xref: /qemu/block/qcow2-cluster.c (revision 6402cbbb)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36                         bool exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size2, ret, i;
40     uint64_t *new_l1_table;
41     int64_t old_l1_table_offset, old_l1_size;
42     int64_t new_l1_table_offset, new_l1_size;
43     uint8_t data[12];
44 
45     if (min_size <= s->l1_size)
46         return 0;
47 
48     /* Do a sanity check on min_size before trying to calculate new_l1_size
49      * (this prevents overflows during the while loop for the calculation of
50      * new_l1_size) */
51     if (min_size > INT_MAX / sizeof(uint64_t)) {
52         return -EFBIG;
53     }
54 
55     if (exact_size) {
56         new_l1_size = min_size;
57     } else {
58         /* Bump size up to reduce the number of times we have to grow */
59         new_l1_size = s->l1_size;
60         if (new_l1_size == 0) {
61             new_l1_size = 1;
62         }
63         while (min_size > new_l1_size) {
64             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
65         }
66     }
67 
68     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
70         return -EFBIG;
71     }
72 
73 #ifdef DEBUG_ALLOC2
74     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75             s->l1_size, new_l1_size);
76 #endif
77 
78     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79     new_l1_table = qemu_try_blockalign(bs->file->bs,
80                                        align_offset(new_l1_size2, 512));
81     if (new_l1_table == NULL) {
82         return -ENOMEM;
83     }
84     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
85 
86     if (s->l1_size) {
87         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
88     }
89 
90     /* write new table (align to cluster) */
91     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
92     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
93     if (new_l1_table_offset < 0) {
94         qemu_vfree(new_l1_table);
95         return new_l1_table_offset;
96     }
97 
98     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
99     if (ret < 0) {
100         goto fail;
101     }
102 
103     /* the L1 position has not yet been updated, so these clusters must
104      * indeed be completely free */
105     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
106                                         new_l1_size2);
107     if (ret < 0) {
108         goto fail;
109     }
110 
111     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
112     for(i = 0; i < s->l1_size; i++)
113         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
114     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
115                            new_l1_table, new_l1_size2);
116     if (ret < 0)
117         goto fail;
118     for(i = 0; i < s->l1_size; i++)
119         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
120 
121     /* set new table */
122     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
123     stl_be_p(data, new_l1_size);
124     stq_be_p(data + 4, new_l1_table_offset);
125     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
126                            data, sizeof(data));
127     if (ret < 0) {
128         goto fail;
129     }
130     qemu_vfree(s->l1_table);
131     old_l1_table_offset = s->l1_table_offset;
132     s->l1_table_offset = new_l1_table_offset;
133     s->l1_table = new_l1_table;
134     old_l1_size = s->l1_size;
135     s->l1_size = new_l1_size;
136     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
137                         QCOW2_DISCARD_OTHER);
138     return 0;
139  fail:
140     qemu_vfree(new_l1_table);
141     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
142                         QCOW2_DISCARD_OTHER);
143     return ret;
144 }
145 
146 /*
147  * l2_load
148  *
149  * Loads a L2 table into memory. If the table is in the cache, the cache
150  * is used; otherwise the L2 table is loaded from the image file.
151  *
152  * Returns a pointer to the L2 table on success, or NULL if the read from
153  * the image file failed.
154  */
155 
156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
157     uint64_t **l2_table)
158 {
159     BDRVQcow2State *s = bs->opaque;
160 
161     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
162                            (void **)l2_table);
163 }
164 
165 /*
166  * Writes one sector of the L1 table to the disk (can't update single entries
167  * and we really don't want bdrv_pread to perform a read-modify-write)
168  */
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
171 {
172     BDRVQcow2State *s = bs->opaque;
173     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
174     int l1_start_index;
175     int i, ret;
176 
177     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
178     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
179          i++)
180     {
181         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
182     }
183 
184     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
185             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
186     if (ret < 0) {
187         return ret;
188     }
189 
190     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
191     ret = bdrv_pwrite_sync(bs->file,
192                            s->l1_table_offset + 8 * l1_start_index,
193                            buf, sizeof(buf));
194     if (ret < 0) {
195         return ret;
196     }
197 
198     return 0;
199 }
200 
201 /*
202  * l2_allocate
203  *
204  * Allocate a new l2 entry in the file. If l1_index points to an already
205  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206  * table) copy the contents of the old L2 table into the newly allocated one.
207  * Otherwise the new table is initialized with zeros.
208  *
209  */
210 
211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     uint64_t old_l2_offset;
215     uint64_t *l2_table = NULL;
216     int64_t l2_offset;
217     int ret;
218 
219     old_l2_offset = s->l1_table[l1_index];
220 
221     trace_qcow2_l2_allocate(bs, l1_index);
222 
223     /* allocate a new l2 entry */
224 
225     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
226     if (l2_offset < 0) {
227         ret = l2_offset;
228         goto fail;
229     }
230 
231     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
232     if (ret < 0) {
233         goto fail;
234     }
235 
236     /* allocate a new entry in the l2 cache */
237 
238     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
239     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
240     if (ret < 0) {
241         goto fail;
242     }
243 
244     l2_table = *table;
245 
246     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
247         /* if there was no old l2 table, clear the new table */
248         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
249     } else {
250         uint64_t* old_table;
251 
252         /* if there was an old l2 table, read it from the disk */
253         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
254         ret = qcow2_cache_get(bs, s->l2_table_cache,
255             old_l2_offset & L1E_OFFSET_MASK,
256             (void**) &old_table);
257         if (ret < 0) {
258             goto fail;
259         }
260 
261         memcpy(l2_table, old_table, s->cluster_size);
262 
263         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
264     }
265 
266     /* write the l2 table to the file */
267     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
268 
269     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
270     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
271     ret = qcow2_cache_flush(bs, s->l2_table_cache);
272     if (ret < 0) {
273         goto fail;
274     }
275 
276     /* update the L1 entry */
277     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
278     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
279     ret = qcow2_write_l1_entry(bs, l1_index);
280     if (ret < 0) {
281         goto fail;
282     }
283 
284     *table = l2_table;
285     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
286     return 0;
287 
288 fail:
289     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
290     if (l2_table != NULL) {
291         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
292     }
293     s->l1_table[l1_index] = old_l2_offset;
294     if (l2_offset > 0) {
295         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
296                             QCOW2_DISCARD_ALWAYS);
297     }
298     return ret;
299 }
300 
301 /*
302  * Checks how many clusters in a given L2 table are contiguous in the image
303  * file. As soon as one of the flags in the bitmask stop_flags changes compared
304  * to the first cluster, the search is stopped and the cluster is not counted
305  * as contiguous. (This allows it, for example, to stop at the first compressed
306  * cluster which may require a different handling)
307  */
308 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
309         uint64_t *l2_table, uint64_t stop_flags)
310 {
311     int i;
312     QCow2ClusterType first_cluster_type;
313     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
314     uint64_t first_entry = be64_to_cpu(l2_table[0]);
315     uint64_t offset = first_entry & mask;
316 
317     if (!offset) {
318         return 0;
319     }
320 
321     /* must be allocated */
322     first_cluster_type = qcow2_get_cluster_type(first_entry);
323     assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
324            first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
325 
326     for (i = 0; i < nb_clusters; i++) {
327         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
328         if (offset + (uint64_t) i * cluster_size != l2_entry) {
329             break;
330         }
331     }
332 
333 	return i;
334 }
335 
336 /*
337  * Checks how many consecutive unallocated clusters in a given L2
338  * table have the same cluster type.
339  */
340 static int count_contiguous_clusters_unallocated(int nb_clusters,
341                                                  uint64_t *l2_table,
342                                                  QCow2ClusterType wanted_type)
343 {
344     int i;
345 
346     assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
347            wanted_type == QCOW2_CLUSTER_UNALLOCATED);
348     for (i = 0; i < nb_clusters; i++) {
349         uint64_t entry = be64_to_cpu(l2_table[i]);
350         QCow2ClusterType type = qcow2_get_cluster_type(entry);
351 
352         if (type != wanted_type) {
353             break;
354         }
355     }
356 
357     return i;
358 }
359 
360 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
361                                             uint64_t src_cluster_offset,
362                                             unsigned offset_in_cluster,
363                                             QEMUIOVector *qiov)
364 {
365     int ret;
366 
367     if (qiov->size == 0) {
368         return 0;
369     }
370 
371     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
372 
373     if (!bs->drv) {
374         return -ENOMEDIUM;
375     }
376 
377     /* Call .bdrv_co_readv() directly instead of using the public block-layer
378      * interface.  This avoids double I/O throttling and request tracking,
379      * which can lead to deadlock when block layer copy-on-read is enabled.
380      */
381     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
382                                   qiov->size, qiov, 0);
383     if (ret < 0) {
384         return ret;
385     }
386 
387     return 0;
388 }
389 
390 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
391                                                 uint64_t src_cluster_offset,
392                                                 uint64_t cluster_offset,
393                                                 unsigned offset_in_cluster,
394                                                 uint8_t *buffer,
395                                                 unsigned bytes)
396 {
397     if (bytes && bs->encrypted) {
398         BDRVQcow2State *s = bs->opaque;
399         int64_t sector = (s->crypt_physical_offset ?
400                           (cluster_offset + offset_in_cluster) :
401                           (src_cluster_offset + offset_in_cluster))
402                          >> BDRV_SECTOR_BITS;
403         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
404         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
405         assert(s->crypto);
406         if (qcrypto_block_encrypt(s->crypto, sector, buffer,
407                                   bytes, NULL) < 0) {
408             return false;
409         }
410     }
411     return true;
412 }
413 
414 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
415                                              uint64_t cluster_offset,
416                                              unsigned offset_in_cluster,
417                                              QEMUIOVector *qiov)
418 {
419     int ret;
420 
421     if (qiov->size == 0) {
422         return 0;
423     }
424 
425     ret = qcow2_pre_write_overlap_check(bs, 0,
426             cluster_offset + offset_in_cluster, qiov->size);
427     if (ret < 0) {
428         return ret;
429     }
430 
431     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
432     ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
433                           qiov->size, qiov, 0);
434     if (ret < 0) {
435         return ret;
436     }
437 
438     return 0;
439 }
440 
441 
442 /*
443  * get_cluster_offset
444  *
445  * For a given offset of the virtual disk, find the cluster type and offset in
446  * the qcow2 file. The offset is stored in *cluster_offset.
447  *
448  * On entry, *bytes is the maximum number of contiguous bytes starting at
449  * offset that we are interested in.
450  *
451  * On exit, *bytes is the number of bytes starting at offset that have the same
452  * cluster type and (if applicable) are stored contiguously in the image file.
453  * Compressed clusters are always returned one by one.
454  *
455  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
456  * cases.
457  */
458 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
459                              unsigned int *bytes, uint64_t *cluster_offset)
460 {
461     BDRVQcow2State *s = bs->opaque;
462     unsigned int l2_index;
463     uint64_t l1_index, l2_offset, *l2_table;
464     int l1_bits, c;
465     unsigned int offset_in_cluster;
466     uint64_t bytes_available, bytes_needed, nb_clusters;
467     QCow2ClusterType type;
468     int ret;
469 
470     offset_in_cluster = offset_into_cluster(s, offset);
471     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
472 
473     l1_bits = s->l2_bits + s->cluster_bits;
474 
475     /* compute how many bytes there are between the start of the cluster
476      * containing offset and the end of the l1 entry */
477     bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
478                     + offset_in_cluster;
479 
480     if (bytes_needed > bytes_available) {
481         bytes_needed = bytes_available;
482     }
483 
484     *cluster_offset = 0;
485 
486     /* seek to the l2 offset in the l1 table */
487 
488     l1_index = offset >> l1_bits;
489     if (l1_index >= s->l1_size) {
490         type = QCOW2_CLUSTER_UNALLOCATED;
491         goto out;
492     }
493 
494     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
495     if (!l2_offset) {
496         type = QCOW2_CLUSTER_UNALLOCATED;
497         goto out;
498     }
499 
500     if (offset_into_cluster(s, l2_offset)) {
501         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
502                                 " unaligned (L1 index: %#" PRIx64 ")",
503                                 l2_offset, l1_index);
504         return -EIO;
505     }
506 
507     /* load the l2 table in memory */
508 
509     ret = l2_load(bs, l2_offset, &l2_table);
510     if (ret < 0) {
511         return ret;
512     }
513 
514     /* find the cluster offset for the given disk offset */
515 
516     l2_index = offset_to_l2_index(s, offset);
517     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
518 
519     nb_clusters = size_to_clusters(s, bytes_needed);
520     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
521      * integers; the minimum cluster size is 512, so this assertion is always
522      * true */
523     assert(nb_clusters <= INT_MAX);
524 
525     type = qcow2_get_cluster_type(*cluster_offset);
526     if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
527                                 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
528         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
529                                 " in pre-v3 image (L2 offset: %#" PRIx64
530                                 ", L2 index: %#x)", l2_offset, l2_index);
531         ret = -EIO;
532         goto fail;
533     }
534     switch (type) {
535     case QCOW2_CLUSTER_COMPRESSED:
536         /* Compressed clusters can only be processed one by one */
537         c = 1;
538         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
539         break;
540     case QCOW2_CLUSTER_ZERO_PLAIN:
541     case QCOW2_CLUSTER_UNALLOCATED:
542         /* how many empty clusters ? */
543         c = count_contiguous_clusters_unallocated(nb_clusters,
544                                                   &l2_table[l2_index], type);
545         *cluster_offset = 0;
546         break;
547     case QCOW2_CLUSTER_ZERO_ALLOC:
548     case QCOW2_CLUSTER_NORMAL:
549         /* how many allocated clusters ? */
550         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
551                                       &l2_table[l2_index], QCOW_OFLAG_ZERO);
552         *cluster_offset &= L2E_OFFSET_MASK;
553         if (offset_into_cluster(s, *cluster_offset)) {
554             qcow2_signal_corruption(bs, true, -1, -1,
555                                     "Cluster allocation offset %#"
556                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
557                                     ", L2 index: %#x)", *cluster_offset,
558                                     l2_offset, l2_index);
559             ret = -EIO;
560             goto fail;
561         }
562         break;
563     default:
564         abort();
565     }
566 
567     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
568 
569     bytes_available = (int64_t)c * s->cluster_size;
570 
571 out:
572     if (bytes_available > bytes_needed) {
573         bytes_available = bytes_needed;
574     }
575 
576     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
577      * subtracting offset_in_cluster will therefore definitely yield something
578      * not exceeding UINT_MAX */
579     assert(bytes_available - offset_in_cluster <= UINT_MAX);
580     *bytes = bytes_available - offset_in_cluster;
581 
582     return type;
583 
584 fail:
585     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
586     return ret;
587 }
588 
589 /*
590  * get_cluster_table
591  *
592  * for a given disk offset, load (and allocate if needed)
593  * the l2 table.
594  *
595  * the l2 table offset in the qcow2 file and the cluster index
596  * in the l2 table are given to the caller.
597  *
598  * Returns 0 on success, -errno in failure case
599  */
600 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
601                              uint64_t **new_l2_table,
602                              int *new_l2_index)
603 {
604     BDRVQcow2State *s = bs->opaque;
605     unsigned int l2_index;
606     uint64_t l1_index, l2_offset;
607     uint64_t *l2_table = NULL;
608     int ret;
609 
610     /* seek to the l2 offset in the l1 table */
611 
612     l1_index = offset >> (s->l2_bits + s->cluster_bits);
613     if (l1_index >= s->l1_size) {
614         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
615         if (ret < 0) {
616             return ret;
617         }
618     }
619 
620     assert(l1_index < s->l1_size);
621     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
622     if (offset_into_cluster(s, l2_offset)) {
623         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
624                                 " unaligned (L1 index: %#" PRIx64 ")",
625                                 l2_offset, l1_index);
626         return -EIO;
627     }
628 
629     /* seek the l2 table of the given l2 offset */
630 
631     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
632         /* load the l2 table in memory */
633         ret = l2_load(bs, l2_offset, &l2_table);
634         if (ret < 0) {
635             return ret;
636         }
637     } else {
638         /* First allocate a new L2 table (and do COW if needed) */
639         ret = l2_allocate(bs, l1_index, &l2_table);
640         if (ret < 0) {
641             return ret;
642         }
643 
644         /* Then decrease the refcount of the old table */
645         if (l2_offset) {
646             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
647                                 QCOW2_DISCARD_OTHER);
648         }
649     }
650 
651     /* find the cluster offset for the given disk offset */
652 
653     l2_index = offset_to_l2_index(s, offset);
654 
655     *new_l2_table = l2_table;
656     *new_l2_index = l2_index;
657 
658     return 0;
659 }
660 
661 /*
662  * alloc_compressed_cluster_offset
663  *
664  * For a given offset of the disk image, return cluster offset in
665  * qcow2 file.
666  *
667  * If the offset is not found, allocate a new compressed cluster.
668  *
669  * Return the cluster offset if successful,
670  * Return 0, otherwise.
671  *
672  */
673 
674 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
675                                                uint64_t offset,
676                                                int compressed_size)
677 {
678     BDRVQcow2State *s = bs->opaque;
679     int l2_index, ret;
680     uint64_t *l2_table;
681     int64_t cluster_offset;
682     int nb_csectors;
683 
684     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
685     if (ret < 0) {
686         return 0;
687     }
688 
689     /* Compression can't overwrite anything. Fail if the cluster was already
690      * allocated. */
691     cluster_offset = be64_to_cpu(l2_table[l2_index]);
692     if (cluster_offset & L2E_OFFSET_MASK) {
693         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
694         return 0;
695     }
696 
697     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
698     if (cluster_offset < 0) {
699         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
700         return 0;
701     }
702 
703     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
704                   (cluster_offset >> 9);
705 
706     cluster_offset |= QCOW_OFLAG_COMPRESSED |
707                       ((uint64_t)nb_csectors << s->csize_shift);
708 
709     /* update L2 table */
710 
711     /* compressed clusters never have the copied flag */
712 
713     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
714     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
715     l2_table[l2_index] = cpu_to_be64(cluster_offset);
716     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
717 
718     return cluster_offset;
719 }
720 
721 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
722 {
723     BDRVQcow2State *s = bs->opaque;
724     Qcow2COWRegion *start = &m->cow_start;
725     Qcow2COWRegion *end = &m->cow_end;
726     unsigned buffer_size;
727     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
728     bool merge_reads;
729     uint8_t *start_buffer, *end_buffer;
730     QEMUIOVector qiov;
731     int ret;
732 
733     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
734     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
735     assert(start->offset + start->nb_bytes <= end->offset);
736     assert(!m->data_qiov || m->data_qiov->size == data_bytes);
737 
738     if (start->nb_bytes == 0 && end->nb_bytes == 0) {
739         return 0;
740     }
741 
742     /* If we have to read both the start and end COW regions and the
743      * middle region is not too large then perform just one read
744      * operation */
745     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
746     if (merge_reads) {
747         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
748     } else {
749         /* If we have to do two reads, add some padding in the middle
750          * if necessary to make sure that the end region is optimally
751          * aligned. */
752         size_t align = bdrv_opt_mem_align(bs);
753         assert(align > 0 && align <= UINT_MAX);
754         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
755                UINT_MAX - end->nb_bytes);
756         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
757     }
758 
759     /* Reserve a buffer large enough to store all the data that we're
760      * going to read */
761     start_buffer = qemu_try_blockalign(bs, buffer_size);
762     if (start_buffer == NULL) {
763         return -ENOMEM;
764     }
765     /* The part of the buffer where the end region is located */
766     end_buffer = start_buffer + buffer_size - end->nb_bytes;
767 
768     qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
769 
770     qemu_co_mutex_unlock(&s->lock);
771     /* First we read the existing data from both COW regions. We
772      * either read the whole region in one go, or the start and end
773      * regions separately. */
774     if (merge_reads) {
775         qemu_iovec_add(&qiov, start_buffer, buffer_size);
776         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
777     } else {
778         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
779         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
780         if (ret < 0) {
781             goto fail;
782         }
783 
784         qemu_iovec_reset(&qiov);
785         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
786         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
787     }
788     if (ret < 0) {
789         goto fail;
790     }
791 
792     /* Encrypt the data if necessary before writing it */
793     if (bs->encrypted) {
794         if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
795                                     start->offset, start_buffer,
796                                     start->nb_bytes) ||
797             !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
798                                     end->offset, end_buffer, end->nb_bytes)) {
799             ret = -EIO;
800             goto fail;
801         }
802     }
803 
804     /* And now we can write everything. If we have the guest data we
805      * can write everything in one single operation */
806     if (m->data_qiov) {
807         qemu_iovec_reset(&qiov);
808         if (start->nb_bytes) {
809             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
810         }
811         qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
812         if (end->nb_bytes) {
813             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
814         }
815         /* NOTE: we have a write_aio blkdebug event here followed by
816          * a cow_write one in do_perform_cow_write(), but there's only
817          * one single I/O operation */
818         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
819         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
820     } else {
821         /* If there's no guest data then write both COW regions separately */
822         qemu_iovec_reset(&qiov);
823         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
824         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
825         if (ret < 0) {
826             goto fail;
827         }
828 
829         qemu_iovec_reset(&qiov);
830         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
831         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
832     }
833 
834 fail:
835     qemu_co_mutex_lock(&s->lock);
836 
837     /*
838      * Before we update the L2 table to actually point to the new cluster, we
839      * need to be sure that the refcounts have been increased and COW was
840      * handled.
841      */
842     if (ret == 0) {
843         qcow2_cache_depends_on_flush(s->l2_table_cache);
844     }
845 
846     qemu_vfree(start_buffer);
847     qemu_iovec_destroy(&qiov);
848     return ret;
849 }
850 
851 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
852 {
853     BDRVQcow2State *s = bs->opaque;
854     int i, j = 0, l2_index, ret;
855     uint64_t *old_cluster, *l2_table;
856     uint64_t cluster_offset = m->alloc_offset;
857 
858     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
859     assert(m->nb_clusters > 0);
860 
861     old_cluster = g_try_new(uint64_t, m->nb_clusters);
862     if (old_cluster == NULL) {
863         ret = -ENOMEM;
864         goto err;
865     }
866 
867     /* copy content of unmodified sectors */
868     ret = perform_cow(bs, m);
869     if (ret < 0) {
870         goto err;
871     }
872 
873     /* Update L2 table. */
874     if (s->use_lazy_refcounts) {
875         qcow2_mark_dirty(bs);
876     }
877     if (qcow2_need_accurate_refcounts(s)) {
878         qcow2_cache_set_dependency(bs, s->l2_table_cache,
879                                    s->refcount_block_cache);
880     }
881 
882     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
883     if (ret < 0) {
884         goto err;
885     }
886     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
887 
888     assert(l2_index + m->nb_clusters <= s->l2_size);
889     for (i = 0; i < m->nb_clusters; i++) {
890         /* if two concurrent writes happen to the same unallocated cluster
891          * each write allocates separate cluster and writes data concurrently.
892          * The first one to complete updates l2 table with pointer to its
893          * cluster the second one has to do RMW (which is done above by
894          * perform_cow()), update l2 table with its cluster pointer and free
895          * old cluster. This is what this loop does */
896         if (l2_table[l2_index + i] != 0) {
897             old_cluster[j++] = l2_table[l2_index + i];
898         }
899 
900         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
901                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
902      }
903 
904 
905     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
906 
907     /*
908      * If this was a COW, we need to decrease the refcount of the old cluster.
909      *
910      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
911      * clusters), the next write will reuse them anyway.
912      */
913     if (!m->keep_old_clusters && j != 0) {
914         for (i = 0; i < j; i++) {
915             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
916                                     QCOW2_DISCARD_NEVER);
917         }
918     }
919 
920     ret = 0;
921 err:
922     g_free(old_cluster);
923     return ret;
924  }
925 
926 /*
927  * Returns the number of contiguous clusters that can be used for an allocating
928  * write, but require COW to be performed (this includes yet unallocated space,
929  * which must copy from the backing file)
930  */
931 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
932     uint64_t *l2_table, int l2_index)
933 {
934     int i;
935 
936     for (i = 0; i < nb_clusters; i++) {
937         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
938         QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
939 
940         switch(cluster_type) {
941         case QCOW2_CLUSTER_NORMAL:
942             if (l2_entry & QCOW_OFLAG_COPIED) {
943                 goto out;
944             }
945             break;
946         case QCOW2_CLUSTER_UNALLOCATED:
947         case QCOW2_CLUSTER_COMPRESSED:
948         case QCOW2_CLUSTER_ZERO_PLAIN:
949         case QCOW2_CLUSTER_ZERO_ALLOC:
950             break;
951         default:
952             abort();
953         }
954     }
955 
956 out:
957     assert(i <= nb_clusters);
958     return i;
959 }
960 
961 /*
962  * Check if there already is an AIO write request in flight which allocates
963  * the same cluster. In this case we need to wait until the previous
964  * request has completed and updated the L2 table accordingly.
965  *
966  * Returns:
967  *   0       if there was no dependency. *cur_bytes indicates the number of
968  *           bytes from guest_offset that can be read before the next
969  *           dependency must be processed (or the request is complete)
970  *
971  *   -EAGAIN if we had to wait for another request, previously gathered
972  *           information on cluster allocation may be invalid now. The caller
973  *           must start over anyway, so consider *cur_bytes undefined.
974  */
975 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
976     uint64_t *cur_bytes, QCowL2Meta **m)
977 {
978     BDRVQcow2State *s = bs->opaque;
979     QCowL2Meta *old_alloc;
980     uint64_t bytes = *cur_bytes;
981 
982     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
983 
984         uint64_t start = guest_offset;
985         uint64_t end = start + bytes;
986         uint64_t old_start = l2meta_cow_start(old_alloc);
987         uint64_t old_end = l2meta_cow_end(old_alloc);
988 
989         if (end <= old_start || start >= old_end) {
990             /* No intersection */
991         } else {
992             if (start < old_start) {
993                 /* Stop at the start of a running allocation */
994                 bytes = old_start - start;
995             } else {
996                 bytes = 0;
997             }
998 
999             /* Stop if already an l2meta exists. After yielding, it wouldn't
1000              * be valid any more, so we'd have to clean up the old L2Metas
1001              * and deal with requests depending on them before starting to
1002              * gather new ones. Not worth the trouble. */
1003             if (bytes == 0 && *m) {
1004                 *cur_bytes = 0;
1005                 return 0;
1006             }
1007 
1008             if (bytes == 0) {
1009                 /* Wait for the dependency to complete. We need to recheck
1010                  * the free/allocated clusters when we continue. */
1011                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1012                 return -EAGAIN;
1013             }
1014         }
1015     }
1016 
1017     /* Make sure that existing clusters and new allocations are only used up to
1018      * the next dependency if we shortened the request above */
1019     *cur_bytes = bytes;
1020 
1021     return 0;
1022 }
1023 
1024 /*
1025  * Checks how many already allocated clusters that don't require a copy on
1026  * write there are at the given guest_offset (up to *bytes). If
1027  * *host_offset is not zero, only physically contiguous clusters beginning at
1028  * this host offset are counted.
1029  *
1030  * Note that guest_offset may not be cluster aligned. In this case, the
1031  * returned *host_offset points to exact byte referenced by guest_offset and
1032  * therefore isn't cluster aligned as well.
1033  *
1034  * Returns:
1035  *   0:     if no allocated clusters are available at the given offset.
1036  *          *bytes is normally unchanged. It is set to 0 if the cluster
1037  *          is allocated and doesn't need COW, but doesn't have the right
1038  *          physical offset.
1039  *
1040  *   1:     if allocated clusters that don't require a COW are available at
1041  *          the requested offset. *bytes may have decreased and describes
1042  *          the length of the area that can be written to.
1043  *
1044  *  -errno: in error cases
1045  */
1046 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1047     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1048 {
1049     BDRVQcow2State *s = bs->opaque;
1050     int l2_index;
1051     uint64_t cluster_offset;
1052     uint64_t *l2_table;
1053     uint64_t nb_clusters;
1054     unsigned int keep_clusters;
1055     int ret;
1056 
1057     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1058                               *bytes);
1059 
1060     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
1061                                 == offset_into_cluster(s, *host_offset));
1062 
1063     /*
1064      * Calculate the number of clusters to look for. We stop at L2 table
1065      * boundaries to keep things simple.
1066      */
1067     nb_clusters =
1068         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1069 
1070     l2_index = offset_to_l2_index(s, guest_offset);
1071     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1072     assert(nb_clusters <= INT_MAX);
1073 
1074     /* Find L2 entry for the first involved cluster */
1075     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1076     if (ret < 0) {
1077         return ret;
1078     }
1079 
1080     cluster_offset = be64_to_cpu(l2_table[l2_index]);
1081 
1082     /* Check how many clusters are already allocated and don't need COW */
1083     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1084         && (cluster_offset & QCOW_OFLAG_COPIED))
1085     {
1086         /* If a specific host_offset is required, check it */
1087         bool offset_matches =
1088             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1089 
1090         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1091             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1092                                     "%#llx unaligned (guest offset: %#" PRIx64
1093                                     ")", cluster_offset & L2E_OFFSET_MASK,
1094                                     guest_offset);
1095             ret = -EIO;
1096             goto out;
1097         }
1098 
1099         if (*host_offset != 0 && !offset_matches) {
1100             *bytes = 0;
1101             ret = 0;
1102             goto out;
1103         }
1104 
1105         /* We keep all QCOW_OFLAG_COPIED clusters */
1106         keep_clusters =
1107             count_contiguous_clusters(nb_clusters, s->cluster_size,
1108                                       &l2_table[l2_index],
1109                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1110         assert(keep_clusters <= nb_clusters);
1111 
1112         *bytes = MIN(*bytes,
1113                  keep_clusters * s->cluster_size
1114                  - offset_into_cluster(s, guest_offset));
1115 
1116         ret = 1;
1117     } else {
1118         ret = 0;
1119     }
1120 
1121     /* Cleanup */
1122 out:
1123     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1124 
1125     /* Only return a host offset if we actually made progress. Otherwise we
1126      * would make requirements for handle_alloc() that it can't fulfill */
1127     if (ret > 0) {
1128         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1129                      + offset_into_cluster(s, guest_offset);
1130     }
1131 
1132     return ret;
1133 }
1134 
1135 /*
1136  * Allocates new clusters for the given guest_offset.
1137  *
1138  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1139  * contain the number of clusters that have been allocated and are contiguous
1140  * in the image file.
1141  *
1142  * If *host_offset is non-zero, it specifies the offset in the image file at
1143  * which the new clusters must start. *nb_clusters can be 0 on return in this
1144  * case if the cluster at host_offset is already in use. If *host_offset is
1145  * zero, the clusters can be allocated anywhere in the image file.
1146  *
1147  * *host_offset is updated to contain the offset into the image file at which
1148  * the first allocated cluster starts.
1149  *
1150  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1151  * function has been waiting for another request and the allocation must be
1152  * restarted, but the whole request should not be failed.
1153  */
1154 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1155                                    uint64_t *host_offset, uint64_t *nb_clusters)
1156 {
1157     BDRVQcow2State *s = bs->opaque;
1158 
1159     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1160                                          *host_offset, *nb_clusters);
1161 
1162     /* Allocate new clusters */
1163     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1164     if (*host_offset == 0) {
1165         int64_t cluster_offset =
1166             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1167         if (cluster_offset < 0) {
1168             return cluster_offset;
1169         }
1170         *host_offset = cluster_offset;
1171         return 0;
1172     } else {
1173         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1174         if (ret < 0) {
1175             return ret;
1176         }
1177         *nb_clusters = ret;
1178         return 0;
1179     }
1180 }
1181 
1182 /*
1183  * Allocates new clusters for an area that either is yet unallocated or needs a
1184  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1185  * the new allocation can match the specified host offset.
1186  *
1187  * Note that guest_offset may not be cluster aligned. In this case, the
1188  * returned *host_offset points to exact byte referenced by guest_offset and
1189  * therefore isn't cluster aligned as well.
1190  *
1191  * Returns:
1192  *   0:     if no clusters could be allocated. *bytes is set to 0,
1193  *          *host_offset is left unchanged.
1194  *
1195  *   1:     if new clusters were allocated. *bytes may be decreased if the
1196  *          new allocation doesn't cover all of the requested area.
1197  *          *host_offset is updated to contain the host offset of the first
1198  *          newly allocated cluster.
1199  *
1200  *  -errno: in error cases
1201  */
1202 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1203     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1204 {
1205     BDRVQcow2State *s = bs->opaque;
1206     int l2_index;
1207     uint64_t *l2_table;
1208     uint64_t entry;
1209     uint64_t nb_clusters;
1210     int ret;
1211     bool keep_old_clusters = false;
1212 
1213     uint64_t alloc_cluster_offset = 0;
1214 
1215     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1216                              *bytes);
1217     assert(*bytes > 0);
1218 
1219     /*
1220      * Calculate the number of clusters to look for. We stop at L2 table
1221      * boundaries to keep things simple.
1222      */
1223     nb_clusters =
1224         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1225 
1226     l2_index = offset_to_l2_index(s, guest_offset);
1227     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1228     assert(nb_clusters <= INT_MAX);
1229 
1230     /* Find L2 entry for the first involved cluster */
1231     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1232     if (ret < 0) {
1233         return ret;
1234     }
1235 
1236     entry = be64_to_cpu(l2_table[l2_index]);
1237 
1238     /* For the moment, overwrite compressed clusters one by one */
1239     if (entry & QCOW_OFLAG_COMPRESSED) {
1240         nb_clusters = 1;
1241     } else {
1242         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1243     }
1244 
1245     /* This function is only called when there were no non-COW clusters, so if
1246      * we can't find any unallocated or COW clusters either, something is
1247      * wrong with our code. */
1248     assert(nb_clusters > 0);
1249 
1250     if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1251         (entry & QCOW_OFLAG_COPIED) &&
1252         (!*host_offset ||
1253          start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1254     {
1255         /* Try to reuse preallocated zero clusters; contiguous normal clusters
1256          * would be fine, too, but count_cow_clusters() above has limited
1257          * nb_clusters already to a range of COW clusters */
1258         int preallocated_nb_clusters =
1259             count_contiguous_clusters(nb_clusters, s->cluster_size,
1260                                       &l2_table[l2_index], QCOW_OFLAG_COPIED);
1261         assert(preallocated_nb_clusters > 0);
1262 
1263         nb_clusters = preallocated_nb_clusters;
1264         alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1265 
1266         /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1267          * should not free them. */
1268         keep_old_clusters = true;
1269     }
1270 
1271     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1272 
1273     if (!alloc_cluster_offset) {
1274         /* Allocate, if necessary at a given offset in the image file */
1275         alloc_cluster_offset = start_of_cluster(s, *host_offset);
1276         ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1277                                       &nb_clusters);
1278         if (ret < 0) {
1279             goto fail;
1280         }
1281 
1282         /* Can't extend contiguous allocation */
1283         if (nb_clusters == 0) {
1284             *bytes = 0;
1285             return 0;
1286         }
1287 
1288         /* !*host_offset would overwrite the image header and is reserved for
1289          * "no host offset preferred". If 0 was a valid host offset, it'd
1290          * trigger the following overlap check; do that now to avoid having an
1291          * invalid value in *host_offset. */
1292         if (!alloc_cluster_offset) {
1293             ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1294                                                 nb_clusters * s->cluster_size);
1295             assert(ret < 0);
1296             goto fail;
1297         }
1298     }
1299 
1300     /*
1301      * Save info needed for meta data update.
1302      *
1303      * requested_bytes: Number of bytes from the start of the first
1304      * newly allocated cluster to the end of the (possibly shortened
1305      * before) write request.
1306      *
1307      * avail_bytes: Number of bytes from the start of the first
1308      * newly allocated to the end of the last newly allocated cluster.
1309      *
1310      * nb_bytes: The number of bytes from the start of the first
1311      * newly allocated cluster to the end of the area that the write
1312      * request actually writes to (excluding COW at the end)
1313      */
1314     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1315     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1316     int nb_bytes = MIN(requested_bytes, avail_bytes);
1317     QCowL2Meta *old_m = *m;
1318 
1319     *m = g_malloc0(sizeof(**m));
1320 
1321     **m = (QCowL2Meta) {
1322         .next           = old_m,
1323 
1324         .alloc_offset   = alloc_cluster_offset,
1325         .offset         = start_of_cluster(s, guest_offset),
1326         .nb_clusters    = nb_clusters,
1327 
1328         .keep_old_clusters  = keep_old_clusters,
1329 
1330         .cow_start = {
1331             .offset     = 0,
1332             .nb_bytes   = offset_into_cluster(s, guest_offset),
1333         },
1334         .cow_end = {
1335             .offset     = nb_bytes,
1336             .nb_bytes   = avail_bytes - nb_bytes,
1337         },
1338     };
1339     qemu_co_queue_init(&(*m)->dependent_requests);
1340     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1341 
1342     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1343     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1344     assert(*bytes != 0);
1345 
1346     return 1;
1347 
1348 fail:
1349     if (*m && (*m)->nb_clusters > 0) {
1350         QLIST_REMOVE(*m, next_in_flight);
1351     }
1352     return ret;
1353 }
1354 
1355 /*
1356  * alloc_cluster_offset
1357  *
1358  * For a given offset on the virtual disk, find the cluster offset in qcow2
1359  * file. If the offset is not found, allocate a new cluster.
1360  *
1361  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1362  * other fields in m are meaningless.
1363  *
1364  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1365  * contiguous clusters that have been allocated. In this case, the other
1366  * fields of m are valid and contain information about the first allocated
1367  * cluster.
1368  *
1369  * If the request conflicts with another write request in flight, the coroutine
1370  * is queued and will be reentered when the dependency has completed.
1371  *
1372  * Return 0 on success and -errno in error cases
1373  */
1374 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1375                                unsigned int *bytes, uint64_t *host_offset,
1376                                QCowL2Meta **m)
1377 {
1378     BDRVQcow2State *s = bs->opaque;
1379     uint64_t start, remaining;
1380     uint64_t cluster_offset;
1381     uint64_t cur_bytes;
1382     int ret;
1383 
1384     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1385 
1386 again:
1387     start = offset;
1388     remaining = *bytes;
1389     cluster_offset = 0;
1390     *host_offset = 0;
1391     cur_bytes = 0;
1392     *m = NULL;
1393 
1394     while (true) {
1395 
1396         if (!*host_offset) {
1397             *host_offset = start_of_cluster(s, cluster_offset);
1398         }
1399 
1400         assert(remaining >= cur_bytes);
1401 
1402         start           += cur_bytes;
1403         remaining       -= cur_bytes;
1404         cluster_offset  += cur_bytes;
1405 
1406         if (remaining == 0) {
1407             break;
1408         }
1409 
1410         cur_bytes = remaining;
1411 
1412         /*
1413          * Now start gathering as many contiguous clusters as possible:
1414          *
1415          * 1. Check for overlaps with in-flight allocations
1416          *
1417          *      a) Overlap not in the first cluster -> shorten this request and
1418          *         let the caller handle the rest in its next loop iteration.
1419          *
1420          *      b) Real overlaps of two requests. Yield and restart the search
1421          *         for contiguous clusters (the situation could have changed
1422          *         while we were sleeping)
1423          *
1424          *      c) TODO: Request starts in the same cluster as the in-flight
1425          *         allocation ends. Shorten the COW of the in-fight allocation,
1426          *         set cluster_offset to write to the same cluster and set up
1427          *         the right synchronisation between the in-flight request and
1428          *         the new one.
1429          */
1430         ret = handle_dependencies(bs, start, &cur_bytes, m);
1431         if (ret == -EAGAIN) {
1432             /* Currently handle_dependencies() doesn't yield if we already had
1433              * an allocation. If it did, we would have to clean up the L2Meta
1434              * structs before starting over. */
1435             assert(*m == NULL);
1436             goto again;
1437         } else if (ret < 0) {
1438             return ret;
1439         } else if (cur_bytes == 0) {
1440             break;
1441         } else {
1442             /* handle_dependencies() may have decreased cur_bytes (shortened
1443              * the allocations below) so that the next dependency is processed
1444              * correctly during the next loop iteration. */
1445         }
1446 
1447         /*
1448          * 2. Count contiguous COPIED clusters.
1449          */
1450         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1451         if (ret < 0) {
1452             return ret;
1453         } else if (ret) {
1454             continue;
1455         } else if (cur_bytes == 0) {
1456             break;
1457         }
1458 
1459         /*
1460          * 3. If the request still hasn't completed, allocate new clusters,
1461          *    considering any cluster_offset of steps 1c or 2.
1462          */
1463         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1464         if (ret < 0) {
1465             return ret;
1466         } else if (ret) {
1467             continue;
1468         } else {
1469             assert(cur_bytes == 0);
1470             break;
1471         }
1472     }
1473 
1474     *bytes -= remaining;
1475     assert(*bytes > 0);
1476     assert(*host_offset != 0);
1477 
1478     return 0;
1479 }
1480 
1481 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1482                              const uint8_t *buf, int buf_size)
1483 {
1484     z_stream strm1, *strm = &strm1;
1485     int ret, out_len;
1486 
1487     memset(strm, 0, sizeof(*strm));
1488 
1489     strm->next_in = (uint8_t *)buf;
1490     strm->avail_in = buf_size;
1491     strm->next_out = out_buf;
1492     strm->avail_out = out_buf_size;
1493 
1494     ret = inflateInit2(strm, -12);
1495     if (ret != Z_OK)
1496         return -1;
1497     ret = inflate(strm, Z_FINISH);
1498     out_len = strm->next_out - out_buf;
1499     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1500         out_len != out_buf_size) {
1501         inflateEnd(strm);
1502         return -1;
1503     }
1504     inflateEnd(strm);
1505     return 0;
1506 }
1507 
1508 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1509 {
1510     BDRVQcow2State *s = bs->opaque;
1511     int ret, csize, nb_csectors, sector_offset;
1512     uint64_t coffset;
1513 
1514     coffset = cluster_offset & s->cluster_offset_mask;
1515     if (s->cluster_cache_offset != coffset) {
1516         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1517         sector_offset = coffset & 511;
1518         csize = nb_csectors * 512 - sector_offset;
1519         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1520         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1521                         nb_csectors);
1522         if (ret < 0) {
1523             return ret;
1524         }
1525         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1526                               s->cluster_data + sector_offset, csize) < 0) {
1527             return -EIO;
1528         }
1529         s->cluster_cache_offset = coffset;
1530     }
1531     return 0;
1532 }
1533 
1534 /*
1535  * This discards as many clusters of nb_clusters as possible at once (i.e.
1536  * all clusters in the same L2 table) and returns the number of discarded
1537  * clusters.
1538  */
1539 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1540                              uint64_t nb_clusters, enum qcow2_discard_type type,
1541                              bool full_discard)
1542 {
1543     BDRVQcow2State *s = bs->opaque;
1544     uint64_t *l2_table;
1545     int l2_index;
1546     int ret;
1547     int i;
1548 
1549     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1550     if (ret < 0) {
1551         return ret;
1552     }
1553 
1554     /* Limit nb_clusters to one L2 table */
1555     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1556     assert(nb_clusters <= INT_MAX);
1557 
1558     for (i = 0; i < nb_clusters; i++) {
1559         uint64_t old_l2_entry;
1560 
1561         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1562 
1563         /*
1564          * If full_discard is false, make sure that a discarded area reads back
1565          * as zeroes for v3 images (we cannot do it for v2 without actually
1566          * writing a zero-filled buffer). We can skip the operation if the
1567          * cluster is already marked as zero, or if it's unallocated and we
1568          * don't have a backing file.
1569          *
1570          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1571          * holding s->lock, so that doesn't work today.
1572          *
1573          * If full_discard is true, the sector should not read back as zeroes,
1574          * but rather fall through to the backing file.
1575          */
1576         switch (qcow2_get_cluster_type(old_l2_entry)) {
1577         case QCOW2_CLUSTER_UNALLOCATED:
1578             if (full_discard || !bs->backing) {
1579                 continue;
1580             }
1581             break;
1582 
1583         case QCOW2_CLUSTER_ZERO_PLAIN:
1584             if (!full_discard) {
1585                 continue;
1586             }
1587             break;
1588 
1589         case QCOW2_CLUSTER_ZERO_ALLOC:
1590         case QCOW2_CLUSTER_NORMAL:
1591         case QCOW2_CLUSTER_COMPRESSED:
1592             break;
1593 
1594         default:
1595             abort();
1596         }
1597 
1598         /* First remove L2 entries */
1599         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1600         if (!full_discard && s->qcow_version >= 3) {
1601             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1602         } else {
1603             l2_table[l2_index + i] = cpu_to_be64(0);
1604         }
1605 
1606         /* Then decrease the refcount */
1607         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1608     }
1609 
1610     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1611 
1612     return nb_clusters;
1613 }
1614 
1615 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1616                           uint64_t bytes, enum qcow2_discard_type type,
1617                           bool full_discard)
1618 {
1619     BDRVQcow2State *s = bs->opaque;
1620     uint64_t end_offset = offset + bytes;
1621     uint64_t nb_clusters;
1622     int64_t cleared;
1623     int ret;
1624 
1625     /* Caller must pass aligned values, except at image end */
1626     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1627     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1628            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1629 
1630     nb_clusters = size_to_clusters(s, bytes);
1631 
1632     s->cache_discards = true;
1633 
1634     /* Each L2 table is handled by its own loop iteration */
1635     while (nb_clusters > 0) {
1636         cleared = discard_single_l2(bs, offset, nb_clusters, type,
1637                                     full_discard);
1638         if (cleared < 0) {
1639             ret = cleared;
1640             goto fail;
1641         }
1642 
1643         nb_clusters -= cleared;
1644         offset += (cleared * s->cluster_size);
1645     }
1646 
1647     ret = 0;
1648 fail:
1649     s->cache_discards = false;
1650     qcow2_process_discards(bs, ret);
1651 
1652     return ret;
1653 }
1654 
1655 /*
1656  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1657  * all clusters in the same L2 table) and returns the number of zeroed
1658  * clusters.
1659  */
1660 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1661                           uint64_t nb_clusters, int flags)
1662 {
1663     BDRVQcow2State *s = bs->opaque;
1664     uint64_t *l2_table;
1665     int l2_index;
1666     int ret;
1667     int i;
1668     bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1669 
1670     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1671     if (ret < 0) {
1672         return ret;
1673     }
1674 
1675     /* Limit nb_clusters to one L2 table */
1676     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1677     assert(nb_clusters <= INT_MAX);
1678 
1679     for (i = 0; i < nb_clusters; i++) {
1680         uint64_t old_offset;
1681         QCow2ClusterType cluster_type;
1682 
1683         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1684 
1685         /*
1686          * Minimize L2 changes if the cluster already reads back as
1687          * zeroes with correct allocation.
1688          */
1689         cluster_type = qcow2_get_cluster_type(old_offset);
1690         if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1691             (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1692             continue;
1693         }
1694 
1695         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1696         if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1697             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1698             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1699         } else {
1700             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1701         }
1702     }
1703 
1704     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1705 
1706     return nb_clusters;
1707 }
1708 
1709 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1710                           uint64_t bytes, int flags)
1711 {
1712     BDRVQcow2State *s = bs->opaque;
1713     uint64_t end_offset = offset + bytes;
1714     uint64_t nb_clusters;
1715     int64_t cleared;
1716     int ret;
1717 
1718     /* Caller must pass aligned values, except at image end */
1719     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1720     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1721            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1722 
1723     /* The zero flag is only supported by version 3 and newer */
1724     if (s->qcow_version < 3) {
1725         return -ENOTSUP;
1726     }
1727 
1728     /* Each L2 table is handled by its own loop iteration */
1729     nb_clusters = size_to_clusters(s, bytes);
1730 
1731     s->cache_discards = true;
1732 
1733     while (nb_clusters > 0) {
1734         cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1735         if (cleared < 0) {
1736             ret = cleared;
1737             goto fail;
1738         }
1739 
1740         nb_clusters -= cleared;
1741         offset += (cleared * s->cluster_size);
1742     }
1743 
1744     ret = 0;
1745 fail:
1746     s->cache_discards = false;
1747     qcow2_process_discards(bs, ret);
1748 
1749     return ret;
1750 }
1751 
1752 /*
1753  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1754  * non-backed non-pre-allocated zero clusters).
1755  *
1756  * l1_entries and *visited_l1_entries are used to keep track of progress for
1757  * status_cb(). l1_entries contains the total number of L1 entries and
1758  * *visited_l1_entries counts all visited L1 entries.
1759  */
1760 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1761                                       int l1_size, int64_t *visited_l1_entries,
1762                                       int64_t l1_entries,
1763                                       BlockDriverAmendStatusCB *status_cb,
1764                                       void *cb_opaque)
1765 {
1766     BDRVQcow2State *s = bs->opaque;
1767     bool is_active_l1 = (l1_table == s->l1_table);
1768     uint64_t *l2_table = NULL;
1769     int ret;
1770     int i, j;
1771 
1772     if (!is_active_l1) {
1773         /* inactive L2 tables require a buffer to be stored in when loading
1774          * them from disk */
1775         l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1776         if (l2_table == NULL) {
1777             return -ENOMEM;
1778         }
1779     }
1780 
1781     for (i = 0; i < l1_size; i++) {
1782         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1783         bool l2_dirty = false;
1784         uint64_t l2_refcount;
1785 
1786         if (!l2_offset) {
1787             /* unallocated */
1788             (*visited_l1_entries)++;
1789             if (status_cb) {
1790                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1791             }
1792             continue;
1793         }
1794 
1795         if (offset_into_cluster(s, l2_offset)) {
1796             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1797                                     PRIx64 " unaligned (L1 index: %#x)",
1798                                     l2_offset, i);
1799             ret = -EIO;
1800             goto fail;
1801         }
1802 
1803         if (is_active_l1) {
1804             /* get active L2 tables from cache */
1805             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1806                     (void **)&l2_table);
1807         } else {
1808             /* load inactive L2 tables from disk */
1809             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1810                             (void *)l2_table, s->cluster_sectors);
1811         }
1812         if (ret < 0) {
1813             goto fail;
1814         }
1815 
1816         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1817                                  &l2_refcount);
1818         if (ret < 0) {
1819             goto fail;
1820         }
1821 
1822         for (j = 0; j < s->l2_size; j++) {
1823             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1824             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1825             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1826 
1827             if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1828                 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1829                 continue;
1830             }
1831 
1832             if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1833                 if (!bs->backing) {
1834                     /* not backed; therefore we can simply deallocate the
1835                      * cluster */
1836                     l2_table[j] = 0;
1837                     l2_dirty = true;
1838                     continue;
1839                 }
1840 
1841                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1842                 if (offset < 0) {
1843                     ret = offset;
1844                     goto fail;
1845                 }
1846 
1847                 if (l2_refcount > 1) {
1848                     /* For shared L2 tables, set the refcount accordingly (it is
1849                      * already 1 and needs to be l2_refcount) */
1850                     ret = qcow2_update_cluster_refcount(bs,
1851                             offset >> s->cluster_bits,
1852                             refcount_diff(1, l2_refcount), false,
1853                             QCOW2_DISCARD_OTHER);
1854                     if (ret < 0) {
1855                         qcow2_free_clusters(bs, offset, s->cluster_size,
1856                                             QCOW2_DISCARD_OTHER);
1857                         goto fail;
1858                     }
1859                 }
1860             }
1861 
1862             if (offset_into_cluster(s, offset)) {
1863                 qcow2_signal_corruption(bs, true, -1, -1,
1864                                         "Cluster allocation offset "
1865                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1866                                         PRIx64 ", L2 index: %#x)", offset,
1867                                         l2_offset, j);
1868                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1869                     qcow2_free_clusters(bs, offset, s->cluster_size,
1870                                         QCOW2_DISCARD_ALWAYS);
1871                 }
1872                 ret = -EIO;
1873                 goto fail;
1874             }
1875 
1876             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1877             if (ret < 0) {
1878                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1879                     qcow2_free_clusters(bs, offset, s->cluster_size,
1880                                         QCOW2_DISCARD_ALWAYS);
1881                 }
1882                 goto fail;
1883             }
1884 
1885             ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1886             if (ret < 0) {
1887                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1888                     qcow2_free_clusters(bs, offset, s->cluster_size,
1889                                         QCOW2_DISCARD_ALWAYS);
1890                 }
1891                 goto fail;
1892             }
1893 
1894             if (l2_refcount == 1) {
1895                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1896             } else {
1897                 l2_table[j] = cpu_to_be64(offset);
1898             }
1899             l2_dirty = true;
1900         }
1901 
1902         if (is_active_l1) {
1903             if (l2_dirty) {
1904                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1905                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1906             }
1907             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1908         } else {
1909             if (l2_dirty) {
1910                 ret = qcow2_pre_write_overlap_check(bs,
1911                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1912                         s->cluster_size);
1913                 if (ret < 0) {
1914                     goto fail;
1915                 }
1916 
1917                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1918                                  (void *)l2_table, s->cluster_sectors);
1919                 if (ret < 0) {
1920                     goto fail;
1921                 }
1922             }
1923         }
1924 
1925         (*visited_l1_entries)++;
1926         if (status_cb) {
1927             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1928         }
1929     }
1930 
1931     ret = 0;
1932 
1933 fail:
1934     if (l2_table) {
1935         if (!is_active_l1) {
1936             qemu_vfree(l2_table);
1937         } else {
1938             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1939         }
1940     }
1941     return ret;
1942 }
1943 
1944 /*
1945  * For backed images, expands all zero clusters on the image. For non-backed
1946  * images, deallocates all non-pre-allocated zero clusters (and claims the
1947  * allocation for pre-allocated ones). This is important for downgrading to a
1948  * qcow2 version which doesn't yet support metadata zero clusters.
1949  */
1950 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1951                                BlockDriverAmendStatusCB *status_cb,
1952                                void *cb_opaque)
1953 {
1954     BDRVQcow2State *s = bs->opaque;
1955     uint64_t *l1_table = NULL;
1956     int64_t l1_entries = 0, visited_l1_entries = 0;
1957     int ret;
1958     int i, j;
1959 
1960     if (status_cb) {
1961         l1_entries = s->l1_size;
1962         for (i = 0; i < s->nb_snapshots; i++) {
1963             l1_entries += s->snapshots[i].l1_size;
1964         }
1965     }
1966 
1967     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1968                                      &visited_l1_entries, l1_entries,
1969                                      status_cb, cb_opaque);
1970     if (ret < 0) {
1971         goto fail;
1972     }
1973 
1974     /* Inactive L1 tables may point to active L2 tables - therefore it is
1975      * necessary to flush the L2 table cache before trying to access the L2
1976      * tables pointed to by inactive L1 entries (else we might try to expand
1977      * zero clusters that have already been expanded); furthermore, it is also
1978      * necessary to empty the L2 table cache, since it may contain tables which
1979      * are now going to be modified directly on disk, bypassing the cache.
1980      * qcow2_cache_empty() does both for us. */
1981     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1982     if (ret < 0) {
1983         goto fail;
1984     }
1985 
1986     for (i = 0; i < s->nb_snapshots; i++) {
1987         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1988                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
1989 
1990         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1991 
1992         ret = bdrv_read(bs->file,
1993                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1994                         (void *)l1_table, l1_sectors);
1995         if (ret < 0) {
1996             goto fail;
1997         }
1998 
1999         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2000             be64_to_cpus(&l1_table[j]);
2001         }
2002 
2003         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2004                                          &visited_l1_entries, l1_entries,
2005                                          status_cb, cb_opaque);
2006         if (ret < 0) {
2007             goto fail;
2008         }
2009     }
2010 
2011     ret = 0;
2012 
2013 fail:
2014     g_free(l1_table);
2015     return ret;
2016 }
2017