xref: /qemu/block/qcow2-cluster.c (revision 52ea63de)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36                         bool exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size2, ret, i;
40     uint64_t *new_l1_table;
41     int64_t old_l1_table_offset, old_l1_size;
42     int64_t new_l1_table_offset, new_l1_size;
43     uint8_t data[12];
44 
45     if (min_size <= s->l1_size)
46         return 0;
47 
48     /* Do a sanity check on min_size before trying to calculate new_l1_size
49      * (this prevents overflows during the while loop for the calculation of
50      * new_l1_size) */
51     if (min_size > INT_MAX / sizeof(uint64_t)) {
52         return -EFBIG;
53     }
54 
55     if (exact_size) {
56         new_l1_size = min_size;
57     } else {
58         /* Bump size up to reduce the number of times we have to grow */
59         new_l1_size = s->l1_size;
60         if (new_l1_size == 0) {
61             new_l1_size = 1;
62         }
63         while (min_size > new_l1_size) {
64             new_l1_size = (new_l1_size * 3 + 1) / 2;
65         }
66     }
67 
68     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
69         return -EFBIG;
70     }
71 
72 #ifdef DEBUG_ALLOC2
73     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
74             s->l1_size, new_l1_size);
75 #endif
76 
77     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
78     new_l1_table = qemu_try_blockalign(bs->file->bs,
79                                        align_offset(new_l1_size2, 512));
80     if (new_l1_table == NULL) {
81         return -ENOMEM;
82     }
83     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
84 
85     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
86 
87     /* write new table (align to cluster) */
88     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
89     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
90     if (new_l1_table_offset < 0) {
91         qemu_vfree(new_l1_table);
92         return new_l1_table_offset;
93     }
94 
95     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
96     if (ret < 0) {
97         goto fail;
98     }
99 
100     /* the L1 position has not yet been updated, so these clusters must
101      * indeed be completely free */
102     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
103                                         new_l1_size2);
104     if (ret < 0) {
105         goto fail;
106     }
107 
108     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
109     for(i = 0; i < s->l1_size; i++)
110         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
111     ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset,
112                            new_l1_table, new_l1_size2);
113     if (ret < 0)
114         goto fail;
115     for(i = 0; i < s->l1_size; i++)
116         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
117 
118     /* set new table */
119     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
120     cpu_to_be32w((uint32_t*)data, new_l1_size);
121     stq_be_p(data + 4, new_l1_table_offset);
122     ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size),
123                            data, sizeof(data));
124     if (ret < 0) {
125         goto fail;
126     }
127     qemu_vfree(s->l1_table);
128     old_l1_table_offset = s->l1_table_offset;
129     s->l1_table_offset = new_l1_table_offset;
130     s->l1_table = new_l1_table;
131     old_l1_size = s->l1_size;
132     s->l1_size = new_l1_size;
133     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
134                         QCOW2_DISCARD_OTHER);
135     return 0;
136  fail:
137     qemu_vfree(new_l1_table);
138     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
139                         QCOW2_DISCARD_OTHER);
140     return ret;
141 }
142 
143 /*
144  * l2_load
145  *
146  * Loads a L2 table into memory. If the table is in the cache, the cache
147  * is used; otherwise the L2 table is loaded from the image file.
148  *
149  * Returns a pointer to the L2 table on success, or NULL if the read from
150  * the image file failed.
151  */
152 
153 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
154     uint64_t **l2_table)
155 {
156     BDRVQcow2State *s = bs->opaque;
157     int ret;
158 
159     ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
160 
161     return ret;
162 }
163 
164 /*
165  * Writes one sector of the L1 table to the disk (can't update single entries
166  * and we really don't want bdrv_pread to perform a read-modify-write)
167  */
168 #define L1_ENTRIES_PER_SECTOR (512 / 8)
169 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
170 {
171     BDRVQcow2State *s = bs->opaque;
172     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
173     int l1_start_index;
174     int i, ret;
175 
176     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
177     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
178          i++)
179     {
180         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
181     }
182 
183     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
184             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
185     if (ret < 0) {
186         return ret;
187     }
188 
189     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
190     ret = bdrv_pwrite_sync(bs->file->bs,
191                            s->l1_table_offset + 8 * l1_start_index,
192                            buf, sizeof(buf));
193     if (ret < 0) {
194         return ret;
195     }
196 
197     return 0;
198 }
199 
200 /*
201  * l2_allocate
202  *
203  * Allocate a new l2 entry in the file. If l1_index points to an already
204  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
205  * table) copy the contents of the old L2 table into the newly allocated one.
206  * Otherwise the new table is initialized with zeros.
207  *
208  */
209 
210 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
211 {
212     BDRVQcow2State *s = bs->opaque;
213     uint64_t old_l2_offset;
214     uint64_t *l2_table = NULL;
215     int64_t l2_offset;
216     int ret;
217 
218     old_l2_offset = s->l1_table[l1_index];
219 
220     trace_qcow2_l2_allocate(bs, l1_index);
221 
222     /* allocate a new l2 entry */
223 
224     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
225     if (l2_offset < 0) {
226         ret = l2_offset;
227         goto fail;
228     }
229 
230     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
231     if (ret < 0) {
232         goto fail;
233     }
234 
235     /* allocate a new entry in the l2 cache */
236 
237     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
238     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
239     if (ret < 0) {
240         goto fail;
241     }
242 
243     l2_table = *table;
244 
245     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
246         /* if there was no old l2 table, clear the new table */
247         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
248     } else {
249         uint64_t* old_table;
250 
251         /* if there was an old l2 table, read it from the disk */
252         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
253         ret = qcow2_cache_get(bs, s->l2_table_cache,
254             old_l2_offset & L1E_OFFSET_MASK,
255             (void**) &old_table);
256         if (ret < 0) {
257             goto fail;
258         }
259 
260         memcpy(l2_table, old_table, s->cluster_size);
261 
262         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
263     }
264 
265     /* write the l2 table to the file */
266     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
267 
268     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
269     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
270     ret = qcow2_cache_flush(bs, s->l2_table_cache);
271     if (ret < 0) {
272         goto fail;
273     }
274 
275     /* update the L1 entry */
276     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
277     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
278     ret = qcow2_write_l1_entry(bs, l1_index);
279     if (ret < 0) {
280         goto fail;
281     }
282 
283     *table = l2_table;
284     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
285     return 0;
286 
287 fail:
288     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
289     if (l2_table != NULL) {
290         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
291     }
292     s->l1_table[l1_index] = old_l2_offset;
293     if (l2_offset > 0) {
294         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
295                             QCOW2_DISCARD_ALWAYS);
296     }
297     return ret;
298 }
299 
300 /*
301  * Checks how many clusters in a given L2 table are contiguous in the image
302  * file. As soon as one of the flags in the bitmask stop_flags changes compared
303  * to the first cluster, the search is stopped and the cluster is not counted
304  * as contiguous. (This allows it, for example, to stop at the first compressed
305  * cluster which may require a different handling)
306  */
307 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
308         uint64_t *l2_table, uint64_t stop_flags)
309 {
310     int i;
311     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
312     uint64_t first_entry = be64_to_cpu(l2_table[0]);
313     uint64_t offset = first_entry & mask;
314 
315     if (!offset)
316         return 0;
317 
318     assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
319 
320     for (i = 0; i < nb_clusters; i++) {
321         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
322         if (offset + (uint64_t) i * cluster_size != l2_entry) {
323             break;
324         }
325     }
326 
327 	return i;
328 }
329 
330 static int count_contiguous_clusters_by_type(int nb_clusters,
331                                              uint64_t *l2_table,
332                                              int wanted_type)
333 {
334     int i;
335 
336     for (i = 0; i < nb_clusters; i++) {
337         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
338 
339         if (type != wanted_type) {
340             break;
341         }
342     }
343 
344     return i;
345 }
346 
347 /* The crypt function is compatible with the linux cryptoloop
348    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
349    supported */
350 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
351                           uint8_t *out_buf, const uint8_t *in_buf,
352                           int nb_sectors, bool enc,
353                           Error **errp)
354 {
355     union {
356         uint64_t ll[2];
357         uint8_t b[16];
358     } ivec;
359     int i;
360     int ret;
361 
362     for(i = 0; i < nb_sectors; i++) {
363         ivec.ll[0] = cpu_to_le64(sector_num);
364         ivec.ll[1] = 0;
365         if (qcrypto_cipher_setiv(s->cipher,
366                                  ivec.b, G_N_ELEMENTS(ivec.b),
367                                  errp) < 0) {
368             return -1;
369         }
370         if (enc) {
371             ret = qcrypto_cipher_encrypt(s->cipher,
372                                          in_buf,
373                                          out_buf,
374                                          512,
375                                          errp);
376         } else {
377             ret = qcrypto_cipher_decrypt(s->cipher,
378                                          in_buf,
379                                          out_buf,
380                                          512,
381                                          errp);
382         }
383         if (ret < 0) {
384             return -1;
385         }
386         sector_num++;
387         in_buf += 512;
388         out_buf += 512;
389     }
390     return 0;
391 }
392 
393 static int coroutine_fn copy_sectors(BlockDriverState *bs,
394                                      uint64_t start_sect,
395                                      uint64_t cluster_offset,
396                                      int n_start, int n_end)
397 {
398     BDRVQcow2State *s = bs->opaque;
399     QEMUIOVector qiov;
400     struct iovec iov;
401     int n, ret;
402 
403     n = n_end - n_start;
404     if (n <= 0) {
405         return 0;
406     }
407 
408     iov.iov_len = n * BDRV_SECTOR_SIZE;
409     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
410     if (iov.iov_base == NULL) {
411         return -ENOMEM;
412     }
413 
414     qemu_iovec_init_external(&qiov, &iov, 1);
415 
416     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
417 
418     if (!bs->drv) {
419         ret = -ENOMEDIUM;
420         goto out;
421     }
422 
423     /* Call .bdrv_co_readv() directly instead of using the public block-layer
424      * interface.  This avoids double I/O throttling and request tracking,
425      * which can lead to deadlock when block layer copy-on-read is enabled.
426      */
427     ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
428     if (ret < 0) {
429         goto out;
430     }
431 
432     if (bs->encrypted) {
433         Error *err = NULL;
434         assert(s->cipher);
435         if (qcow2_encrypt_sectors(s, start_sect + n_start,
436                                   iov.iov_base, iov.iov_base, n,
437                                   true, &err) < 0) {
438             ret = -EIO;
439             error_free(err);
440             goto out;
441         }
442     }
443 
444     ret = qcow2_pre_write_overlap_check(bs, 0,
445             cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
446     if (ret < 0) {
447         goto out;
448     }
449 
450     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
451     ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n,
452                          &qiov);
453     if (ret < 0) {
454         goto out;
455     }
456 
457     ret = 0;
458 out:
459     qemu_vfree(iov.iov_base);
460     return ret;
461 }
462 
463 
464 /*
465  * get_cluster_offset
466  *
467  * For a given offset of the disk image, find the cluster offset in
468  * qcow2 file. The offset is stored in *cluster_offset.
469  *
470  * on entry, *num is the number of contiguous sectors we'd like to
471  * access following offset.
472  *
473  * on exit, *num is the number of contiguous sectors we can read.
474  *
475  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
476  * cases.
477  */
478 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
479     int *num, uint64_t *cluster_offset)
480 {
481     BDRVQcow2State *s = bs->opaque;
482     unsigned int l2_index;
483     uint64_t l1_index, l2_offset, *l2_table;
484     int l1_bits, c;
485     unsigned int index_in_cluster, nb_clusters;
486     uint64_t nb_available, nb_needed;
487     int ret;
488 
489     index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
490     nb_needed = *num + index_in_cluster;
491 
492     l1_bits = s->l2_bits + s->cluster_bits;
493 
494     /* compute how many bytes there are between the offset and
495      * the end of the l1 entry
496      */
497 
498     nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
499 
500     /* compute the number of available sectors */
501 
502     nb_available = (nb_available >> 9) + index_in_cluster;
503 
504     if (nb_needed > nb_available) {
505         nb_needed = nb_available;
506     }
507     assert(nb_needed <= INT_MAX);
508 
509     *cluster_offset = 0;
510 
511     /* seek to the l2 offset in the l1 table */
512 
513     l1_index = offset >> l1_bits;
514     if (l1_index >= s->l1_size) {
515         ret = QCOW2_CLUSTER_UNALLOCATED;
516         goto out;
517     }
518 
519     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
520     if (!l2_offset) {
521         ret = QCOW2_CLUSTER_UNALLOCATED;
522         goto out;
523     }
524 
525     if (offset_into_cluster(s, l2_offset)) {
526         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
527                                 " unaligned (L1 index: %#" PRIx64 ")",
528                                 l2_offset, l1_index);
529         return -EIO;
530     }
531 
532     /* load the l2 table in memory */
533 
534     ret = l2_load(bs, l2_offset, &l2_table);
535     if (ret < 0) {
536         return ret;
537     }
538 
539     /* find the cluster offset for the given disk offset */
540 
541     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
542     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
543 
544     /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
545     nb_clusters = size_to_clusters(s, nb_needed << 9);
546 
547     ret = qcow2_get_cluster_type(*cluster_offset);
548     switch (ret) {
549     case QCOW2_CLUSTER_COMPRESSED:
550         /* Compressed clusters can only be processed one by one */
551         c = 1;
552         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
553         break;
554     case QCOW2_CLUSTER_ZERO:
555         if (s->qcow_version < 3) {
556             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
557                                     " in pre-v3 image (L2 offset: %#" PRIx64
558                                     ", L2 index: %#x)", l2_offset, l2_index);
559             ret = -EIO;
560             goto fail;
561         }
562         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
563                                               QCOW2_CLUSTER_ZERO);
564         *cluster_offset = 0;
565         break;
566     case QCOW2_CLUSTER_UNALLOCATED:
567         /* how many empty clusters ? */
568         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
569                                               QCOW2_CLUSTER_UNALLOCATED);
570         *cluster_offset = 0;
571         break;
572     case QCOW2_CLUSTER_NORMAL:
573         /* how many allocated clusters ? */
574         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
575                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
576         *cluster_offset &= L2E_OFFSET_MASK;
577         if (offset_into_cluster(s, *cluster_offset)) {
578             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
579                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
580                                     ", L2 index: %#x)", *cluster_offset,
581                                     l2_offset, l2_index);
582             ret = -EIO;
583             goto fail;
584         }
585         break;
586     default:
587         abort();
588     }
589 
590     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591 
592     nb_available = (c * s->cluster_sectors);
593 
594 out:
595     if (nb_available > nb_needed)
596         nb_available = nb_needed;
597 
598     *num = nb_available - index_in_cluster;
599 
600     return ret;
601 
602 fail:
603     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
604     return ret;
605 }
606 
607 /*
608  * get_cluster_table
609  *
610  * for a given disk offset, load (and allocate if needed)
611  * the l2 table.
612  *
613  * the l2 table offset in the qcow2 file and the cluster index
614  * in the l2 table are given to the caller.
615  *
616  * Returns 0 on success, -errno in failure case
617  */
618 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
619                              uint64_t **new_l2_table,
620                              int *new_l2_index)
621 {
622     BDRVQcow2State *s = bs->opaque;
623     unsigned int l2_index;
624     uint64_t l1_index, l2_offset;
625     uint64_t *l2_table = NULL;
626     int ret;
627 
628     /* seek to the l2 offset in the l1 table */
629 
630     l1_index = offset >> (s->l2_bits + s->cluster_bits);
631     if (l1_index >= s->l1_size) {
632         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
633         if (ret < 0) {
634             return ret;
635         }
636     }
637 
638     assert(l1_index < s->l1_size);
639     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
640     if (offset_into_cluster(s, l2_offset)) {
641         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
642                                 " unaligned (L1 index: %#" PRIx64 ")",
643                                 l2_offset, l1_index);
644         return -EIO;
645     }
646 
647     /* seek the l2 table of the given l2 offset */
648 
649     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
650         /* load the l2 table in memory */
651         ret = l2_load(bs, l2_offset, &l2_table);
652         if (ret < 0) {
653             return ret;
654         }
655     } else {
656         /* First allocate a new L2 table (and do COW if needed) */
657         ret = l2_allocate(bs, l1_index, &l2_table);
658         if (ret < 0) {
659             return ret;
660         }
661 
662         /* Then decrease the refcount of the old table */
663         if (l2_offset) {
664             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
665                                 QCOW2_DISCARD_OTHER);
666         }
667     }
668 
669     /* find the cluster offset for the given disk offset */
670 
671     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
672 
673     *new_l2_table = l2_table;
674     *new_l2_index = l2_index;
675 
676     return 0;
677 }
678 
679 /*
680  * alloc_compressed_cluster_offset
681  *
682  * For a given offset of the disk image, return cluster offset in
683  * qcow2 file.
684  *
685  * If the offset is not found, allocate a new compressed cluster.
686  *
687  * Return the cluster offset if successful,
688  * Return 0, otherwise.
689  *
690  */
691 
692 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
693                                                uint64_t offset,
694                                                int compressed_size)
695 {
696     BDRVQcow2State *s = bs->opaque;
697     int l2_index, ret;
698     uint64_t *l2_table;
699     int64_t cluster_offset;
700     int nb_csectors;
701 
702     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
703     if (ret < 0) {
704         return 0;
705     }
706 
707     /* Compression can't overwrite anything. Fail if the cluster was already
708      * allocated. */
709     cluster_offset = be64_to_cpu(l2_table[l2_index]);
710     if (cluster_offset & L2E_OFFSET_MASK) {
711         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
712         return 0;
713     }
714 
715     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
716     if (cluster_offset < 0) {
717         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
718         return 0;
719     }
720 
721     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
722                   (cluster_offset >> 9);
723 
724     cluster_offset |= QCOW_OFLAG_COMPRESSED |
725                       ((uint64_t)nb_csectors << s->csize_shift);
726 
727     /* update L2 table */
728 
729     /* compressed clusters never have the copied flag */
730 
731     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
732     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
733     l2_table[l2_index] = cpu_to_be64(cluster_offset);
734     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
735 
736     return cluster_offset;
737 }
738 
739 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
740 {
741     BDRVQcow2State *s = bs->opaque;
742     int ret;
743 
744     if (r->nb_sectors == 0) {
745         return 0;
746     }
747 
748     qemu_co_mutex_unlock(&s->lock);
749     ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
750                        r->offset / BDRV_SECTOR_SIZE,
751                        r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
752     qemu_co_mutex_lock(&s->lock);
753 
754     if (ret < 0) {
755         return ret;
756     }
757 
758     /*
759      * Before we update the L2 table to actually point to the new cluster, we
760      * need to be sure that the refcounts have been increased and COW was
761      * handled.
762      */
763     qcow2_cache_depends_on_flush(s->l2_table_cache);
764 
765     return 0;
766 }
767 
768 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
769 {
770     BDRVQcow2State *s = bs->opaque;
771     int i, j = 0, l2_index, ret;
772     uint64_t *old_cluster, *l2_table;
773     uint64_t cluster_offset = m->alloc_offset;
774 
775     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
776     assert(m->nb_clusters > 0);
777 
778     old_cluster = g_try_new(uint64_t, m->nb_clusters);
779     if (old_cluster == NULL) {
780         ret = -ENOMEM;
781         goto err;
782     }
783 
784     /* copy content of unmodified sectors */
785     ret = perform_cow(bs, m, &m->cow_start);
786     if (ret < 0) {
787         goto err;
788     }
789 
790     ret = perform_cow(bs, m, &m->cow_end);
791     if (ret < 0) {
792         goto err;
793     }
794 
795     /* Update L2 table. */
796     if (s->use_lazy_refcounts) {
797         qcow2_mark_dirty(bs);
798     }
799     if (qcow2_need_accurate_refcounts(s)) {
800         qcow2_cache_set_dependency(bs, s->l2_table_cache,
801                                    s->refcount_block_cache);
802     }
803 
804     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
805     if (ret < 0) {
806         goto err;
807     }
808     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
809 
810     assert(l2_index + m->nb_clusters <= s->l2_size);
811     for (i = 0; i < m->nb_clusters; i++) {
812         /* if two concurrent writes happen to the same unallocated cluster
813 	 * each write allocates separate cluster and writes data concurrently.
814 	 * The first one to complete updates l2 table with pointer to its
815 	 * cluster the second one has to do RMW (which is done above by
816 	 * copy_sectors()), update l2 table with its cluster pointer and free
817 	 * old cluster. This is what this loop does */
818         if(l2_table[l2_index + i] != 0)
819             old_cluster[j++] = l2_table[l2_index + i];
820 
821         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
822                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
823      }
824 
825 
826     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
827 
828     /*
829      * If this was a COW, we need to decrease the refcount of the old cluster.
830      *
831      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
832      * clusters), the next write will reuse them anyway.
833      */
834     if (j != 0) {
835         for (i = 0; i < j; i++) {
836             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
837                                     QCOW2_DISCARD_NEVER);
838         }
839     }
840 
841     ret = 0;
842 err:
843     g_free(old_cluster);
844     return ret;
845  }
846 
847 /*
848  * Returns the number of contiguous clusters that can be used for an allocating
849  * write, but require COW to be performed (this includes yet unallocated space,
850  * which must copy from the backing file)
851  */
852 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
853     uint64_t *l2_table, int l2_index)
854 {
855     int i;
856 
857     for (i = 0; i < nb_clusters; i++) {
858         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
859         int cluster_type = qcow2_get_cluster_type(l2_entry);
860 
861         switch(cluster_type) {
862         case QCOW2_CLUSTER_NORMAL:
863             if (l2_entry & QCOW_OFLAG_COPIED) {
864                 goto out;
865             }
866             break;
867         case QCOW2_CLUSTER_UNALLOCATED:
868         case QCOW2_CLUSTER_COMPRESSED:
869         case QCOW2_CLUSTER_ZERO:
870             break;
871         default:
872             abort();
873         }
874     }
875 
876 out:
877     assert(i <= nb_clusters);
878     return i;
879 }
880 
881 /*
882  * Check if there already is an AIO write request in flight which allocates
883  * the same cluster. In this case we need to wait until the previous
884  * request has completed and updated the L2 table accordingly.
885  *
886  * Returns:
887  *   0       if there was no dependency. *cur_bytes indicates the number of
888  *           bytes from guest_offset that can be read before the next
889  *           dependency must be processed (or the request is complete)
890  *
891  *   -EAGAIN if we had to wait for another request, previously gathered
892  *           information on cluster allocation may be invalid now. The caller
893  *           must start over anyway, so consider *cur_bytes undefined.
894  */
895 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
896     uint64_t *cur_bytes, QCowL2Meta **m)
897 {
898     BDRVQcow2State *s = bs->opaque;
899     QCowL2Meta *old_alloc;
900     uint64_t bytes = *cur_bytes;
901 
902     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
903 
904         uint64_t start = guest_offset;
905         uint64_t end = start + bytes;
906         uint64_t old_start = l2meta_cow_start(old_alloc);
907         uint64_t old_end = l2meta_cow_end(old_alloc);
908 
909         if (end <= old_start || start >= old_end) {
910             /* No intersection */
911         } else {
912             if (start < old_start) {
913                 /* Stop at the start of a running allocation */
914                 bytes = old_start - start;
915             } else {
916                 bytes = 0;
917             }
918 
919             /* Stop if already an l2meta exists. After yielding, it wouldn't
920              * be valid any more, so we'd have to clean up the old L2Metas
921              * and deal with requests depending on them before starting to
922              * gather new ones. Not worth the trouble. */
923             if (bytes == 0 && *m) {
924                 *cur_bytes = 0;
925                 return 0;
926             }
927 
928             if (bytes == 0) {
929                 /* Wait for the dependency to complete. We need to recheck
930                  * the free/allocated clusters when we continue. */
931                 qemu_co_mutex_unlock(&s->lock);
932                 qemu_co_queue_wait(&old_alloc->dependent_requests);
933                 qemu_co_mutex_lock(&s->lock);
934                 return -EAGAIN;
935             }
936         }
937     }
938 
939     /* Make sure that existing clusters and new allocations are only used up to
940      * the next dependency if we shortened the request above */
941     *cur_bytes = bytes;
942 
943     return 0;
944 }
945 
946 /*
947  * Checks how many already allocated clusters that don't require a copy on
948  * write there are at the given guest_offset (up to *bytes). If
949  * *host_offset is not zero, only physically contiguous clusters beginning at
950  * this host offset are counted.
951  *
952  * Note that guest_offset may not be cluster aligned. In this case, the
953  * returned *host_offset points to exact byte referenced by guest_offset and
954  * therefore isn't cluster aligned as well.
955  *
956  * Returns:
957  *   0:     if no allocated clusters are available at the given offset.
958  *          *bytes is normally unchanged. It is set to 0 if the cluster
959  *          is allocated and doesn't need COW, but doesn't have the right
960  *          physical offset.
961  *
962  *   1:     if allocated clusters that don't require a COW are available at
963  *          the requested offset. *bytes may have decreased and describes
964  *          the length of the area that can be written to.
965  *
966  *  -errno: in error cases
967  */
968 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
969     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
970 {
971     BDRVQcow2State *s = bs->opaque;
972     int l2_index;
973     uint64_t cluster_offset;
974     uint64_t *l2_table;
975     uint64_t nb_clusters;
976     unsigned int keep_clusters;
977     int ret;
978 
979     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
980                               *bytes);
981 
982     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
983                                 == offset_into_cluster(s, *host_offset));
984 
985     /*
986      * Calculate the number of clusters to look for. We stop at L2 table
987      * boundaries to keep things simple.
988      */
989     nb_clusters =
990         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
991 
992     l2_index = offset_to_l2_index(s, guest_offset);
993     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
994     assert(nb_clusters <= INT_MAX);
995 
996     /* Find L2 entry for the first involved cluster */
997     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
998     if (ret < 0) {
999         return ret;
1000     }
1001 
1002     cluster_offset = be64_to_cpu(l2_table[l2_index]);
1003 
1004     /* Check how many clusters are already allocated and don't need COW */
1005     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1006         && (cluster_offset & QCOW_OFLAG_COPIED))
1007     {
1008         /* If a specific host_offset is required, check it */
1009         bool offset_matches =
1010             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1011 
1012         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1013             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1014                                     "%#llx unaligned (guest offset: %#" PRIx64
1015                                     ")", cluster_offset & L2E_OFFSET_MASK,
1016                                     guest_offset);
1017             ret = -EIO;
1018             goto out;
1019         }
1020 
1021         if (*host_offset != 0 && !offset_matches) {
1022             *bytes = 0;
1023             ret = 0;
1024             goto out;
1025         }
1026 
1027         /* We keep all QCOW_OFLAG_COPIED clusters */
1028         keep_clusters =
1029             count_contiguous_clusters(nb_clusters, s->cluster_size,
1030                                       &l2_table[l2_index],
1031                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1032         assert(keep_clusters <= nb_clusters);
1033 
1034         *bytes = MIN(*bytes,
1035                  keep_clusters * s->cluster_size
1036                  - offset_into_cluster(s, guest_offset));
1037 
1038         ret = 1;
1039     } else {
1040         ret = 0;
1041     }
1042 
1043     /* Cleanup */
1044 out:
1045     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1046 
1047     /* Only return a host offset if we actually made progress. Otherwise we
1048      * would make requirements for handle_alloc() that it can't fulfill */
1049     if (ret > 0) {
1050         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1051                      + offset_into_cluster(s, guest_offset);
1052     }
1053 
1054     return ret;
1055 }
1056 
1057 /*
1058  * Allocates new clusters for the given guest_offset.
1059  *
1060  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1061  * contain the number of clusters that have been allocated and are contiguous
1062  * in the image file.
1063  *
1064  * If *host_offset is non-zero, it specifies the offset in the image file at
1065  * which the new clusters must start. *nb_clusters can be 0 on return in this
1066  * case if the cluster at host_offset is already in use. If *host_offset is
1067  * zero, the clusters can be allocated anywhere in the image file.
1068  *
1069  * *host_offset is updated to contain the offset into the image file at which
1070  * the first allocated cluster starts.
1071  *
1072  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1073  * function has been waiting for another request and the allocation must be
1074  * restarted, but the whole request should not be failed.
1075  */
1076 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1077                                    uint64_t *host_offset, uint64_t *nb_clusters)
1078 {
1079     BDRVQcow2State *s = bs->opaque;
1080 
1081     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1082                                          *host_offset, *nb_clusters);
1083 
1084     /* Allocate new clusters */
1085     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1086     if (*host_offset == 0) {
1087         int64_t cluster_offset =
1088             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1089         if (cluster_offset < 0) {
1090             return cluster_offset;
1091         }
1092         *host_offset = cluster_offset;
1093         return 0;
1094     } else {
1095         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1096         if (ret < 0) {
1097             return ret;
1098         }
1099         *nb_clusters = ret;
1100         return 0;
1101     }
1102 }
1103 
1104 /*
1105  * Allocates new clusters for an area that either is yet unallocated or needs a
1106  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1107  * the new allocation can match the specified host offset.
1108  *
1109  * Note that guest_offset may not be cluster aligned. In this case, the
1110  * returned *host_offset points to exact byte referenced by guest_offset and
1111  * therefore isn't cluster aligned as well.
1112  *
1113  * Returns:
1114  *   0:     if no clusters could be allocated. *bytes is set to 0,
1115  *          *host_offset is left unchanged.
1116  *
1117  *   1:     if new clusters were allocated. *bytes may be decreased if the
1118  *          new allocation doesn't cover all of the requested area.
1119  *          *host_offset is updated to contain the host offset of the first
1120  *          newly allocated cluster.
1121  *
1122  *  -errno: in error cases
1123  */
1124 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1125     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1126 {
1127     BDRVQcow2State *s = bs->opaque;
1128     int l2_index;
1129     uint64_t *l2_table;
1130     uint64_t entry;
1131     uint64_t nb_clusters;
1132     int ret;
1133 
1134     uint64_t alloc_cluster_offset;
1135 
1136     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1137                              *bytes);
1138     assert(*bytes > 0);
1139 
1140     /*
1141      * Calculate the number of clusters to look for. We stop at L2 table
1142      * boundaries to keep things simple.
1143      */
1144     nb_clusters =
1145         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1146 
1147     l2_index = offset_to_l2_index(s, guest_offset);
1148     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1149     assert(nb_clusters <= INT_MAX);
1150 
1151     /* Find L2 entry for the first involved cluster */
1152     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1153     if (ret < 0) {
1154         return ret;
1155     }
1156 
1157     entry = be64_to_cpu(l2_table[l2_index]);
1158 
1159     /* For the moment, overwrite compressed clusters one by one */
1160     if (entry & QCOW_OFLAG_COMPRESSED) {
1161         nb_clusters = 1;
1162     } else {
1163         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1164     }
1165 
1166     /* This function is only called when there were no non-COW clusters, so if
1167      * we can't find any unallocated or COW clusters either, something is
1168      * wrong with our code. */
1169     assert(nb_clusters > 0);
1170 
1171     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1172 
1173     /* Allocate, if necessary at a given offset in the image file */
1174     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1175     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1176                                   &nb_clusters);
1177     if (ret < 0) {
1178         goto fail;
1179     }
1180 
1181     /* Can't extend contiguous allocation */
1182     if (nb_clusters == 0) {
1183         *bytes = 0;
1184         return 0;
1185     }
1186 
1187     /* !*host_offset would overwrite the image header and is reserved for "no
1188      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1189      * following overlap check; do that now to avoid having an invalid value in
1190      * *host_offset. */
1191     if (!alloc_cluster_offset) {
1192         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1193                                             nb_clusters * s->cluster_size);
1194         assert(ret < 0);
1195         goto fail;
1196     }
1197 
1198     /*
1199      * Save info needed for meta data update.
1200      *
1201      * requested_sectors: Number of sectors from the start of the first
1202      * newly allocated cluster to the end of the (possibly shortened
1203      * before) write request.
1204      *
1205      * avail_sectors: Number of sectors from the start of the first
1206      * newly allocated to the end of the last newly allocated cluster.
1207      *
1208      * nb_sectors: The number of sectors from the start of the first
1209      * newly allocated cluster to the end of the area that the write
1210      * request actually writes to (excluding COW at the end)
1211      */
1212     int requested_sectors =
1213         (*bytes + offset_into_cluster(s, guest_offset))
1214         >> BDRV_SECTOR_BITS;
1215     int avail_sectors = nb_clusters
1216                         << (s->cluster_bits - BDRV_SECTOR_BITS);
1217     int alloc_n_start = offset_into_cluster(s, guest_offset)
1218                         >> BDRV_SECTOR_BITS;
1219     int nb_sectors = MIN(requested_sectors, avail_sectors);
1220     QCowL2Meta *old_m = *m;
1221 
1222     *m = g_malloc0(sizeof(**m));
1223 
1224     **m = (QCowL2Meta) {
1225         .next           = old_m,
1226 
1227         .alloc_offset   = alloc_cluster_offset,
1228         .offset         = start_of_cluster(s, guest_offset),
1229         .nb_clusters    = nb_clusters,
1230         .nb_available   = nb_sectors,
1231 
1232         .cow_start = {
1233             .offset     = 0,
1234             .nb_sectors = alloc_n_start,
1235         },
1236         .cow_end = {
1237             .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1238             .nb_sectors = avail_sectors - nb_sectors,
1239         },
1240     };
1241     qemu_co_queue_init(&(*m)->dependent_requests);
1242     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1243 
1244     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1245     *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1246                          - offset_into_cluster(s, guest_offset));
1247     assert(*bytes != 0);
1248 
1249     return 1;
1250 
1251 fail:
1252     if (*m && (*m)->nb_clusters > 0) {
1253         QLIST_REMOVE(*m, next_in_flight);
1254     }
1255     return ret;
1256 }
1257 
1258 /*
1259  * alloc_cluster_offset
1260  *
1261  * For a given offset on the virtual disk, find the cluster offset in qcow2
1262  * file. If the offset is not found, allocate a new cluster.
1263  *
1264  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1265  * other fields in m are meaningless.
1266  *
1267  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1268  * contiguous clusters that have been allocated. In this case, the other
1269  * fields of m are valid and contain information about the first allocated
1270  * cluster.
1271  *
1272  * If the request conflicts with another write request in flight, the coroutine
1273  * is queued and will be reentered when the dependency has completed.
1274  *
1275  * Return 0 on success and -errno in error cases
1276  */
1277 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1278     int *num, uint64_t *host_offset, QCowL2Meta **m)
1279 {
1280     BDRVQcow2State *s = bs->opaque;
1281     uint64_t start, remaining;
1282     uint64_t cluster_offset;
1283     uint64_t cur_bytes;
1284     int ret;
1285 
1286     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1287 
1288     assert((offset & ~BDRV_SECTOR_MASK) == 0);
1289 
1290 again:
1291     start = offset;
1292     remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1293     cluster_offset = 0;
1294     *host_offset = 0;
1295     cur_bytes = 0;
1296     *m = NULL;
1297 
1298     while (true) {
1299 
1300         if (!*host_offset) {
1301             *host_offset = start_of_cluster(s, cluster_offset);
1302         }
1303 
1304         assert(remaining >= cur_bytes);
1305 
1306         start           += cur_bytes;
1307         remaining       -= cur_bytes;
1308         cluster_offset  += cur_bytes;
1309 
1310         if (remaining == 0) {
1311             break;
1312         }
1313 
1314         cur_bytes = remaining;
1315 
1316         /*
1317          * Now start gathering as many contiguous clusters as possible:
1318          *
1319          * 1. Check for overlaps with in-flight allocations
1320          *
1321          *      a) Overlap not in the first cluster -> shorten this request and
1322          *         let the caller handle the rest in its next loop iteration.
1323          *
1324          *      b) Real overlaps of two requests. Yield and restart the search
1325          *         for contiguous clusters (the situation could have changed
1326          *         while we were sleeping)
1327          *
1328          *      c) TODO: Request starts in the same cluster as the in-flight
1329          *         allocation ends. Shorten the COW of the in-fight allocation,
1330          *         set cluster_offset to write to the same cluster and set up
1331          *         the right synchronisation between the in-flight request and
1332          *         the new one.
1333          */
1334         ret = handle_dependencies(bs, start, &cur_bytes, m);
1335         if (ret == -EAGAIN) {
1336             /* Currently handle_dependencies() doesn't yield if we already had
1337              * an allocation. If it did, we would have to clean up the L2Meta
1338              * structs before starting over. */
1339             assert(*m == NULL);
1340             goto again;
1341         } else if (ret < 0) {
1342             return ret;
1343         } else if (cur_bytes == 0) {
1344             break;
1345         } else {
1346             /* handle_dependencies() may have decreased cur_bytes (shortened
1347              * the allocations below) so that the next dependency is processed
1348              * correctly during the next loop iteration. */
1349         }
1350 
1351         /*
1352          * 2. Count contiguous COPIED clusters.
1353          */
1354         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1355         if (ret < 0) {
1356             return ret;
1357         } else if (ret) {
1358             continue;
1359         } else if (cur_bytes == 0) {
1360             break;
1361         }
1362 
1363         /*
1364          * 3. If the request still hasn't completed, allocate new clusters,
1365          *    considering any cluster_offset of steps 1c or 2.
1366          */
1367         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1368         if (ret < 0) {
1369             return ret;
1370         } else if (ret) {
1371             continue;
1372         } else {
1373             assert(cur_bytes == 0);
1374             break;
1375         }
1376     }
1377 
1378     *num -= remaining >> BDRV_SECTOR_BITS;
1379     assert(*num > 0);
1380     assert(*host_offset != 0);
1381 
1382     return 0;
1383 }
1384 
1385 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1386                              const uint8_t *buf, int buf_size)
1387 {
1388     z_stream strm1, *strm = &strm1;
1389     int ret, out_len;
1390 
1391     memset(strm, 0, sizeof(*strm));
1392 
1393     strm->next_in = (uint8_t *)buf;
1394     strm->avail_in = buf_size;
1395     strm->next_out = out_buf;
1396     strm->avail_out = out_buf_size;
1397 
1398     ret = inflateInit2(strm, -12);
1399     if (ret != Z_OK)
1400         return -1;
1401     ret = inflate(strm, Z_FINISH);
1402     out_len = strm->next_out - out_buf;
1403     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1404         out_len != out_buf_size) {
1405         inflateEnd(strm);
1406         return -1;
1407     }
1408     inflateEnd(strm);
1409     return 0;
1410 }
1411 
1412 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1413 {
1414     BDRVQcow2State *s = bs->opaque;
1415     int ret, csize, nb_csectors, sector_offset;
1416     uint64_t coffset;
1417 
1418     coffset = cluster_offset & s->cluster_offset_mask;
1419     if (s->cluster_cache_offset != coffset) {
1420         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1421         sector_offset = coffset & 511;
1422         csize = nb_csectors * 512 - sector_offset;
1423         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1424         ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data,
1425                         nb_csectors);
1426         if (ret < 0) {
1427             return ret;
1428         }
1429         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1430                               s->cluster_data + sector_offset, csize) < 0) {
1431             return -EIO;
1432         }
1433         s->cluster_cache_offset = coffset;
1434     }
1435     return 0;
1436 }
1437 
1438 /*
1439  * This discards as many clusters of nb_clusters as possible at once (i.e.
1440  * all clusters in the same L2 table) and returns the number of discarded
1441  * clusters.
1442  */
1443 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1444                              uint64_t nb_clusters, enum qcow2_discard_type type,
1445                              bool full_discard)
1446 {
1447     BDRVQcow2State *s = bs->opaque;
1448     uint64_t *l2_table;
1449     int l2_index;
1450     int ret;
1451     int i;
1452 
1453     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1454     if (ret < 0) {
1455         return ret;
1456     }
1457 
1458     /* Limit nb_clusters to one L2 table */
1459     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1460     assert(nb_clusters <= INT_MAX);
1461 
1462     for (i = 0; i < nb_clusters; i++) {
1463         uint64_t old_l2_entry;
1464 
1465         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1466 
1467         /*
1468          * If full_discard is false, make sure that a discarded area reads back
1469          * as zeroes for v3 images (we cannot do it for v2 without actually
1470          * writing a zero-filled buffer). We can skip the operation if the
1471          * cluster is already marked as zero, or if it's unallocated and we
1472          * don't have a backing file.
1473          *
1474          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1475          * holding s->lock, so that doesn't work today.
1476          *
1477          * If full_discard is true, the sector should not read back as zeroes,
1478          * but rather fall through to the backing file.
1479          */
1480         switch (qcow2_get_cluster_type(old_l2_entry)) {
1481             case QCOW2_CLUSTER_UNALLOCATED:
1482                 if (full_discard || !bs->backing) {
1483                     continue;
1484                 }
1485                 break;
1486 
1487             case QCOW2_CLUSTER_ZERO:
1488                 if (!full_discard) {
1489                     continue;
1490                 }
1491                 break;
1492 
1493             case QCOW2_CLUSTER_NORMAL:
1494             case QCOW2_CLUSTER_COMPRESSED:
1495                 break;
1496 
1497             default:
1498                 abort();
1499         }
1500 
1501         /* First remove L2 entries */
1502         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1503         if (!full_discard && s->qcow_version >= 3) {
1504             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1505         } else {
1506             l2_table[l2_index + i] = cpu_to_be64(0);
1507         }
1508 
1509         /* Then decrease the refcount */
1510         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1511     }
1512 
1513     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1514 
1515     return nb_clusters;
1516 }
1517 
1518 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1519     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1520 {
1521     BDRVQcow2State *s = bs->opaque;
1522     uint64_t end_offset;
1523     uint64_t nb_clusters;
1524     int ret;
1525 
1526     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1527 
1528     /* Round start up and end down */
1529     offset = align_offset(offset, s->cluster_size);
1530     end_offset = start_of_cluster(s, end_offset);
1531 
1532     if (offset > end_offset) {
1533         return 0;
1534     }
1535 
1536     nb_clusters = size_to_clusters(s, end_offset - offset);
1537 
1538     s->cache_discards = true;
1539 
1540     /* Each L2 table is handled by its own loop iteration */
1541     while (nb_clusters > 0) {
1542         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1543         if (ret < 0) {
1544             goto fail;
1545         }
1546 
1547         nb_clusters -= ret;
1548         offset += (ret * s->cluster_size);
1549     }
1550 
1551     ret = 0;
1552 fail:
1553     s->cache_discards = false;
1554     qcow2_process_discards(bs, ret);
1555 
1556     return ret;
1557 }
1558 
1559 /*
1560  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1561  * all clusters in the same L2 table) and returns the number of zeroed
1562  * clusters.
1563  */
1564 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1565                           uint64_t nb_clusters)
1566 {
1567     BDRVQcow2State *s = bs->opaque;
1568     uint64_t *l2_table;
1569     int l2_index;
1570     int ret;
1571     int i;
1572 
1573     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1574     if (ret < 0) {
1575         return ret;
1576     }
1577 
1578     /* Limit nb_clusters to one L2 table */
1579     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1580     assert(nb_clusters <= INT_MAX);
1581 
1582     for (i = 0; i < nb_clusters; i++) {
1583         uint64_t old_offset;
1584 
1585         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1586 
1587         /* Update L2 entries */
1588         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1589         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1590             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1591             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1592         } else {
1593             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1594         }
1595     }
1596 
1597     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1598 
1599     return nb_clusters;
1600 }
1601 
1602 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1603 {
1604     BDRVQcow2State *s = bs->opaque;
1605     uint64_t nb_clusters;
1606     int ret;
1607 
1608     /* The zero flag is only supported by version 3 and newer */
1609     if (s->qcow_version < 3) {
1610         return -ENOTSUP;
1611     }
1612 
1613     /* Each L2 table is handled by its own loop iteration */
1614     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1615 
1616     s->cache_discards = true;
1617 
1618     while (nb_clusters > 0) {
1619         ret = zero_single_l2(bs, offset, nb_clusters);
1620         if (ret < 0) {
1621             goto fail;
1622         }
1623 
1624         nb_clusters -= ret;
1625         offset += (ret * s->cluster_size);
1626     }
1627 
1628     ret = 0;
1629 fail:
1630     s->cache_discards = false;
1631     qcow2_process_discards(bs, ret);
1632 
1633     return ret;
1634 }
1635 
1636 /*
1637  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1638  * non-backed non-pre-allocated zero clusters).
1639  *
1640  * l1_entries and *visited_l1_entries are used to keep track of progress for
1641  * status_cb(). l1_entries contains the total number of L1 entries and
1642  * *visited_l1_entries counts all visited L1 entries.
1643  */
1644 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1645                                       int l1_size, int64_t *visited_l1_entries,
1646                                       int64_t l1_entries,
1647                                       BlockDriverAmendStatusCB *status_cb,
1648                                       void *cb_opaque)
1649 {
1650     BDRVQcow2State *s = bs->opaque;
1651     bool is_active_l1 = (l1_table == s->l1_table);
1652     uint64_t *l2_table = NULL;
1653     int ret;
1654     int i, j;
1655 
1656     if (!is_active_l1) {
1657         /* inactive L2 tables require a buffer to be stored in when loading
1658          * them from disk */
1659         l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1660         if (l2_table == NULL) {
1661             return -ENOMEM;
1662         }
1663     }
1664 
1665     for (i = 0; i < l1_size; i++) {
1666         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1667         bool l2_dirty = false;
1668         uint64_t l2_refcount;
1669 
1670         if (!l2_offset) {
1671             /* unallocated */
1672             (*visited_l1_entries)++;
1673             if (status_cb) {
1674                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1675             }
1676             continue;
1677         }
1678 
1679         if (offset_into_cluster(s, l2_offset)) {
1680             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1681                                     PRIx64 " unaligned (L1 index: %#x)",
1682                                     l2_offset, i);
1683             ret = -EIO;
1684             goto fail;
1685         }
1686 
1687         if (is_active_l1) {
1688             /* get active L2 tables from cache */
1689             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1690                     (void **)&l2_table);
1691         } else {
1692             /* load inactive L2 tables from disk */
1693             ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1694                             (void *)l2_table, s->cluster_sectors);
1695         }
1696         if (ret < 0) {
1697             goto fail;
1698         }
1699 
1700         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1701                                  &l2_refcount);
1702         if (ret < 0) {
1703             goto fail;
1704         }
1705 
1706         for (j = 0; j < s->l2_size; j++) {
1707             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1708             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1709             int cluster_type = qcow2_get_cluster_type(l2_entry);
1710             bool preallocated = offset != 0;
1711 
1712             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1713                 continue;
1714             }
1715 
1716             if (!preallocated) {
1717                 if (!bs->backing) {
1718                     /* not backed; therefore we can simply deallocate the
1719                      * cluster */
1720                     l2_table[j] = 0;
1721                     l2_dirty = true;
1722                     continue;
1723                 }
1724 
1725                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1726                 if (offset < 0) {
1727                     ret = offset;
1728                     goto fail;
1729                 }
1730 
1731                 if (l2_refcount > 1) {
1732                     /* For shared L2 tables, set the refcount accordingly (it is
1733                      * already 1 and needs to be l2_refcount) */
1734                     ret = qcow2_update_cluster_refcount(bs,
1735                             offset >> s->cluster_bits,
1736                             refcount_diff(1, l2_refcount), false,
1737                             QCOW2_DISCARD_OTHER);
1738                     if (ret < 0) {
1739                         qcow2_free_clusters(bs, offset, s->cluster_size,
1740                                             QCOW2_DISCARD_OTHER);
1741                         goto fail;
1742                     }
1743                 }
1744             }
1745 
1746             if (offset_into_cluster(s, offset)) {
1747                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1748                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1749                                         PRIx64 ", L2 index: %#x)", offset,
1750                                         l2_offset, j);
1751                 if (!preallocated) {
1752                     qcow2_free_clusters(bs, offset, s->cluster_size,
1753                                         QCOW2_DISCARD_ALWAYS);
1754                 }
1755                 ret = -EIO;
1756                 goto fail;
1757             }
1758 
1759             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1760             if (ret < 0) {
1761                 if (!preallocated) {
1762                     qcow2_free_clusters(bs, offset, s->cluster_size,
1763                                         QCOW2_DISCARD_ALWAYS);
1764                 }
1765                 goto fail;
1766             }
1767 
1768             ret = bdrv_pwrite_zeroes(bs->file->bs, offset, s->cluster_size, 0);
1769             if (ret < 0) {
1770                 if (!preallocated) {
1771                     qcow2_free_clusters(bs, offset, s->cluster_size,
1772                                         QCOW2_DISCARD_ALWAYS);
1773                 }
1774                 goto fail;
1775             }
1776 
1777             if (l2_refcount == 1) {
1778                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1779             } else {
1780                 l2_table[j] = cpu_to_be64(offset);
1781             }
1782             l2_dirty = true;
1783         }
1784 
1785         if (is_active_l1) {
1786             if (l2_dirty) {
1787                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1788                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1789             }
1790             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1791         } else {
1792             if (l2_dirty) {
1793                 ret = qcow2_pre_write_overlap_check(bs,
1794                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1795                         s->cluster_size);
1796                 if (ret < 0) {
1797                     goto fail;
1798                 }
1799 
1800                 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1801                                  (void *)l2_table, s->cluster_sectors);
1802                 if (ret < 0) {
1803                     goto fail;
1804                 }
1805             }
1806         }
1807 
1808         (*visited_l1_entries)++;
1809         if (status_cb) {
1810             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1811         }
1812     }
1813 
1814     ret = 0;
1815 
1816 fail:
1817     if (l2_table) {
1818         if (!is_active_l1) {
1819             qemu_vfree(l2_table);
1820         } else {
1821             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1822         }
1823     }
1824     return ret;
1825 }
1826 
1827 /*
1828  * For backed images, expands all zero clusters on the image. For non-backed
1829  * images, deallocates all non-pre-allocated zero clusters (and claims the
1830  * allocation for pre-allocated ones). This is important for downgrading to a
1831  * qcow2 version which doesn't yet support metadata zero clusters.
1832  */
1833 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1834                                BlockDriverAmendStatusCB *status_cb,
1835                                void *cb_opaque)
1836 {
1837     BDRVQcow2State *s = bs->opaque;
1838     uint64_t *l1_table = NULL;
1839     int64_t l1_entries = 0, visited_l1_entries = 0;
1840     int ret;
1841     int i, j;
1842 
1843     if (status_cb) {
1844         l1_entries = s->l1_size;
1845         for (i = 0; i < s->nb_snapshots; i++) {
1846             l1_entries += s->snapshots[i].l1_size;
1847         }
1848     }
1849 
1850     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1851                                      &visited_l1_entries, l1_entries,
1852                                      status_cb, cb_opaque);
1853     if (ret < 0) {
1854         goto fail;
1855     }
1856 
1857     /* Inactive L1 tables may point to active L2 tables - therefore it is
1858      * necessary to flush the L2 table cache before trying to access the L2
1859      * tables pointed to by inactive L1 entries (else we might try to expand
1860      * zero clusters that have already been expanded); furthermore, it is also
1861      * necessary to empty the L2 table cache, since it may contain tables which
1862      * are now going to be modified directly on disk, bypassing the cache.
1863      * qcow2_cache_empty() does both for us. */
1864     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1865     if (ret < 0) {
1866         goto fail;
1867     }
1868 
1869     for (i = 0; i < s->nb_snapshots; i++) {
1870         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1871                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
1872 
1873         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1874 
1875         ret = bdrv_read(bs->file->bs,
1876                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1877                         (void *)l1_table, l1_sectors);
1878         if (ret < 0) {
1879             goto fail;
1880         }
1881 
1882         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1883             be64_to_cpus(&l1_table[j]);
1884         }
1885 
1886         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1887                                          &visited_l1_entries, l1_entries,
1888                                          status_cb, cb_opaque);
1889         if (ret < 0) {
1890             goto fail;
1891         }
1892     }
1893 
1894     ret = 0;
1895 
1896 fail:
1897     g_free(l1_table);
1898     return ret;
1899 }
1900