xref: /qemu/block/qcow2-cluster.c (revision b30d1886)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27 
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34 
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36                         bool exact_size)
37 {
38     BDRVQcow2State *s = bs->opaque;
39     int new_l1_size2, ret, i;
40     uint64_t *new_l1_table;
41     int64_t old_l1_table_offset, old_l1_size;
42     int64_t new_l1_table_offset, new_l1_size;
43     uint8_t data[12];
44 
45     if (min_size <= s->l1_size)
46         return 0;
47 
48     /* Do a sanity check on min_size before trying to calculate new_l1_size
49      * (this prevents overflows during the while loop for the calculation of
50      * new_l1_size) */
51     if (min_size > INT_MAX / sizeof(uint64_t)) {
52         return -EFBIG;
53     }
54 
55     if (exact_size) {
56         new_l1_size = min_size;
57     } else {
58         /* Bump size up to reduce the number of times we have to grow */
59         new_l1_size = s->l1_size;
60         if (new_l1_size == 0) {
61             new_l1_size = 1;
62         }
63         while (min_size > new_l1_size) {
64             new_l1_size = (new_l1_size * 3 + 1) / 2;
65         }
66     }
67 
68     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69     if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
70         return -EFBIG;
71     }
72 
73 #ifdef DEBUG_ALLOC2
74     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75             s->l1_size, new_l1_size);
76 #endif
77 
78     new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79     new_l1_table = qemu_try_blockalign(bs->file->bs,
80                                        align_offset(new_l1_size2, 512));
81     if (new_l1_table == NULL) {
82         return -ENOMEM;
83     }
84     memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
85 
86     if (s->l1_size) {
87         memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
88     }
89 
90     /* write new table (align to cluster) */
91     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
92     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
93     if (new_l1_table_offset < 0) {
94         qemu_vfree(new_l1_table);
95         return new_l1_table_offset;
96     }
97 
98     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
99     if (ret < 0) {
100         goto fail;
101     }
102 
103     /* the L1 position has not yet been updated, so these clusters must
104      * indeed be completely free */
105     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
106                                         new_l1_size2);
107     if (ret < 0) {
108         goto fail;
109     }
110 
111     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
112     for(i = 0; i < s->l1_size; i++)
113         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
114     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
115                            new_l1_table, new_l1_size2);
116     if (ret < 0)
117         goto fail;
118     for(i = 0; i < s->l1_size; i++)
119         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
120 
121     /* set new table */
122     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
123     stl_be_p(data, new_l1_size);
124     stq_be_p(data + 4, new_l1_table_offset);
125     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
126                            data, sizeof(data));
127     if (ret < 0) {
128         goto fail;
129     }
130     qemu_vfree(s->l1_table);
131     old_l1_table_offset = s->l1_table_offset;
132     s->l1_table_offset = new_l1_table_offset;
133     s->l1_table = new_l1_table;
134     old_l1_size = s->l1_size;
135     s->l1_size = new_l1_size;
136     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
137                         QCOW2_DISCARD_OTHER);
138     return 0;
139  fail:
140     qemu_vfree(new_l1_table);
141     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
142                         QCOW2_DISCARD_OTHER);
143     return ret;
144 }
145 
146 /*
147  * l2_load
148  *
149  * Loads a L2 table into memory. If the table is in the cache, the cache
150  * is used; otherwise the L2 table is loaded from the image file.
151  *
152  * Returns a pointer to the L2 table on success, or NULL if the read from
153  * the image file failed.
154  */
155 
156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
157     uint64_t **l2_table)
158 {
159     BDRVQcow2State *s = bs->opaque;
160 
161     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
162                            (void **)l2_table);
163 }
164 
165 /*
166  * Writes one sector of the L1 table to the disk (can't update single entries
167  * and we really don't want bdrv_pread to perform a read-modify-write)
168  */
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
171 {
172     BDRVQcow2State *s = bs->opaque;
173     uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
174     int l1_start_index;
175     int i, ret;
176 
177     l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
178     for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
179          i++)
180     {
181         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
182     }
183 
184     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
185             s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
186     if (ret < 0) {
187         return ret;
188     }
189 
190     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
191     ret = bdrv_pwrite_sync(bs->file,
192                            s->l1_table_offset + 8 * l1_start_index,
193                            buf, sizeof(buf));
194     if (ret < 0) {
195         return ret;
196     }
197 
198     return 0;
199 }
200 
201 /*
202  * l2_allocate
203  *
204  * Allocate a new l2 entry in the file. If l1_index points to an already
205  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206  * table) copy the contents of the old L2 table into the newly allocated one.
207  * Otherwise the new table is initialized with zeros.
208  *
209  */
210 
211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
212 {
213     BDRVQcow2State *s = bs->opaque;
214     uint64_t old_l2_offset;
215     uint64_t *l2_table = NULL;
216     int64_t l2_offset;
217     int ret;
218 
219     old_l2_offset = s->l1_table[l1_index];
220 
221     trace_qcow2_l2_allocate(bs, l1_index);
222 
223     /* allocate a new l2 entry */
224 
225     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
226     if (l2_offset < 0) {
227         ret = l2_offset;
228         goto fail;
229     }
230 
231     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
232     if (ret < 0) {
233         goto fail;
234     }
235 
236     /* allocate a new entry in the l2 cache */
237 
238     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
239     ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
240     if (ret < 0) {
241         goto fail;
242     }
243 
244     l2_table = *table;
245 
246     if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
247         /* if there was no old l2 table, clear the new table */
248         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
249     } else {
250         uint64_t* old_table;
251 
252         /* if there was an old l2 table, read it from the disk */
253         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
254         ret = qcow2_cache_get(bs, s->l2_table_cache,
255             old_l2_offset & L1E_OFFSET_MASK,
256             (void**) &old_table);
257         if (ret < 0) {
258             goto fail;
259         }
260 
261         memcpy(l2_table, old_table, s->cluster_size);
262 
263         qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
264     }
265 
266     /* write the l2 table to the file */
267     BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
268 
269     trace_qcow2_l2_allocate_write_l2(bs, l1_index);
270     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
271     ret = qcow2_cache_flush(bs, s->l2_table_cache);
272     if (ret < 0) {
273         goto fail;
274     }
275 
276     /* update the L1 entry */
277     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
278     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
279     ret = qcow2_write_l1_entry(bs, l1_index);
280     if (ret < 0) {
281         goto fail;
282     }
283 
284     *table = l2_table;
285     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
286     return 0;
287 
288 fail:
289     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
290     if (l2_table != NULL) {
291         qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
292     }
293     s->l1_table[l1_index] = old_l2_offset;
294     if (l2_offset > 0) {
295         qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
296                             QCOW2_DISCARD_ALWAYS);
297     }
298     return ret;
299 }
300 
301 /*
302  * Checks how many clusters in a given L2 table are contiguous in the image
303  * file. As soon as one of the flags in the bitmask stop_flags changes compared
304  * to the first cluster, the search is stopped and the cluster is not counted
305  * as contiguous. (This allows it, for example, to stop at the first compressed
306  * cluster which may require a different handling)
307  */
308 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
309         uint64_t *l2_table, uint64_t stop_flags)
310 {
311     int i;
312     uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
313     uint64_t first_entry = be64_to_cpu(l2_table[0]);
314     uint64_t offset = first_entry & mask;
315 
316     if (!offset)
317         return 0;
318 
319     assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
320 
321     for (i = 0; i < nb_clusters; i++) {
322         uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
323         if (offset + (uint64_t) i * cluster_size != l2_entry) {
324             break;
325         }
326     }
327 
328 	return i;
329 }
330 
331 static int count_contiguous_clusters_by_type(int nb_clusters,
332                                              uint64_t *l2_table,
333                                              int wanted_type)
334 {
335     int i;
336 
337     for (i = 0; i < nb_clusters; i++) {
338         int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
339 
340         if (type != wanted_type) {
341             break;
342         }
343     }
344 
345     return i;
346 }
347 
348 /* The crypt function is compatible with the linux cryptoloop
349    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
350    supported */
351 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
352                           uint8_t *out_buf, const uint8_t *in_buf,
353                           int nb_sectors, bool enc,
354                           Error **errp)
355 {
356     union {
357         uint64_t ll[2];
358         uint8_t b[16];
359     } ivec;
360     int i;
361     int ret;
362 
363     for(i = 0; i < nb_sectors; i++) {
364         ivec.ll[0] = cpu_to_le64(sector_num);
365         ivec.ll[1] = 0;
366         if (qcrypto_cipher_setiv(s->cipher,
367                                  ivec.b, G_N_ELEMENTS(ivec.b),
368                                  errp) < 0) {
369             return -1;
370         }
371         if (enc) {
372             ret = qcrypto_cipher_encrypt(s->cipher,
373                                          in_buf,
374                                          out_buf,
375                                          512,
376                                          errp);
377         } else {
378             ret = qcrypto_cipher_decrypt(s->cipher,
379                                          in_buf,
380                                          out_buf,
381                                          512,
382                                          errp);
383         }
384         if (ret < 0) {
385             return -1;
386         }
387         sector_num++;
388         in_buf += 512;
389         out_buf += 512;
390     }
391     return 0;
392 }
393 
394 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
395                                        uint64_t src_cluster_offset,
396                                        uint64_t cluster_offset,
397                                        int offset_in_cluster,
398                                        int bytes)
399 {
400     BDRVQcow2State *s = bs->opaque;
401     QEMUIOVector qiov;
402     struct iovec iov;
403     int ret;
404 
405     iov.iov_len = bytes;
406     iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
407     if (iov.iov_base == NULL) {
408         return -ENOMEM;
409     }
410 
411     qemu_iovec_init_external(&qiov, &iov, 1);
412 
413     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
414 
415     if (!bs->drv) {
416         ret = -ENOMEDIUM;
417         goto out;
418     }
419 
420     /* Call .bdrv_co_readv() directly instead of using the public block-layer
421      * interface.  This avoids double I/O throttling and request tracking,
422      * which can lead to deadlock when block layer copy-on-read is enabled.
423      */
424     ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
425                                   bytes, &qiov, 0);
426     if (ret < 0) {
427         goto out;
428     }
429 
430     if (bs->encrypted) {
431         Error *err = NULL;
432         int64_t sector = (src_cluster_offset + offset_in_cluster)
433                          >> BDRV_SECTOR_BITS;
434         assert(s->cipher);
435         assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
436         assert((bytes & ~BDRV_SECTOR_MASK) == 0);
437         if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
438                                   bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
439             ret = -EIO;
440             error_free(err);
441             goto out;
442         }
443     }
444 
445     ret = qcow2_pre_write_overlap_check(bs, 0,
446             cluster_offset + offset_in_cluster, bytes);
447     if (ret < 0) {
448         goto out;
449     }
450 
451     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
452     ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
453                           bytes, &qiov, 0);
454     if (ret < 0) {
455         goto out;
456     }
457 
458     ret = 0;
459 out:
460     qemu_vfree(iov.iov_base);
461     return ret;
462 }
463 
464 
465 /*
466  * get_cluster_offset
467  *
468  * For a given offset of the virtual disk, find the cluster type and offset in
469  * the qcow2 file. The offset is stored in *cluster_offset.
470  *
471  * On entry, *bytes is the maximum number of contiguous bytes starting at
472  * offset that we are interested in.
473  *
474  * On exit, *bytes is the number of bytes starting at offset that have the same
475  * cluster type and (if applicable) are stored contiguously in the image file.
476  * Compressed clusters are always returned one by one.
477  *
478  * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
479  * cases.
480  */
481 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
482                              unsigned int *bytes, uint64_t *cluster_offset)
483 {
484     BDRVQcow2State *s = bs->opaque;
485     unsigned int l2_index;
486     uint64_t l1_index, l2_offset, *l2_table;
487     int l1_bits, c;
488     unsigned int offset_in_cluster;
489     uint64_t bytes_available, bytes_needed, nb_clusters;
490     int ret;
491 
492     offset_in_cluster = offset_into_cluster(s, offset);
493     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
494 
495     l1_bits = s->l2_bits + s->cluster_bits;
496 
497     /* compute how many bytes there are between the start of the cluster
498      * containing offset and the end of the l1 entry */
499     bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
500                     + offset_in_cluster;
501 
502     if (bytes_needed > bytes_available) {
503         bytes_needed = bytes_available;
504     }
505 
506     *cluster_offset = 0;
507 
508     /* seek to the l2 offset in the l1 table */
509 
510     l1_index = offset >> l1_bits;
511     if (l1_index >= s->l1_size) {
512         ret = QCOW2_CLUSTER_UNALLOCATED;
513         goto out;
514     }
515 
516     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
517     if (!l2_offset) {
518         ret = QCOW2_CLUSTER_UNALLOCATED;
519         goto out;
520     }
521 
522     if (offset_into_cluster(s, l2_offset)) {
523         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
524                                 " unaligned (L1 index: %#" PRIx64 ")",
525                                 l2_offset, l1_index);
526         return -EIO;
527     }
528 
529     /* load the l2 table in memory */
530 
531     ret = l2_load(bs, l2_offset, &l2_table);
532     if (ret < 0) {
533         return ret;
534     }
535 
536     /* find the cluster offset for the given disk offset */
537 
538     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539     *cluster_offset = be64_to_cpu(l2_table[l2_index]);
540 
541     nb_clusters = size_to_clusters(s, bytes_needed);
542     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
543      * integers; the minimum cluster size is 512, so this assertion is always
544      * true */
545     assert(nb_clusters <= INT_MAX);
546 
547     ret = qcow2_get_cluster_type(*cluster_offset);
548     switch (ret) {
549     case QCOW2_CLUSTER_COMPRESSED:
550         /* Compressed clusters can only be processed one by one */
551         c = 1;
552         *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
553         break;
554     case QCOW2_CLUSTER_ZERO:
555         if (s->qcow_version < 3) {
556             qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
557                                     " in pre-v3 image (L2 offset: %#" PRIx64
558                                     ", L2 index: %#x)", l2_offset, l2_index);
559             ret = -EIO;
560             goto fail;
561         }
562         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
563                                               QCOW2_CLUSTER_ZERO);
564         *cluster_offset = 0;
565         break;
566     case QCOW2_CLUSTER_UNALLOCATED:
567         /* how many empty clusters ? */
568         c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
569                                               QCOW2_CLUSTER_UNALLOCATED);
570         *cluster_offset = 0;
571         break;
572     case QCOW2_CLUSTER_NORMAL:
573         /* how many allocated clusters ? */
574         c = count_contiguous_clusters(nb_clusters, s->cluster_size,
575                 &l2_table[l2_index], QCOW_OFLAG_ZERO);
576         *cluster_offset &= L2E_OFFSET_MASK;
577         if (offset_into_cluster(s, *cluster_offset)) {
578             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
579                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
580                                     ", L2 index: %#x)", *cluster_offset,
581                                     l2_offset, l2_index);
582             ret = -EIO;
583             goto fail;
584         }
585         break;
586     default:
587         abort();
588     }
589 
590     qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591 
592     bytes_available = (int64_t)c * s->cluster_size;
593 
594 out:
595     if (bytes_available > bytes_needed) {
596         bytes_available = bytes_needed;
597     }
598 
599     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
600      * subtracting offset_in_cluster will therefore definitely yield something
601      * not exceeding UINT_MAX */
602     assert(bytes_available - offset_in_cluster <= UINT_MAX);
603     *bytes = bytes_available - offset_in_cluster;
604 
605     return ret;
606 
607 fail:
608     qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
609     return ret;
610 }
611 
612 /*
613  * get_cluster_table
614  *
615  * for a given disk offset, load (and allocate if needed)
616  * the l2 table.
617  *
618  * the l2 table offset in the qcow2 file and the cluster index
619  * in the l2 table are given to the caller.
620  *
621  * Returns 0 on success, -errno in failure case
622  */
623 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
624                              uint64_t **new_l2_table,
625                              int *new_l2_index)
626 {
627     BDRVQcow2State *s = bs->opaque;
628     unsigned int l2_index;
629     uint64_t l1_index, l2_offset;
630     uint64_t *l2_table = NULL;
631     int ret;
632 
633     /* seek to the l2 offset in the l1 table */
634 
635     l1_index = offset >> (s->l2_bits + s->cluster_bits);
636     if (l1_index >= s->l1_size) {
637         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
638         if (ret < 0) {
639             return ret;
640         }
641     }
642 
643     assert(l1_index < s->l1_size);
644     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
645     if (offset_into_cluster(s, l2_offset)) {
646         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
647                                 " unaligned (L1 index: %#" PRIx64 ")",
648                                 l2_offset, l1_index);
649         return -EIO;
650     }
651 
652     /* seek the l2 table of the given l2 offset */
653 
654     if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
655         /* load the l2 table in memory */
656         ret = l2_load(bs, l2_offset, &l2_table);
657         if (ret < 0) {
658             return ret;
659         }
660     } else {
661         /* First allocate a new L2 table (and do COW if needed) */
662         ret = l2_allocate(bs, l1_index, &l2_table);
663         if (ret < 0) {
664             return ret;
665         }
666 
667         /* Then decrease the refcount of the old table */
668         if (l2_offset) {
669             qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
670                                 QCOW2_DISCARD_OTHER);
671         }
672     }
673 
674     /* find the cluster offset for the given disk offset */
675 
676     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
677 
678     *new_l2_table = l2_table;
679     *new_l2_index = l2_index;
680 
681     return 0;
682 }
683 
684 /*
685  * alloc_compressed_cluster_offset
686  *
687  * For a given offset of the disk image, return cluster offset in
688  * qcow2 file.
689  *
690  * If the offset is not found, allocate a new compressed cluster.
691  *
692  * Return the cluster offset if successful,
693  * Return 0, otherwise.
694  *
695  */
696 
697 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
698                                                uint64_t offset,
699                                                int compressed_size)
700 {
701     BDRVQcow2State *s = bs->opaque;
702     int l2_index, ret;
703     uint64_t *l2_table;
704     int64_t cluster_offset;
705     int nb_csectors;
706 
707     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
708     if (ret < 0) {
709         return 0;
710     }
711 
712     /* Compression can't overwrite anything. Fail if the cluster was already
713      * allocated. */
714     cluster_offset = be64_to_cpu(l2_table[l2_index]);
715     if (cluster_offset & L2E_OFFSET_MASK) {
716         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
717         return 0;
718     }
719 
720     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
721     if (cluster_offset < 0) {
722         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
723         return 0;
724     }
725 
726     nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
727                   (cluster_offset >> 9);
728 
729     cluster_offset |= QCOW_OFLAG_COMPRESSED |
730                       ((uint64_t)nb_csectors << s->csize_shift);
731 
732     /* update L2 table */
733 
734     /* compressed clusters never have the copied flag */
735 
736     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
737     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
738     l2_table[l2_index] = cpu_to_be64(cluster_offset);
739     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
740 
741     return cluster_offset;
742 }
743 
744 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
745 {
746     BDRVQcow2State *s = bs->opaque;
747     int ret;
748 
749     if (r->nb_bytes == 0) {
750         return 0;
751     }
752 
753     qemu_co_mutex_unlock(&s->lock);
754     ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
755     qemu_co_mutex_lock(&s->lock);
756 
757     if (ret < 0) {
758         return ret;
759     }
760 
761     /*
762      * Before we update the L2 table to actually point to the new cluster, we
763      * need to be sure that the refcounts have been increased and COW was
764      * handled.
765      */
766     qcow2_cache_depends_on_flush(s->l2_table_cache);
767 
768     return 0;
769 }
770 
771 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
772 {
773     BDRVQcow2State *s = bs->opaque;
774     int i, j = 0, l2_index, ret;
775     uint64_t *old_cluster, *l2_table;
776     uint64_t cluster_offset = m->alloc_offset;
777 
778     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
779     assert(m->nb_clusters > 0);
780 
781     old_cluster = g_try_new(uint64_t, m->nb_clusters);
782     if (old_cluster == NULL) {
783         ret = -ENOMEM;
784         goto err;
785     }
786 
787     /* copy content of unmodified sectors */
788     ret = perform_cow(bs, m, &m->cow_start);
789     if (ret < 0) {
790         goto err;
791     }
792 
793     ret = perform_cow(bs, m, &m->cow_end);
794     if (ret < 0) {
795         goto err;
796     }
797 
798     /* Update L2 table. */
799     if (s->use_lazy_refcounts) {
800         qcow2_mark_dirty(bs);
801     }
802     if (qcow2_need_accurate_refcounts(s)) {
803         qcow2_cache_set_dependency(bs, s->l2_table_cache,
804                                    s->refcount_block_cache);
805     }
806 
807     ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
808     if (ret < 0) {
809         goto err;
810     }
811     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
812 
813     assert(l2_index + m->nb_clusters <= s->l2_size);
814     for (i = 0; i < m->nb_clusters; i++) {
815         /* if two concurrent writes happen to the same unallocated cluster
816          * each write allocates separate cluster and writes data concurrently.
817          * The first one to complete updates l2 table with pointer to its
818          * cluster the second one has to do RMW (which is done above by
819          * perform_cow()), update l2 table with its cluster pointer and free
820          * old cluster. This is what this loop does */
821         if (l2_table[l2_index + i] != 0) {
822             old_cluster[j++] = l2_table[l2_index + i];
823         }
824 
825         l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
826                     (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
827      }
828 
829 
830     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
831 
832     /*
833      * If this was a COW, we need to decrease the refcount of the old cluster.
834      *
835      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
836      * clusters), the next write will reuse them anyway.
837      */
838     if (j != 0) {
839         for (i = 0; i < j; i++) {
840             qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
841                                     QCOW2_DISCARD_NEVER);
842         }
843     }
844 
845     ret = 0;
846 err:
847     g_free(old_cluster);
848     return ret;
849  }
850 
851 /*
852  * Returns the number of contiguous clusters that can be used for an allocating
853  * write, but require COW to be performed (this includes yet unallocated space,
854  * which must copy from the backing file)
855  */
856 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
857     uint64_t *l2_table, int l2_index)
858 {
859     int i;
860 
861     for (i = 0; i < nb_clusters; i++) {
862         uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
863         int cluster_type = qcow2_get_cluster_type(l2_entry);
864 
865         switch(cluster_type) {
866         case QCOW2_CLUSTER_NORMAL:
867             if (l2_entry & QCOW_OFLAG_COPIED) {
868                 goto out;
869             }
870             break;
871         case QCOW2_CLUSTER_UNALLOCATED:
872         case QCOW2_CLUSTER_COMPRESSED:
873         case QCOW2_CLUSTER_ZERO:
874             break;
875         default:
876             abort();
877         }
878     }
879 
880 out:
881     assert(i <= nb_clusters);
882     return i;
883 }
884 
885 /*
886  * Check if there already is an AIO write request in flight which allocates
887  * the same cluster. In this case we need to wait until the previous
888  * request has completed and updated the L2 table accordingly.
889  *
890  * Returns:
891  *   0       if there was no dependency. *cur_bytes indicates the number of
892  *           bytes from guest_offset that can be read before the next
893  *           dependency must be processed (or the request is complete)
894  *
895  *   -EAGAIN if we had to wait for another request, previously gathered
896  *           information on cluster allocation may be invalid now. The caller
897  *           must start over anyway, so consider *cur_bytes undefined.
898  */
899 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
900     uint64_t *cur_bytes, QCowL2Meta **m)
901 {
902     BDRVQcow2State *s = bs->opaque;
903     QCowL2Meta *old_alloc;
904     uint64_t bytes = *cur_bytes;
905 
906     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
907 
908         uint64_t start = guest_offset;
909         uint64_t end = start + bytes;
910         uint64_t old_start = l2meta_cow_start(old_alloc);
911         uint64_t old_end = l2meta_cow_end(old_alloc);
912 
913         if (end <= old_start || start >= old_end) {
914             /* No intersection */
915         } else {
916             if (start < old_start) {
917                 /* Stop at the start of a running allocation */
918                 bytes = old_start - start;
919             } else {
920                 bytes = 0;
921             }
922 
923             /* Stop if already an l2meta exists. After yielding, it wouldn't
924              * be valid any more, so we'd have to clean up the old L2Metas
925              * and deal with requests depending on them before starting to
926              * gather new ones. Not worth the trouble. */
927             if (bytes == 0 && *m) {
928                 *cur_bytes = 0;
929                 return 0;
930             }
931 
932             if (bytes == 0) {
933                 /* Wait for the dependency to complete. We need to recheck
934                  * the free/allocated clusters when we continue. */
935                 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
936                 return -EAGAIN;
937             }
938         }
939     }
940 
941     /* Make sure that existing clusters and new allocations are only used up to
942      * the next dependency if we shortened the request above */
943     *cur_bytes = bytes;
944 
945     return 0;
946 }
947 
948 /*
949  * Checks how many already allocated clusters that don't require a copy on
950  * write there are at the given guest_offset (up to *bytes). If
951  * *host_offset is not zero, only physically contiguous clusters beginning at
952  * this host offset are counted.
953  *
954  * Note that guest_offset may not be cluster aligned. In this case, the
955  * returned *host_offset points to exact byte referenced by guest_offset and
956  * therefore isn't cluster aligned as well.
957  *
958  * Returns:
959  *   0:     if no allocated clusters are available at the given offset.
960  *          *bytes is normally unchanged. It is set to 0 if the cluster
961  *          is allocated and doesn't need COW, but doesn't have the right
962  *          physical offset.
963  *
964  *   1:     if allocated clusters that don't require a COW are available at
965  *          the requested offset. *bytes may have decreased and describes
966  *          the length of the area that can be written to.
967  *
968  *  -errno: in error cases
969  */
970 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
971     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
972 {
973     BDRVQcow2State *s = bs->opaque;
974     int l2_index;
975     uint64_t cluster_offset;
976     uint64_t *l2_table;
977     uint64_t nb_clusters;
978     unsigned int keep_clusters;
979     int ret;
980 
981     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
982                               *bytes);
983 
984     assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
985                                 == offset_into_cluster(s, *host_offset));
986 
987     /*
988      * Calculate the number of clusters to look for. We stop at L2 table
989      * boundaries to keep things simple.
990      */
991     nb_clusters =
992         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
993 
994     l2_index = offset_to_l2_index(s, guest_offset);
995     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
996     assert(nb_clusters <= INT_MAX);
997 
998     /* Find L2 entry for the first involved cluster */
999     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1000     if (ret < 0) {
1001         return ret;
1002     }
1003 
1004     cluster_offset = be64_to_cpu(l2_table[l2_index]);
1005 
1006     /* Check how many clusters are already allocated and don't need COW */
1007     if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1008         && (cluster_offset & QCOW_OFLAG_COPIED))
1009     {
1010         /* If a specific host_offset is required, check it */
1011         bool offset_matches =
1012             (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1013 
1014         if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1015             qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1016                                     "%#llx unaligned (guest offset: %#" PRIx64
1017                                     ")", cluster_offset & L2E_OFFSET_MASK,
1018                                     guest_offset);
1019             ret = -EIO;
1020             goto out;
1021         }
1022 
1023         if (*host_offset != 0 && !offset_matches) {
1024             *bytes = 0;
1025             ret = 0;
1026             goto out;
1027         }
1028 
1029         /* We keep all QCOW_OFLAG_COPIED clusters */
1030         keep_clusters =
1031             count_contiguous_clusters(nb_clusters, s->cluster_size,
1032                                       &l2_table[l2_index],
1033                                       QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1034         assert(keep_clusters <= nb_clusters);
1035 
1036         *bytes = MIN(*bytes,
1037                  keep_clusters * s->cluster_size
1038                  - offset_into_cluster(s, guest_offset));
1039 
1040         ret = 1;
1041     } else {
1042         ret = 0;
1043     }
1044 
1045     /* Cleanup */
1046 out:
1047     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1048 
1049     /* Only return a host offset if we actually made progress. Otherwise we
1050      * would make requirements for handle_alloc() that it can't fulfill */
1051     if (ret > 0) {
1052         *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1053                      + offset_into_cluster(s, guest_offset);
1054     }
1055 
1056     return ret;
1057 }
1058 
1059 /*
1060  * Allocates new clusters for the given guest_offset.
1061  *
1062  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1063  * contain the number of clusters that have been allocated and are contiguous
1064  * in the image file.
1065  *
1066  * If *host_offset is non-zero, it specifies the offset in the image file at
1067  * which the new clusters must start. *nb_clusters can be 0 on return in this
1068  * case if the cluster at host_offset is already in use. If *host_offset is
1069  * zero, the clusters can be allocated anywhere in the image file.
1070  *
1071  * *host_offset is updated to contain the offset into the image file at which
1072  * the first allocated cluster starts.
1073  *
1074  * Return 0 on success and -errno in error cases. -EAGAIN means that the
1075  * function has been waiting for another request and the allocation must be
1076  * restarted, but the whole request should not be failed.
1077  */
1078 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1079                                    uint64_t *host_offset, uint64_t *nb_clusters)
1080 {
1081     BDRVQcow2State *s = bs->opaque;
1082 
1083     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1084                                          *host_offset, *nb_clusters);
1085 
1086     /* Allocate new clusters */
1087     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1088     if (*host_offset == 0) {
1089         int64_t cluster_offset =
1090             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1091         if (cluster_offset < 0) {
1092             return cluster_offset;
1093         }
1094         *host_offset = cluster_offset;
1095         return 0;
1096     } else {
1097         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1098         if (ret < 0) {
1099             return ret;
1100         }
1101         *nb_clusters = ret;
1102         return 0;
1103     }
1104 }
1105 
1106 /*
1107  * Allocates new clusters for an area that either is yet unallocated or needs a
1108  * copy on write. If *host_offset is non-zero, clusters are only allocated if
1109  * the new allocation can match the specified host offset.
1110  *
1111  * Note that guest_offset may not be cluster aligned. In this case, the
1112  * returned *host_offset points to exact byte referenced by guest_offset and
1113  * therefore isn't cluster aligned as well.
1114  *
1115  * Returns:
1116  *   0:     if no clusters could be allocated. *bytes is set to 0,
1117  *          *host_offset is left unchanged.
1118  *
1119  *   1:     if new clusters were allocated. *bytes may be decreased if the
1120  *          new allocation doesn't cover all of the requested area.
1121  *          *host_offset is updated to contain the host offset of the first
1122  *          newly allocated cluster.
1123  *
1124  *  -errno: in error cases
1125  */
1126 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1127     uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1128 {
1129     BDRVQcow2State *s = bs->opaque;
1130     int l2_index;
1131     uint64_t *l2_table;
1132     uint64_t entry;
1133     uint64_t nb_clusters;
1134     int ret;
1135 
1136     uint64_t alloc_cluster_offset;
1137 
1138     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1139                              *bytes);
1140     assert(*bytes > 0);
1141 
1142     /*
1143      * Calculate the number of clusters to look for. We stop at L2 table
1144      * boundaries to keep things simple.
1145      */
1146     nb_clusters =
1147         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1148 
1149     l2_index = offset_to_l2_index(s, guest_offset);
1150     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1151     assert(nb_clusters <= INT_MAX);
1152 
1153     /* Find L2 entry for the first involved cluster */
1154     ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1155     if (ret < 0) {
1156         return ret;
1157     }
1158 
1159     entry = be64_to_cpu(l2_table[l2_index]);
1160 
1161     /* For the moment, overwrite compressed clusters one by one */
1162     if (entry & QCOW_OFLAG_COMPRESSED) {
1163         nb_clusters = 1;
1164     } else {
1165         nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1166     }
1167 
1168     /* This function is only called when there were no non-COW clusters, so if
1169      * we can't find any unallocated or COW clusters either, something is
1170      * wrong with our code. */
1171     assert(nb_clusters > 0);
1172 
1173     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1174 
1175     /* Allocate, if necessary at a given offset in the image file */
1176     alloc_cluster_offset = start_of_cluster(s, *host_offset);
1177     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1178                                   &nb_clusters);
1179     if (ret < 0) {
1180         goto fail;
1181     }
1182 
1183     /* Can't extend contiguous allocation */
1184     if (nb_clusters == 0) {
1185         *bytes = 0;
1186         return 0;
1187     }
1188 
1189     /* !*host_offset would overwrite the image header and is reserved for "no
1190      * host offset preferred". If 0 was a valid host offset, it'd trigger the
1191      * following overlap check; do that now to avoid having an invalid value in
1192      * *host_offset. */
1193     if (!alloc_cluster_offset) {
1194         ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1195                                             nb_clusters * s->cluster_size);
1196         assert(ret < 0);
1197         goto fail;
1198     }
1199 
1200     /*
1201      * Save info needed for meta data update.
1202      *
1203      * requested_bytes: Number of bytes from the start of the first
1204      * newly allocated cluster to the end of the (possibly shortened
1205      * before) write request.
1206      *
1207      * avail_bytes: Number of bytes from the start of the first
1208      * newly allocated to the end of the last newly allocated cluster.
1209      *
1210      * nb_bytes: The number of bytes from the start of the first
1211      * newly allocated cluster to the end of the area that the write
1212      * request actually writes to (excluding COW at the end)
1213      */
1214     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1215     int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1216     int nb_bytes = MIN(requested_bytes, avail_bytes);
1217     QCowL2Meta *old_m = *m;
1218 
1219     *m = g_malloc0(sizeof(**m));
1220 
1221     **m = (QCowL2Meta) {
1222         .next           = old_m,
1223 
1224         .alloc_offset   = alloc_cluster_offset,
1225         .offset         = start_of_cluster(s, guest_offset),
1226         .nb_clusters    = nb_clusters,
1227 
1228         .cow_start = {
1229             .offset     = 0,
1230             .nb_bytes   = offset_into_cluster(s, guest_offset),
1231         },
1232         .cow_end = {
1233             .offset     = nb_bytes,
1234             .nb_bytes   = avail_bytes - nb_bytes,
1235         },
1236     };
1237     qemu_co_queue_init(&(*m)->dependent_requests);
1238     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1239 
1240     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1241     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1242     assert(*bytes != 0);
1243 
1244     return 1;
1245 
1246 fail:
1247     if (*m && (*m)->nb_clusters > 0) {
1248         QLIST_REMOVE(*m, next_in_flight);
1249     }
1250     return ret;
1251 }
1252 
1253 /*
1254  * alloc_cluster_offset
1255  *
1256  * For a given offset on the virtual disk, find the cluster offset in qcow2
1257  * file. If the offset is not found, allocate a new cluster.
1258  *
1259  * If the cluster was already allocated, m->nb_clusters is set to 0 and
1260  * other fields in m are meaningless.
1261  *
1262  * If the cluster is newly allocated, m->nb_clusters is set to the number of
1263  * contiguous clusters that have been allocated. In this case, the other
1264  * fields of m are valid and contain information about the first allocated
1265  * cluster.
1266  *
1267  * If the request conflicts with another write request in flight, the coroutine
1268  * is queued and will be reentered when the dependency has completed.
1269  *
1270  * Return 0 on success and -errno in error cases
1271  */
1272 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1273                                unsigned int *bytes, uint64_t *host_offset,
1274                                QCowL2Meta **m)
1275 {
1276     BDRVQcow2State *s = bs->opaque;
1277     uint64_t start, remaining;
1278     uint64_t cluster_offset;
1279     uint64_t cur_bytes;
1280     int ret;
1281 
1282     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1283 
1284 again:
1285     start = offset;
1286     remaining = *bytes;
1287     cluster_offset = 0;
1288     *host_offset = 0;
1289     cur_bytes = 0;
1290     *m = NULL;
1291 
1292     while (true) {
1293 
1294         if (!*host_offset) {
1295             *host_offset = start_of_cluster(s, cluster_offset);
1296         }
1297 
1298         assert(remaining >= cur_bytes);
1299 
1300         start           += cur_bytes;
1301         remaining       -= cur_bytes;
1302         cluster_offset  += cur_bytes;
1303 
1304         if (remaining == 0) {
1305             break;
1306         }
1307 
1308         cur_bytes = remaining;
1309 
1310         /*
1311          * Now start gathering as many contiguous clusters as possible:
1312          *
1313          * 1. Check for overlaps with in-flight allocations
1314          *
1315          *      a) Overlap not in the first cluster -> shorten this request and
1316          *         let the caller handle the rest in its next loop iteration.
1317          *
1318          *      b) Real overlaps of two requests. Yield and restart the search
1319          *         for contiguous clusters (the situation could have changed
1320          *         while we were sleeping)
1321          *
1322          *      c) TODO: Request starts in the same cluster as the in-flight
1323          *         allocation ends. Shorten the COW of the in-fight allocation,
1324          *         set cluster_offset to write to the same cluster and set up
1325          *         the right synchronisation between the in-flight request and
1326          *         the new one.
1327          */
1328         ret = handle_dependencies(bs, start, &cur_bytes, m);
1329         if (ret == -EAGAIN) {
1330             /* Currently handle_dependencies() doesn't yield if we already had
1331              * an allocation. If it did, we would have to clean up the L2Meta
1332              * structs before starting over. */
1333             assert(*m == NULL);
1334             goto again;
1335         } else if (ret < 0) {
1336             return ret;
1337         } else if (cur_bytes == 0) {
1338             break;
1339         } else {
1340             /* handle_dependencies() may have decreased cur_bytes (shortened
1341              * the allocations below) so that the next dependency is processed
1342              * correctly during the next loop iteration. */
1343         }
1344 
1345         /*
1346          * 2. Count contiguous COPIED clusters.
1347          */
1348         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1349         if (ret < 0) {
1350             return ret;
1351         } else if (ret) {
1352             continue;
1353         } else if (cur_bytes == 0) {
1354             break;
1355         }
1356 
1357         /*
1358          * 3. If the request still hasn't completed, allocate new clusters,
1359          *    considering any cluster_offset of steps 1c or 2.
1360          */
1361         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1362         if (ret < 0) {
1363             return ret;
1364         } else if (ret) {
1365             continue;
1366         } else {
1367             assert(cur_bytes == 0);
1368             break;
1369         }
1370     }
1371 
1372     *bytes -= remaining;
1373     assert(*bytes > 0);
1374     assert(*host_offset != 0);
1375 
1376     return 0;
1377 }
1378 
1379 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1380                              const uint8_t *buf, int buf_size)
1381 {
1382     z_stream strm1, *strm = &strm1;
1383     int ret, out_len;
1384 
1385     memset(strm, 0, sizeof(*strm));
1386 
1387     strm->next_in = (uint8_t *)buf;
1388     strm->avail_in = buf_size;
1389     strm->next_out = out_buf;
1390     strm->avail_out = out_buf_size;
1391 
1392     ret = inflateInit2(strm, -12);
1393     if (ret != Z_OK)
1394         return -1;
1395     ret = inflate(strm, Z_FINISH);
1396     out_len = strm->next_out - out_buf;
1397     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1398         out_len != out_buf_size) {
1399         inflateEnd(strm);
1400         return -1;
1401     }
1402     inflateEnd(strm);
1403     return 0;
1404 }
1405 
1406 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1407 {
1408     BDRVQcow2State *s = bs->opaque;
1409     int ret, csize, nb_csectors, sector_offset;
1410     uint64_t coffset;
1411 
1412     coffset = cluster_offset & s->cluster_offset_mask;
1413     if (s->cluster_cache_offset != coffset) {
1414         nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1415         sector_offset = coffset & 511;
1416         csize = nb_csectors * 512 - sector_offset;
1417         BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1418         ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1419                         nb_csectors);
1420         if (ret < 0) {
1421             return ret;
1422         }
1423         if (decompress_buffer(s->cluster_cache, s->cluster_size,
1424                               s->cluster_data + sector_offset, csize) < 0) {
1425             return -EIO;
1426         }
1427         s->cluster_cache_offset = coffset;
1428     }
1429     return 0;
1430 }
1431 
1432 /*
1433  * This discards as many clusters of nb_clusters as possible at once (i.e.
1434  * all clusters in the same L2 table) and returns the number of discarded
1435  * clusters.
1436  */
1437 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1438                              uint64_t nb_clusters, enum qcow2_discard_type type,
1439                              bool full_discard)
1440 {
1441     BDRVQcow2State *s = bs->opaque;
1442     uint64_t *l2_table;
1443     int l2_index;
1444     int ret;
1445     int i;
1446 
1447     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1448     if (ret < 0) {
1449         return ret;
1450     }
1451 
1452     /* Limit nb_clusters to one L2 table */
1453     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1454     assert(nb_clusters <= INT_MAX);
1455 
1456     for (i = 0; i < nb_clusters; i++) {
1457         uint64_t old_l2_entry;
1458 
1459         old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1460 
1461         /*
1462          * If full_discard is false, make sure that a discarded area reads back
1463          * as zeroes for v3 images (we cannot do it for v2 without actually
1464          * writing a zero-filled buffer). We can skip the operation if the
1465          * cluster is already marked as zero, or if it's unallocated and we
1466          * don't have a backing file.
1467          *
1468          * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1469          * holding s->lock, so that doesn't work today.
1470          *
1471          * If full_discard is true, the sector should not read back as zeroes,
1472          * but rather fall through to the backing file.
1473          */
1474         switch (qcow2_get_cluster_type(old_l2_entry)) {
1475             case QCOW2_CLUSTER_UNALLOCATED:
1476                 if (full_discard || !bs->backing) {
1477                     continue;
1478                 }
1479                 break;
1480 
1481             case QCOW2_CLUSTER_ZERO:
1482                 if (!full_discard) {
1483                     continue;
1484                 }
1485                 break;
1486 
1487             case QCOW2_CLUSTER_NORMAL:
1488             case QCOW2_CLUSTER_COMPRESSED:
1489                 break;
1490 
1491             default:
1492                 abort();
1493         }
1494 
1495         /* First remove L2 entries */
1496         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1497         if (!full_discard && s->qcow_version >= 3) {
1498             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1499         } else {
1500             l2_table[l2_index + i] = cpu_to_be64(0);
1501         }
1502 
1503         /* Then decrease the refcount */
1504         qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1505     }
1506 
1507     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1508 
1509     return nb_clusters;
1510 }
1511 
1512 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1513     int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1514 {
1515     BDRVQcow2State *s = bs->opaque;
1516     uint64_t end_offset;
1517     uint64_t nb_clusters;
1518     int ret;
1519 
1520     end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1521 
1522     /* Round start up and end down */
1523     offset = align_offset(offset, s->cluster_size);
1524     end_offset = start_of_cluster(s, end_offset);
1525 
1526     if (offset > end_offset) {
1527         return 0;
1528     }
1529 
1530     nb_clusters = size_to_clusters(s, end_offset - offset);
1531 
1532     s->cache_discards = true;
1533 
1534     /* Each L2 table is handled by its own loop iteration */
1535     while (nb_clusters > 0) {
1536         ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1537         if (ret < 0) {
1538             goto fail;
1539         }
1540 
1541         nb_clusters -= ret;
1542         offset += (ret * s->cluster_size);
1543     }
1544 
1545     ret = 0;
1546 fail:
1547     s->cache_discards = false;
1548     qcow2_process_discards(bs, ret);
1549 
1550     return ret;
1551 }
1552 
1553 /*
1554  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1555  * all clusters in the same L2 table) and returns the number of zeroed
1556  * clusters.
1557  */
1558 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1559                           uint64_t nb_clusters, int flags)
1560 {
1561     BDRVQcow2State *s = bs->opaque;
1562     uint64_t *l2_table;
1563     int l2_index;
1564     int ret;
1565     int i;
1566 
1567     ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1568     if (ret < 0) {
1569         return ret;
1570     }
1571 
1572     /* Limit nb_clusters to one L2 table */
1573     nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1574     assert(nb_clusters <= INT_MAX);
1575 
1576     for (i = 0; i < nb_clusters; i++) {
1577         uint64_t old_offset;
1578 
1579         old_offset = be64_to_cpu(l2_table[l2_index + i]);
1580 
1581         /* Update L2 entries */
1582         qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1583         if (old_offset & QCOW_OFLAG_COMPRESSED || flags & BDRV_REQ_MAY_UNMAP) {
1584             l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1585             qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1586         } else {
1587             l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1588         }
1589     }
1590 
1591     qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1592 
1593     return nb_clusters;
1594 }
1595 
1596 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors,
1597                         int flags)
1598 {
1599     BDRVQcow2State *s = bs->opaque;
1600     uint64_t nb_clusters;
1601     int ret;
1602 
1603     /* The zero flag is only supported by version 3 and newer */
1604     if (s->qcow_version < 3) {
1605         return -ENOTSUP;
1606     }
1607 
1608     /* Each L2 table is handled by its own loop iteration */
1609     nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1610 
1611     s->cache_discards = true;
1612 
1613     while (nb_clusters > 0) {
1614         ret = zero_single_l2(bs, offset, nb_clusters, flags);
1615         if (ret < 0) {
1616             goto fail;
1617         }
1618 
1619         nb_clusters -= ret;
1620         offset += (ret * s->cluster_size);
1621     }
1622 
1623     ret = 0;
1624 fail:
1625     s->cache_discards = false;
1626     qcow2_process_discards(bs, ret);
1627 
1628     return ret;
1629 }
1630 
1631 /*
1632  * Expands all zero clusters in a specific L1 table (or deallocates them, for
1633  * non-backed non-pre-allocated zero clusters).
1634  *
1635  * l1_entries and *visited_l1_entries are used to keep track of progress for
1636  * status_cb(). l1_entries contains the total number of L1 entries and
1637  * *visited_l1_entries counts all visited L1 entries.
1638  */
1639 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1640                                       int l1_size, int64_t *visited_l1_entries,
1641                                       int64_t l1_entries,
1642                                       BlockDriverAmendStatusCB *status_cb,
1643                                       void *cb_opaque)
1644 {
1645     BDRVQcow2State *s = bs->opaque;
1646     bool is_active_l1 = (l1_table == s->l1_table);
1647     uint64_t *l2_table = NULL;
1648     int ret;
1649     int i, j;
1650 
1651     if (!is_active_l1) {
1652         /* inactive L2 tables require a buffer to be stored in when loading
1653          * them from disk */
1654         l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1655         if (l2_table == NULL) {
1656             return -ENOMEM;
1657         }
1658     }
1659 
1660     for (i = 0; i < l1_size; i++) {
1661         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1662         bool l2_dirty = false;
1663         uint64_t l2_refcount;
1664 
1665         if (!l2_offset) {
1666             /* unallocated */
1667             (*visited_l1_entries)++;
1668             if (status_cb) {
1669                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1670             }
1671             continue;
1672         }
1673 
1674         if (offset_into_cluster(s, l2_offset)) {
1675             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1676                                     PRIx64 " unaligned (L1 index: %#x)",
1677                                     l2_offset, i);
1678             ret = -EIO;
1679             goto fail;
1680         }
1681 
1682         if (is_active_l1) {
1683             /* get active L2 tables from cache */
1684             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1685                     (void **)&l2_table);
1686         } else {
1687             /* load inactive L2 tables from disk */
1688             ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1689                             (void *)l2_table, s->cluster_sectors);
1690         }
1691         if (ret < 0) {
1692             goto fail;
1693         }
1694 
1695         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1696                                  &l2_refcount);
1697         if (ret < 0) {
1698             goto fail;
1699         }
1700 
1701         for (j = 0; j < s->l2_size; j++) {
1702             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1703             int64_t offset = l2_entry & L2E_OFFSET_MASK;
1704             int cluster_type = qcow2_get_cluster_type(l2_entry);
1705             bool preallocated = offset != 0;
1706 
1707             if (cluster_type != QCOW2_CLUSTER_ZERO) {
1708                 continue;
1709             }
1710 
1711             if (!preallocated) {
1712                 if (!bs->backing) {
1713                     /* not backed; therefore we can simply deallocate the
1714                      * cluster */
1715                     l2_table[j] = 0;
1716                     l2_dirty = true;
1717                     continue;
1718                 }
1719 
1720                 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1721                 if (offset < 0) {
1722                     ret = offset;
1723                     goto fail;
1724                 }
1725 
1726                 if (l2_refcount > 1) {
1727                     /* For shared L2 tables, set the refcount accordingly (it is
1728                      * already 1 and needs to be l2_refcount) */
1729                     ret = qcow2_update_cluster_refcount(bs,
1730                             offset >> s->cluster_bits,
1731                             refcount_diff(1, l2_refcount), false,
1732                             QCOW2_DISCARD_OTHER);
1733                     if (ret < 0) {
1734                         qcow2_free_clusters(bs, offset, s->cluster_size,
1735                                             QCOW2_DISCARD_OTHER);
1736                         goto fail;
1737                     }
1738                 }
1739             }
1740 
1741             if (offset_into_cluster(s, offset)) {
1742                 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1743                                         "%#" PRIx64 " unaligned (L2 offset: %#"
1744                                         PRIx64 ", L2 index: %#x)", offset,
1745                                         l2_offset, j);
1746                 if (!preallocated) {
1747                     qcow2_free_clusters(bs, offset, s->cluster_size,
1748                                         QCOW2_DISCARD_ALWAYS);
1749                 }
1750                 ret = -EIO;
1751                 goto fail;
1752             }
1753 
1754             ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1755             if (ret < 0) {
1756                 if (!preallocated) {
1757                     qcow2_free_clusters(bs, offset, s->cluster_size,
1758                                         QCOW2_DISCARD_ALWAYS);
1759                 }
1760                 goto fail;
1761             }
1762 
1763             ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1764             if (ret < 0) {
1765                 if (!preallocated) {
1766                     qcow2_free_clusters(bs, offset, s->cluster_size,
1767                                         QCOW2_DISCARD_ALWAYS);
1768                 }
1769                 goto fail;
1770             }
1771 
1772             if (l2_refcount == 1) {
1773                 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1774             } else {
1775                 l2_table[j] = cpu_to_be64(offset);
1776             }
1777             l2_dirty = true;
1778         }
1779 
1780         if (is_active_l1) {
1781             if (l2_dirty) {
1782                 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1783                 qcow2_cache_depends_on_flush(s->l2_table_cache);
1784             }
1785             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1786         } else {
1787             if (l2_dirty) {
1788                 ret = qcow2_pre_write_overlap_check(bs,
1789                         QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1790                         s->cluster_size);
1791                 if (ret < 0) {
1792                     goto fail;
1793                 }
1794 
1795                 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1796                                  (void *)l2_table, s->cluster_sectors);
1797                 if (ret < 0) {
1798                     goto fail;
1799                 }
1800             }
1801         }
1802 
1803         (*visited_l1_entries)++;
1804         if (status_cb) {
1805             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1806         }
1807     }
1808 
1809     ret = 0;
1810 
1811 fail:
1812     if (l2_table) {
1813         if (!is_active_l1) {
1814             qemu_vfree(l2_table);
1815         } else {
1816             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1817         }
1818     }
1819     return ret;
1820 }
1821 
1822 /*
1823  * For backed images, expands all zero clusters on the image. For non-backed
1824  * images, deallocates all non-pre-allocated zero clusters (and claims the
1825  * allocation for pre-allocated ones). This is important for downgrading to a
1826  * qcow2 version which doesn't yet support metadata zero clusters.
1827  */
1828 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1829                                BlockDriverAmendStatusCB *status_cb,
1830                                void *cb_opaque)
1831 {
1832     BDRVQcow2State *s = bs->opaque;
1833     uint64_t *l1_table = NULL;
1834     int64_t l1_entries = 0, visited_l1_entries = 0;
1835     int ret;
1836     int i, j;
1837 
1838     if (status_cb) {
1839         l1_entries = s->l1_size;
1840         for (i = 0; i < s->nb_snapshots; i++) {
1841             l1_entries += s->snapshots[i].l1_size;
1842         }
1843     }
1844 
1845     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1846                                      &visited_l1_entries, l1_entries,
1847                                      status_cb, cb_opaque);
1848     if (ret < 0) {
1849         goto fail;
1850     }
1851 
1852     /* Inactive L1 tables may point to active L2 tables - therefore it is
1853      * necessary to flush the L2 table cache before trying to access the L2
1854      * tables pointed to by inactive L1 entries (else we might try to expand
1855      * zero clusters that have already been expanded); furthermore, it is also
1856      * necessary to empty the L2 table cache, since it may contain tables which
1857      * are now going to be modified directly on disk, bypassing the cache.
1858      * qcow2_cache_empty() does both for us. */
1859     ret = qcow2_cache_empty(bs, s->l2_table_cache);
1860     if (ret < 0) {
1861         goto fail;
1862     }
1863 
1864     for (i = 0; i < s->nb_snapshots; i++) {
1865         int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1866                                       sizeof(uint64_t), BDRV_SECTOR_SIZE);
1867 
1868         l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1869 
1870         ret = bdrv_read(bs->file,
1871                         s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1872                         (void *)l1_table, l1_sectors);
1873         if (ret < 0) {
1874             goto fail;
1875         }
1876 
1877         for (j = 0; j < s->snapshots[i].l1_size; j++) {
1878             be64_to_cpus(&l1_table[j]);
1879         }
1880 
1881         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1882                                          &visited_l1_entries, l1_entries,
1883                                          status_cb, cb_opaque);
1884         if (ret < 0) {
1885             goto fail;
1886         }
1887     }
1888 
1889     ret = 0;
1890 
1891 fail:
1892     g_free(l1_table);
1893     return ret;
1894 }
1895