xref: /qemu/block/qcow2-cluster.c (revision 7c1f51bf)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "block/block-io.h"
29 #include "qapi/error.h"
30 #include "qcow2.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
34 
35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
36                                        uint64_t exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size, i, ret;
40 
41     if (exact_size >= s->l1_size) {
42         return 0;
43     }
44 
45     new_l1_size = exact_size;
46 
47 #ifdef DEBUG_ALLOC2
48     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
49 #endif
50 
51     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
52     ret = bdrv_co_pwrite_zeroes(bs->file,
53                                 s->l1_table_offset + new_l1_size * L1E_SIZE,
54                                 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
55     if (ret < 0) {
56         goto fail;
57     }
58 
59     ret = bdrv_co_flush(bs->file->bs);
60     if (ret < 0) {
61         goto fail;
62     }
63 
64     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
65     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
66         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
67             continue;
68         }
69         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
70                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
71         s->l1_table[i] = 0;
72     }
73     return 0;
74 
75 fail:
76     /*
77      * If the write in the l1_table failed the image may contain a partially
78      * overwritten l1_table. In this case it would be better to clear the
79      * l1_table in memory to avoid possible image corruption.
80      */
81     memset(s->l1_table + new_l1_size, 0,
82            (s->l1_size - new_l1_size) * L1E_SIZE);
83     return ret;
84 }
85 
86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
87                         bool exact_size)
88 {
89     BDRVQcow2State *s = bs->opaque;
90     int new_l1_size2, ret, i;
91     uint64_t *new_l1_table;
92     int64_t old_l1_table_offset, old_l1_size;
93     int64_t new_l1_table_offset, new_l1_size;
94     uint8_t data[12];
95 
96     if (min_size <= s->l1_size)
97         return 0;
98 
99     /* Do a sanity check on min_size before trying to calculate new_l1_size
100      * (this prevents overflows during the while loop for the calculation of
101      * new_l1_size) */
102     if (min_size > INT_MAX / L1E_SIZE) {
103         return -EFBIG;
104     }
105 
106     if (exact_size) {
107         new_l1_size = min_size;
108     } else {
109         /* Bump size up to reduce the number of times we have to grow */
110         new_l1_size = s->l1_size;
111         if (new_l1_size == 0) {
112             new_l1_size = 1;
113         }
114         while (min_size > new_l1_size) {
115             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
116         }
117     }
118 
119     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
120     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
121         return -EFBIG;
122     }
123 
124 #ifdef DEBUG_ALLOC2
125     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
126             s->l1_size, new_l1_size);
127 #endif
128 
129     new_l1_size2 = L1E_SIZE * new_l1_size;
130     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
131     if (new_l1_table == NULL) {
132         return -ENOMEM;
133     }
134     memset(new_l1_table, 0, new_l1_size2);
135 
136     if (s->l1_size) {
137         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
138     }
139 
140     /* write new table (align to cluster) */
141     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143     if (new_l1_table_offset < 0) {
144         qemu_vfree(new_l1_table);
145         return new_l1_table_offset;
146     }
147 
148     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149     if (ret < 0) {
150         goto fail;
151     }
152 
153     /* the L1 position has not yet been updated, so these clusters must
154      * indeed be completely free */
155     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156                                         new_l1_size2, false);
157     if (ret < 0) {
158         goto fail;
159     }
160 
161     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162     for(i = 0; i < s->l1_size; i++)
163         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
165                            new_l1_table, 0);
166     if (ret < 0)
167         goto fail;
168     for(i = 0; i < s->l1_size; i++)
169         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170 
171     /* set new table */
172     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173     stl_be_p(data, new_l1_size);
174     stq_be_p(data + 4, new_l1_table_offset);
175     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176                            sizeof(data), data, 0);
177     if (ret < 0) {
178         goto fail;
179     }
180     qemu_vfree(s->l1_table);
181     old_l1_table_offset = s->l1_table_offset;
182     s->l1_table_offset = new_l1_table_offset;
183     s->l1_table = new_l1_table;
184     old_l1_size = s->l1_size;
185     s->l1_size = new_l1_size;
186     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
187                         QCOW2_DISCARD_OTHER);
188     return 0;
189  fail:
190     qemu_vfree(new_l1_table);
191     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192                         QCOW2_DISCARD_OTHER);
193     return ret;
194 }
195 
196 /*
197  * l2_load
198  *
199  * @bs: The BlockDriverState
200  * @offset: A guest offset, used to calculate what slice of the L2
201  *          table to load.
202  * @l2_offset: Offset to the L2 table in the image file.
203  * @l2_slice: Location to store the pointer to the L2 slice.
204  *
205  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206  * that are loaded by the qcow2 cache). If the slice is in the cache,
207  * the cache is used; otherwise the L2 slice is loaded from the image
208  * file.
209  */
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211                    uint64_t l2_offset, uint64_t **l2_slice)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     int start_of_slice = l2_entry_size(s) *
215         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
216 
217     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218                            (void **)l2_slice);
219 }
220 
221 /*
222  * Writes an L1 entry to disk (note that depending on the alignment
223  * requirements this function may write more that just one entry in
224  * order to prevent bdrv_pwrite from performing a read-modify-write)
225  */
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
227 {
228     BDRVQcow2State *s = bs->opaque;
229     int l1_start_index;
230     int i, ret;
231     int bufsize = MAX(L1E_SIZE,
232                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
233     int nentries = bufsize / L1E_SIZE;
234     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
235 
236     if (buf == NULL) {
237         return -ENOMEM;
238     }
239 
240     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
241     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
242         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
243     }
244 
245     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
246             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
247     if (ret < 0) {
248         return ret;
249     }
250 
251     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
252     ret = bdrv_pwrite_sync(bs->file,
253                            s->l1_table_offset + L1E_SIZE * l1_start_index,
254                            bufsize, buf, 0);
255     if (ret < 0) {
256         return ret;
257     }
258 
259     return 0;
260 }
261 
262 /*
263  * l2_allocate
264  *
265  * Allocate a new l2 entry in the file. If l1_index points to an already
266  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
267  * table) copy the contents of the old L2 table into the newly allocated one.
268  * Otherwise the new table is initialized with zeros.
269  *
270  */
271 
272 static int l2_allocate(BlockDriverState *bs, int l1_index)
273 {
274     BDRVQcow2State *s = bs->opaque;
275     uint64_t old_l2_offset;
276     uint64_t *l2_slice = NULL;
277     unsigned slice, slice_size2, n_slices;
278     int64_t l2_offset;
279     int ret;
280 
281     old_l2_offset = s->l1_table[l1_index];
282 
283     trace_qcow2_l2_allocate(bs, l1_index);
284 
285     /* allocate a new l2 entry */
286 
287     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
288     if (l2_offset < 0) {
289         ret = l2_offset;
290         goto fail;
291     }
292 
293     /* The offset must fit in the offset field of the L1 table entry */
294     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
295 
296     /* If we're allocating the table at offset 0 then something is wrong */
297     if (l2_offset == 0) {
298         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
299                                 "allocation of L2 table at offset 0");
300         ret = -EIO;
301         goto fail;
302     }
303 
304     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
305     if (ret < 0) {
306         goto fail;
307     }
308 
309     /* allocate a new entry in the l2 cache */
310 
311     slice_size2 = s->l2_slice_size * l2_entry_size(s);
312     n_slices = s->cluster_size / slice_size2;
313 
314     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
315     for (slice = 0; slice < n_slices; slice++) {
316         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
317                                     l2_offset + slice * slice_size2,
318                                     (void **) &l2_slice);
319         if (ret < 0) {
320             goto fail;
321         }
322 
323         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
324             /* if there was no old l2 table, clear the new slice */
325             memset(l2_slice, 0, slice_size2);
326         } else {
327             uint64_t *old_slice;
328             uint64_t old_l2_slice_offset =
329                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
330 
331             /* if there was an old l2 table, read a slice from the disk */
332             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
333             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
334                                   (void **) &old_slice);
335             if (ret < 0) {
336                 goto fail;
337             }
338 
339             memcpy(l2_slice, old_slice, slice_size2);
340 
341             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
342         }
343 
344         /* write the l2 slice to the file */
345         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
346 
347         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
348         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
349         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
350     }
351 
352     ret = qcow2_cache_flush(bs, s->l2_table_cache);
353     if (ret < 0) {
354         goto fail;
355     }
356 
357     /* update the L1 entry */
358     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
359     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
360     ret = qcow2_write_l1_entry(bs, l1_index);
361     if (ret < 0) {
362         goto fail;
363     }
364 
365     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
366     return 0;
367 
368 fail:
369     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
370     if (l2_slice != NULL) {
371         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
372     }
373     s->l1_table[l1_index] = old_l2_offset;
374     if (l2_offset > 0) {
375         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
376                             QCOW2_DISCARD_ALWAYS);
377     }
378     return ret;
379 }
380 
381 /*
382  * For a given L2 entry, count the number of contiguous subclusters of
383  * the same type starting from @sc_from. Compressed clusters are
384  * treated as if they were divided into subclusters of size
385  * s->subcluster_size.
386  *
387  * Return the number of contiguous subclusters and set @type to the
388  * subcluster type.
389  *
390  * If the L2 entry is invalid return -errno and set @type to
391  * QCOW2_SUBCLUSTER_INVALID.
392  */
393 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
394                                            uint64_t l2_entry,
395                                            uint64_t l2_bitmap,
396                                            unsigned sc_from,
397                                            QCow2SubclusterType *type)
398 {
399     BDRVQcow2State *s = bs->opaque;
400     uint32_t val;
401 
402     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
403 
404     if (*type == QCOW2_SUBCLUSTER_INVALID) {
405         return -EINVAL;
406     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
407         return s->subclusters_per_cluster - sc_from;
408     }
409 
410     switch (*type) {
411     case QCOW2_SUBCLUSTER_NORMAL:
412         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
413         return cto32(val) - sc_from;
414 
415     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
416     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
417         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
418         return cto32(val) - sc_from;
419 
420     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
421     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
422         val = ((l2_bitmap >> 32) | l2_bitmap)
423             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
424         return ctz32(val) - sc_from;
425 
426     default:
427         g_assert_not_reached();
428     }
429 }
430 
431 /*
432  * Return the number of contiguous subclusters of the exact same type
433  * in a given L2 slice, starting from cluster @l2_index, subcluster
434  * @sc_index. Allocated subclusters are required to be contiguous in
435  * the image file.
436  * At most @nb_clusters are checked (note that this means clusters,
437  * not subclusters).
438  * Compressed clusters are always processed one by one but for the
439  * purpose of this count they are treated as if they were divided into
440  * subclusters of size s->subcluster_size.
441  * On failure return -errno and update @l2_index to point to the
442  * invalid entry.
443  */
444 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
445                                         unsigned sc_index, uint64_t *l2_slice,
446                                         unsigned *l2_index)
447 {
448     BDRVQcow2State *s = bs->opaque;
449     int i, count = 0;
450     bool check_offset = false;
451     uint64_t expected_offset = 0;
452     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
453 
454     assert(*l2_index + nb_clusters <= s->l2_slice_size);
455 
456     for (i = 0; i < nb_clusters; i++) {
457         unsigned first_sc = (i == 0) ? sc_index : 0;
458         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
459         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
460         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
461                                                   first_sc, &type);
462         if (ret < 0) {
463             *l2_index += i; /* Point to the invalid entry */
464             return -EIO;
465         }
466         if (i == 0) {
467             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
468                 /* Compressed clusters are always processed one by one */
469                 return ret;
470             }
471             expected_type = type;
472             expected_offset = l2_entry & L2E_OFFSET_MASK;
473             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
474                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
475                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
476         } else if (type != expected_type) {
477             break;
478         } else if (check_offset) {
479             expected_offset += s->cluster_size;
480             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
481                 break;
482             }
483         }
484         count += ret;
485         /* Stop if there are type changes before the end of the cluster */
486         if (first_sc + ret < s->subclusters_per_cluster) {
487             break;
488         }
489     }
490 
491     return count;
492 }
493 
494 static int coroutine_fn GRAPH_RDLOCK
495 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset,
496                     unsigned offset_in_cluster, QEMUIOVector *qiov)
497 {
498     int ret;
499 
500     if (qiov->size == 0) {
501         return 0;
502     }
503 
504     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
505 
506     if (!bs->drv) {
507         return -ENOMEDIUM;
508     }
509 
510     /*
511      * We never deal with requests that don't satisfy
512      * bdrv_check_qiov_request(), and aligning requests to clusters never
513      * breaks this condition. So, do some assertions before calling
514      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
515      */
516     assert(src_cluster_offset <= INT64_MAX);
517     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
518     /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
519     assert((uint64_t)qiov->size <= INT64_MAX);
520     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
521                             qiov, 0, &error_abort);
522     /*
523      * Call .bdrv_co_readv() directly instead of using the public block-layer
524      * interface.  This avoids double I/O throttling and request tracking,
525      * which can lead to deadlock when block layer copy-on-read is enabled.
526      */
527     ret = bs->drv->bdrv_co_preadv_part(bs,
528                                        src_cluster_offset + offset_in_cluster,
529                                        qiov->size, qiov, 0, 0);
530     if (ret < 0) {
531         return ret;
532     }
533 
534     return 0;
535 }
536 
537 static int coroutine_fn GRAPH_RDLOCK
538 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset,
539                      unsigned offset_in_cluster, QEMUIOVector *qiov)
540 {
541     BDRVQcow2State *s = bs->opaque;
542     int ret;
543 
544     if (qiov->size == 0) {
545         return 0;
546     }
547 
548     ret = qcow2_pre_write_overlap_check(bs, 0,
549             cluster_offset + offset_in_cluster, qiov->size, true);
550     if (ret < 0) {
551         return ret;
552     }
553 
554     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
555     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
556                           qiov->size, qiov, 0);
557     if (ret < 0) {
558         return ret;
559     }
560 
561     return 0;
562 }
563 
564 
565 /*
566  * get_host_offset
567  *
568  * For a given offset of the virtual disk find the equivalent host
569  * offset in the qcow2 file and store it in *host_offset. Neither
570  * offset needs to be aligned to a cluster boundary.
571  *
572  * If the cluster is unallocated then *host_offset will be 0.
573  * If the cluster is compressed then *host_offset will contain the l2 entry.
574  *
575  * On entry, *bytes is the maximum number of contiguous bytes starting at
576  * offset that we are interested in.
577  *
578  * On exit, *bytes is the number of bytes starting at offset that have the same
579  * subcluster type and (if applicable) are stored contiguously in the image
580  * file. The subcluster type is stored in *subcluster_type.
581  * Compressed clusters are always processed one by one.
582  *
583  * Returns 0 on success, -errno in error cases.
584  */
585 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
586                           unsigned int *bytes, uint64_t *host_offset,
587                           QCow2SubclusterType *subcluster_type)
588 {
589     BDRVQcow2State *s = bs->opaque;
590     unsigned int l2_index, sc_index;
591     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
592     int sc;
593     unsigned int offset_in_cluster;
594     uint64_t bytes_available, bytes_needed, nb_clusters;
595     QCow2SubclusterType type;
596     int ret;
597 
598     offset_in_cluster = offset_into_cluster(s, offset);
599     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
600 
601     /* compute how many bytes there are between the start of the cluster
602      * containing offset and the end of the l2 slice that contains
603      * the entry pointing to it */
604     bytes_available =
605         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
606         << s->cluster_bits;
607 
608     if (bytes_needed > bytes_available) {
609         bytes_needed = bytes_available;
610     }
611 
612     *host_offset = 0;
613 
614     /* seek to the l2 offset in the l1 table */
615 
616     l1_index = offset_to_l1_index(s, offset);
617     if (l1_index >= s->l1_size) {
618         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
619         goto out;
620     }
621 
622     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
623     if (!l2_offset) {
624         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
625         goto out;
626     }
627 
628     if (offset_into_cluster(s, l2_offset)) {
629         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
630                                 " unaligned (L1 index: %#" PRIx64 ")",
631                                 l2_offset, l1_index);
632         return -EIO;
633     }
634 
635     /* load the l2 slice in memory */
636 
637     ret = l2_load(bs, offset, l2_offset, &l2_slice);
638     if (ret < 0) {
639         return ret;
640     }
641 
642     /* find the cluster offset for the given disk offset */
643 
644     l2_index = offset_to_l2_slice_index(s, offset);
645     sc_index = offset_to_sc_index(s, offset);
646     l2_entry = get_l2_entry(s, l2_slice, l2_index);
647     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
648 
649     nb_clusters = size_to_clusters(s, bytes_needed);
650     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
651      * integers; the minimum cluster size is 512, so this assertion is always
652      * true */
653     assert(nb_clusters <= INT_MAX);
654 
655     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
656     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
657                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
658         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
659                                 " in pre-v3 image (L2 offset: %#" PRIx64
660                                 ", L2 index: %#x)", l2_offset, l2_index);
661         ret = -EIO;
662         goto fail;
663     }
664     switch (type) {
665     case QCOW2_SUBCLUSTER_INVALID:
666         break; /* This is handled by count_contiguous_subclusters() below */
667     case QCOW2_SUBCLUSTER_COMPRESSED:
668         if (has_data_file(bs)) {
669             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
670                                     "entry found in image with external data "
671                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
672                                     "%#x)", l2_offset, l2_index);
673             ret = -EIO;
674             goto fail;
675         }
676         *host_offset = l2_entry;
677         break;
678     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
679     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
680         break;
681     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
682     case QCOW2_SUBCLUSTER_NORMAL:
683     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
684         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
685         *host_offset = host_cluster_offset + offset_in_cluster;
686         if (offset_into_cluster(s, host_cluster_offset)) {
687             qcow2_signal_corruption(bs, true, -1, -1,
688                                     "Cluster allocation offset %#"
689                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
690                                     ", L2 index: %#x)", host_cluster_offset,
691                                     l2_offset, l2_index);
692             ret = -EIO;
693             goto fail;
694         }
695         if (has_data_file(bs) && *host_offset != offset) {
696             qcow2_signal_corruption(bs, true, -1, -1,
697                                     "External data file host cluster offset %#"
698                                     PRIx64 " does not match guest cluster "
699                                     "offset: %#" PRIx64
700                                     ", L2 index: %#x)", host_cluster_offset,
701                                     offset - offset_in_cluster, l2_index);
702             ret = -EIO;
703             goto fail;
704         }
705         break;
706     }
707     default:
708         abort();
709     }
710 
711     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
712                                       l2_slice, &l2_index);
713     if (sc < 0) {
714         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
715                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
716                                 l2_offset, l2_index);
717         ret = -EIO;
718         goto fail;
719     }
720     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
721 
722     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
723 
724 out:
725     if (bytes_available > bytes_needed) {
726         bytes_available = bytes_needed;
727     }
728 
729     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
730      * subtracting offset_in_cluster will therefore definitely yield something
731      * not exceeding UINT_MAX */
732     assert(bytes_available - offset_in_cluster <= UINT_MAX);
733     *bytes = bytes_available - offset_in_cluster;
734 
735     *subcluster_type = type;
736 
737     return 0;
738 
739 fail:
740     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
741     return ret;
742 }
743 
744 /*
745  * get_cluster_table
746  *
747  * for a given disk offset, load (and allocate if needed)
748  * the appropriate slice of its l2 table.
749  *
750  * the cluster index in the l2 slice is given to the caller.
751  *
752  * Returns 0 on success, -errno in failure case
753  */
754 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
755                              uint64_t **new_l2_slice,
756                              int *new_l2_index)
757 {
758     BDRVQcow2State *s = bs->opaque;
759     unsigned int l2_index;
760     uint64_t l1_index, l2_offset;
761     uint64_t *l2_slice = NULL;
762     int ret;
763 
764     /* seek to the l2 offset in the l1 table */
765 
766     l1_index = offset_to_l1_index(s, offset);
767     if (l1_index >= s->l1_size) {
768         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
769         if (ret < 0) {
770             return ret;
771         }
772     }
773 
774     assert(l1_index < s->l1_size);
775     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
776     if (offset_into_cluster(s, l2_offset)) {
777         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
778                                 " unaligned (L1 index: %#" PRIx64 ")",
779                                 l2_offset, l1_index);
780         return -EIO;
781     }
782 
783     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
784         /* First allocate a new L2 table (and do COW if needed) */
785         ret = l2_allocate(bs, l1_index);
786         if (ret < 0) {
787             return ret;
788         }
789 
790         /* Then decrease the refcount of the old table */
791         if (l2_offset) {
792             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
793                                 QCOW2_DISCARD_OTHER);
794         }
795 
796         /* Get the offset of the newly-allocated l2 table */
797         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
798         assert(offset_into_cluster(s, l2_offset) == 0);
799     }
800 
801     /* load the l2 slice in memory */
802     ret = l2_load(bs, offset, l2_offset, &l2_slice);
803     if (ret < 0) {
804         return ret;
805     }
806 
807     /* find the cluster offset for the given disk offset */
808 
809     l2_index = offset_to_l2_slice_index(s, offset);
810 
811     *new_l2_slice = l2_slice;
812     *new_l2_index = l2_index;
813 
814     return 0;
815 }
816 
817 /*
818  * alloc_compressed_cluster_offset
819  *
820  * For a given offset on the virtual disk, allocate a new compressed cluster
821  * and put the host offset of the cluster into *host_offset. If a cluster is
822  * already allocated at the offset, return an error.
823  *
824  * Return 0 on success and -errno in error cases
825  */
826 int coroutine_fn qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
827                                                        uint64_t offset,
828                                                        int compressed_size,
829                                                        uint64_t *host_offset)
830 {
831     BDRVQcow2State *s = bs->opaque;
832     int l2_index, ret;
833     uint64_t *l2_slice;
834     int64_t cluster_offset;
835     int nb_csectors;
836 
837     if (has_data_file(bs)) {
838         return 0;
839     }
840 
841     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
842     if (ret < 0) {
843         return ret;
844     }
845 
846     /* Compression can't overwrite anything. Fail if the cluster was already
847      * allocated. */
848     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
849     if (cluster_offset & L2E_OFFSET_MASK) {
850         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
851         return -EIO;
852     }
853 
854     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
855     if (cluster_offset < 0) {
856         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
857         return cluster_offset;
858     }
859 
860     nb_csectors =
861         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
862         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
863 
864     /* The offset and size must fit in their fields of the L2 table entry */
865     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
866     assert((nb_csectors & s->csize_mask) == nb_csectors);
867 
868     cluster_offset |= QCOW_OFLAG_COMPRESSED |
869                       ((uint64_t)nb_csectors << s->csize_shift);
870 
871     /* update L2 table */
872 
873     /* compressed clusters never have the copied flag */
874 
875     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
876     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
877     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
878     if (has_subclusters(s)) {
879         set_l2_bitmap(s, l2_slice, l2_index, 0);
880     }
881     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
882 
883     *host_offset = cluster_offset & s->cluster_offset_mask;
884     return 0;
885 }
886 
887 static int coroutine_fn GRAPH_RDLOCK
888 perform_cow(BlockDriverState *bs, QCowL2Meta *m)
889 {
890     BDRVQcow2State *s = bs->opaque;
891     Qcow2COWRegion *start = &m->cow_start;
892     Qcow2COWRegion *end = &m->cow_end;
893     unsigned buffer_size;
894     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
895     bool merge_reads;
896     uint8_t *start_buffer, *end_buffer;
897     QEMUIOVector qiov;
898     int ret;
899 
900     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
901     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
902     assert(start->offset + start->nb_bytes <= end->offset);
903 
904     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
905         return 0;
906     }
907 
908     /* If we have to read both the start and end COW regions and the
909      * middle region is not too large then perform just one read
910      * operation */
911     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
912     if (merge_reads) {
913         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
914     } else {
915         /* If we have to do two reads, add some padding in the middle
916          * if necessary to make sure that the end region is optimally
917          * aligned. */
918         size_t align = bdrv_opt_mem_align(bs);
919         assert(align > 0 && align <= UINT_MAX);
920         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
921                UINT_MAX - end->nb_bytes);
922         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
923     }
924 
925     /* Reserve a buffer large enough to store all the data that we're
926      * going to read */
927     start_buffer = qemu_try_blockalign(bs, buffer_size);
928     if (start_buffer == NULL) {
929         return -ENOMEM;
930     }
931     /* The part of the buffer where the end region is located */
932     end_buffer = start_buffer + buffer_size - end->nb_bytes;
933 
934     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
935                                 qemu_iovec_subvec_niov(m->data_qiov,
936                                                        m->data_qiov_offset,
937                                                        data_bytes)
938                                 : 0));
939 
940     qemu_co_mutex_unlock(&s->lock);
941     /* First we read the existing data from both COW regions. We
942      * either read the whole region in one go, or the start and end
943      * regions separately. */
944     if (merge_reads) {
945         qemu_iovec_add(&qiov, start_buffer, buffer_size);
946         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
947     } else {
948         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
949         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
950         if (ret < 0) {
951             goto fail;
952         }
953 
954         qemu_iovec_reset(&qiov);
955         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
956         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
957     }
958     if (ret < 0) {
959         goto fail;
960     }
961 
962     /* Encrypt the data if necessary before writing it */
963     if (bs->encrypted) {
964         ret = qcow2_co_encrypt(bs,
965                                m->alloc_offset + start->offset,
966                                m->offset + start->offset,
967                                start_buffer, start->nb_bytes);
968         if (ret < 0) {
969             goto fail;
970         }
971 
972         ret = qcow2_co_encrypt(bs,
973                                m->alloc_offset + end->offset,
974                                m->offset + end->offset,
975                                end_buffer, end->nb_bytes);
976         if (ret < 0) {
977             goto fail;
978         }
979     }
980 
981     /* And now we can write everything. If we have the guest data we
982      * can write everything in one single operation */
983     if (m->data_qiov) {
984         qemu_iovec_reset(&qiov);
985         if (start->nb_bytes) {
986             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
987         }
988         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
989         if (end->nb_bytes) {
990             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
991         }
992         /* NOTE: we have a write_aio blkdebug event here followed by
993          * a cow_write one in do_perform_cow_write(), but there's only
994          * one single I/O operation */
995         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
996         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
997     } else {
998         /* If there's no guest data then write both COW regions separately */
999         qemu_iovec_reset(&qiov);
1000         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1001         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1002         if (ret < 0) {
1003             goto fail;
1004         }
1005 
1006         qemu_iovec_reset(&qiov);
1007         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1008         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1009     }
1010 
1011 fail:
1012     qemu_co_mutex_lock(&s->lock);
1013 
1014     /*
1015      * Before we update the L2 table to actually point to the new cluster, we
1016      * need to be sure that the refcounts have been increased and COW was
1017      * handled.
1018      */
1019     if (ret == 0) {
1020         qcow2_cache_depends_on_flush(s->l2_table_cache);
1021     }
1022 
1023     qemu_vfree(start_buffer);
1024     qemu_iovec_destroy(&qiov);
1025     return ret;
1026 }
1027 
1028 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1029                                              QCowL2Meta *m)
1030 {
1031     BDRVQcow2State *s = bs->opaque;
1032     int i, j = 0, l2_index, ret;
1033     uint64_t *old_cluster, *l2_slice;
1034     uint64_t cluster_offset = m->alloc_offset;
1035 
1036     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1037     assert(m->nb_clusters > 0);
1038 
1039     old_cluster = g_try_new(uint64_t, m->nb_clusters);
1040     if (old_cluster == NULL) {
1041         ret = -ENOMEM;
1042         goto err;
1043     }
1044 
1045     /* copy content of unmodified sectors */
1046     ret = perform_cow(bs, m);
1047     if (ret < 0) {
1048         goto err;
1049     }
1050 
1051     /* Update L2 table. */
1052     if (s->use_lazy_refcounts) {
1053         qcow2_mark_dirty(bs);
1054     }
1055     if (qcow2_need_accurate_refcounts(s)) {
1056         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1057                                    s->refcount_block_cache);
1058     }
1059 
1060     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1061     if (ret < 0) {
1062         goto err;
1063     }
1064     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1065 
1066     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1067     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1068            m->nb_clusters << s->cluster_bits);
1069     for (i = 0; i < m->nb_clusters; i++) {
1070         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1071         /* if two concurrent writes happen to the same unallocated cluster
1072          * each write allocates separate cluster and writes data concurrently.
1073          * The first one to complete updates l2 table with pointer to its
1074          * cluster the second one has to do RMW (which is done above by
1075          * perform_cow()), update l2 table with its cluster pointer and free
1076          * old cluster. This is what this loop does */
1077         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1078             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1079         }
1080 
1081         /* The offset must fit in the offset field of the L2 table entry */
1082         assert((offset & L2E_OFFSET_MASK) == offset);
1083 
1084         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1085 
1086         /* Update bitmap with the subclusters that were just written */
1087         if (has_subclusters(s) && !m->prealloc) {
1088             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1089             unsigned written_from = m->cow_start.offset;
1090             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1091             int first_sc, last_sc;
1092             /* Narrow written_from and written_to down to the current cluster */
1093             written_from = MAX(written_from, i << s->cluster_bits);
1094             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1095             assert(written_from < written_to);
1096             first_sc = offset_to_sc_index(s, written_from);
1097             last_sc  = offset_to_sc_index(s, written_to - 1);
1098             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1099             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1100             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1101         }
1102      }
1103 
1104 
1105     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1106 
1107     /*
1108      * If this was a COW, we need to decrease the refcount of the old cluster.
1109      *
1110      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111      * clusters), the next write will reuse them anyway.
1112      */
1113     if (!m->keep_old_clusters && j != 0) {
1114         for (i = 0; i < j; i++) {
1115             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1116         }
1117     }
1118 
1119     ret = 0;
1120 err:
1121     g_free(old_cluster);
1122     return ret;
1123  }
1124 
1125 /**
1126  * Frees the allocated clusters because the request failed and they won't
1127  * actually be linked.
1128  */
1129 void coroutine_fn qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1130 {
1131     BDRVQcow2State *s = bs->opaque;
1132     if (!has_data_file(bs) && !m->keep_old_clusters) {
1133         qcow2_free_clusters(bs, m->alloc_offset,
1134                             m->nb_clusters << s->cluster_bits,
1135                             QCOW2_DISCARD_NEVER);
1136     }
1137 }
1138 
1139 /*
1140  * For a given write request, create a new QCowL2Meta structure, add
1141  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142  * request does not need copy-on-write or changes to the L2 metadata
1143  * then this function does nothing.
1144  *
1145  * @host_cluster_offset points to the beginning of the first cluster.
1146  *
1147  * @guest_offset and @bytes indicate the offset and length of the
1148  * request.
1149  *
1150  * @l2_slice contains the L2 entries of all clusters involved in this
1151  * write request.
1152  *
1153  * If @keep_old is true it means that the clusters were already
1154  * allocated and will be overwritten. If false then the clusters are
1155  * new and we have to decrease the reference count of the old ones.
1156  *
1157  * Returns 0 on success, -errno on failure.
1158  */
1159 static int coroutine_fn calculate_l2_meta(BlockDriverState *bs,
1160                                           uint64_t host_cluster_offset,
1161                                           uint64_t guest_offset, unsigned bytes,
1162                                           uint64_t *l2_slice, QCowL2Meta **m,
1163                                           bool keep_old)
1164 {
1165     BDRVQcow2State *s = bs->opaque;
1166     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1167     uint64_t l2_entry, l2_bitmap;
1168     unsigned cow_start_from, cow_end_to;
1169     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1170     unsigned cow_end_from = cow_start_to + bytes;
1171     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1172     QCowL2Meta *old_m = *m;
1173     QCow2SubclusterType type;
1174     int i;
1175     bool skip_cow = keep_old;
1176 
1177     assert(nb_clusters <= s->l2_slice_size - l2_index);
1178 
1179     /* Check the type of all affected subclusters */
1180     for (i = 0; i < nb_clusters; i++) {
1181         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1182         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1183         if (skip_cow) {
1184             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1185             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1186             int first_sc = offset_to_sc_index(s, write_from);
1187             int last_sc = offset_to_sc_index(s, write_to - 1);
1188             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1189                                                       first_sc, &type);
1190             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1191             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1192                 skip_cow = false;
1193             }
1194         } else {
1195             /* If we can't skip the cow we can still look for invalid entries */
1196             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1197         }
1198         if (type == QCOW2_SUBCLUSTER_INVALID) {
1199             int l1_index = offset_to_l1_index(s, guest_offset);
1200             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1201             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1202                                     "entry found (L2 offset: %#" PRIx64
1203                                     ", L2 index: %#x)",
1204                                     l2_offset, l2_index + i);
1205             return -EIO;
1206         }
1207     }
1208 
1209     if (skip_cow) {
1210         return 0;
1211     }
1212 
1213     /* Get the L2 entry of the first cluster */
1214     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1215     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1216     sc_index = offset_to_sc_index(s, guest_offset);
1217     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1218 
1219     if (!keep_old) {
1220         switch (type) {
1221         case QCOW2_SUBCLUSTER_COMPRESSED:
1222             cow_start_from = 0;
1223             break;
1224         case QCOW2_SUBCLUSTER_NORMAL:
1225         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1226         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1227             if (has_subclusters(s)) {
1228                 /* Skip all leading zero and unallocated subclusters */
1229                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1230                 cow_start_from =
1231                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1232             } else {
1233                 cow_start_from = 0;
1234             }
1235             break;
1236         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1237         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1238             cow_start_from = sc_index << s->subcluster_bits;
1239             break;
1240         default:
1241             g_assert_not_reached();
1242         }
1243     } else {
1244         switch (type) {
1245         case QCOW2_SUBCLUSTER_NORMAL:
1246             cow_start_from = cow_start_to;
1247             break;
1248         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1249         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1250             cow_start_from = sc_index << s->subcluster_bits;
1251             break;
1252         default:
1253             g_assert_not_reached();
1254         }
1255     }
1256 
1257     /* Get the L2 entry of the last cluster */
1258     l2_index += nb_clusters - 1;
1259     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1260     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1261     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1262     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1263 
1264     if (!keep_old) {
1265         switch (type) {
1266         case QCOW2_SUBCLUSTER_COMPRESSED:
1267             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1268             break;
1269         case QCOW2_SUBCLUSTER_NORMAL:
1270         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1271         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1272             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1273             if (has_subclusters(s)) {
1274                 /* Skip all trailing zero and unallocated subclusters */
1275                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1276                 cow_end_to -=
1277                     MIN(s->subclusters_per_cluster - sc_index - 1,
1278                         clz32(alloc_bitmap)) << s->subcluster_bits;
1279             }
1280             break;
1281         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1282         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1283             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1284             break;
1285         default:
1286             g_assert_not_reached();
1287         }
1288     } else {
1289         switch (type) {
1290         case QCOW2_SUBCLUSTER_NORMAL:
1291             cow_end_to = cow_end_from;
1292             break;
1293         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1294         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1295             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1296             break;
1297         default:
1298             g_assert_not_reached();
1299         }
1300     }
1301 
1302     *m = g_malloc0(sizeof(**m));
1303     **m = (QCowL2Meta) {
1304         .next           = old_m,
1305 
1306         .alloc_offset   = host_cluster_offset,
1307         .offset         = start_of_cluster(s, guest_offset),
1308         .nb_clusters    = nb_clusters,
1309 
1310         .keep_old_clusters = keep_old,
1311 
1312         .cow_start = {
1313             .offset     = cow_start_from,
1314             .nb_bytes   = cow_start_to - cow_start_from,
1315         },
1316         .cow_end = {
1317             .offset     = cow_end_from,
1318             .nb_bytes   = cow_end_to - cow_end_from,
1319         },
1320     };
1321 
1322     qemu_co_queue_init(&(*m)->dependent_requests);
1323     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1324 
1325     return 0;
1326 }
1327 
1328 /*
1329  * Returns true if writing to the cluster pointed to by @l2_entry
1330  * requires a new allocation (that is, if the cluster is unallocated
1331  * or has refcount > 1 and therefore cannot be written in-place).
1332  */
1333 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1334 {
1335     switch (qcow2_get_cluster_type(bs, l2_entry)) {
1336     case QCOW2_CLUSTER_NORMAL:
1337     case QCOW2_CLUSTER_ZERO_ALLOC:
1338         if (l2_entry & QCOW_OFLAG_COPIED) {
1339             return false;
1340         }
1341         /* fallthrough */
1342     case QCOW2_CLUSTER_UNALLOCATED:
1343     case QCOW2_CLUSTER_COMPRESSED:
1344     case QCOW2_CLUSTER_ZERO_PLAIN:
1345         return true;
1346     default:
1347         abort();
1348     }
1349 }
1350 
1351 /*
1352  * Returns the number of contiguous clusters that can be written to
1353  * using one single write request, starting from @l2_index.
1354  * At most @nb_clusters are checked.
1355  *
1356  * If @new_alloc is true this counts clusters that are either
1357  * unallocated, or allocated but with refcount > 1 (so they need to be
1358  * newly allocated and COWed).
1359  *
1360  * If @new_alloc is false this counts clusters that are already
1361  * allocated and can be overwritten in-place (this includes clusters
1362  * of type QCOW2_CLUSTER_ZERO_ALLOC).
1363  */
1364 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1365                                        uint64_t *l2_slice, int l2_index,
1366                                        bool new_alloc)
1367 {
1368     BDRVQcow2State *s = bs->opaque;
1369     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1370     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1371     int i;
1372 
1373     for (i = 0; i < nb_clusters; i++) {
1374         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1375         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1376             break;
1377         }
1378         if (!new_alloc) {
1379             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1380                 break;
1381             }
1382             expected_offset += s->cluster_size;
1383         }
1384     }
1385 
1386     assert(i <= nb_clusters);
1387     return i;
1388 }
1389 
1390 /*
1391  * Check if there already is an AIO write request in flight which allocates
1392  * the same cluster. In this case we need to wait until the previous
1393  * request has completed and updated the L2 table accordingly.
1394  *
1395  * Returns:
1396  *   0       if there was no dependency. *cur_bytes indicates the number of
1397  *           bytes from guest_offset that can be read before the next
1398  *           dependency must be processed (or the request is complete)
1399  *
1400  *   -EAGAIN if we had to wait for another request, previously gathered
1401  *           information on cluster allocation may be invalid now. The caller
1402  *           must start over anyway, so consider *cur_bytes undefined.
1403  */
1404 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1405                                             uint64_t guest_offset,
1406                                             uint64_t *cur_bytes, QCowL2Meta **m)
1407 {
1408     BDRVQcow2State *s = bs->opaque;
1409     QCowL2Meta *old_alloc;
1410     uint64_t bytes = *cur_bytes;
1411 
1412     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1413 
1414         uint64_t start = guest_offset;
1415         uint64_t end = start + bytes;
1416         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1417         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1418 
1419         if (end <= old_start || start >= old_end) {
1420             /* No intersection */
1421             continue;
1422         }
1423 
1424         if (old_alloc->keep_old_clusters &&
1425             (end <= l2meta_cow_start(old_alloc) ||
1426              start >= l2meta_cow_end(old_alloc)))
1427         {
1428             /*
1429              * Clusters intersect but COW areas don't. And cluster itself is
1430              * already allocated. So, there is no actual conflict.
1431              */
1432             continue;
1433         }
1434 
1435         /* Conflict */
1436 
1437         if (start < old_start) {
1438             /* Stop at the start of a running allocation */
1439             bytes = old_start - start;
1440         } else {
1441             bytes = 0;
1442         }
1443 
1444         /*
1445          * Stop if an l2meta already exists. After yielding, it wouldn't
1446          * be valid any more, so we'd have to clean up the old L2Metas
1447          * and deal with requests depending on them before starting to
1448          * gather new ones. Not worth the trouble.
1449          */
1450         if (bytes == 0 && *m) {
1451             *cur_bytes = 0;
1452             return 0;
1453         }
1454 
1455         if (bytes == 0) {
1456             /*
1457              * Wait for the dependency to complete. We need to recheck
1458              * the free/allocated clusters when we continue.
1459              */
1460             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1461             return -EAGAIN;
1462         }
1463     }
1464 
1465     /* Make sure that existing clusters and new allocations are only used up to
1466      * the next dependency if we shortened the request above */
1467     *cur_bytes = bytes;
1468 
1469     return 0;
1470 }
1471 
1472 /*
1473  * Checks how many already allocated clusters that don't require a new
1474  * allocation there are at the given guest_offset (up to *bytes).
1475  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1476  * beginning at this host offset are counted.
1477  *
1478  * Note that guest_offset may not be cluster aligned. In this case, the
1479  * returned *host_offset points to exact byte referenced by guest_offset and
1480  * therefore isn't cluster aligned as well.
1481  *
1482  * Returns:
1483  *   0:     if no allocated clusters are available at the given offset.
1484  *          *bytes is normally unchanged. It is set to 0 if the cluster
1485  *          is allocated and can be overwritten in-place but doesn't have
1486  *          the right physical offset.
1487  *
1488  *   1:     if allocated clusters that can be overwritten in place are
1489  *          available at the requested offset. *bytes may have decreased
1490  *          and describes the length of the area that can be written to.
1491  *
1492  *  -errno: in error cases
1493  */
1494 static int coroutine_fn handle_copied(BlockDriverState *bs,
1495     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1496     QCowL2Meta **m)
1497 {
1498     BDRVQcow2State *s = bs->opaque;
1499     int l2_index;
1500     uint64_t l2_entry, cluster_offset;
1501     uint64_t *l2_slice;
1502     uint64_t nb_clusters;
1503     unsigned int keep_clusters;
1504     int ret;
1505 
1506     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1507                               *bytes);
1508 
1509     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1510                                       == offset_into_cluster(s, *host_offset));
1511 
1512     /*
1513      * Calculate the number of clusters to look for. We stop at L2 slice
1514      * boundaries to keep things simple.
1515      */
1516     nb_clusters =
1517         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1518 
1519     l2_index = offset_to_l2_slice_index(s, guest_offset);
1520     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1521     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1522     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1523 
1524     /* Find L2 entry for the first involved cluster */
1525     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1526     if (ret < 0) {
1527         return ret;
1528     }
1529 
1530     l2_entry = get_l2_entry(s, l2_slice, l2_index);
1531     cluster_offset = l2_entry & L2E_OFFSET_MASK;
1532 
1533     if (!cluster_needs_new_alloc(bs, l2_entry)) {
1534         if (offset_into_cluster(s, cluster_offset)) {
1535             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1536                                     "%#" PRIx64 " unaligned (guest offset: %#"
1537                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1538                                     "Preallocated zero" : "Data",
1539                                     cluster_offset, guest_offset);
1540             ret = -EIO;
1541             goto out;
1542         }
1543 
1544         /* If a specific host_offset is required, check it */
1545         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1546             *bytes = 0;
1547             ret = 0;
1548             goto out;
1549         }
1550 
1551         /* We keep all QCOW_OFLAG_COPIED clusters */
1552         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1553                                                     l2_index, false);
1554         assert(keep_clusters <= nb_clusters);
1555 
1556         *bytes = MIN(*bytes,
1557                  keep_clusters * s->cluster_size
1558                  - offset_into_cluster(s, guest_offset));
1559         assert(*bytes != 0);
1560 
1561         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1562                                 *bytes, l2_slice, m, true);
1563         if (ret < 0) {
1564             goto out;
1565         }
1566 
1567         ret = 1;
1568     } else {
1569         ret = 0;
1570     }
1571 
1572     /* Cleanup */
1573 out:
1574     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1575 
1576     /* Only return a host offset if we actually made progress. Otherwise we
1577      * would make requirements for handle_alloc() that it can't fulfill */
1578     if (ret > 0) {
1579         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1580     }
1581 
1582     return ret;
1583 }
1584 
1585 /*
1586  * Allocates new clusters for the given guest_offset.
1587  *
1588  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1589  * contain the number of clusters that have been allocated and are contiguous
1590  * in the image file.
1591  *
1592  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1593  * at which the new clusters must start. *nb_clusters can be 0 on return in
1594  * this case if the cluster at host_offset is already in use. If *host_offset
1595  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1596  *
1597  * *host_offset is updated to contain the offset into the image file at which
1598  * the first allocated cluster starts.
1599  *
1600  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1601  * function has been waiting for another request and the allocation must be
1602  * restarted, but the whole request should not be failed.
1603  */
1604 static int coroutine_fn do_alloc_cluster_offset(BlockDriverState *bs,
1605                                                 uint64_t guest_offset,
1606                                                 uint64_t *host_offset,
1607                                                 uint64_t *nb_clusters)
1608 {
1609     BDRVQcow2State *s = bs->opaque;
1610 
1611     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1612                                          *host_offset, *nb_clusters);
1613 
1614     if (has_data_file(bs)) {
1615         assert(*host_offset == INV_OFFSET ||
1616                *host_offset == start_of_cluster(s, guest_offset));
1617         *host_offset = start_of_cluster(s, guest_offset);
1618         return 0;
1619     }
1620 
1621     /* Allocate new clusters */
1622     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1623     if (*host_offset == INV_OFFSET) {
1624         int64_t cluster_offset =
1625             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1626         if (cluster_offset < 0) {
1627             return cluster_offset;
1628         }
1629         *host_offset = cluster_offset;
1630         return 0;
1631     } else {
1632         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1633         if (ret < 0) {
1634             return ret;
1635         }
1636         *nb_clusters = ret;
1637         return 0;
1638     }
1639 }
1640 
1641 /*
1642  * Allocates new clusters for an area that is either still unallocated or
1643  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1644  * clusters are only allocated if the new allocation can match the specified
1645  * host offset.
1646  *
1647  * Note that guest_offset may not be cluster aligned. In this case, the
1648  * returned *host_offset points to exact byte referenced by guest_offset and
1649  * therefore isn't cluster aligned as well.
1650  *
1651  * Returns:
1652  *   0:     if no clusters could be allocated. *bytes is set to 0,
1653  *          *host_offset is left unchanged.
1654  *
1655  *   1:     if new clusters were allocated. *bytes may be decreased if the
1656  *          new allocation doesn't cover all of the requested area.
1657  *          *host_offset is updated to contain the host offset of the first
1658  *          newly allocated cluster.
1659  *
1660  *  -errno: in error cases
1661  */
1662 static int coroutine_fn handle_alloc(BlockDriverState *bs,
1663     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1664     QCowL2Meta **m)
1665 {
1666     BDRVQcow2State *s = bs->opaque;
1667     int l2_index;
1668     uint64_t *l2_slice;
1669     uint64_t nb_clusters;
1670     int ret;
1671 
1672     uint64_t alloc_cluster_offset;
1673 
1674     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1675                              *bytes);
1676     assert(*bytes > 0);
1677 
1678     /*
1679      * Calculate the number of clusters to look for. We stop at L2 slice
1680      * boundaries to keep things simple.
1681      */
1682     nb_clusters =
1683         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1684 
1685     l2_index = offset_to_l2_slice_index(s, guest_offset);
1686     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1687     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1688     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1689 
1690     /* Find L2 entry for the first involved cluster */
1691     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1692     if (ret < 0) {
1693         return ret;
1694     }
1695 
1696     nb_clusters = count_single_write_clusters(bs, nb_clusters,
1697                                               l2_slice, l2_index, true);
1698 
1699     /* This function is only called when there were no non-COW clusters, so if
1700      * we can't find any unallocated or COW clusters either, something is
1701      * wrong with our code. */
1702     assert(nb_clusters > 0);
1703 
1704     /* Allocate at a given offset in the image file */
1705     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1706         start_of_cluster(s, *host_offset);
1707     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1708                                   &nb_clusters);
1709     if (ret < 0) {
1710         goto out;
1711     }
1712 
1713     /* Can't extend contiguous allocation */
1714     if (nb_clusters == 0) {
1715         *bytes = 0;
1716         ret = 0;
1717         goto out;
1718     }
1719 
1720     assert(alloc_cluster_offset != INV_OFFSET);
1721 
1722     /*
1723      * Save info needed for meta data update.
1724      *
1725      * requested_bytes: Number of bytes from the start of the first
1726      * newly allocated cluster to the end of the (possibly shortened
1727      * before) write request.
1728      *
1729      * avail_bytes: Number of bytes from the start of the first
1730      * newly allocated to the end of the last newly allocated cluster.
1731      *
1732      * nb_bytes: The number of bytes from the start of the first
1733      * newly allocated cluster to the end of the area that the write
1734      * request actually writes to (excluding COW at the end)
1735      */
1736     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1737     int avail_bytes = nb_clusters << s->cluster_bits;
1738     int nb_bytes = MIN(requested_bytes, avail_bytes);
1739 
1740     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1741     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1742     assert(*bytes != 0);
1743 
1744     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1745                             l2_slice, m, false);
1746     if (ret < 0) {
1747         goto out;
1748     }
1749 
1750     ret = 1;
1751 
1752 out:
1753     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1754     return ret;
1755 }
1756 
1757 /*
1758  * For a given area on the virtual disk defined by @offset and @bytes,
1759  * find the corresponding area on the qcow2 image, allocating new
1760  * clusters (or subclusters) if necessary. The result can span a
1761  * combination of allocated and previously unallocated clusters.
1762  *
1763  * Note that offset may not be cluster aligned. In this case, the returned
1764  * *host_offset points to exact byte referenced by offset and therefore
1765  * isn't cluster aligned as well.
1766  *
1767  * On return, @host_offset is set to the beginning of the requested
1768  * area. This area is guaranteed to be contiguous on the qcow2 file
1769  * but it can be smaller than initially requested. In this case @bytes
1770  * is updated with the actual size.
1771  *
1772  * If any clusters or subclusters were allocated then @m contains a
1773  * list with the information of all the affected regions. Note that
1774  * this can happen regardless of whether this function succeeds or
1775  * not. The caller is responsible for updating the L2 metadata of the
1776  * allocated clusters (on success) or freeing them (on failure), and
1777  * for clearing the contents of @m afterwards in both cases.
1778  *
1779  * If the request conflicts with another write request in flight, the coroutine
1780  * is queued and will be reentered when the dependency has completed.
1781  *
1782  * Return 0 on success and -errno in error cases
1783  */
1784 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1785                                          unsigned int *bytes,
1786                                          uint64_t *host_offset,
1787                                          QCowL2Meta **m)
1788 {
1789     BDRVQcow2State *s = bs->opaque;
1790     uint64_t start, remaining;
1791     uint64_t cluster_offset;
1792     uint64_t cur_bytes;
1793     int ret;
1794 
1795     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1796 
1797 again:
1798     start = offset;
1799     remaining = *bytes;
1800     cluster_offset = INV_OFFSET;
1801     *host_offset = INV_OFFSET;
1802     cur_bytes = 0;
1803     *m = NULL;
1804 
1805     while (true) {
1806 
1807         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1808             *host_offset = cluster_offset;
1809         }
1810 
1811         assert(remaining >= cur_bytes);
1812 
1813         start           += cur_bytes;
1814         remaining       -= cur_bytes;
1815 
1816         if (cluster_offset != INV_OFFSET) {
1817             cluster_offset += cur_bytes;
1818         }
1819 
1820         if (remaining == 0) {
1821             break;
1822         }
1823 
1824         cur_bytes = remaining;
1825 
1826         /*
1827          * Now start gathering as many contiguous clusters as possible:
1828          *
1829          * 1. Check for overlaps with in-flight allocations
1830          *
1831          *      a) Overlap not in the first cluster -> shorten this request and
1832          *         let the caller handle the rest in its next loop iteration.
1833          *
1834          *      b) Real overlaps of two requests. Yield and restart the search
1835          *         for contiguous clusters (the situation could have changed
1836          *         while we were sleeping)
1837          *
1838          *      c) TODO: Request starts in the same cluster as the in-flight
1839          *         allocation ends. Shorten the COW of the in-fight allocation,
1840          *         set cluster_offset to write to the same cluster and set up
1841          *         the right synchronisation between the in-flight request and
1842          *         the new one.
1843          */
1844         ret = handle_dependencies(bs, start, &cur_bytes, m);
1845         if (ret == -EAGAIN) {
1846             /* Currently handle_dependencies() doesn't yield if we already had
1847              * an allocation. If it did, we would have to clean up the L2Meta
1848              * structs before starting over. */
1849             assert(*m == NULL);
1850             goto again;
1851         } else if (ret < 0) {
1852             return ret;
1853         } else if (cur_bytes == 0) {
1854             break;
1855         } else {
1856             /* handle_dependencies() may have decreased cur_bytes (shortened
1857              * the allocations below) so that the next dependency is processed
1858              * correctly during the next loop iteration. */
1859         }
1860 
1861         /*
1862          * 2. Count contiguous COPIED clusters.
1863          */
1864         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1865         if (ret < 0) {
1866             return ret;
1867         } else if (ret) {
1868             continue;
1869         } else if (cur_bytes == 0) {
1870             break;
1871         }
1872 
1873         /*
1874          * 3. If the request still hasn't completed, allocate new clusters,
1875          *    considering any cluster_offset of steps 1c or 2.
1876          */
1877         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1878         if (ret < 0) {
1879             return ret;
1880         } else if (ret) {
1881             continue;
1882         } else {
1883             assert(cur_bytes == 0);
1884             break;
1885         }
1886     }
1887 
1888     *bytes -= remaining;
1889     assert(*bytes > 0);
1890     assert(*host_offset != INV_OFFSET);
1891     assert(offset_into_cluster(s, *host_offset) ==
1892            offset_into_cluster(s, offset));
1893 
1894     return 0;
1895 }
1896 
1897 /*
1898  * This discards as many clusters of nb_clusters as possible at once (i.e.
1899  * all clusters in the same L2 slice) and returns the number of discarded
1900  * clusters.
1901  */
1902 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1903                                uint64_t nb_clusters,
1904                                enum qcow2_discard_type type, bool full_discard)
1905 {
1906     BDRVQcow2State *s = bs->opaque;
1907     uint64_t *l2_slice;
1908     int l2_index;
1909     int ret;
1910     int i;
1911 
1912     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1913     if (ret < 0) {
1914         return ret;
1915     }
1916 
1917     /* Limit nb_clusters to one L2 slice */
1918     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1919     assert(nb_clusters <= INT_MAX);
1920 
1921     for (i = 0; i < nb_clusters; i++) {
1922         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1923         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1924         uint64_t new_l2_entry = old_l2_entry;
1925         uint64_t new_l2_bitmap = old_l2_bitmap;
1926         QCow2ClusterType cluster_type =
1927             qcow2_get_cluster_type(bs, old_l2_entry);
1928 
1929         /*
1930          * If full_discard is true, the cluster should not read back as zeroes,
1931          * but rather fall through to the backing file.
1932          *
1933          * If full_discard is false, make sure that a discarded area reads back
1934          * as zeroes for v3 images (we cannot do it for v2 without actually
1935          * writing a zero-filled buffer). We can skip the operation if the
1936          * cluster is already marked as zero, or if it's unallocated and we
1937          * don't have a backing file.
1938          *
1939          * TODO We might want to use bdrv_block_status(bs) here, but we're
1940          * holding s->lock, so that doesn't work today.
1941          */
1942         if (full_discard) {
1943             new_l2_entry = new_l2_bitmap = 0;
1944         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1945             if (has_subclusters(s)) {
1946                 new_l2_entry = 0;
1947                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1948             } else {
1949                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1950             }
1951         }
1952 
1953         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1954             continue;
1955         }
1956 
1957         /* First remove L2 entries */
1958         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1959         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1960         if (has_subclusters(s)) {
1961             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1962         }
1963         /* Then decrease the refcount */
1964         qcow2_free_any_cluster(bs, old_l2_entry, type);
1965     }
1966 
1967     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1968 
1969     return nb_clusters;
1970 }
1971 
1972 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1973                           uint64_t bytes, enum qcow2_discard_type type,
1974                           bool full_discard)
1975 {
1976     BDRVQcow2State *s = bs->opaque;
1977     uint64_t end_offset = offset + bytes;
1978     uint64_t nb_clusters;
1979     int64_t cleared;
1980     int ret;
1981 
1982     /* Caller must pass aligned values, except at image end */
1983     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1984     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1985            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1986 
1987     nb_clusters = size_to_clusters(s, bytes);
1988 
1989     s->cache_discards = true;
1990 
1991     /* Each L2 slice is handled by its own loop iteration */
1992     while (nb_clusters > 0) {
1993         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1994                                       full_discard);
1995         if (cleared < 0) {
1996             ret = cleared;
1997             goto fail;
1998         }
1999 
2000         nb_clusters -= cleared;
2001         offset += (cleared * s->cluster_size);
2002     }
2003 
2004     ret = 0;
2005 fail:
2006     s->cache_discards = false;
2007     qcow2_process_discards(bs, ret);
2008 
2009     return ret;
2010 }
2011 
2012 /*
2013  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2014  * all clusters in the same L2 slice) and returns the number of zeroed
2015  * clusters.
2016  */
2017 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2018                             uint64_t nb_clusters, int flags)
2019 {
2020     BDRVQcow2State *s = bs->opaque;
2021     uint64_t *l2_slice;
2022     int l2_index;
2023     int ret;
2024     int i;
2025 
2026     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2027     if (ret < 0) {
2028         return ret;
2029     }
2030 
2031     /* Limit nb_clusters to one L2 slice */
2032     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2033     assert(nb_clusters <= INT_MAX);
2034 
2035     for (i = 0; i < nb_clusters; i++) {
2036         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2037         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2038         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2039         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2040             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2041         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2042         uint64_t new_l2_bitmap = old_l2_bitmap;
2043 
2044         if (has_subclusters(s)) {
2045             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2046         } else {
2047             new_l2_entry |= QCOW_OFLAG_ZERO;
2048         }
2049 
2050         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2051             continue;
2052         }
2053 
2054         /* First update L2 entries */
2055         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2056         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2057         if (has_subclusters(s)) {
2058             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2059         }
2060 
2061         /* Then decrease the refcount */
2062         if (unmap) {
2063             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2064         }
2065     }
2066 
2067     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2068 
2069     return nb_clusters;
2070 }
2071 
2072 static int coroutine_fn
2073 zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2074                     unsigned nb_subclusters)
2075 {
2076     BDRVQcow2State *s = bs->opaque;
2077     uint64_t *l2_slice;
2078     uint64_t old_l2_bitmap, l2_bitmap;
2079     int l2_index, ret, sc = offset_to_sc_index(s, offset);
2080 
2081     /* For full clusters use zero_in_l2_slice() instead */
2082     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2083     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2084     assert(offset_into_subcluster(s, offset) == 0);
2085 
2086     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2087     if (ret < 0) {
2088         return ret;
2089     }
2090 
2091     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2092     case QCOW2_CLUSTER_COMPRESSED:
2093         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2094         goto out;
2095     case QCOW2_CLUSTER_NORMAL:
2096     case QCOW2_CLUSTER_UNALLOCATED:
2097         break;
2098     default:
2099         g_assert_not_reached();
2100     }
2101 
2102     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2103 
2104     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2105     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2106 
2107     if (old_l2_bitmap != l2_bitmap) {
2108         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2109         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2110     }
2111 
2112     ret = 0;
2113 out:
2114     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2115 
2116     return ret;
2117 }
2118 
2119 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2120                                           uint64_t bytes, int flags)
2121 {
2122     BDRVQcow2State *s = bs->opaque;
2123     uint64_t end_offset = offset + bytes;
2124     uint64_t nb_clusters;
2125     unsigned head, tail;
2126     int64_t cleared;
2127     int ret;
2128 
2129     /* If we have to stay in sync with an external data file, zero out
2130      * s->data_file first. */
2131     if (data_file_is_raw(bs)) {
2132         assert(has_data_file(bs));
2133         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2134         if (ret < 0) {
2135             return ret;
2136         }
2137     }
2138 
2139     /* Caller must pass aligned values, except at image end */
2140     assert(offset_into_subcluster(s, offset) == 0);
2141     assert(offset_into_subcluster(s, end_offset) == 0 ||
2142            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2143 
2144     /*
2145      * The zero flag is only supported by version 3 and newer. However, if we
2146      * have no backing file, we can resort to discard in version 2.
2147      */
2148     if (s->qcow_version < 3) {
2149         if (!bs->backing) {
2150             return qcow2_cluster_discard(bs, offset, bytes,
2151                                          QCOW2_DISCARD_REQUEST, false);
2152         }
2153         return -ENOTSUP;
2154     }
2155 
2156     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2157     offset += head;
2158 
2159     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2160         end_offset - MAX(offset, start_of_cluster(s, end_offset));
2161     end_offset -= tail;
2162 
2163     s->cache_discards = true;
2164 
2165     if (head) {
2166         ret = zero_l2_subclusters(bs, offset - head,
2167                                   size_to_subclusters(s, head));
2168         if (ret < 0) {
2169             goto fail;
2170         }
2171     }
2172 
2173     /* Each L2 slice is handled by its own loop iteration */
2174     nb_clusters = size_to_clusters(s, end_offset - offset);
2175 
2176     while (nb_clusters > 0) {
2177         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2178         if (cleared < 0) {
2179             ret = cleared;
2180             goto fail;
2181         }
2182 
2183         nb_clusters -= cleared;
2184         offset += (cleared * s->cluster_size);
2185     }
2186 
2187     if (tail) {
2188         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2189         if (ret < 0) {
2190             goto fail;
2191         }
2192     }
2193 
2194     ret = 0;
2195 fail:
2196     s->cache_discards = false;
2197     qcow2_process_discards(bs, ret);
2198 
2199     return ret;
2200 }
2201 
2202 /*
2203  * Expands all zero clusters in a specific L1 table (or deallocates them, for
2204  * non-backed non-pre-allocated zero clusters).
2205  *
2206  * l1_entries and *visited_l1_entries are used to keep track of progress for
2207  * status_cb(). l1_entries contains the total number of L1 entries and
2208  * *visited_l1_entries counts all visited L1 entries.
2209  */
2210 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2211                                       int l1_size, int64_t *visited_l1_entries,
2212                                       int64_t l1_entries,
2213                                       BlockDriverAmendStatusCB *status_cb,
2214                                       void *cb_opaque)
2215 {
2216     BDRVQcow2State *s = bs->opaque;
2217     bool is_active_l1 = (l1_table == s->l1_table);
2218     uint64_t *l2_slice = NULL;
2219     unsigned slice, slice_size2, n_slices;
2220     int ret;
2221     int i, j;
2222 
2223     /* qcow2_downgrade() is not allowed in images with subclusters */
2224     assert(!has_subclusters(s));
2225 
2226     slice_size2 = s->l2_slice_size * l2_entry_size(s);
2227     n_slices = s->cluster_size / slice_size2;
2228 
2229     if (!is_active_l1) {
2230         /* inactive L2 tables require a buffer to be stored in when loading
2231          * them from disk */
2232         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2233         if (l2_slice == NULL) {
2234             return -ENOMEM;
2235         }
2236     }
2237 
2238     for (i = 0; i < l1_size; i++) {
2239         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2240         uint64_t l2_refcount;
2241 
2242         if (!l2_offset) {
2243             /* unallocated */
2244             (*visited_l1_entries)++;
2245             if (status_cb) {
2246                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2247             }
2248             continue;
2249         }
2250 
2251         if (offset_into_cluster(s, l2_offset)) {
2252             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2253                                     PRIx64 " unaligned (L1 index: %#x)",
2254                                     l2_offset, i);
2255             ret = -EIO;
2256             goto fail;
2257         }
2258 
2259         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2260                                  &l2_refcount);
2261         if (ret < 0) {
2262             goto fail;
2263         }
2264 
2265         for (slice = 0; slice < n_slices; slice++) {
2266             uint64_t slice_offset = l2_offset + slice * slice_size2;
2267             bool l2_dirty = false;
2268             if (is_active_l1) {
2269                 /* get active L2 tables from cache */
2270                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2271                                       (void **)&l2_slice);
2272             } else {
2273                 /* load inactive L2 tables from disk */
2274                 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2275                                  l2_slice, 0);
2276             }
2277             if (ret < 0) {
2278                 goto fail;
2279             }
2280 
2281             for (j = 0; j < s->l2_slice_size; j++) {
2282                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2283                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2284                 QCow2ClusterType cluster_type =
2285                     qcow2_get_cluster_type(bs, l2_entry);
2286 
2287                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2288                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2289                     continue;
2290                 }
2291 
2292                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2293                     if (!bs->backing) {
2294                         /*
2295                          * not backed; therefore we can simply deallocate the
2296                          * cluster. No need to call set_l2_bitmap(), this
2297                          * function doesn't support images with subclusters.
2298                          */
2299                         set_l2_entry(s, l2_slice, j, 0);
2300                         l2_dirty = true;
2301                         continue;
2302                     }
2303 
2304                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
2305                     if (offset < 0) {
2306                         ret = offset;
2307                         goto fail;
2308                     }
2309 
2310                     /* The offset must fit in the offset field */
2311                     assert((offset & L2E_OFFSET_MASK) == offset);
2312 
2313                     if (l2_refcount > 1) {
2314                         /* For shared L2 tables, set the refcount accordingly
2315                          * (it is already 1 and needs to be l2_refcount) */
2316                         ret = qcow2_update_cluster_refcount(
2317                             bs, offset >> s->cluster_bits,
2318                             refcount_diff(1, l2_refcount), false,
2319                             QCOW2_DISCARD_OTHER);
2320                         if (ret < 0) {
2321                             qcow2_free_clusters(bs, offset, s->cluster_size,
2322                                                 QCOW2_DISCARD_OTHER);
2323                             goto fail;
2324                         }
2325                     }
2326                 }
2327 
2328                 if (offset_into_cluster(s, offset)) {
2329                     int l2_index = slice * s->l2_slice_size + j;
2330                     qcow2_signal_corruption(
2331                         bs, true, -1, -1,
2332                         "Cluster allocation offset "
2333                         "%#" PRIx64 " unaligned (L2 offset: %#"
2334                         PRIx64 ", L2 index: %#x)", offset,
2335                         l2_offset, l2_index);
2336                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2337                         qcow2_free_clusters(bs, offset, s->cluster_size,
2338                                             QCOW2_DISCARD_ALWAYS);
2339                     }
2340                     ret = -EIO;
2341                     goto fail;
2342                 }
2343 
2344                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2345                                                     s->cluster_size, true);
2346                 if (ret < 0) {
2347                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2348                         qcow2_free_clusters(bs, offset, s->cluster_size,
2349                                             QCOW2_DISCARD_ALWAYS);
2350                     }
2351                     goto fail;
2352                 }
2353 
2354                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2355                                          s->cluster_size, 0);
2356                 if (ret < 0) {
2357                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2358                         qcow2_free_clusters(bs, offset, s->cluster_size,
2359                                             QCOW2_DISCARD_ALWAYS);
2360                     }
2361                     goto fail;
2362                 }
2363 
2364                 if (l2_refcount == 1) {
2365                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2366                 } else {
2367                     set_l2_entry(s, l2_slice, j, offset);
2368                 }
2369                 /*
2370                  * No need to call set_l2_bitmap() after set_l2_entry() because
2371                  * this function doesn't support images with subclusters.
2372                  */
2373                 l2_dirty = true;
2374             }
2375 
2376             if (is_active_l1) {
2377                 if (l2_dirty) {
2378                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2379                     qcow2_cache_depends_on_flush(s->l2_table_cache);
2380                 }
2381                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2382             } else {
2383                 if (l2_dirty) {
2384                     ret = qcow2_pre_write_overlap_check(
2385                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2386                         slice_offset, slice_size2, false);
2387                     if (ret < 0) {
2388                         goto fail;
2389                     }
2390 
2391                     ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2392                                       l2_slice, 0);
2393                     if (ret < 0) {
2394                         goto fail;
2395                     }
2396                 }
2397             }
2398         }
2399 
2400         (*visited_l1_entries)++;
2401         if (status_cb) {
2402             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2403         }
2404     }
2405 
2406     ret = 0;
2407 
2408 fail:
2409     if (l2_slice) {
2410         if (!is_active_l1) {
2411             qemu_vfree(l2_slice);
2412         } else {
2413             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2414         }
2415     }
2416     return ret;
2417 }
2418 
2419 /*
2420  * For backed images, expands all zero clusters on the image. For non-backed
2421  * images, deallocates all non-pre-allocated zero clusters (and claims the
2422  * allocation for pre-allocated ones). This is important for downgrading to a
2423  * qcow2 version which doesn't yet support metadata zero clusters.
2424  */
2425 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2426                                BlockDriverAmendStatusCB *status_cb,
2427                                void *cb_opaque)
2428 {
2429     BDRVQcow2State *s = bs->opaque;
2430     uint64_t *l1_table = NULL;
2431     int64_t l1_entries = 0, visited_l1_entries = 0;
2432     int ret;
2433     int i, j;
2434 
2435     if (status_cb) {
2436         l1_entries = s->l1_size;
2437         for (i = 0; i < s->nb_snapshots; i++) {
2438             l1_entries += s->snapshots[i].l1_size;
2439         }
2440     }
2441 
2442     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2443                                      &visited_l1_entries, l1_entries,
2444                                      status_cb, cb_opaque);
2445     if (ret < 0) {
2446         goto fail;
2447     }
2448 
2449     /* Inactive L1 tables may point to active L2 tables - therefore it is
2450      * necessary to flush the L2 table cache before trying to access the L2
2451      * tables pointed to by inactive L1 entries (else we might try to expand
2452      * zero clusters that have already been expanded); furthermore, it is also
2453      * necessary to empty the L2 table cache, since it may contain tables which
2454      * are now going to be modified directly on disk, bypassing the cache.
2455      * qcow2_cache_empty() does both for us. */
2456     ret = qcow2_cache_empty(bs, s->l2_table_cache);
2457     if (ret < 0) {
2458         goto fail;
2459     }
2460 
2461     for (i = 0; i < s->nb_snapshots; i++) {
2462         int l1_size2;
2463         uint64_t *new_l1_table;
2464         Error *local_err = NULL;
2465 
2466         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2467                                    s->snapshots[i].l1_size, L1E_SIZE,
2468                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2469                                    &local_err);
2470         if (ret < 0) {
2471             error_report_err(local_err);
2472             goto fail;
2473         }
2474 
2475         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2476         new_l1_table = g_try_realloc(l1_table, l1_size2);
2477 
2478         if (!new_l1_table) {
2479             ret = -ENOMEM;
2480             goto fail;
2481         }
2482 
2483         l1_table = new_l1_table;
2484 
2485         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2486                          l1_table, 0);
2487         if (ret < 0) {
2488             goto fail;
2489         }
2490 
2491         for (j = 0; j < s->snapshots[i].l1_size; j++) {
2492             be64_to_cpus(&l1_table[j]);
2493         }
2494 
2495         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2496                                          &visited_l1_entries, l1_entries,
2497                                          status_cb, cb_opaque);
2498         if (ret < 0) {
2499             goto fail;
2500         }
2501     }
2502 
2503     ret = 0;
2504 
2505 fail:
2506     g_free(l1_table);
2507     return ret;
2508 }
2509 
2510 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2511                                      uint64_t *coffset, int *csize)
2512 {
2513     BDRVQcow2State *s = bs->opaque;
2514     int nb_csectors;
2515 
2516     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2517 
2518     *coffset = l2_entry & s->cluster_offset_mask;
2519 
2520     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2521     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2522         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2523 }
2524