
509     if (!q) {
510         return false;
511     }
512     cmd = (NvmeCmd) {
513         .opcode = NVME_ADM_CMD_CREATE_CQ,
514         .prp1 = cpu_to_le64(q->cq.iova),
515         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
516         .cdw11 = cpu_to_le32(0x3),
517     };
518     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
519         error_setg(errp, "Failed to create io queue [%d]", n);
520         nvme_free_queue_pair(bs, q);
521         return false;
522     }
523     cmd = (NvmeCmd) {
524         .opcode = NVME_ADM_CMD_CREATE_SQ,
525         .prp1 = cpu_to_le64(q->sq.iova),
526         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
527         .cdw11 = cpu_to_le32(0x1 | (n << 16)),
528     };
529     if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
530         error_setg(errp, "Failed to create io queue [%d]", n);
531         nvme_free_queue_pair(bs, q);
532         return false;
533     }
534     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
535     s->queues[n] = q;
536     s->nr_queues++;
537     return true;
538 }
539 
540 static bool nvme_poll_cb(void *opaque)
541 {
542     EventNotifier *e = opaque;
543     BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
544     bool progress = false;
545 
546     trace_nvme_poll_cb(s);
547     progress = nvme_poll_queues(s);
548     return progress;
549 }
550 
551 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
552                      Error **errp)
553 {
554     BDRVNVMeState *s = bs->opaque;
555     int ret;
556     uint64_t cap;
557     uint64_t timeout_ms;
558     uint64_t deadline, now;
559     Error *local_err = NULL;
560 
561     qemu_co_mutex_init(&s->dma_map_lock);
562     qemu_co_queue_init(&s->dma_flush_queue);
563     s->device = g_strdup(device);
564     s->nsid = namespace;
565     s->aio_context = bdrv_get_aio_context(bs);
566     ret = event_notifier_init(&s->irq_notifier, 0);
567     if (ret) {
568         error_setg(errp, "Failed to init event notifier");
569         return ret;
570     }
571 
572     s->vfio = qemu_vfio_open_pci(device, errp);
573     if (!s->vfio) {
574         ret = -EINVAL;
575         goto out;
576     }
577 
578     s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
579     if (!s->regs) {
580         ret = -EINVAL;
581         goto out;
582     }
583 
584     /* Perform initialize sequence as described in NVMe spec "7.6.1
585      * Initialization". */
586 
587     cap = le64_to_cpu(s->regs->cap);
588     if (!(cap & (1ULL << 37))) {
589         error_setg(errp, "Device doesn't support NVMe command set");
590         ret = -EINVAL;
591         goto out;
592     }
593 
594     s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
595     s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
596     bs->bl.opt_mem_alignment = s->page_size;
597     timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
598 
599     /* Reset device to get a clean state. */
600     s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
601     /* Wait for CSTS.RDY = 0. */
602     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
603     while (le32_to_cpu(s->regs->csts) & 0x1) {
604         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
605             error_setg(errp, "Timeout while waiting for device to reset (%"
606                              PRId64 " ms)",
607                        timeout_ms);
608             ret = -ETIMEDOUT;
609             goto out;
610         }
611     }
612 
613     /* Set up admin queue. */
614     s->queues = g_new(NVMeQueuePair *, 1);
615     s->nr_queues = 1;
616     s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
617     if (!s->queues[0]) {
618         ret = -EINVAL;
619         goto out;
620     }
621     QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
622     s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
623     s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
624     s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
625 
626     /* After setting up all control registers we can enable device now. */
627     s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
628                               (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
629                               0x1);
630     /* Wait for CSTS.RDY = 1. */
631     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
632     deadline = now + timeout_ms * 1000000;
633     while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
634         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
635             error_setg(errp, "Timeout while waiting for device to start (%"
636                              PRId64 " ms)",
637                        timeout_ms);
638             ret = -ETIMEDOUT;
639             goto out;
640         }
641     }
642 
643     ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
644                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
645     if (ret) {
646         goto out;
647     }
648     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
649                            false, nvme_handle_event, nvme_poll_cb);
650 
651     nvme_identify(bs, namespace, &local_err);
652     if (local_err) {
653         error_propagate(errp, local_err);
654         ret = -EIO;
655         goto out;
656     }
657 
658     /* Set up command queues. */
659     if (!nvme_add_io_queue(bs, errp)) {
660         ret = -EIO;
661     }
662 out:
663     /* Cleaning up is done in nvme_file_open() upon error. */
664     return ret;
665 }
666 
667 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
668  *
669  *     nvme://0000:44:00.0/1
670  *
671  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
672  * is the PCI address, and the last part is the namespace number starting from
673  * 1 according to the NVMe spec. */
674 static void nvme_parse_filename(const char *filename, QDict *options,
675                                 Error **errp)
676 {
677     int pref = strlen("nvme://");
678 
679     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
680         const char *tmp = filename + pref;
681         char *device;
682         const char *namespace;
683         unsigned long ns;
684         const char *slash = strchr(tmp, '/');
685         if (!slash) {
686             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
687             return;
688         }
689         device = g_strndup(tmp, slash - tmp);
690         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
691         g_free(device);
692         namespace = slash + 1;
693         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
694             error_setg(errp, "Invalid namespace '%s', positive number expected",
695                        namespace);
696             return;
697         }
698         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
699                       *namespace ? namespace : "1");
700     }
701 }
702 
703 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
704                                            Error **errp)
705 {
706     int ret;
707     BDRVNVMeState *s = bs->opaque;
708     NvmeCmd cmd = {
709         .opcode = NVME_ADM_CMD_SET_FEATURES,
710         .nsid = cpu_to_le32(s->nsid),
711         .cdw10 = cpu_to_le32(0x06),
712         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
713     };
714 
715     ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
716     if (ret) {
717         error_setg(errp, "Failed to configure NVMe write cache");
718     }
719     return ret;
720 }
721 
722 static void nvme_close(BlockDriverState *bs)
723 {
724     int i;
725     BDRVNVMeState *s = bs->opaque;
726 
727     for (i = 0; i < s->nr_queues; ++i) {
728         nvme_free_queue_pair(bs, s->queues[i]);
729     }
730     g_free(s->queues);
731     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
732                            false, NULL, NULL);
733     event_notifier_cleanup(&s->irq_notifier);
734     qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
735     qemu_vfio_close(s->vfio);
736 
737     g_free(s->device);
738 }
739 
740 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
741                           Error **errp)
742 {
743     const char *device;
744     QemuOpts *opts;
745     int namespace;
746     int ret;
747     BDRVNVMeState *s = bs->opaque;
748 
749     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
750     qemu_opts_absorb_qdict(opts, options, &error_abort);
751     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
752     if (!device) {
753         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
754         qemu_opts_del(opts);
755         return -EINVAL;
756     }
757 
758     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
759     ret = nvme_init(bs, device, namespace, errp);
760     qemu_opts_del(opts);
761     if (ret) {
762         goto fail;
763     }
764     if (flags & BDRV_O_NOCACHE) {
765         if (!s->write_cache_supported) {
766             error_setg(errp,
767                        "NVMe controller doesn't support write cache configuration");
768             ret = -EINVAL;
769         } else {
770             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
771                                                   errp);
772         }
773         if (ret) {
774             goto fail;
775         }
776     }
777     bs->supported_write_flags = BDRV_REQ_FUA;
778     return 0;
779 fail:
780     nvme_close(bs);
781     return ret;
782 }
783 
784 static int64_t nvme_getlength(BlockDriverState *bs)
785 {
786     BDRVNVMeState *s = bs->opaque;
787 
788     return s->nsze << BDRV_SECTOR_BITS;
789 }
790 
791 /* Called with s->dma_map_lock */
792 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
793                                             QEMUIOVector *qiov)
794 {
795     int r = 0;
796     BDRVNVMeState *s = bs->opaque;
797 
798     s->dma_map_count -= qiov->size;
799     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
800         r = qemu_vfio_dma_reset_temporary(s->vfio);
801         if (!r) {
802             qemu_co_queue_restart_all(&s->dma_flush_queue);
803         }
804     }
805     return r;
806 }
807 
808 /* Called with s->dma_map_lock */
809 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
810                                           NVMeRequest *req, QEMUIOVector *qiov)
811 {
812     BDRVNVMeState *s = bs->opaque;
813     uint64_t *pagelist = req->prp_list_page;
814     int i, j, r;
815     int entries = 0;
816 
817     assert(qiov->size);
818     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
819     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
820     for (i = 0; i < qiov->niov; ++i) {
821         bool retry = true;
822         uint64_t iova;
823 try_map:
824         r = qemu_vfio_dma_map(s->vfio,
825                               qiov->iov[i].iov_base,
826                               qiov->iov[i].iov_len,
827                               true, &iova);
828         if (r == -ENOMEM && retry) {
829             retry = false;
830             trace_nvme_dma_flush_queue_wait(s);
831             if (s->dma_map_count) {
832                 trace_nvme_dma_map_flush(s);
833                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
834             } else {
835                 r = qemu_vfio_dma_reset_temporary(s->vfio);
836                 if (r) {
837                     goto fail;
838                 }
839             }
840             goto try_map;
841         }
842         if (r) {
843             goto fail;
844         }
845 
846         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
847             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
848         }
849         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
850                                     qiov->iov[i].iov_len / s->page_size);
851     }
852 
853     s->dma_map_count += qiov->size;
854 
855     assert(entries <= s->page_size / sizeof(uint64_t));
856     switch (entries) {
857     case 0:
858         abort();
859     case 1:
860         cmd->prp1 = pagelist[0];
861         cmd->prp2 = 0;
862         break;
863     case 2:
864         cmd->prp1 = pagelist[0];
865         cmd->prp2 = pagelist[1];
866         break;
867     default:
868         cmd->prp1 = pagelist[0];
869         cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
870         break;
871     }
872     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
873     for (i = 0; i < entries; ++i) {
874         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
875     }
876     return 0;
877 fail:
878     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
879      * increment s->dma_map_count. This is okay for fixed mapping memory areas
880      * because they are already mapped before calling this function; for
881      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
882      * calling qemu_vfio_dma_reset_temporary when necessary. */
883     return r;
884 }
885 
886 typedef struct {
887     Coroutine *co;
888     int ret;
889     AioContext *ctx;
890 } NVMeCoData;
891 
892 static void nvme_rw_cb_bh(void *opaque)
893 {
894     NVMeCoData *data = opaque;
895     qemu_coroutine_enter(data->co);
896 }
897 
898 static void nvme_rw_cb(void *opaque, int ret)
899 {
900     NVMeCoData *data = opaque;
901     data->ret = ret;
902     if (!data->co) {
903         /* The rw coroutine hasn't yielded, don't try to enter. */
904         return;
905     }
906     aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
907 }
908 
909 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
910                                             uint64_t offset, uint64_t bytes,
911                                             QEMUIOVector *qiov,
912                                             bool is_write,
913                                             int flags)
914 {
915     int r;
916     BDRVNVMeState *s = bs->opaque;
917     NVMeQueuePair *ioq = s->queues[1];
918     NVMeRequest *req;
919     uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
920                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
921     NvmeCmd cmd = {
922         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
923         .nsid = cpu_to_le32(s->nsid),
924         .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
925         .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
926         .cdw12 = cpu_to_le32(cdw12),
927     };
928     NVMeCoData data = {
929         .ctx = bdrv_get_aio_context(bs),
930         .ret = -EINPROGRESS,
931     };
932 
933     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
934     assert(s->nr_queues > 1);
935     req = nvme_get_free_req(ioq);
936     assert(req);
937 
938     qemu_co_mutex_lock(&s->dma_map_lock);
939     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
940     qemu_co_mutex_unlock(&s->dma_map_lock);
941     if (r) {
942         req->busy = false;
943         return r;
944     }
945     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
946 
947     data.co = qemu_coroutine_self();
948     while (data.ret == -EINPROGRESS) {
949         qemu_coroutine_yield();
950     }
951 
952     qemu_co_mutex_lock(&s->dma_map_lock);
953     r = nvme_cmd_unmap_qiov(bs, qiov);
954     qemu_co_mutex_unlock(&s->dma_map_lock);
955     if (r) {
956         return r;
957     }
958 
959     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
960     return data.ret;
961 }
962 
963 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
964                                      const QEMUIOVector *qiov)
965 {
966     int i;
967     BDRVNVMeState *s = bs->opaque;
968 
969     for (i = 0; i < qiov->niov; ++i) {
970         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
971             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
972             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
973                                       qiov->iov[i].iov_len, s->page_size);
974             return false;
975         }
976     }
977     return true;
978 }
979 
980 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
981                        QEMUIOVector *qiov, bool is_write, int flags)
982 {
983     BDRVNVMeState *s = bs->opaque;
984     int r;
985     uint8_t *buf = NULL;
986     QEMUIOVector local_qiov;
987 
988     assert(QEMU_IS_ALIGNED(offset, s->page_size));
989     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
990     assert(bytes <= s->max_transfer);
991     if (nvme_qiov_aligned(bs, qiov)) {
992         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
993     }
994     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
995     buf = qemu_try_blockalign(bs, bytes);
996 
997     if (!buf) {
998         return -ENOMEM;
999     }
1000     qemu_iovec_init(&local_qiov, 1);
1001     if (is_write) {
1002         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1003     }
1004     qemu_iovec_add(&local_qiov, buf, bytes);
1005     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1006     qemu_iovec_destroy(&local_qiov);
1007     if (!r && !is_write) {
1008         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1009     }
1010     qemu_vfree(buf);
1011     return r;
1012 }
1013 
1014 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1015                                        uint64_t offset, uint64_t bytes,
1016                                        QEMUIOVector *qiov, int flags)
1017 {
1018     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1019 }
1020 
1021 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1022                                         uint64_t offset, uint64_t bytes,
1023                                         QEMUIOVector *qiov, int flags)
1024 {
1025     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1026 }
1027 
1028 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1029 {
1030     BDRVNVMeState *s = bs->opaque;
1031     NVMeQueuePair *ioq = s->queues[1];
1032     NVMeRequest *req;
1033     NvmeCmd cmd = {
1034         .opcode = NVME_CMD_FLUSH,
1035         .nsid = cpu_to_le32(s->nsid),
1036     };
1037     NVMeCoData data = {
1038         .ctx = bdrv_get_aio_context(bs),
1039         .ret = -EINPROGRESS,
1040     };
1041 
1042     assert(s->nr_queues > 1);
1043     req = nvme_get_free_req(ioq);
1044     assert(req);
1045     nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1046 
1047     data.co = qemu_coroutine_self();
1048     if (data.ret == -EINPROGRESS) {
1049         qemu_coroutine_yield();
1050     }
1051 
1052     return data.ret;
1053 }
1054 
1055 
1056 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1057                                BlockReopenQueue *queue, Error **errp)
1058 {
1059     return 0;
1060 }
1061 
1062 static void nvme_refresh_filename(BlockDriverState *bs)
1063 {
1064     BDRVNVMeState *s = bs->opaque;
1065 
1066     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1067              s->device, s->nsid);
1068 }
1069 
1070 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1071 {
1072     BDRVNVMeState *s = bs->opaque;
1073 
1074     bs->bl.opt_mem_alignment = s->page_size;
1075     bs->bl.request_alignment = s->page_size;
1076     bs->bl.max_transfer = s->max_transfer;
1077 }
1078 
1079 static void nvme_detach_aio_context(BlockDriverState *bs)
1080 {
1081     BDRVNVMeState *s = bs->opaque;
1082 
1083     aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1084                            false, NULL, NULL);
1085 }
1086 
1087 static void nvme_attach_aio_context(BlockDriverState *bs,
1088                                     AioContext *new_context)
1089 {
1090     BDRVNVMeState *s = bs->opaque;
1091 
1092     s->aio_context = new_context;
1093     aio_set_event_notifier(new_context, &s->irq_notifier,
1094                            false, nvme_handle_event, nvme_poll_cb);
1095 }
1096 
1097 static void nvme_aio_plug(BlockDriverState *bs)
1098 {
1099     BDRVNVMeState *s = bs->opaque;
1100     assert(!s->plugged);
1101     s->plugged = true;
1102 }
1103 
1104 static void nvme_aio_unplug(BlockDriverState *bs)
1105 {
1106     int i;
1107     BDRVNVMeState *s = bs->opaque;
1108     assert(s->plugged);
1109     s->plugged = false;
1110     for (i = 1; i < s->nr_queues; i++) {
1111         NVMeQueuePair *q = s->queues[i];
1112         qemu_mutex_lock(&q->lock);
1113         nvme_kick(s, q);
1114         nvme_process_completion(s, q);
1115         qemu_mutex_unlock(&q->lock);
1116     }
1117 }
1118 
1119 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1120 {
1121     int ret;
1122     BDRVNVMeState *s = bs->opaque;
1123 
1124     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1125     if (ret) {
1126         /* FIXME: we may run out of IOVA addresses after repeated
1127          * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1128          * doesn't reclaim addresses for fixed mappings. */
1129         error_report("nvme_register_buf failed: %s", strerror(-ret));
1130     }
1131 }
1132 
1133 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1134 {
1135     BDRVNVMeState *s = bs->opaque;
1136 
1137     qemu_vfio_dma_unmap(s->vfio, host);
1138 }
1139 
1140 static const char *const nvme_strong_runtime_opts[] = {
1141     NVME_BLOCK_OPT_DEVICE,
1142     NVME_BLOCK_OPT_NAMESPACE,
1143 
1144     NULL
1145 };
1146 
1147 static BlockDriver bdrv_nvme = {
1148     .format_name              = "nvme",
1149     .protocol_name            = "nvme",
1150     .instance_size            = sizeof(BDRVNVMeState),
1151 
1152     .bdrv_parse_filename      = nvme_parse_filename,
1153     .bdrv_file_open           = nvme_file_open,
1154     .bdrv_close               = nvme_close,
1155     .bdrv_getlength           = nvme_getlength,
1156 
1157     .bdrv_co_preadv           = nvme_co_preadv,
1158     .bdrv_co_pwritev          = nvme_co_pwritev,
1159     .bdrv_co_flush_to_disk    = nvme_co_flush,
1160     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1161 
1162     .bdrv_refresh_filename    = nvme_refresh_filename,
1163     .bdrv_refresh_limits      = nvme_refresh_limits,
1164     .strong_runtime_opts      = nvme_strong_runtime_opts,
1165 
1166     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1167     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1168 
1169     .bdrv_io_plug             = nvme_aio_plug,
1170     .bdrv_io_unplug           = nvme_aio_unplug,
1171 
1172     .bdrv_register_buf        = nvme_register_buf,
1173     .bdrv_unregister_buf      = nvme_unregister_buf,
1174 };
1175 
1176 static void bdrv_nvme_init(void)
1177 {
1178     bdrv_register(&bdrv_nvme);
1179 }
1180 
1181 block_init(bdrv_nvme_init);
1182