xref: /qemu/block/qcow2-cluster.c (revision a942d8fa)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36                         bool exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size2, ret, i;
40     uint64_t *new_l1_table;
41     int64_t old_l1_table_offset, old_l1_size;
42     int64_t new_l1_table_offset, new_l1_size;
43     uint8_t data[12];
44 
45     if (min_size <= s->l1_size)
46         return 0;
47 
48     /* Do a sanity check on min_size before trying to calculate new_l1_size
49      * (this prevents overflows during the while loop for the calculation of
50      * new_l1_size) */
51     if (min_size > INT_MAX / sizeof(uint64_t)) {
52         return -EFBIG;
53     }
54 
55     if (exact_size) {
56         new_l1_size = min_size;
57     } else {
58         /* Bump size up to reduce the number of times we have to grow */
59         new_l1_size = s->l1_size;
60         if (new_l1_size == 0) {
61             new_l1_size = 1;
62         }
63         while (min_size > new_l1_size) {
64             new_l1_size = (new_l1_size * 3 + 1) / 2;
65         }
66     }
67 
68     if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
69         return -EFBIG;
70     }
71 
72 #ifdef DEBUG_ALLOC2
73     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
74             s->l1_size, new_l1_size);
75 #endif
76 
77     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
78     new_l1_table = qemu_try_blockalign(bs->file->bs,
79                                        align_offset(new_l1_size2, 512));
80     if (new_l1_table == NULL) {
81         return -ENOMEM;
82     }
83     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
84 
85     memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
86 
87     /* write new table (align to cluster) */
88     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
89     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
90     if (new_l1_table_offset < 0) {
91         qemu_vfree(new_l1_table);
92         return new_l1_table_offset;
93     }
94 
95     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
96     if (ret < 0) {
97         goto fail;
98     }
99 
100     /* the L1 position has not yet been updated, so these clusters must
101      * indeed be completely free */
102     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
103                                         new_l1_size2);
104     if (ret < 0) {
105         goto fail;
106     }
107 
108     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
109     for(i = 0; i < s->l1_size; i++)
110         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
111     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
112                            new_l1_table, new_l1_size2);
113     if (ret < 0)
114         goto fail;
115     for(i = 0; i < s->l1_size; i++)
116         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
117 
118     /* set new table */
119     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
120     stl_be_p(data, new_l1_size);
121     stq_be_p(data + 4, new_l1_table_offset);
122     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
123                            data, sizeof(data));
124     if (ret < 0) {
125         goto fail;
126     }
127     qemu_vfree(s->l1_table);
128     old_l1_table_offset = s->l1_table_offset;
129     s->l1_table_offset = new_l1_table_offset;
130     s->l1_table = new_l1_table;
131     old_l1_size = s->l1_size;
132     s->l1_size = new_l1_size;
133     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
134                         QCOW2_DISCARD_OTHER);
135     return 0;
136  fail:
137     qemu_vfree(new_l1_table);
138     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
139                         QCOW2_DISCARD_OTHER);
140     return ret;
141 }
142 
143 /*
144  * l2_load
145  *
146  * Loads a L2 table into memory. If the table is in the cache, the cache
147  * is used; otherwise the L2 table is loaded from the image file.
148  *
149  * Returns a pointer to the L2 table on success, or NULL if the read from
150  * the image file failed.
151  */
152 
153 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
154     uint64_t **l2_table)
155 {
156     BDRVQcow2State *s = bs->opaque;
157 
158     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
159                            (void **)l2_table);
160 }
161 
162 /*
163  * Writes one sector of the L1 table to the disk (can't update single entries
164  * and we really don't want bdrv_pread to perform a read-modify-write)
165  */
166 #define L1_ENTRIES_PER_SECTOR (512 / 8)
167 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
168 {
169     BDRVQcow2State *s = bs->opaque;
170     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
171     int l1_start_index;
172     int i, ret;
173 
174     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
175     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
176          i++)
177     {
178         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
179     }
180 
181     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
182             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
183     if (ret < 0) {
184         return ret;
185     }
186 
187     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
188     ret = bdrv_pwrite_sync(bs->file,
189                            s->l1_table_offset + 8 * l1_start_index,
190                            buf, sizeof(buf));
191     if (ret < 0) {
192         return ret;
193     }
194 
195     return 0;
196 }
197 
198 /*
199  * l2_allocate
200  *
201  * Allocate a new l2 entry in the file. If l1_index points to an already
202  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203  * table) copy the contents of the old L2 table into the newly allocated one.
204  * Otherwise the new table is initialized with zeros.
205  *
206  */
207 
208 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
209 {
210     BDRVQcow2State *s = bs->opaque;
211     uint64_t old_l2_offset;
212     uint64_t *l2_table = NULL;
213     int64_t l2_offset;
214     int ret;
215 
216     old_l2_offset = s->l1_table[l1_index];
217 
218     trace_qcow2_l2_allocate(bs, l1_index);
219 
220     /* allocate a new l2 entry */
221 
222     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
223     if (l2_offset < 0) {
224         ret = l2_offset;
225         goto fail;
226     }
227 
228     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
229     if (ret < 0) {
230         goto fail;
231     }
232 
233     /* allocate a new entry in the l2 cache */
234 
235     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
236     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
237     if (ret < 0) {
238         goto fail;
239     }
240 
241     l2_table = *table;
242 
243     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
244         /* if there was no old l2 table, clear the new table */
245         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
246     } else {
247         uint64_t* old_table;
248 
249         /* if there was an old l2 table, read it from the disk */
250         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
251         ret = qcow2_cache_get(bs, s->l2_table_cache,
252             old_l2_offset & L1E_OFFSET_MASK,
253             (void**) &old_table);
254         if (ret < 0) {
255             goto fail;
256         }
257 
258         memcpy(l2_table, old_table, s->cluster_size);
259 
260         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
261     }
262 
263     /* write the l2 table to the file */
264     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
265 
266     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
267     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
268     ret = qcow2_cache_flush(bs, s->l2_table_cache);
269     if (ret < 0) {
270         goto fail;
271     }
272 
273     /* update the L1 entry */
274     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
275     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
276     ret = qcow2_write_l1_entry(bs, l1_index);
277     if (ret < 0) {
278         goto fail;
279     }
280 
281     *table = l2_table;
282     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
283     return 0;
284 
285 fail:
286     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
287     if (l2_table != NULL) {
288         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
289     }
290     s->l1_table[l1_index] = old_l2_offset;
291     if (l2_offset > 0) {
292         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
293                             QCOW2_DISCARD_ALWAYS);
294     }
295     return ret;
296 }
297 
298 /*
299  * Checks how many clusters in a given L2 table are contiguous in the image
300  * file. As soon as one of the flags in the bitmask stop_flags changes compared
301  * to the first cluster, the search is stopped and the cluster is not counted
302  * as contiguous. (This allows it, for example, to stop at the first compressed
303  * cluster which may require a different handling)
304  */
305 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
306         uint64_t *l2_table, uint64_t stop_flags)
307 {
308     int i;
309     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
310     uint64_t first_entry = be64_to_cpu(l2_table[0]);
311     uint64_t offset = first_entry & mask;
312 
313     if (!offset)
314         return 0;
315 
316     assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
317 
318     for (i = 0; i < nb_clusters; i++) {
319         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
320         if (offset + (uint64_t) i * cluster_size != l2_entry) {
321             break;
322         }
323     }
324 
325 	return i;
326 }
327 
328 static int count_contiguous_clusters_by_type(int nb_clusters,
329                                              uint64_t *l2_table,
330                                              int wanted_type)
331 {
332     int i;
333 
334     for (i = 0; i < nb_clusters; i++) {
335         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
336 
337         if (type != wanted_type) {
338             break;
339         }
340     }
341 
342     return i;
343 }
344 
345 /* The crypt function is compatible with the linux cryptoloop
346    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
347    supported */
348 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
349                           uint8_t *out_buf, const uint8_t *in_buf,
350                           int nb_sectors, bool enc,
351                           Error **errp)
352 {
353     union {
354         uint64_t ll[2];
355         uint8_t b[16];
356     } ivec;
357     int i;
358     int ret;
359 
360     for(i = 0; i < nb_sectors; i++) {
361         ivec.ll[0] = cpu_to_le64(sector_num);
362         ivec.ll[1] = 0;
363         if (qcrypto_cipher_setiv(s->cipher,
364                                  ivec.b, G_N_ELEMENTS(ivec.b),
365                                  errp) < 0) {
366             return -1;
367         }
368         if (enc) {
369             ret = qcrypto_cipher_encrypt(s->cipher,
370                                          in_buf,
371                                          out_buf,
372                                          512,
373                                          errp);
374         } else {
375             ret = qcrypto_cipher_decrypt(s->cipher,
376                                          in_buf,
377                                          out_buf,
378                                          512,
379                                          errp);
380         }
381         if (ret < 0) {
382             return -1;
383         }
384         sector_num++;
385         in_buf += 512;
386         out_buf += 512;
387     }
388     return 0;
389 }
390 
391 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
392                                        uint64_t src_cluster_offset,
393                                        uint64_t cluster_offset,
394                                        int offset_in_cluster,
395                                        int bytes)
396 {
397     BDRVQcow2State *s = bs->opaque;
398     QEMUIOVector qiov;
399     struct iovec iov;
400     int ret;
401 
402     iov.iov_len = bytes;
403     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
404     if (iov.iov_base == NULL) {
405         return -ENOMEM;
406     }
407 
408     qemu_iovec_init_external(&qiov, &iov, 1);
409 
410     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
411 
412     if (!bs->drv) {
413         ret = -ENOMEDIUM;
414         goto out;
415     }
416 
417     /* Call .bdrv_co_readv() directly instead of using the public block-layer
418      * interface.  This avoids double I/O throttling and request tracking,
419      * which can lead to deadlock when block layer copy-on-read is enabled.
420      */
421     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
422                                   bytes, &qiov, 0);
423     if (ret < 0) {
424         goto out;
425     }
426 
427     if (bs->encrypted) {
428         Error *err = NULL;
429         int64_t sector = (cluster_offset + offset_in_cluster)
430                          >> BDRV_SECTOR_BITS;
431         assert(s->cipher);
432         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
433         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
434         if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
435                                   bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
436             ret = -EIO;
437             error_free(err);
438             goto out;
439         }
440     }
441 
442     ret = qcow2_pre_write_overlap_check(bs, 0,
443             cluster_offset + offset_in_cluster, bytes);
444     if (ret < 0) {
445         goto out;
446     }
447 
448     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
449     ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
450                           bytes, &qiov, 0);
451     if (ret < 0) {
452         goto out;
453     }
454 
455     ret = 0;
456 out:
457     qemu_vfree(iov.iov_base);
458     return ret;
459 }
460 
461 
462 /*
463  * get_cluster_offset
464  *
465  * For a given offset of the virtual disk, find the cluster type and offset in
466  * the qcow2 file. The offset is stored in *cluster_offset.
467  *
468  * On entry, *bytes is the maximum number of contiguous bytes starting at
469  * offset that we are interested in.
470  *
471  * On exit, *bytes is the number of bytes starting at offset that have the same
472  * cluster type and (if applicable) are stored contiguously in the image file.
473  * Compressed clusters are always returned one by one.
474  *
475  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
476  * cases.
477  */
478 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
479                              unsigned int *bytes, uint64_t *cluster_offset)
480 {
481     BDRVQcow2State *s = bs->opaque;
482     unsigned int l2_index;
483     uint64_t l1_index, l2_offset, *l2_table;
484     int l1_bits, c;
485     unsigned int offset_in_cluster, nb_clusters;
486     uint64_t bytes_available, bytes_needed;
487     int ret;
488 
489     offset_in_cluster = offset_into_cluster(s, offset);
490     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
491 
492     l1_bits = s->l2_bits + s->cluster_bits;
493 
494     /* compute how many bytes there are between the start of the cluster
495      * containing offset and the end of the l1 entry */
496     bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
497                     + offset_in_cluster;
498 
499     if (bytes_needed > bytes_available) {
500         bytes_needed = bytes_available;
501     }
502     assert(bytes_needed <= INT_MAX);
503 
504     *cluster_offset = 0;
505 
506     /* seek to the l2 offset in the l1 table */
507 
508     l1_index = offset >> l1_bits;
509     if (l1_index >= s->l1_size) {
510         ret = QCOW2_CLUSTER_UNALLOCATED;
511         goto out;
512     }
513 
514     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
515     if (!l2_offset) {
516         ret = QCOW2_CLUSTER_UNALLOCATED;
517         goto out;
518     }
519 
520     if (offset_into_cluster(s, l2_offset)) {
521         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
522                                 " unaligned (L1 index: %#" PRIx64 ")",
523                                 l2_offset, l1_index);
524         return -EIO;
525     }
526 
527     /* load the l2 table in memory */
528 
529     ret = l2_load(bs, l2_offset, &l2_table);
530     if (ret < 0) {
531         return ret;
532     }
533 
534     /* find the cluster offset for the given disk offset */
535 
536     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
537     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
538 
539     /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
540     nb_clusters = size_to_clusters(s, bytes_needed);
541 
542     ret = qcow2_get_cluster_type(*cluster_offset);
543     switch (ret) {
544     case QCOW2_CLUSTER_COMPRESSED:
545         /* Compressed clusters can only be processed one by one */
546         c = 1;
547         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
548         break;
549     case QCOW2_CLUSTER_ZERO:
550         if (s->qcow_version < 3) {
551             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
552                                     " in pre-v3 image (L2 offset: %#" PRIx64
553                                     ", L2 index: %#x)", l2_offset, l2_index);
554             ret = -EIO;
555             goto fail;
556         }
557         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
558                                               QCOW2_CLUSTER_ZERO);
559         *cluster_offset = 0;
560         break;
561     case QCOW2_CLUSTER_UNALLOCATED:
562         /* how many empty clusters ? */
563         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
564                                               QCOW2_CLUSTER_UNALLOCATED);
565         *cluster_offset = 0;
566         break;
567     case QCOW2_CLUSTER_NORMAL:
568         /* how many allocated clusters ? */
569         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
570                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
571         *cluster_offset &= L2E_OFFSET_MASK;
572         if (offset_into_cluster(s, *cluster_offset)) {
573             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
574                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
575                                     ", L2 index: %#x)", *cluster_offset,
576                                     l2_offset, l2_index);
577             ret = -EIO;
578             goto fail;
579         }
580         break;
581     default:
582         abort();
583     }
584 
585     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
586 
587     bytes_available = (c * s->cluster_size);
588 
589 out:
590     if (bytes_available > bytes_needed) {
591         bytes_available = bytes_needed;
592     }
593 
594     *bytes = bytes_available - offset_in_cluster;
595 
596     return ret;
597 
598 fail:
599     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
600     return ret;
601 }
602 
603 /*
604  * get_cluster_table
605  *
606  * for a given disk offset, load (and allocate if needed)
607  * the l2 table.
608  *
609  * the l2 table offset in the qcow2 file and the cluster index
610  * in the l2 table are given to the caller.
611  *
612  * Returns 0 on success, -errno in failure case
613  */
614 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
615                              uint64_t **new_l2_table,
616                              int *new_l2_index)
617 {
618     BDRVQcow2State *s = bs->opaque;
619     unsigned int l2_index;
620     uint64_t l1_index, l2_offset;
621     uint64_t *l2_table = NULL;
622     int ret;
623 
624     /* seek to the l2 offset in the l1 table */
625 
626     l1_index = offset >> (s->l2_bits + s->cluster_bits);
627     if (l1_index >= s->l1_size) {
628         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
629         if (ret < 0) {
630             return ret;
631         }
632     }
633 
634     assert(l1_index < s->l1_size);
635     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
636     if (offset_into_cluster(s, l2_offset)) {
637         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
638                                 " unaligned (L1 index: %#" PRIx64 ")",
639                                 l2_offset, l1_index);
640         return -EIO;
641     }
642 
643     /* seek the l2 table of the given l2 offset */
644 
645     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
646         /* load the l2 table in memory */
647         ret = l2_load(bs, l2_offset, &l2_table);
648         if (ret < 0) {
649             return ret;
650         }
651     } else {
652         /* First allocate a new L2 table (and do COW if needed) */
653         ret = l2_allocate(bs, l1_index, &l2_table);
654         if (ret < 0) {
655             return ret;
656         }
657 
658         /* Then decrease the refcount of the old table */
659         if (l2_offset) {
660             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
661                                 QCOW2_DISCARD_OTHER);
662         }
663     }
664 
665     /* find the cluster offset for the given disk offset */
666 
667     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
668 
669     *new_l2_table = l2_table;
670     *new_l2_index = l2_index;
671 
672     return 0;
673 }
674 
675 /*
676  * alloc_compressed_cluster_offset
677  *
678  * For a given offset of the disk image, return cluster offset in
679  * qcow2 file.
680  *
681  * If the offset is not found, allocate a new compressed cluster.
682  *
683  * Return the cluster offset if successful,
684  * Return 0, otherwise.
685  *
686  */
687 
688 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
689                                                uint64_t offset,
690                                                int compressed_size)
691 {
692     BDRVQcow2State *s = bs->opaque;
693     int l2_index, ret;
694     uint64_t *l2_table;
695     int64_t cluster_offset;
696     int nb_csectors;
697 
698     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
699     if (ret < 0) {
700         return 0;
701     }
702 
703     /* Compression can't overwrite anything. Fail if the cluster was already
704      * allocated. */
705     cluster_offset = be64_to_cpu(l2_table[l2_index]);
706     if (cluster_offset & L2E_OFFSET_MASK) {
707         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
708         return 0;
709     }
710 
711     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
712     if (cluster_offset < 0) {
713         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
714         return 0;
715     }
716 
717     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
718                   (cluster_offset >> 9);
719 
720     cluster_offset |= QCOW_OFLAG_COMPRESSED |
721                       ((uint64_t)nb_csectors << s->csize_shift);
722 
723     /* update L2 table */
724 
725     /* compressed clusters never have the copied flag */
726 
727     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
728     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
729     l2_table[l2_index] = cpu_to_be64(cluster_offset);
730     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
731 
732     return cluster_offset;
733 }
734 
735 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
736 {
737     BDRVQcow2State *s = bs->opaque;
738     int ret;
739 
740     if (r->nb_bytes == 0) {
741         return 0;
742     }
743 
744     qemu_co_mutex_unlock(&s->lock);
745     ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
746     qemu_co_mutex_lock(&s->lock);
747 
748     if (ret < 0) {
749         return ret;
750     }
751 
752     /*
753      * Before we update the L2 table to actually point to the new cluster, we
754      * need to be sure that the refcounts have been increased and COW was
755      * handled.
756      */
757     qcow2_cache_depends_on_flush(s->l2_table_cache);
758 
759     return 0;
760 }
761 
762 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
763 {
764     BDRVQcow2State *s = bs->opaque;
765     int i, j = 0, l2_index, ret;
766     uint64_t *old_cluster, *l2_table;
767     uint64_t cluster_offset = m->alloc_offset;
768 
769     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
770     assert(m->nb_clusters > 0);
771 
772     old_cluster = g_try_new(uint64_t, m->nb_clusters);
773     if (old_cluster == NULL) {
774         ret = -ENOMEM;
775         goto err;
776     }
777 
778     /* copy content of unmodified sectors */
779     ret = perform_cow(bs, m, &m->cow_start);
780     if (ret < 0) {
781         goto err;
782     }
783 
784     ret = perform_cow(bs, m, &m->cow_end);
785     if (ret < 0) {
786         goto err;
787     }
788 
789     /* Update L2 table. */
790     if (s->use_lazy_refcounts) {
791         qcow2_mark_dirty(bs);
792     }
793     if (qcow2_need_accurate_refcounts(s)) {
794         qcow2_cache_set_dependency(bs, s->l2_table_cache,
795                                    s->refcount_block_cache);
796     }
797 
798     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
799     if (ret < 0) {
800         goto err;
801     }
802     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
803 
804     assert(l2_index + m->nb_clusters <= s->l2_size);
805     for (i = 0; i < m->nb_clusters; i++) {
806         /* if two concurrent writes happen to the same unallocated cluster
807          * each write allocates separate cluster and writes data concurrently.
808          * The first one to complete updates l2 table with pointer to its
809          * cluster the second one has to do RMW (which is done above by
810          * perform_cow()), update l2 table with its cluster pointer and free
811          * old cluster. This is what this loop does */
812         if (l2_table[l2_index + i] != 0) {
813             old_cluster[j++] = l2_table[l2_index + i];
814         }
815 
816         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
817                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
818      }
819 
820 
821     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
822 
823     /*
824      * If this was a COW, we need to decrease the refcount of the old cluster.
825      *
826      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
827      * clusters), the next write will reuse them anyway.
828      */
829     if (j != 0) {
830         for (i = 0; i < j; i++) {
831             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
832                                     QCOW2_DISCARD_NEVER);
833         }
834     }
835 
836     ret = 0;
837 err:
838     g_free(old_cluster);
839     return ret;
840  }
841 
842 /*
843  * Returns the number of contiguous clusters that can be used for an allocating
844  * write, but require COW to be performed (this includes yet unallocated space,
845  * which must copy from the backing file)
846  */
847 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
848     uint64_t *l2_table, int l2_index)
849 {
850     int i;
851 
852     for (i = 0; i < nb_clusters; i++) {
853         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
854         int cluster_type = qcow2_get_cluster_type(l2_entry);
855 
856         switch(cluster_type) {
857         case QCOW2_CLUSTER_NORMAL:
858             if (l2_entry & QCOW_OFLAG_COPIED) {
859                 goto out;
860             }
861             break;
862         case QCOW2_CLUSTER_UNALLOCATED:
863         case QCOW2_CLUSTER_COMPRESSED:
864         case QCOW2_CLUSTER_ZERO:
865             break;
866         default:
867             abort();
868         }
869     }
870 
871 out:
872     assert(i <= nb_clusters);
873     return i;
874 }
875 
876 /*
877  * Check if there already is an AIO write request in flight which allocates
878  * the same cluster. In this case we need to wait until the previous
879  * request has completed and updated the L2 table accordingly.
880  *
881  * Returns:
882  *   0       if there was no dependency. *cur_bytes indicates the number of
883  *           bytes from guest_offset that can be read before the next
884  *           dependency must be processed (or the request is complete)
885  *
886  *   -EAGAIN if we had to wait for another request, previously gathered
887  *           information on cluster allocation may be invalid now. The caller
888  *           must start over anyway, so consider *cur_bytes undefined.
889  */
890 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
891     uint64_t *cur_bytes, QCowL2Meta **m)
892 {
893     BDRVQcow2State *s = bs->opaque;
894     QCowL2Meta *old_alloc;
895     uint64_t bytes = *cur_bytes;
896 
897     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
898 
899         uint64_t start = guest_offset;
900         uint64_t end = start + bytes;
901         uint64_t old_start = l2meta_cow_start(old_alloc);
902         uint64_t old_end = l2meta_cow_end(old_alloc);
903 
904         if (end <= old_start || start >= old_end) {
905             /* No intersection */
906         } else {
907             if (start < old_start) {
908                 /* Stop at the start of a running allocation */
909                 bytes = old_start - start;
910             } else {
911                 bytes = 0;
912             }
913 
914             /* Stop if already an l2meta exists. After yielding, it wouldn't
915              * be valid any more, so we'd have to clean up the old L2Metas
916              * and deal with requests depending on them before starting to
917              * gather new ones. Not worth the trouble. */
918             if (bytes == 0 && *m) {
919                 *cur_bytes = 0;
920                 return 0;
921             }
922 
923             if (bytes == 0) {
924                 /* Wait for the dependency to complete. We need to recheck
925                  * the free/allocated clusters when we continue. */
926                 qemu_co_mutex_unlock(&s->lock);
927                 qemu_co_queue_wait(&old_alloc->dependent_requests);
928                 qemu_co_mutex_lock(&s->lock);
929                 return -EAGAIN;
930             }
931         }
932     }
933 
934     /* Make sure that existing clusters and new allocations are only used up to
935      * the next dependency if we shortened the request above */
936     *cur_bytes = bytes;
937 
938     return 0;
939 }
940 
941 /*
942  * Checks how many already allocated clusters that don't require a copy on
943  * write there are at the given guest_offset (up to *bytes). If
944  * *host_offset is not zero, only physically contiguous clusters beginning at
945  * this host offset are counted.
946  *
947  * Note that guest_offset may not be cluster aligned. In this case, the
948  * returned *host_offset points to exact byte referenced by guest_offset and
949  * therefore isn't cluster aligned as well.
950  *
951  * Returns:
952  *   0:     if no allocated clusters are available at the given offset.
953  *          *bytes is normally unchanged. It is set to 0 if the cluster
954  *          is allocated and doesn't need COW, but doesn't have the right
955  *          physical offset.
956  *
957  *   1:     if allocated clusters that don't require a COW are available at
958  *          the requested offset. *bytes may have decreased and describes
959  *          the length of the area that can be written to.
960  *
961  *  -errno: in error cases
962  */
963 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
964     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
965 {
966     BDRVQcow2State *s = bs->opaque;
967     int l2_index;
968     uint64_t cluster_offset;
969     uint64_t *l2_table;
970     uint64_t nb_clusters;
971     unsigned int keep_clusters;
972     int ret;
973 
974     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
975                               *bytes);
976 
977     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
978                                 == offset_into_cluster(s, *host_offset));
979 
980     /*
981      * Calculate the number of clusters to look for. We stop at L2 table
982      * boundaries to keep things simple.
983      */
984     nb_clusters =
985         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
986 
987     l2_index = offset_to_l2_index(s, guest_offset);
988     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
989     assert(nb_clusters <= INT_MAX);
990 
991     /* Find L2 entry for the first involved cluster */
992     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
993     if (ret < 0) {
994         return ret;
995     }
996 
997     cluster_offset = be64_to_cpu(l2_table[l2_index]);
998 
999     /* Check how many clusters are already allocated and don't need COW */
1000     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1001         && (cluster_offset & QCOW_OFLAG_COPIED))
1002     {
1003         /* If a specific host_offset is required, check it */
1004         bool offset_matches =
1005             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1006 
1007         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1008             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1009                                     "%#llx unaligned (guest offset: %#" PRIx64
1010                                     ")", cluster_offset & L2E_OFFSET_MASK,
1011                                     guest_offset);
1012             ret = -EIO;
1013             goto out;
1014         }
1015 
1016         if (*host_offset != 0 && !offset_matches) {
1017             *bytes = 0;
1018             ret = 0;
1019             goto out;
1020         }
1021 
1022         /* We keep all QCOW_OFLAG_COPIED clusters */
1023         keep_clusters =
1024             count_contiguous_clusters(nb_clusters, s->cluster_size,
1025                                       &l2_table[l2_index],
1026                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1027         assert(keep_clusters <= nb_clusters);
1028 
1029         *bytes = MIN(*bytes,
1030                  keep_clusters * s->cluster_size
1031                  - offset_into_cluster(s, guest_offset));
1032 
1033         ret = 1;
1034     } else {
1035         ret = 0;
1036     }
1037 
1038     /* Cleanup */
1039 out:
1040     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1041 
1042     /* Only return a host offset if we actually made progress. Otherwise we
1043      * would make requirements for handle_alloc() that it can't fulfill */
1044     if (ret > 0) {
1045         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1046                      + offset_into_cluster(s, guest_offset);
1047     }
1048 
1049     return ret;
1050 }
1051 
1052 /*
1053  * Allocates new clusters for the given guest_offset.
1054  *
1055  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1056  * contain the number of clusters that have been allocated and are contiguous
1057  * in the image file.
1058  *
1059  * If *host_offset is non-zero, it specifies the offset in the image file at
1060  * which the new clusters must start. *nb_clusters can be 0 on return in this
1061  * case if the cluster at host_offset is already in use. If *host_offset is
1062  * zero, the clusters can be allocated anywhere in the image file.
1063  *
1064  * *host_offset is updated to contain the offset into the image file at which
1065  * the first allocated cluster starts.
1066  *
1067  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1068  * function has been waiting for another request and the allocation must be
1069  * restarted, but the whole request should not be failed.
1070  */
1071 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1072                                    uint64_t *host_offset, uint64_t *nb_clusters)
1073 {
1074     BDRVQcow2State *s = bs->opaque;
1075 
1076     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1077                                          *host_offset, *nb_clusters);
1078 
1079     /* Allocate new clusters */
1080     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1081     if (*host_offset == 0) {
1082         int64_t cluster_offset =
1083             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1084         if (cluster_offset < 0) {
1085             return cluster_offset;
1086         }
1087         *host_offset = cluster_offset;
1088         return 0;
1089     } else {
1090         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1091         if (ret < 0) {
1092             return ret;
1093         }
1094         *nb_clusters = ret;
1095         return 0;
1096     }
1097 }
1098 
1099 /*
1100  * Allocates new clusters for an area that either is yet unallocated or needs a
1101  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1102  * the new allocation can match the specified host offset.
1103  *
1104  * Note that guest_offset may not be cluster aligned. In this case, the
1105  * returned *host_offset points to exact byte referenced by guest_offset and
1106  * therefore isn't cluster aligned as well.
1107  *
1108  * Returns:
1109  *   0:     if no clusters could be allocated. *bytes is set to 0,
1110  *          *host_offset is left unchanged.
1111  *
1112  *   1:     if new clusters were allocated. *bytes may be decreased if the
1113  *          new allocation doesn't cover all of the requested area.
1114  *          *host_offset is updated to contain the host offset of the first
1115  *          newly allocated cluster.
1116  *
1117  *  -errno: in error cases
1118  */
1119 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1120     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1121 {
1122     BDRVQcow2State *s = bs->opaque;
1123     int l2_index;
1124     uint64_t *l2_table;
1125     uint64_t entry;
1126     uint64_t nb_clusters;
1127     int ret;
1128 
1129     uint64_t alloc_cluster_offset;
1130 
1131     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1132                              *bytes);
1133     assert(*bytes > 0);
1134 
1135     /*
1136      * Calculate the number of clusters to look for. We stop at L2 table
1137      * boundaries to keep things simple.
1138      */
1139     nb_clusters =
1140         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1141 
1142     l2_index = offset_to_l2_index(s, guest_offset);
1143     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1144     assert(nb_clusters <= INT_MAX);
1145 
1146     /* Find L2 entry for the first involved cluster */
1147     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1148     if (ret < 0) {
1149         return ret;
1150     }
1151 
1152     entry = be64_to_cpu(l2_table[l2_index]);
1153 
1154     /* For the moment, overwrite compressed clusters one by one */
1155     if (entry & QCOW_OFLAG_COMPRESSED) {
1156         nb_clusters = 1;
1157     } else {
1158         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1159     }
1160 
1161     /* This function is only called when there were no non-COW clusters, so if
1162      * we can't find any unallocated or COW clusters either, something is
1163      * wrong with our code. */
1164     assert(nb_clusters > 0);
1165 
1166     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1167 
1168     /* Allocate, if necessary at a given offset in the image file */
1169     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1170     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1171                                   &nb_clusters);
1172     if (ret < 0) {
1173         goto fail;
1174     }
1175 
1176     /* Can't extend contiguous allocation */
1177     if (nb_clusters == 0) {
1178         *bytes = 0;
1179         return 0;
1180     }
1181 
1182     /* !*host_offset would overwrite the image header and is reserved for "no
1183      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1184      * following overlap check; do that now to avoid having an invalid value in
1185      * *host_offset. */
1186     if (!alloc_cluster_offset) {
1187         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1188                                             nb_clusters * s->cluster_size);
1189         assert(ret < 0);
1190         goto fail;
1191     }
1192 
1193     /*
1194      * Save info needed for meta data update.
1195      *
1196      * requested_bytes: Number of bytes from the start of the first
1197      * newly allocated cluster to the end of the (possibly shortened
1198      * before) write request.
1199      *
1200      * avail_bytes: Number of bytes from the start of the first
1201      * newly allocated to the end of the last newly allocated cluster.
1202      *
1203      * nb_bytes: The number of bytes from the start of the first
1204      * newly allocated cluster to the end of the area that the write
1205      * request actually writes to (excluding COW at the end)
1206      */
1207     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1208     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1209     int nb_bytes = MIN(requested_bytes, avail_bytes);
1210     QCowL2Meta *old_m = *m;
1211 
1212     *m = g_malloc0(sizeof(**m));
1213 
1214     **m = (QCowL2Meta) {
1215         .next           = old_m,
1216 
1217         .alloc_offset   = alloc_cluster_offset,
1218         .offset         = start_of_cluster(s, guest_offset),
1219         .nb_clusters    = nb_clusters,
1220 
1221         .cow_start = {
1222             .offset     = 0,
1223             .nb_bytes   = offset_into_cluster(s, guest_offset),
1224         },
1225         .cow_end = {
1226             .offset     = nb_bytes,
1227             .nb_bytes   = avail_bytes - nb_bytes,
1228         },
1229     };
1230     qemu_co_queue_init(&(*m)->dependent_requests);
1231     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1232 
1233     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1234     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1235     assert(*bytes != 0);
1236 
1237     return 1;
1238 
1239 fail:
1240     if (*m && (*m)->nb_clusters > 0) {
1241         QLIST_REMOVE(*m, next_in_flight);
1242     }
1243     return ret;
1244 }
1245 
1246 /*
1247  * alloc_cluster_offset
1248  *
1249  * For a given offset on the virtual disk, find the cluster offset in qcow2
1250  * file. If the offset is not found, allocate a new cluster.
1251  *
1252  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1253  * other fields in m are meaningless.
1254  *
1255  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1256  * contiguous clusters that have been allocated. In this case, the other
1257  * fields of m are valid and contain information about the first allocated
1258  * cluster.
1259  *
1260  * If the request conflicts with another write request in flight, the coroutine
1261  * is queued and will be reentered when the dependency has completed.
1262  *
1263  * Return 0 on success and -errno in error cases
1264  */
1265 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1266                                unsigned int *bytes, uint64_t *host_offset,
1267                                QCowL2Meta **m)
1268 {
1269     BDRVQcow2State *s = bs->opaque;
1270     uint64_t start, remaining;
1271     uint64_t cluster_offset;
1272     uint64_t cur_bytes;
1273     int ret;
1274 
1275     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1276 
1277 again:
1278     start = offset;
1279     remaining = *bytes;
1280     cluster_offset = 0;
1281     *host_offset = 0;
1282     cur_bytes = 0;
1283     *m = NULL;
1284 
1285     while (true) {
1286 
1287         if (!*host_offset) {
1288             *host_offset = start_of_cluster(s, cluster_offset);
1289         }
1290 
1291         assert(remaining >= cur_bytes);
1292 
1293         start           += cur_bytes;
1294         remaining       -= cur_bytes;
1295         cluster_offset  += cur_bytes;
1296 
1297         if (remaining == 0) {
1298             break;
1299         }
1300 
1301         cur_bytes = remaining;
1302 
1303         /*
1304          * Now start gathering as many contiguous clusters as possible:
1305          *
1306          * 1. Check for overlaps with in-flight allocations
1307          *
1308          *      a) Overlap not in the first cluster -> shorten this request and
1309          *         let the caller handle the rest in its next loop iteration.
1310          *
1311          *      b) Real overlaps of two requests. Yield and restart the search
1312          *         for contiguous clusters (the situation could have changed
1313          *         while we were sleeping)
1314          *
1315          *      c) TODO: Request starts in the same cluster as the in-flight
1316          *         allocation ends. Shorten the COW of the in-fight allocation,
1317          *         set cluster_offset to write to the same cluster and set up
1318          *         the right synchronisation between the in-flight request and
1319          *         the new one.
1320          */
1321         ret = handle_dependencies(bs, start, &cur_bytes, m);
1322         if (ret == -EAGAIN) {
1323             /* Currently handle_dependencies() doesn't yield if we already had
1324              * an allocation. If it did, we would have to clean up the L2Meta
1325              * structs before starting over. */
1326             assert(*m == NULL);
1327             goto again;
1328         } else if (ret < 0) {
1329             return ret;
1330         } else if (cur_bytes == 0) {
1331             break;
1332         } else {
1333             /* handle_dependencies() may have decreased cur_bytes (shortened
1334              * the allocations below) so that the next dependency is processed
1335              * correctly during the next loop iteration. */
1336         }
1337 
1338         /*
1339          * 2. Count contiguous COPIED clusters.
1340          */
1341         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1342         if (ret < 0) {
1343             return ret;
1344         } else if (ret) {
1345             continue;
1346         } else if (cur_bytes == 0) {
1347             break;
1348         }
1349 
1350         /*
1351          * 3. If the request still hasn't completed, allocate new clusters,
1352          *    considering any cluster_offset of steps 1c or 2.
1353          */
1354         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1355         if (ret < 0) {
1356             return ret;
1357         } else if (ret) {
1358             continue;
1359         } else {
1360             assert(cur_bytes == 0);
1361             break;
1362         }
1363     }
1364 
1365     *bytes -= remaining;
1366     assert(*bytes > 0);
1367     assert(*host_offset != 0);
1368 
1369     return 0;
1370 }
1371 
1372 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1373                              const uint8_t *buf, int buf_size)
1374 {
1375     z_stream strm1, *strm = &strm1;
1376     int ret, out_len;
1377 
1378     memset(strm, 0, sizeof(*strm));
1379 
1380     strm->next_in = (uint8_t *)buf;
1381     strm->avail_in = buf_size;
1382     strm->next_out = out_buf;
1383     strm->avail_out = out_buf_size;
1384 
1385     ret = inflateInit2(strm, -12);
1386     if (ret != Z_OK)
1387         return -1;
1388     ret = inflate(strm, Z_FINISH);
1389     out_len = strm->next_out - out_buf;
1390     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1391         out_len != out_buf_size) {
1392         inflateEnd(strm);
1393         return -1;
1394     }
1395     inflateEnd(strm);
1396     return 0;
1397 }
1398 
1399 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1400 {
1401     BDRVQcow2State *s = bs->opaque;
1402     int ret, csize, nb_csectors, sector_offset;
1403     uint64_t coffset;
1404 
1405     coffset = cluster_offset & s->cluster_offset_mask;
1406     if (s->cluster_cache_offset != coffset) {
1407         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1408         sector_offset = coffset & 511;
1409         csize = nb_csectors * 512 - sector_offset;
1410         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1411         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1412                         nb_csectors);
1413         if (ret < 0) {
1414             return ret;
1415         }
1416         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1417                               s->cluster_data + sector_offset, csize) < 0) {
1418             return -EIO;
1419         }
1420         s->cluster_cache_offset = coffset;
1421     }
1422     return 0;
1423 }
1424 
1425 /*
1426  * This discards as many clusters of nb_clusters as possible at once (i.e.
1427  * all clusters in the same L2 table) and returns the number of discarded
1428  * clusters.
1429  */
1430 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1431                              uint64_t nb_clusters, enum qcow2_discard_type type,
1432                              bool full_discard)
1433 {
1434     BDRVQcow2State *s = bs->opaque;
1435     uint64_t *l2_table;
1436     int l2_index;
1437     int ret;
1438     int i;
1439 
1440     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1441     if (ret < 0) {
1442         return ret;
1443     }
1444 
1445     /* Limit nb_clusters to one L2 table */
1446     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1447     assert(nb_clusters <= INT_MAX);
1448 
1449     for (i = 0; i < nb_clusters; i++) {
1450         uint64_t old_l2_entry;
1451 
1452         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1453 
1454         /*
1455          * If full_discard is false, make sure that a discarded area reads back
1456          * as zeroes for v3 images (we cannot do it for v2 without actually
1457          * writing a zero-filled buffer). We can skip the operation if the
1458          * cluster is already marked as zero, or if it's unallocated and we
1459          * don't have a backing file.
1460          *
1461          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1462          * holding s->lock, so that doesn't work today.
1463          *
1464          * If full_discard is true, the sector should not read back as zeroes,
1465          * but rather fall through to the backing file.
1466          */
1467         switch (qcow2_get_cluster_type(old_l2_entry)) {
1468             case QCOW2_CLUSTER_UNALLOCATED:
1469                 if (full_discard || !bs->backing) {
1470                     continue;
1471                 }
1472                 break;
1473 
1474             case QCOW2_CLUSTER_ZERO:
1475                 if (!full_discard) {
1476                     continue;
1477                 }
1478                 break;
1479 
1480             case QCOW2_CLUSTER_NORMAL:
1481             case QCOW2_CLUSTER_COMPRESSED:
1482                 break;
1483 
1484             default:
1485                 abort();
1486         }
1487 
1488         /* First remove L2 entries */
1489         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1490         if (!full_discard && s->qcow_version >= 3) {
1491             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1492         } else {
1493             l2_table[l2_index + i] = cpu_to_be64(0);
1494         }
1495 
1496         /* Then decrease the refcount */
1497         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1498     }
1499 
1500     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1501 
1502     return nb_clusters;
1503 }
1504 
1505 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1506     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1507 {
1508     BDRVQcow2State *s = bs->opaque;
1509     uint64_t end_offset;
1510     uint64_t nb_clusters;
1511     int ret;
1512 
1513     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1514 
1515     /* Round start up and end down */
1516     offset = align_offset(offset, s->cluster_size);
1517     end_offset = start_of_cluster(s, end_offset);
1518 
1519     if (offset > end_offset) {
1520         return 0;
1521     }
1522 
1523     nb_clusters = size_to_clusters(s, end_offset - offset);
1524 
1525     s->cache_discards = true;
1526 
1527     /* Each L2 table is handled by its own loop iteration */
1528     while (nb_clusters > 0) {
1529         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1530         if (ret < 0) {
1531             goto fail;
1532         }
1533 
1534         nb_clusters -= ret;
1535         offset += (ret * s->cluster_size);
1536     }
1537 
1538     ret = 0;
1539 fail:
1540     s->cache_discards = false;
1541     qcow2_process_discards(bs, ret);
1542 
1543     return ret;
1544 }
1545 
1546 /*
1547  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1548  * all clusters in the same L2 table) and returns the number of zeroed
1549  * clusters.
1550  */
1551 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1552                           uint64_t nb_clusters)
1553 {
1554     BDRVQcow2State *s = bs->opaque;
1555     uint64_t *l2_table;
1556     int l2_index;
1557     int ret;
1558     int i;
1559 
1560     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1561     if (ret < 0) {
1562         return ret;
1563     }
1564 
1565     /* Limit nb_clusters to one L2 table */
1566     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1567     assert(nb_clusters <= INT_MAX);
1568 
1569     for (i = 0; i < nb_clusters; i++) {
1570         uint64_t old_offset;
1571 
1572         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1573 
1574         /* Update L2 entries */
1575         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1576         if (old_offset & QCOW_OFLAG_COMPRESSED) {
1577             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1578             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1579         } else {
1580             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1581         }
1582     }
1583 
1584     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1585 
1586     return nb_clusters;
1587 }
1588 
1589 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1590 {
1591     BDRVQcow2State *s = bs->opaque;
1592     uint64_t nb_clusters;
1593     int ret;
1594 
1595     /* The zero flag is only supported by version 3 and newer */
1596     if (s->qcow_version < 3) {
1597         return -ENOTSUP;
1598     }
1599 
1600     /* Each L2 table is handled by its own loop iteration */
1601     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1602 
1603     s->cache_discards = true;
1604 
1605     while (nb_clusters > 0) {
1606         ret = zero_single_l2(bs, offset, nb_clusters);
1607         if (ret < 0) {
1608             goto fail;
1609         }
1610 
1611         nb_clusters -= ret;
1612         offset += (ret * s->cluster_size);
1613     }
1614 
1615     ret = 0;
1616 fail:
1617     s->cache_discards = false;
1618     qcow2_process_discards(bs, ret);
1619 
1620     return ret;
1621 }
1622 
1623 /*
1624  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1625  * non-backed non-pre-allocated zero clusters).
1626  *
1627  * l1_entries and *visited_l1_entries are used to keep track of progress for
1628  * status_cb(). l1_entries contains the total number of L1 entries and
1629  * *visited_l1_entries counts all visited L1 entries.
1630  */
1631 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1632                                       int l1_size, int64_t *visited_l1_entries,
1633                                       int64_t l1_entries,
1634                                       BlockDriverAmendStatusCB *status_cb,
1635                                       void *cb_opaque)
1636 {
1637     BDRVQcow2State *s = bs->opaque;
1638     bool is_active_l1 = (l1_table == s->l1_table);
1639     uint64_t *l2_table = NULL;
1640     int ret;
1641     int i, j;
1642 
1643     if (!is_active_l1) {
1644         /* inactive L2 tables require a buffer to be stored in when loading
1645          * them from disk */
1646         l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1647         if (l2_table == NULL) {
1648             return -ENOMEM;
1649         }
1650     }
1651 
1652     for (i = 0; i < l1_size; i++) {
1653         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1654         bool l2_dirty = false;
1655         uint64_t l2_refcount;
1656 
1657         if (!l2_offset) {
1658             /* unallocated */
1659             (*visited_l1_entries)++;
1660             if (status_cb) {
1661                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1662             }
1663             continue;
1664         }
1665 
1666         if (offset_into_cluster(s, l2_offset)) {
1667             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1668                                     PRIx64 " unaligned (L1 index: %#x)",
1669                                     l2_offset, i);
1670             ret = -EIO;
1671             goto fail;
1672         }
1673 
1674         if (is_active_l1) {
1675             /* get active L2 tables from cache */
1676             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1677                     (void **)&l2_table);
1678         } else {
1679             /* load inactive L2 tables from disk */
1680             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1681                             (void *)l2_table, s->cluster_sectors);
1682         }
1683         if (ret < 0) {
1684             goto fail;
1685         }
1686 
1687         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1688                                  &l2_refcount);
1689         if (ret < 0) {
1690             goto fail;
1691         }
1692 
1693         for (j = 0; j < s->l2_size; j++) {
1694             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1695             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1696             int cluster_type = qcow2_get_cluster_type(l2_entry);
1697             bool preallocated = offset != 0;
1698 
1699             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1700                 continue;
1701             }
1702 
1703             if (!preallocated) {
1704                 if (!bs->backing) {
1705                     /* not backed; therefore we can simply deallocate the
1706                      * cluster */
1707                     l2_table[j] = 0;
1708                     l2_dirty = true;
1709                     continue;
1710                 }
1711 
1712                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1713                 if (offset < 0) {
1714                     ret = offset;
1715                     goto fail;
1716                 }
1717 
1718                 if (l2_refcount > 1) {
1719                     /* For shared L2 tables, set the refcount accordingly (it is
1720                      * already 1 and needs to be l2_refcount) */
1721                     ret = qcow2_update_cluster_refcount(bs,
1722                             offset >> s->cluster_bits,
1723                             refcount_diff(1, l2_refcount), false,
1724                             QCOW2_DISCARD_OTHER);
1725                     if (ret < 0) {
1726                         qcow2_free_clusters(bs, offset, s->cluster_size,
1727                                             QCOW2_DISCARD_OTHER);
1728                         goto fail;
1729                     }
1730                 }
1731             }
1732 
1733             if (offset_into_cluster(s, offset)) {
1734                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1735                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1736                                         PRIx64 ", L2 index: %#x)", offset,
1737                                         l2_offset, j);
1738                 if (!preallocated) {
1739                     qcow2_free_clusters(bs, offset, s->cluster_size,
1740                                         QCOW2_DISCARD_ALWAYS);
1741                 }
1742                 ret = -EIO;
1743                 goto fail;
1744             }
1745 
1746             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1747             if (ret < 0) {
1748                 if (!preallocated) {
1749                     qcow2_free_clusters(bs, offset, s->cluster_size,
1750                                         QCOW2_DISCARD_ALWAYS);
1751                 }
1752                 goto fail;
1753             }
1754 
1755             ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1756             if (ret < 0) {
1757                 if (!preallocated) {
1758                     qcow2_free_clusters(bs, offset, s->cluster_size,
1759                                         QCOW2_DISCARD_ALWAYS);
1760                 }
1761                 goto fail;
1762             }
1763 
1764             if (l2_refcount == 1) {
1765                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1766             } else {
1767                 l2_table[j] = cpu_to_be64(offset);
1768             }
1769             l2_dirty = true;
1770         }
1771 
1772         if (is_active_l1) {
1773             if (l2_dirty) {
1774                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1775                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1776             }
1777             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1778         } else {
1779             if (l2_dirty) {
1780                 ret = qcow2_pre_write_overlap_check(bs,
1781                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1782                         s->cluster_size);
1783                 if (ret < 0) {
1784                     goto fail;
1785                 }
1786 
1787                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1788                                  (void *)l2_table, s->cluster_sectors);
1789                 if (ret < 0) {
1790                     goto fail;
1791                 }
1792             }
1793         }
1794 
1795         (*visited_l1_entries)++;
1796         if (status_cb) {
1797             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1798         }
1799     }
1800 
1801     ret = 0;
1802 
1803 fail:
1804     if (l2_table) {
1805         if (!is_active_l1) {
1806             qemu_vfree(l2_table);
1807         } else {
1808             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1809         }
1810     }
1811     return ret;
1812 }
1813 
1814 /*
1815  * For backed images, expands all zero clusters on the image. For non-backed
1816  * images, deallocates all non-pre-allocated zero clusters (and claims the
1817  * allocation for pre-allocated ones). This is important for downgrading to a
1818  * qcow2 version which doesn't yet support metadata zero clusters.
1819  */
1820 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1821                                BlockDriverAmendStatusCB *status_cb,
1822                                void *cb_opaque)
1823 {
1824     BDRVQcow2State *s = bs->opaque;
1825     uint64_t *l1_table = NULL;
1826     int64_t l1_entries = 0, visited_l1_entries = 0;
1827     int ret;
1828     int i, j;
1829 
1830     if (status_cb) {
1831         l1_entries = s->l1_size;
1832         for (i = 0; i < s->nb_snapshots; i++) {
1833             l1_entries += s->snapshots[i].l1_size;
1834         }
1835     }
1836 
1837     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1838                                      &visited_l1_entries, l1_entries,
1839                                      status_cb, cb_opaque);
1840     if (ret < 0) {
1841         goto fail;
1842     }
1843 
1844     /* Inactive L1 tables may point to active L2 tables - therefore it is
1845      * necessary to flush the L2 table cache before trying to access the L2
1846      * tables pointed to by inactive L1 entries (else we might try to expand
1847      * zero clusters that have already been expanded); furthermore, it is also
1848      * necessary to empty the L2 table cache, since it may contain tables which
1849      * are now going to be modified directly on disk, bypassing the cache.
1850      * qcow2_cache_empty() does both for us. */
1851     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1852     if (ret < 0) {
1853         goto fail;
1854     }
1855 
1856     for (i = 0; i < s->nb_snapshots; i++) {
1857         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1858                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
1859 
1860         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1861 
1862         ret = bdrv_read(bs->file,
1863                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1864                         (void *)l1_table, l1_sectors);
1865         if (ret < 0) {
1866             goto fail;
1867         }
1868 
1869         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1870             be64_to_cpus(&l1_table[j]);
1871         }
1872 
1873         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1874                                          &visited_l1_entries, l1_entries,
1875                                          status_cb, cb_opaque);
1876         if (ret < 0) {
1877             goto fail;
1878         }
1879     }
1880 
1881     ret = 0;
1882 
1883 fail:
1884     g_free(l1_table);
1885     return ret;
1886 }
1887