xref: /qemu/block/qcow2-refcount.c (revision 99dbfd1d)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35                             int64_t offset, int64_t length, uint64_t addend,
36                             bool decrease, enum qcow2_discard_type type);
37 
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45 
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47                              uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 
61 
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63     &get_refcount_ro0,
64     &get_refcount_ro1,
65     &get_refcount_ro2,
66     &get_refcount_ro3,
67     &get_refcount_ro4,
68     &get_refcount_ro5,
69     &get_refcount_ro6
70 };
71 
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73     &set_refcount_ro0,
74     &set_refcount_ro1,
75     &set_refcount_ro2,
76     &set_refcount_ro3,
77     &set_refcount_ro4,
78     &set_refcount_ro5,
79     &set_refcount_ro6
80 };
81 
82 
83 /*********************************************************/
84 /* refcount handling */
85 
86 static void update_max_refcount_table_index(BDRVQcow2State *s)
87 {
88     unsigned i = s->refcount_table_size - 1;
89     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90         i--;
91     }
92     /* Set s->max_refcount_table_index to the index of the last used entry */
93     s->max_refcount_table_index = i;
94 }
95 
96 int qcow2_refcount_init(BlockDriverState *bs)
97 {
98     BDRVQcow2State *s = bs->opaque;
99     unsigned int refcount_table_size2, i;
100     int ret;
101 
102     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103 
104     s->get_refcount = get_refcount_funcs[s->refcount_order];
105     s->set_refcount = set_refcount_funcs[s->refcount_order];
106 
107     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
108     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
109     s->refcount_table = g_try_malloc(refcount_table_size2);
110 
111     if (s->refcount_table_size > 0) {
112         if (s->refcount_table == NULL) {
113             ret = -ENOMEM;
114             goto fail;
115         }
116         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
117         ret = bdrv_pread(bs->file, s->refcount_table_offset,
118                          s->refcount_table, refcount_table_size2);
119         if (ret < 0) {
120             goto fail;
121         }
122         for(i = 0; i < s->refcount_table_size; i++)
123             be64_to_cpus(&s->refcount_table[i]);
124         update_max_refcount_table_index(s);
125     }
126     return 0;
127  fail:
128     return ret;
129 }
130 
131 void qcow2_refcount_close(BlockDriverState *bs)
132 {
133     BDRVQcow2State *s = bs->opaque;
134     g_free(s->refcount_table);
135 }
136 
137 
138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139 {
140     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141 }
142 
143 static void set_refcount_ro0(void *refcount_array, uint64_t index,
144                              uint64_t value)
145 {
146     assert(!(value >> 1));
147     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149 }
150 
151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152 {
153     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154            & 0x3;
155 }
156 
157 static void set_refcount_ro1(void *refcount_array, uint64_t index,
158                              uint64_t value)
159 {
160     assert(!(value >> 2));
161     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163 }
164 
165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166 {
167     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168            & 0xf;
169 }
170 
171 static void set_refcount_ro2(void *refcount_array, uint64_t index,
172                              uint64_t value)
173 {
174     assert(!(value >> 4));
175     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177 }
178 
179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180 {
181     return ((const uint8_t *)refcount_array)[index];
182 }
183 
184 static void set_refcount_ro3(void *refcount_array, uint64_t index,
185                              uint64_t value)
186 {
187     assert(!(value >> 8));
188     ((uint8_t *)refcount_array)[index] = value;
189 }
190 
191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192 {
193     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194 }
195 
196 static void set_refcount_ro4(void *refcount_array, uint64_t index,
197                              uint64_t value)
198 {
199     assert(!(value >> 16));
200     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201 }
202 
203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204 {
205     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206 }
207 
208 static void set_refcount_ro5(void *refcount_array, uint64_t index,
209                              uint64_t value)
210 {
211     assert(!(value >> 32));
212     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213 }
214 
215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216 {
217     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218 }
219 
220 static void set_refcount_ro6(void *refcount_array, uint64_t index,
221                              uint64_t value)
222 {
223     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224 }
225 
226 
227 static int load_refcount_block(BlockDriverState *bs,
228                                int64_t refcount_block_offset,
229                                void **refcount_block)
230 {
231     BDRVQcow2State *s = bs->opaque;
232 
233     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
234     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235                            refcount_block);
236 }
237 
238 /*
239  * Retrieves the refcount of the cluster given by its index and stores it in
240  * *refcount. Returns 0 on success and -errno on failure.
241  */
242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
243                        uint64_t *refcount)
244 {
245     BDRVQcow2State *s = bs->opaque;
246     uint64_t refcount_table_index, block_index;
247     int64_t refcount_block_offset;
248     int ret;
249     void *refcount_block;
250 
251     refcount_table_index = cluster_index >> s->refcount_block_bits;
252     if (refcount_table_index >= s->refcount_table_size) {
253         *refcount = 0;
254         return 0;
255     }
256     refcount_block_offset =
257         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
258     if (!refcount_block_offset) {
259         *refcount = 0;
260         return 0;
261     }
262 
263     if (offset_into_cluster(s, refcount_block_offset)) {
264         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265                                 " unaligned (reftable index: %#" PRIx64 ")",
266                                 refcount_block_offset, refcount_table_index);
267         return -EIO;
268     }
269 
270     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
271                           &refcount_block);
272     if (ret < 0) {
273         return ret;
274     }
275 
276     block_index = cluster_index & (s->refcount_block_size - 1);
277     *refcount = s->get_refcount(refcount_block, block_index);
278 
279     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
280 
281     return 0;
282 }
283 
284 /*
285  * Rounds the refcount table size up to avoid growing the table for each single
286  * refcount block that is allocated.
287  */
288 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
289     unsigned int min_size)
290 {
291     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
292     unsigned int refcount_table_clusters =
293         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
294 
295     while (min_clusters > refcount_table_clusters) {
296         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
297     }
298 
299     return refcount_table_clusters << (s->cluster_bits - 3);
300 }
301 
302 
303 /* Checks if two offsets are described by the same refcount block */
304 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
305     uint64_t offset_b)
306 {
307     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
308     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
309 
310     return (block_a == block_b);
311 }
312 
313 /*
314  * Loads a refcount block. If it doesn't exist yet, it is allocated first
315  * (including growing the refcount table if needed).
316  *
317  * Returns 0 on success or -errno in error case
318  */
319 static int alloc_refcount_block(BlockDriverState *bs,
320                                 int64_t cluster_index, void **refcount_block)
321 {
322     BDRVQcow2State *s = bs->opaque;
323     unsigned int refcount_table_index;
324     int ret;
325 
326     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
327 
328     /* Find the refcount block for the given cluster */
329     refcount_table_index = cluster_index >> s->refcount_block_bits;
330 
331     if (refcount_table_index < s->refcount_table_size) {
332 
333         uint64_t refcount_block_offset =
334             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
335 
336         /* If it's already there, we're done */
337         if (refcount_block_offset) {
338             if (offset_into_cluster(s, refcount_block_offset)) {
339                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
340                                         PRIx64 " unaligned (reftable index: "
341                                         "%#x)", refcount_block_offset,
342                                         refcount_table_index);
343                 return -EIO;
344             }
345 
346              return load_refcount_block(bs, refcount_block_offset,
347                                         refcount_block);
348         }
349     }
350 
351     /*
352      * If we came here, we need to allocate something. Something is at least
353      * a cluster for the new refcount block. It may also include a new refcount
354      * table if the old refcount table is too small.
355      *
356      * Note that allocating clusters here needs some special care:
357      *
358      * - We can't use the normal qcow2_alloc_clusters(), it would try to
359      *   increase the refcount and very likely we would end up with an endless
360      *   recursion. Instead we must place the refcount blocks in a way that
361      *   they can describe them themselves.
362      *
363      * - We need to consider that at this point we are inside update_refcounts
364      *   and potentially doing an initial refcount increase. This means that
365      *   some clusters have already been allocated by the caller, but their
366      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
367      *   need to return -EAGAIN to signal the caller that it needs to restart
368      *   the search for free clusters.
369      *
370      * - alloc_clusters_noref and qcow2_free_clusters may load a different
371      *   refcount block into the cache
372      */
373 
374     *refcount_block = NULL;
375 
376     /* We write to the refcount table, so we might depend on L2 tables */
377     ret = qcow2_cache_flush(bs, s->l2_table_cache);
378     if (ret < 0) {
379         return ret;
380     }
381 
382     /* Allocate the refcount block itself and mark it as used */
383     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
384     if (new_block < 0) {
385         return new_block;
386     }
387 
388 #ifdef DEBUG_ALLOC2
389     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
390         " at %" PRIx64 "\n",
391         refcount_table_index, cluster_index << s->cluster_bits, new_block);
392 #endif
393 
394     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
395         /* Zero the new refcount block before updating it */
396         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
397                                     refcount_block);
398         if (ret < 0) {
399             goto fail_block;
400         }
401 
402         memset(*refcount_block, 0, s->cluster_size);
403 
404         /* The block describes itself, need to update the cache */
405         int block_index = (new_block >> s->cluster_bits) &
406             (s->refcount_block_size - 1);
407         s->set_refcount(*refcount_block, block_index, 1);
408     } else {
409         /* Described somewhere else. This can recurse at most twice before we
410          * arrive at a block that describes itself. */
411         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
412                               QCOW2_DISCARD_NEVER);
413         if (ret < 0) {
414             goto fail_block;
415         }
416 
417         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418         if (ret < 0) {
419             goto fail_block;
420         }
421 
422         /* Initialize the new refcount block only after updating its refcount,
423          * update_refcount uses the refcount cache itself */
424         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
425                                     refcount_block);
426         if (ret < 0) {
427             goto fail_block;
428         }
429 
430         memset(*refcount_block, 0, s->cluster_size);
431     }
432 
433     /* Now the new refcount block needs to be written to disk */
434     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
435     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
436     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
437     if (ret < 0) {
438         goto fail_block;
439     }
440 
441     /* If the refcount table is big enough, just hook the block up there */
442     if (refcount_table_index < s->refcount_table_size) {
443         uint64_t data64 = cpu_to_be64(new_block);
444         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
445         ret = bdrv_pwrite_sync(bs->file,
446             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
447             &data64, sizeof(data64));
448         if (ret < 0) {
449             goto fail_block;
450         }
451 
452         s->refcount_table[refcount_table_index] = new_block;
453         /* If there's a hole in s->refcount_table then it can happen
454          * that refcount_table_index < s->max_refcount_table_index */
455         s->max_refcount_table_index =
456             MAX(s->max_refcount_table_index, refcount_table_index);
457 
458         /* The new refcount block may be where the caller intended to put its
459          * data, so let it restart the search. */
460         return -EAGAIN;
461     }
462 
463     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
464 
465     /*
466      * If we come here, we need to grow the refcount table. Again, a new
467      * refcount table needs some space and we can't simply allocate to avoid
468      * endless recursion.
469      *
470      * Therefore let's grab new refcount blocks at the end of the image, which
471      * will describe themselves and the new refcount table. This way we can
472      * reference them only in the new table and do the switch to the new
473      * refcount table at once without producing an inconsistent state in
474      * between.
475      */
476     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
477 
478     /* Calculate the number of refcount blocks needed so far; this will be the
479      * basis for calculating the index of the first cluster used for the
480      * self-describing refcount structures which we are about to create.
481      *
482      * Because we reached this point, there cannot be any refcount entries for
483      * cluster_index or higher indices yet. However, because new_block has been
484      * allocated to describe that cluster (and it will assume this role later
485      * on), we cannot use that index; also, new_block may actually have a higher
486      * cluster index than cluster_index, so it needs to be taken into account
487      * here (and 1 needs to be added to its value because that cluster is used).
488      */
489     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
490                                             (new_block >> s->cluster_bits) + 1),
491                                         s->refcount_block_size);
492 
493     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
494         return -EFBIG;
495     }
496 
497     /* And now we need at least one block more for the new metadata */
498     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
499     uint64_t last_table_size;
500     uint64_t blocks_clusters;
501     do {
502         uint64_t table_clusters =
503             size_to_clusters(s, table_size * sizeof(uint64_t));
504         blocks_clusters = 1 +
505             DIV_ROUND_UP(table_clusters, s->refcount_block_size);
506         uint64_t meta_clusters = table_clusters + blocks_clusters;
507 
508         last_table_size = table_size;
509         table_size = next_refcount_table_size(s, blocks_used +
510             DIV_ROUND_UP(meta_clusters, s->refcount_block_size));
511 
512     } while (last_table_size != table_size);
513 
514 #ifdef DEBUG_ALLOC2
515     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
516         s->refcount_table_size, table_size);
517 #endif
518 
519     /* Create the new refcount table and blocks */
520     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
521         s->cluster_size;
522     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
523     uint64_t *new_table = g_try_new0(uint64_t, table_size);
524     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
525 
526     assert(table_size > 0 && blocks_clusters > 0);
527     if (new_table == NULL || new_blocks == NULL) {
528         ret = -ENOMEM;
529         goto fail_table;
530     }
531 
532     /* Fill the new refcount table */
533     memcpy(new_table, s->refcount_table,
534         s->refcount_table_size * sizeof(uint64_t));
535     new_table[refcount_table_index] = new_block;
536 
537     int i;
538     for (i = 0; i < blocks_clusters; i++) {
539         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
540     }
541 
542     /* Fill the refcount blocks */
543     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
544     int block = 0;
545     for (i = 0; i < table_clusters + blocks_clusters; i++) {
546         s->set_refcount(new_blocks, block++, 1);
547     }
548 
549     /* Write refcount blocks to disk */
550     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
551     ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
552         blocks_clusters * s->cluster_size);
553     g_free(new_blocks);
554     new_blocks = NULL;
555     if (ret < 0) {
556         goto fail_table;
557     }
558 
559     /* Write refcount table to disk */
560     for(i = 0; i < table_size; i++) {
561         cpu_to_be64s(&new_table[i]);
562     }
563 
564     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
565     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
566         table_size * sizeof(uint64_t));
567     if (ret < 0) {
568         goto fail_table;
569     }
570 
571     for(i = 0; i < table_size; i++) {
572         be64_to_cpus(&new_table[i]);
573     }
574 
575     /* Hook up the new refcount table in the qcow2 header */
576     struct QEMU_PACKED {
577         uint64_t d64;
578         uint32_t d32;
579     } data;
580     data.d64 = cpu_to_be64(table_offset);
581     data.d32 = cpu_to_be32(table_clusters);
582     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
583     ret = bdrv_pwrite_sync(bs->file,
584                            offsetof(QCowHeader, refcount_table_offset),
585                            &data, sizeof(data));
586     if (ret < 0) {
587         goto fail_table;
588     }
589 
590     /* And switch it in memory */
591     uint64_t old_table_offset = s->refcount_table_offset;
592     uint64_t old_table_size = s->refcount_table_size;
593 
594     g_free(s->refcount_table);
595     s->refcount_table = new_table;
596     s->refcount_table_size = table_size;
597     s->refcount_table_offset = table_offset;
598     update_max_refcount_table_index(s);
599 
600     /* Free old table. */
601     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
602                         QCOW2_DISCARD_OTHER);
603 
604     ret = load_refcount_block(bs, new_block, refcount_block);
605     if (ret < 0) {
606         return ret;
607     }
608 
609     /* If we were trying to do the initial refcount update for some cluster
610      * allocation, we might have used the same clusters to store newly
611      * allocated metadata. Make the caller search some new space. */
612     return -EAGAIN;
613 
614 fail_table:
615     g_free(new_blocks);
616     g_free(new_table);
617 fail_block:
618     if (*refcount_block != NULL) {
619         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
620     }
621     return ret;
622 }
623 
624 void qcow2_process_discards(BlockDriverState *bs, int ret)
625 {
626     BDRVQcow2State *s = bs->opaque;
627     Qcow2DiscardRegion *d, *next;
628 
629     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
630         QTAILQ_REMOVE(&s->discards, d, next);
631 
632         /* Discard is optional, ignore the return value */
633         if (ret >= 0) {
634             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
635         }
636 
637         g_free(d);
638     }
639 }
640 
641 static void update_refcount_discard(BlockDriverState *bs,
642                                     uint64_t offset, uint64_t length)
643 {
644     BDRVQcow2State *s = bs->opaque;
645     Qcow2DiscardRegion *d, *p, *next;
646 
647     QTAILQ_FOREACH(d, &s->discards, next) {
648         uint64_t new_start = MIN(offset, d->offset);
649         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
650 
651         if (new_end - new_start <= length + d->bytes) {
652             /* There can't be any overlap, areas ending up here have no
653              * references any more and therefore shouldn't get freed another
654              * time. */
655             assert(d->bytes + length == new_end - new_start);
656             d->offset = new_start;
657             d->bytes = new_end - new_start;
658             goto found;
659         }
660     }
661 
662     d = g_malloc(sizeof(*d));
663     *d = (Qcow2DiscardRegion) {
664         .bs     = bs,
665         .offset = offset,
666         .bytes  = length,
667     };
668     QTAILQ_INSERT_TAIL(&s->discards, d, next);
669 
670 found:
671     /* Merge discard requests if they are adjacent now */
672     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
673         if (p == d
674             || p->offset > d->offset + d->bytes
675             || d->offset > p->offset + p->bytes)
676         {
677             continue;
678         }
679 
680         /* Still no overlap possible */
681         assert(p->offset == d->offset + d->bytes
682             || d->offset == p->offset + p->bytes);
683 
684         QTAILQ_REMOVE(&s->discards, p, next);
685         d->offset = MIN(d->offset, p->offset);
686         d->bytes += p->bytes;
687         g_free(p);
688     }
689 }
690 
691 /* XXX: cache several refcount block clusters ? */
692 /* @addend is the absolute value of the addend; if @decrease is set, @addend
693  * will be subtracted from the current refcount, otherwise it will be added */
694 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
695                                                    int64_t offset,
696                                                    int64_t length,
697                                                    uint64_t addend,
698                                                    bool decrease,
699                                                    enum qcow2_discard_type type)
700 {
701     BDRVQcow2State *s = bs->opaque;
702     int64_t start, last, cluster_offset;
703     void *refcount_block = NULL;
704     int64_t old_table_index = -1;
705     int ret;
706 
707 #ifdef DEBUG_ALLOC2
708     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
709             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
710             addend);
711 #endif
712     if (length < 0) {
713         return -EINVAL;
714     } else if (length == 0) {
715         return 0;
716     }
717 
718     if (decrease) {
719         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
720             s->l2_table_cache);
721     }
722 
723     start = start_of_cluster(s, offset);
724     last = start_of_cluster(s, offset + length - 1);
725     for(cluster_offset = start; cluster_offset <= last;
726         cluster_offset += s->cluster_size)
727     {
728         int block_index;
729         uint64_t refcount;
730         int64_t cluster_index = cluster_offset >> s->cluster_bits;
731         int64_t table_index = cluster_index >> s->refcount_block_bits;
732 
733         /* Load the refcount block and allocate it if needed */
734         if (table_index != old_table_index) {
735             if (refcount_block) {
736                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
737             }
738             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
739             if (ret < 0) {
740                 goto fail;
741             }
742         }
743         old_table_index = table_index;
744 
745         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
746                                      refcount_block);
747 
748         /* we can update the count and save it */
749         block_index = cluster_index & (s->refcount_block_size - 1);
750 
751         refcount = s->get_refcount(refcount_block, block_index);
752         if (decrease ? (refcount - addend > refcount)
753                      : (refcount + addend < refcount ||
754                         refcount + addend > s->refcount_max))
755         {
756             ret = -EINVAL;
757             goto fail;
758         }
759         if (decrease) {
760             refcount -= addend;
761         } else {
762             refcount += addend;
763         }
764         if (refcount == 0 && cluster_index < s->free_cluster_index) {
765             s->free_cluster_index = cluster_index;
766         }
767         s->set_refcount(refcount_block, block_index, refcount);
768 
769         if (refcount == 0 && s->discard_passthrough[type]) {
770             update_refcount_discard(bs, cluster_offset, s->cluster_size);
771         }
772     }
773 
774     ret = 0;
775 fail:
776     if (!s->cache_discards) {
777         qcow2_process_discards(bs, ret);
778     }
779 
780     /* Write last changed block to disk */
781     if (refcount_block) {
782         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
783     }
784 
785     /*
786      * Try do undo any updates if an error is returned (This may succeed in
787      * some cases like ENOSPC for allocating a new refcount block)
788      */
789     if (ret < 0) {
790         int dummy;
791         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
792                                 !decrease, QCOW2_DISCARD_NEVER);
793         (void)dummy;
794     }
795 
796     return ret;
797 }
798 
799 /*
800  * Increases or decreases the refcount of a given cluster.
801  *
802  * @addend is the absolute value of the addend; if @decrease is set, @addend
803  * will be subtracted from the current refcount, otherwise it will be added.
804  *
805  * On success 0 is returned; on failure -errno is returned.
806  */
807 int qcow2_update_cluster_refcount(BlockDriverState *bs,
808                                   int64_t cluster_index,
809                                   uint64_t addend, bool decrease,
810                                   enum qcow2_discard_type type)
811 {
812     BDRVQcow2State *s = bs->opaque;
813     int ret;
814 
815     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
816                           decrease, type);
817     if (ret < 0) {
818         return ret;
819     }
820 
821     return 0;
822 }
823 
824 
825 
826 /*********************************************************/
827 /* cluster allocation functions */
828 
829 
830 
831 /* return < 0 if error */
832 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
833 {
834     BDRVQcow2State *s = bs->opaque;
835     uint64_t i, nb_clusters, refcount;
836     int ret;
837 
838     /* We can't allocate clusters if they may still be queued for discard. */
839     if (s->cache_discards) {
840         qcow2_process_discards(bs, 0);
841     }
842 
843     nb_clusters = size_to_clusters(s, size);
844 retry:
845     for(i = 0; i < nb_clusters; i++) {
846         uint64_t next_cluster_index = s->free_cluster_index++;
847         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
848 
849         if (ret < 0) {
850             return ret;
851         } else if (refcount != 0) {
852             goto retry;
853         }
854     }
855 
856     /* Make sure that all offsets in the "allocated" range are representable
857      * in an int64_t */
858     if (s->free_cluster_index > 0 &&
859         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
860     {
861         return -EFBIG;
862     }
863 
864 #ifdef DEBUG_ALLOC2
865     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
866             size,
867             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
868 #endif
869     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
870 }
871 
872 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
873 {
874     int64_t offset;
875     int ret;
876 
877     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
878     do {
879         offset = alloc_clusters_noref(bs, size);
880         if (offset < 0) {
881             return offset;
882         }
883 
884         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
885     } while (ret == -EAGAIN);
886 
887     if (ret < 0) {
888         return ret;
889     }
890 
891     return offset;
892 }
893 
894 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
895                                 int64_t nb_clusters)
896 {
897     BDRVQcow2State *s = bs->opaque;
898     uint64_t cluster_index, refcount;
899     uint64_t i;
900     int ret;
901 
902     assert(nb_clusters >= 0);
903     if (nb_clusters == 0) {
904         return 0;
905     }
906 
907     do {
908         /* Check how many clusters there are free */
909         cluster_index = offset >> s->cluster_bits;
910         for(i = 0; i < nb_clusters; i++) {
911             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
912             if (ret < 0) {
913                 return ret;
914             } else if (refcount != 0) {
915                 break;
916             }
917         }
918 
919         /* And then allocate them */
920         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
921                               QCOW2_DISCARD_NEVER);
922     } while (ret == -EAGAIN);
923 
924     if (ret < 0) {
925         return ret;
926     }
927 
928     return i;
929 }
930 
931 /* only used to allocate compressed sectors. We try to allocate
932    contiguous sectors. size must be <= cluster_size */
933 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
934 {
935     BDRVQcow2State *s = bs->opaque;
936     int64_t offset;
937     size_t free_in_cluster;
938     int ret;
939 
940     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
941     assert(size > 0 && size <= s->cluster_size);
942     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
943 
944     offset = s->free_byte_offset;
945 
946     if (offset) {
947         uint64_t refcount;
948         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
949         if (ret < 0) {
950             return ret;
951         }
952 
953         if (refcount == s->refcount_max) {
954             offset = 0;
955         }
956     }
957 
958     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
959     do {
960         if (!offset || free_in_cluster < size) {
961             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
962             if (new_cluster < 0) {
963                 return new_cluster;
964             }
965 
966             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
967                 offset = new_cluster;
968                 free_in_cluster = s->cluster_size;
969             } else {
970                 free_in_cluster += s->cluster_size;
971             }
972         }
973 
974         assert(offset);
975         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
976         if (ret < 0) {
977             offset = 0;
978         }
979     } while (ret == -EAGAIN);
980     if (ret < 0) {
981         return ret;
982     }
983 
984     /* The cluster refcount was incremented; refcount blocks must be flushed
985      * before the caller's L2 table updates. */
986     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
987 
988     s->free_byte_offset = offset + size;
989     if (!offset_into_cluster(s, s->free_byte_offset)) {
990         s->free_byte_offset = 0;
991     }
992 
993     return offset;
994 }
995 
996 void qcow2_free_clusters(BlockDriverState *bs,
997                           int64_t offset, int64_t size,
998                           enum qcow2_discard_type type)
999 {
1000     int ret;
1001 
1002     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1003     ret = update_refcount(bs, offset, size, 1, true, type);
1004     if (ret < 0) {
1005         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1006         /* TODO Remember the clusters to free them later and avoid leaking */
1007     }
1008 }
1009 
1010 /*
1011  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1012  * normal cluster, compressed cluster, etc.)
1013  */
1014 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1015                              int nb_clusters, enum qcow2_discard_type type)
1016 {
1017     BDRVQcow2State *s = bs->opaque;
1018 
1019     switch (qcow2_get_cluster_type(l2_entry)) {
1020     case QCOW2_CLUSTER_COMPRESSED:
1021         {
1022             int nb_csectors;
1023             nb_csectors = ((l2_entry >> s->csize_shift) &
1024                            s->csize_mask) + 1;
1025             qcow2_free_clusters(bs,
1026                 (l2_entry & s->cluster_offset_mask) & ~511,
1027                 nb_csectors * 512, type);
1028         }
1029         break;
1030     case QCOW2_CLUSTER_NORMAL:
1031     case QCOW2_CLUSTER_ZERO:
1032         if (l2_entry & L2E_OFFSET_MASK) {
1033             if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1034                 qcow2_signal_corruption(bs, false, -1, -1,
1035                                         "Cannot free unaligned cluster %#llx",
1036                                         l2_entry & L2E_OFFSET_MASK);
1037             } else {
1038                 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1039                                     nb_clusters << s->cluster_bits, type);
1040             }
1041         }
1042         break;
1043     case QCOW2_CLUSTER_UNALLOCATED:
1044         break;
1045     default:
1046         abort();
1047     }
1048 }
1049 
1050 
1051 
1052 /*********************************************************/
1053 /* snapshots and image creation */
1054 
1055 
1056 
1057 /* update the refcounts of snapshots and the copied flag */
1058 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1059     int64_t l1_table_offset, int l1_size, int addend)
1060 {
1061     BDRVQcow2State *s = bs->opaque;
1062     uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1063     bool l1_allocated = false;
1064     int64_t old_offset, old_l2_offset;
1065     int i, j, l1_modified = 0, nb_csectors;
1066     int ret;
1067 
1068     assert(addend >= -1 && addend <= 1);
1069 
1070     l2_table = NULL;
1071     l1_table = NULL;
1072     l1_size2 = l1_size * sizeof(uint64_t);
1073 
1074     s->cache_discards = true;
1075 
1076     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1077      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1078      * when changing this! */
1079     if (l1_table_offset != s->l1_table_offset) {
1080         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1081         if (l1_size2 && l1_table == NULL) {
1082             ret = -ENOMEM;
1083             goto fail;
1084         }
1085         l1_allocated = true;
1086 
1087         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1088         if (ret < 0) {
1089             goto fail;
1090         }
1091 
1092         for(i = 0;i < l1_size; i++)
1093             be64_to_cpus(&l1_table[i]);
1094     } else {
1095         assert(l1_size == s->l1_size);
1096         l1_table = s->l1_table;
1097         l1_allocated = false;
1098     }
1099 
1100     for(i = 0; i < l1_size; i++) {
1101         l2_offset = l1_table[i];
1102         if (l2_offset) {
1103             old_l2_offset = l2_offset;
1104             l2_offset &= L1E_OFFSET_MASK;
1105 
1106             if (offset_into_cluster(s, l2_offset)) {
1107                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1108                                         PRIx64 " unaligned (L1 index: %#x)",
1109                                         l2_offset, i);
1110                 ret = -EIO;
1111                 goto fail;
1112             }
1113 
1114             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1115                 (void**) &l2_table);
1116             if (ret < 0) {
1117                 goto fail;
1118             }
1119 
1120             for(j = 0; j < s->l2_size; j++) {
1121                 uint64_t cluster_index;
1122 
1123                 offset = be64_to_cpu(l2_table[j]);
1124                 old_offset = offset;
1125                 offset &= ~QCOW_OFLAG_COPIED;
1126 
1127                 switch (qcow2_get_cluster_type(offset)) {
1128                     case QCOW2_CLUSTER_COMPRESSED:
1129                         nb_csectors = ((offset >> s->csize_shift) &
1130                                        s->csize_mask) + 1;
1131                         if (addend != 0) {
1132                             ret = update_refcount(bs,
1133                                 (offset & s->cluster_offset_mask) & ~511,
1134                                 nb_csectors * 512, abs(addend), addend < 0,
1135                                 QCOW2_DISCARD_SNAPSHOT);
1136                             if (ret < 0) {
1137                                 goto fail;
1138                             }
1139                         }
1140                         /* compressed clusters are never modified */
1141                         refcount = 2;
1142                         break;
1143 
1144                     case QCOW2_CLUSTER_NORMAL:
1145                     case QCOW2_CLUSTER_ZERO:
1146                         if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1147                             qcow2_signal_corruption(bs, true, -1, -1, "Data "
1148                                                     "cluster offset %#llx "
1149                                                     "unaligned (L2 offset: %#"
1150                                                     PRIx64 ", L2 index: %#x)",
1151                                                     offset & L2E_OFFSET_MASK,
1152                                                     l2_offset, j);
1153                             ret = -EIO;
1154                             goto fail;
1155                         }
1156 
1157                         cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1158                         if (!cluster_index) {
1159                             /* unallocated */
1160                             refcount = 0;
1161                             break;
1162                         }
1163                         if (addend != 0) {
1164                             ret = qcow2_update_cluster_refcount(bs,
1165                                     cluster_index, abs(addend), addend < 0,
1166                                     QCOW2_DISCARD_SNAPSHOT);
1167                             if (ret < 0) {
1168                                 goto fail;
1169                             }
1170                         }
1171 
1172                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1173                         if (ret < 0) {
1174                             goto fail;
1175                         }
1176                         break;
1177 
1178                     case QCOW2_CLUSTER_UNALLOCATED:
1179                         refcount = 0;
1180                         break;
1181 
1182                     default:
1183                         abort();
1184                 }
1185 
1186                 if (refcount == 1) {
1187                     offset |= QCOW_OFLAG_COPIED;
1188                 }
1189                 if (offset != old_offset) {
1190                     if (addend > 0) {
1191                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1192                             s->refcount_block_cache);
1193                     }
1194                     l2_table[j] = cpu_to_be64(offset);
1195                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1196                                                  l2_table);
1197                 }
1198             }
1199 
1200             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1201 
1202             if (addend != 0) {
1203                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1204                                                         s->cluster_bits,
1205                                                     abs(addend), addend < 0,
1206                                                     QCOW2_DISCARD_SNAPSHOT);
1207                 if (ret < 0) {
1208                     goto fail;
1209                 }
1210             }
1211             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1212                                      &refcount);
1213             if (ret < 0) {
1214                 goto fail;
1215             } else if (refcount == 1) {
1216                 l2_offset |= QCOW_OFLAG_COPIED;
1217             }
1218             if (l2_offset != old_l2_offset) {
1219                 l1_table[i] = l2_offset;
1220                 l1_modified = 1;
1221             }
1222         }
1223     }
1224 
1225     ret = bdrv_flush(bs);
1226 fail:
1227     if (l2_table) {
1228         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1229     }
1230 
1231     s->cache_discards = false;
1232     qcow2_process_discards(bs, ret);
1233 
1234     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1235     if (ret == 0 && addend >= 0 && l1_modified) {
1236         for (i = 0; i < l1_size; i++) {
1237             cpu_to_be64s(&l1_table[i]);
1238         }
1239 
1240         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1241                                l1_table, l1_size2);
1242 
1243         for (i = 0; i < l1_size; i++) {
1244             be64_to_cpus(&l1_table[i]);
1245         }
1246     }
1247     if (l1_allocated)
1248         g_free(l1_table);
1249     return ret;
1250 }
1251 
1252 
1253 
1254 
1255 /*********************************************************/
1256 /* refcount checking functions */
1257 
1258 
1259 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1260 {
1261     /* This assertion holds because there is no way we can address more than
1262      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1263      * offsets have to be representable in bytes); due to every cluster
1264      * corresponding to one refcount entry, we are well below that limit */
1265     assert(entries < (UINT64_C(1) << (64 - 9)));
1266 
1267     /* Thanks to the assertion this will not overflow, because
1268      * s->refcount_order < 7.
1269      * (note: x << s->refcount_order == x * s->refcount_bits) */
1270     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1271 }
1272 
1273 /**
1274  * Reallocates *array so that it can hold new_size entries. *size must contain
1275  * the current number of entries in *array. If the reallocation fails, *array
1276  * and *size will not be modified and -errno will be returned. If the
1277  * reallocation is successful, *array will be set to the new buffer, *size
1278  * will be set to new_size and 0 will be returned. The size of the reallocated
1279  * refcount array buffer will be aligned to a cluster boundary, and the newly
1280  * allocated area will be zeroed.
1281  */
1282 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1283                                   int64_t *size, int64_t new_size)
1284 {
1285     int64_t old_byte_size, new_byte_size;
1286     void *new_ptr;
1287 
1288     /* Round to clusters so the array can be directly written to disk */
1289     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1290                     * s->cluster_size;
1291     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1292                     * s->cluster_size;
1293 
1294     if (new_byte_size == old_byte_size) {
1295         *size = new_size;
1296         return 0;
1297     }
1298 
1299     assert(new_byte_size > 0);
1300 
1301     if (new_byte_size > SIZE_MAX) {
1302         return -ENOMEM;
1303     }
1304 
1305     new_ptr = g_try_realloc(*array, new_byte_size);
1306     if (!new_ptr) {
1307         return -ENOMEM;
1308     }
1309 
1310     if (new_byte_size > old_byte_size) {
1311         memset((char *)new_ptr + old_byte_size, 0,
1312                new_byte_size - old_byte_size);
1313     }
1314 
1315     *array = new_ptr;
1316     *size  = new_size;
1317 
1318     return 0;
1319 }
1320 
1321 /*
1322  * Increases the refcount for a range of clusters in a given refcount table.
1323  * This is used to construct a temporary refcount table out of L1 and L2 tables
1324  * which can be compared to the refcount table saved in the image.
1325  *
1326  * Modifies the number of errors in res.
1327  */
1328 static int inc_refcounts(BlockDriverState *bs,
1329                          BdrvCheckResult *res,
1330                          void **refcount_table,
1331                          int64_t *refcount_table_size,
1332                          int64_t offset, int64_t size)
1333 {
1334     BDRVQcow2State *s = bs->opaque;
1335     uint64_t start, last, cluster_offset, k, refcount;
1336     int ret;
1337 
1338     if (size <= 0) {
1339         return 0;
1340     }
1341 
1342     start = start_of_cluster(s, offset);
1343     last = start_of_cluster(s, offset + size - 1);
1344     for(cluster_offset = start; cluster_offset <= last;
1345         cluster_offset += s->cluster_size) {
1346         k = cluster_offset >> s->cluster_bits;
1347         if (k >= *refcount_table_size) {
1348             ret = realloc_refcount_array(s, refcount_table,
1349                                          refcount_table_size, k + 1);
1350             if (ret < 0) {
1351                 res->check_errors++;
1352                 return ret;
1353             }
1354         }
1355 
1356         refcount = s->get_refcount(*refcount_table, k);
1357         if (refcount == s->refcount_max) {
1358             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1359                     "\n", cluster_offset);
1360             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1361                     "width or qemu-img convert to create a clean copy if the "
1362                     "image cannot be opened for writing\n");
1363             res->corruptions++;
1364             continue;
1365         }
1366         s->set_refcount(*refcount_table, k, refcount + 1);
1367     }
1368 
1369     return 0;
1370 }
1371 
1372 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1373 enum {
1374     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1375 };
1376 
1377 /*
1378  * Increases the refcount in the given refcount table for the all clusters
1379  * referenced in the L2 table. While doing so, performs some checks on L2
1380  * entries.
1381  *
1382  * Returns the number of errors found by the checks or -errno if an internal
1383  * error occurred.
1384  */
1385 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1386                               void **refcount_table,
1387                               int64_t *refcount_table_size, int64_t l2_offset,
1388                               int flags)
1389 {
1390     BDRVQcow2State *s = bs->opaque;
1391     uint64_t *l2_table, l2_entry;
1392     uint64_t next_contiguous_offset = 0;
1393     int i, l2_size, nb_csectors, ret;
1394 
1395     /* Read L2 table from disk */
1396     l2_size = s->l2_size * sizeof(uint64_t);
1397     l2_table = g_malloc(l2_size);
1398 
1399     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1400     if (ret < 0) {
1401         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1402         res->check_errors++;
1403         goto fail;
1404     }
1405 
1406     /* Do the actual checks */
1407     for(i = 0; i < s->l2_size; i++) {
1408         l2_entry = be64_to_cpu(l2_table[i]);
1409 
1410         switch (qcow2_get_cluster_type(l2_entry)) {
1411         case QCOW2_CLUSTER_COMPRESSED:
1412             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1413             if (l2_entry & QCOW_OFLAG_COPIED) {
1414                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1415                     "copied flag must never be set for compressed "
1416                     "clusters\n", l2_entry >> s->cluster_bits);
1417                 l2_entry &= ~QCOW_OFLAG_COPIED;
1418                 res->corruptions++;
1419             }
1420 
1421             /* Mark cluster as used */
1422             nb_csectors = ((l2_entry >> s->csize_shift) &
1423                            s->csize_mask) + 1;
1424             l2_entry &= s->cluster_offset_mask;
1425             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1426                                 l2_entry & ~511, nb_csectors * 512);
1427             if (ret < 0) {
1428                 goto fail;
1429             }
1430 
1431             if (flags & CHECK_FRAG_INFO) {
1432                 res->bfi.allocated_clusters++;
1433                 res->bfi.compressed_clusters++;
1434 
1435                 /* Compressed clusters are fragmented by nature.  Since they
1436                  * take up sub-sector space but we only have sector granularity
1437                  * I/O we need to re-read the same sectors even for adjacent
1438                  * compressed clusters.
1439                  */
1440                 res->bfi.fragmented_clusters++;
1441             }
1442             break;
1443 
1444         case QCOW2_CLUSTER_ZERO:
1445             if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1446                 break;
1447             }
1448             /* fall through */
1449 
1450         case QCOW2_CLUSTER_NORMAL:
1451         {
1452             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1453 
1454             if (flags & CHECK_FRAG_INFO) {
1455                 res->bfi.allocated_clusters++;
1456                 if (next_contiguous_offset &&
1457                     offset != next_contiguous_offset) {
1458                     res->bfi.fragmented_clusters++;
1459                 }
1460                 next_contiguous_offset = offset + s->cluster_size;
1461             }
1462 
1463             /* Mark cluster as used */
1464             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1465                                 offset, s->cluster_size);
1466             if (ret < 0) {
1467                 goto fail;
1468             }
1469 
1470             /* Correct offsets are cluster aligned */
1471             if (offset_into_cluster(s, offset)) {
1472                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1473                     "properly aligned; L2 entry corrupted.\n", offset);
1474                 res->corruptions++;
1475             }
1476             break;
1477         }
1478 
1479         case QCOW2_CLUSTER_UNALLOCATED:
1480             break;
1481 
1482         default:
1483             abort();
1484         }
1485     }
1486 
1487     g_free(l2_table);
1488     return 0;
1489 
1490 fail:
1491     g_free(l2_table);
1492     return ret;
1493 }
1494 
1495 /*
1496  * Increases the refcount for the L1 table, its L2 tables and all referenced
1497  * clusters in the given refcount table. While doing so, performs some checks
1498  * on L1 and L2 entries.
1499  *
1500  * Returns the number of errors found by the checks or -errno if an internal
1501  * error occurred.
1502  */
1503 static int check_refcounts_l1(BlockDriverState *bs,
1504                               BdrvCheckResult *res,
1505                               void **refcount_table,
1506                               int64_t *refcount_table_size,
1507                               int64_t l1_table_offset, int l1_size,
1508                               int flags)
1509 {
1510     BDRVQcow2State *s = bs->opaque;
1511     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1512     int i, ret;
1513 
1514     l1_size2 = l1_size * sizeof(uint64_t);
1515 
1516     /* Mark L1 table as used */
1517     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1518                         l1_table_offset, l1_size2);
1519     if (ret < 0) {
1520         goto fail;
1521     }
1522 
1523     /* Read L1 table entries from disk */
1524     if (l1_size2 > 0) {
1525         l1_table = g_try_malloc(l1_size2);
1526         if (l1_table == NULL) {
1527             ret = -ENOMEM;
1528             res->check_errors++;
1529             goto fail;
1530         }
1531         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1532         if (ret < 0) {
1533             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1534             res->check_errors++;
1535             goto fail;
1536         }
1537         for(i = 0;i < l1_size; i++)
1538             be64_to_cpus(&l1_table[i]);
1539     }
1540 
1541     /* Do the actual checks */
1542     for(i = 0; i < l1_size; i++) {
1543         l2_offset = l1_table[i];
1544         if (l2_offset) {
1545             /* Mark L2 table as used */
1546             l2_offset &= L1E_OFFSET_MASK;
1547             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1548                                 l2_offset, s->cluster_size);
1549             if (ret < 0) {
1550                 goto fail;
1551             }
1552 
1553             /* L2 tables are cluster aligned */
1554             if (offset_into_cluster(s, l2_offset)) {
1555                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1556                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1557                 res->corruptions++;
1558             }
1559 
1560             /* Process and check L2 entries */
1561             ret = check_refcounts_l2(bs, res, refcount_table,
1562                                      refcount_table_size, l2_offset, flags);
1563             if (ret < 0) {
1564                 goto fail;
1565             }
1566         }
1567     }
1568     g_free(l1_table);
1569     return 0;
1570 
1571 fail:
1572     g_free(l1_table);
1573     return ret;
1574 }
1575 
1576 /*
1577  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1578  *
1579  * This function does not print an error message nor does it increment
1580  * check_errors if qcow2_get_refcount fails (this is because such an error will
1581  * have been already detected and sufficiently signaled by the calling function
1582  * (qcow2_check_refcounts) by the time this function is called).
1583  */
1584 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1585                               BdrvCheckMode fix)
1586 {
1587     BDRVQcow2State *s = bs->opaque;
1588     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1589     int ret;
1590     uint64_t refcount;
1591     int i, j;
1592 
1593     for (i = 0; i < s->l1_size; i++) {
1594         uint64_t l1_entry = s->l1_table[i];
1595         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1596         bool l2_dirty = false;
1597 
1598         if (!l2_offset) {
1599             continue;
1600         }
1601 
1602         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1603                                  &refcount);
1604         if (ret < 0) {
1605             /* don't print message nor increment check_errors */
1606             continue;
1607         }
1608         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1609             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1610                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1611                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1612                                             "ERROR",
1613                     i, l1_entry, refcount);
1614             if (fix & BDRV_FIX_ERRORS) {
1615                 s->l1_table[i] = refcount == 1
1616                                ? l1_entry |  QCOW_OFLAG_COPIED
1617                                : l1_entry & ~QCOW_OFLAG_COPIED;
1618                 ret = qcow2_write_l1_entry(bs, i);
1619                 if (ret < 0) {
1620                     res->check_errors++;
1621                     goto fail;
1622                 }
1623                 res->corruptions_fixed++;
1624             } else {
1625                 res->corruptions++;
1626             }
1627         }
1628 
1629         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1630                          s->l2_size * sizeof(uint64_t));
1631         if (ret < 0) {
1632             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1633                     strerror(-ret));
1634             res->check_errors++;
1635             goto fail;
1636         }
1637 
1638         for (j = 0; j < s->l2_size; j++) {
1639             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1640             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1641             int cluster_type = qcow2_get_cluster_type(l2_entry);
1642 
1643             if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1644                 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1645                 ret = qcow2_get_refcount(bs,
1646                                          data_offset >> s->cluster_bits,
1647                                          &refcount);
1648                 if (ret < 0) {
1649                     /* don't print message nor increment check_errors */
1650                     continue;
1651                 }
1652                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1653                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1654                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1655                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1656                                                     "ERROR",
1657                             l2_entry, refcount);
1658                     if (fix & BDRV_FIX_ERRORS) {
1659                         l2_table[j] = cpu_to_be64(refcount == 1
1660                                     ? l2_entry |  QCOW_OFLAG_COPIED
1661                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1662                         l2_dirty = true;
1663                         res->corruptions_fixed++;
1664                     } else {
1665                         res->corruptions++;
1666                     }
1667                 }
1668             }
1669         }
1670 
1671         if (l2_dirty) {
1672             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1673                                                 l2_offset, s->cluster_size);
1674             if (ret < 0) {
1675                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1676                         "overlap check failed: %s\n", strerror(-ret));
1677                 res->check_errors++;
1678                 goto fail;
1679             }
1680 
1681             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1682                               s->cluster_size);
1683             if (ret < 0) {
1684                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1685                         strerror(-ret));
1686                 res->check_errors++;
1687                 goto fail;
1688             }
1689         }
1690     }
1691 
1692     ret = 0;
1693 
1694 fail:
1695     qemu_vfree(l2_table);
1696     return ret;
1697 }
1698 
1699 /*
1700  * Checks consistency of refblocks and accounts for each refblock in
1701  * *refcount_table.
1702  */
1703 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1704                            BdrvCheckMode fix, bool *rebuild,
1705                            void **refcount_table, int64_t *nb_clusters)
1706 {
1707     BDRVQcow2State *s = bs->opaque;
1708     int64_t i, size;
1709     int ret;
1710 
1711     for(i = 0; i < s->refcount_table_size; i++) {
1712         uint64_t offset, cluster;
1713         offset = s->refcount_table[i];
1714         cluster = offset >> s->cluster_bits;
1715 
1716         /* Refcount blocks are cluster aligned */
1717         if (offset_into_cluster(s, offset)) {
1718             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1719                 "cluster aligned; refcount table entry corrupted\n", i);
1720             res->corruptions++;
1721             *rebuild = true;
1722             continue;
1723         }
1724 
1725         if (cluster >= *nb_clusters) {
1726             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1727                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1728 
1729             if (fix & BDRV_FIX_ERRORS) {
1730                 int64_t new_nb_clusters;
1731 
1732                 if (offset > INT64_MAX - s->cluster_size) {
1733                     ret = -EINVAL;
1734                     goto resize_fail;
1735                 }
1736 
1737                 ret = bdrv_truncate(bs->file, offset + s->cluster_size);
1738                 if (ret < 0) {
1739                     goto resize_fail;
1740                 }
1741                 size = bdrv_getlength(bs->file->bs);
1742                 if (size < 0) {
1743                     ret = size;
1744                     goto resize_fail;
1745                 }
1746 
1747                 new_nb_clusters = size_to_clusters(s, size);
1748                 assert(new_nb_clusters >= *nb_clusters);
1749 
1750                 ret = realloc_refcount_array(s, refcount_table,
1751                                              nb_clusters, new_nb_clusters);
1752                 if (ret < 0) {
1753                     res->check_errors++;
1754                     return ret;
1755                 }
1756 
1757                 if (cluster >= *nb_clusters) {
1758                     ret = -EINVAL;
1759                     goto resize_fail;
1760                 }
1761 
1762                 res->corruptions_fixed++;
1763                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1764                                     offset, s->cluster_size);
1765                 if (ret < 0) {
1766                     return ret;
1767                 }
1768                 /* No need to check whether the refcount is now greater than 1:
1769                  * This area was just allocated and zeroed, so it can only be
1770                  * exactly 1 after inc_refcounts() */
1771                 continue;
1772 
1773 resize_fail:
1774                 res->corruptions++;
1775                 *rebuild = true;
1776                 fprintf(stderr, "ERROR could not resize image: %s\n",
1777                         strerror(-ret));
1778             } else {
1779                 res->corruptions++;
1780             }
1781             continue;
1782         }
1783 
1784         if (offset != 0) {
1785             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1786                                 offset, s->cluster_size);
1787             if (ret < 0) {
1788                 return ret;
1789             }
1790             if (s->get_refcount(*refcount_table, cluster) != 1) {
1791                 fprintf(stderr, "ERROR refcount block %" PRId64
1792                         " refcount=%" PRIu64 "\n", i,
1793                         s->get_refcount(*refcount_table, cluster));
1794                 res->corruptions++;
1795                 *rebuild = true;
1796             }
1797         }
1798     }
1799 
1800     return 0;
1801 }
1802 
1803 /*
1804  * Calculates an in-memory refcount table.
1805  */
1806 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1807                                BdrvCheckMode fix, bool *rebuild,
1808                                void **refcount_table, int64_t *nb_clusters)
1809 {
1810     BDRVQcow2State *s = bs->opaque;
1811     int64_t i;
1812     QCowSnapshot *sn;
1813     int ret;
1814 
1815     if (!*refcount_table) {
1816         int64_t old_size = 0;
1817         ret = realloc_refcount_array(s, refcount_table,
1818                                      &old_size, *nb_clusters);
1819         if (ret < 0) {
1820             res->check_errors++;
1821             return ret;
1822         }
1823     }
1824 
1825     /* header */
1826     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1827                         0, s->cluster_size);
1828     if (ret < 0) {
1829         return ret;
1830     }
1831 
1832     /* current L1 table */
1833     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1834                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1835     if (ret < 0) {
1836         return ret;
1837     }
1838 
1839     /* snapshots */
1840     for (i = 0; i < s->nb_snapshots; i++) {
1841         sn = s->snapshots + i;
1842         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1843                                  sn->l1_table_offset, sn->l1_size, 0);
1844         if (ret < 0) {
1845             return ret;
1846         }
1847     }
1848     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1849                         s->snapshots_offset, s->snapshots_size);
1850     if (ret < 0) {
1851         return ret;
1852     }
1853 
1854     /* refcount data */
1855     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1856                         s->refcount_table_offset,
1857                         s->refcount_table_size * sizeof(uint64_t));
1858     if (ret < 0) {
1859         return ret;
1860     }
1861 
1862     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1863 }
1864 
1865 /*
1866  * Compares the actual reference count for each cluster in the image against the
1867  * refcount as reported by the refcount structures on-disk.
1868  */
1869 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1870                               BdrvCheckMode fix, bool *rebuild,
1871                               int64_t *highest_cluster,
1872                               void *refcount_table, int64_t nb_clusters)
1873 {
1874     BDRVQcow2State *s = bs->opaque;
1875     int64_t i;
1876     uint64_t refcount1, refcount2;
1877     int ret;
1878 
1879     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1880         ret = qcow2_get_refcount(bs, i, &refcount1);
1881         if (ret < 0) {
1882             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1883                     i, strerror(-ret));
1884             res->check_errors++;
1885             continue;
1886         }
1887 
1888         refcount2 = s->get_refcount(refcount_table, i);
1889 
1890         if (refcount1 > 0 || refcount2 > 0) {
1891             *highest_cluster = i;
1892         }
1893 
1894         if (refcount1 != refcount2) {
1895             /* Check if we're allowed to fix the mismatch */
1896             int *num_fixed = NULL;
1897             if (refcount1 == 0) {
1898                 *rebuild = true;
1899             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1900                 num_fixed = &res->leaks_fixed;
1901             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1902                 num_fixed = &res->corruptions_fixed;
1903             }
1904 
1905             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1906                     " reference=%" PRIu64 "\n",
1907                    num_fixed != NULL     ? "Repairing" :
1908                    refcount1 < refcount2 ? "ERROR" :
1909                                            "Leaked",
1910                    i, refcount1, refcount2);
1911 
1912             if (num_fixed) {
1913                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1914                                       refcount_diff(refcount1, refcount2),
1915                                       refcount1 > refcount2,
1916                                       QCOW2_DISCARD_ALWAYS);
1917                 if (ret >= 0) {
1918                     (*num_fixed)++;
1919                     continue;
1920                 }
1921             }
1922 
1923             /* And if we couldn't, print an error */
1924             if (refcount1 < refcount2) {
1925                 res->corruptions++;
1926             } else {
1927                 res->leaks++;
1928             }
1929         }
1930     }
1931 }
1932 
1933 /*
1934  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1935  * the on-disk refcount structures.
1936  *
1937  * On input, *first_free_cluster tells where to start looking, and need not
1938  * actually be a free cluster; the returned offset will not be before that
1939  * cluster.  On output, *first_free_cluster points to the first gap found, even
1940  * if that gap was too small to be used as the returned offset.
1941  *
1942  * Note that *first_free_cluster is a cluster index whereas the return value is
1943  * an offset.
1944  */
1945 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1946                                    int cluster_count,
1947                                    void **refcount_table,
1948                                    int64_t *imrt_nb_clusters,
1949                                    int64_t *first_free_cluster)
1950 {
1951     BDRVQcow2State *s = bs->opaque;
1952     int64_t cluster = *first_free_cluster, i;
1953     bool first_gap = true;
1954     int contiguous_free_clusters;
1955     int ret;
1956 
1957     /* Starting at *first_free_cluster, find a range of at least cluster_count
1958      * continuously free clusters */
1959     for (contiguous_free_clusters = 0;
1960          cluster < *imrt_nb_clusters &&
1961          contiguous_free_clusters < cluster_count;
1962          cluster++)
1963     {
1964         if (!s->get_refcount(*refcount_table, cluster)) {
1965             contiguous_free_clusters++;
1966             if (first_gap) {
1967                 /* If this is the first free cluster found, update
1968                  * *first_free_cluster accordingly */
1969                 *first_free_cluster = cluster;
1970                 first_gap = false;
1971             }
1972         } else if (contiguous_free_clusters) {
1973             contiguous_free_clusters = 0;
1974         }
1975     }
1976 
1977     /* If contiguous_free_clusters is greater than zero, it contains the number
1978      * of continuously free clusters until the current cluster; the first free
1979      * cluster in the current "gap" is therefore
1980      * cluster - contiguous_free_clusters */
1981 
1982     /* If no such range could be found, grow the in-memory refcount table
1983      * accordingly to append free clusters at the end of the image */
1984     if (contiguous_free_clusters < cluster_count) {
1985         /* contiguous_free_clusters clusters are already empty at the image end;
1986          * we need cluster_count clusters; therefore, we have to allocate
1987          * cluster_count - contiguous_free_clusters new clusters at the end of
1988          * the image (which is the current value of cluster; note that cluster
1989          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1990          * the image end) */
1991         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1992                                      cluster + cluster_count
1993                                      - contiguous_free_clusters);
1994         if (ret < 0) {
1995             return ret;
1996         }
1997     }
1998 
1999     /* Go back to the first free cluster */
2000     cluster -= contiguous_free_clusters;
2001     for (i = 0; i < cluster_count; i++) {
2002         s->set_refcount(*refcount_table, cluster + i, 1);
2003     }
2004 
2005     return cluster << s->cluster_bits;
2006 }
2007 
2008 /*
2009  * Creates a new refcount structure based solely on the in-memory information
2010  * given through *refcount_table. All necessary allocations will be reflected
2011  * in that array.
2012  *
2013  * On success, the old refcount structure is leaked (it will be covered by the
2014  * new refcount structure).
2015  */
2016 static int rebuild_refcount_structure(BlockDriverState *bs,
2017                                       BdrvCheckResult *res,
2018                                       void **refcount_table,
2019                                       int64_t *nb_clusters)
2020 {
2021     BDRVQcow2State *s = bs->opaque;
2022     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2023     int64_t refblock_offset, refblock_start, refblock_index;
2024     uint32_t reftable_size = 0;
2025     uint64_t *on_disk_reftable = NULL;
2026     void *on_disk_refblock;
2027     int ret = 0;
2028     struct {
2029         uint64_t reftable_offset;
2030         uint32_t reftable_clusters;
2031     } QEMU_PACKED reftable_offset_and_clusters;
2032 
2033     qcow2_cache_empty(bs, s->refcount_block_cache);
2034 
2035 write_refblocks:
2036     for (; cluster < *nb_clusters; cluster++) {
2037         if (!s->get_refcount(*refcount_table, cluster)) {
2038             continue;
2039         }
2040 
2041         refblock_index = cluster >> s->refcount_block_bits;
2042         refblock_start = refblock_index << s->refcount_block_bits;
2043 
2044         /* Don't allocate a cluster in a refblock already written to disk */
2045         if (first_free_cluster < refblock_start) {
2046             first_free_cluster = refblock_start;
2047         }
2048         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2049                                               nb_clusters, &first_free_cluster);
2050         if (refblock_offset < 0) {
2051             fprintf(stderr, "ERROR allocating refblock: %s\n",
2052                     strerror(-refblock_offset));
2053             res->check_errors++;
2054             ret = refblock_offset;
2055             goto fail;
2056         }
2057 
2058         if (reftable_size <= refblock_index) {
2059             uint32_t old_reftable_size = reftable_size;
2060             uint64_t *new_on_disk_reftable;
2061 
2062             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2063                                      s->cluster_size) / sizeof(uint64_t);
2064             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2065                                                  reftable_size *
2066                                                  sizeof(uint64_t));
2067             if (!new_on_disk_reftable) {
2068                 res->check_errors++;
2069                 ret = -ENOMEM;
2070                 goto fail;
2071             }
2072             on_disk_reftable = new_on_disk_reftable;
2073 
2074             memset(on_disk_reftable + old_reftable_size, 0,
2075                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2076 
2077             /* The offset we have for the reftable is now no longer valid;
2078              * this will leak that range, but we can easily fix that by running
2079              * a leak-fixing check after this rebuild operation */
2080             reftable_offset = -1;
2081         }
2082         on_disk_reftable[refblock_index] = refblock_offset;
2083 
2084         /* If this is apparently the last refblock (for now), try to squeeze the
2085          * reftable in */
2086         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2087             reftable_offset < 0)
2088         {
2089             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2090                                                           sizeof(uint64_t));
2091             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2092                                                   refcount_table, nb_clusters,
2093                                                   &first_free_cluster);
2094             if (reftable_offset < 0) {
2095                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2096                         strerror(-reftable_offset));
2097                 res->check_errors++;
2098                 ret = reftable_offset;
2099                 goto fail;
2100             }
2101         }
2102 
2103         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2104                                             s->cluster_size);
2105         if (ret < 0) {
2106             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2107             goto fail;
2108         }
2109 
2110         /* The size of *refcount_table is always cluster-aligned, therefore the
2111          * write operation will not overflow */
2112         on_disk_refblock = (void *)((char *) *refcount_table +
2113                                     refblock_index * s->cluster_size);
2114 
2115         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2116                          on_disk_refblock, s->cluster_sectors);
2117         if (ret < 0) {
2118             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2119             goto fail;
2120         }
2121 
2122         /* Go to the end of this refblock */
2123         cluster = refblock_start + s->refcount_block_size - 1;
2124     }
2125 
2126     if (reftable_offset < 0) {
2127         uint64_t post_refblock_start, reftable_clusters;
2128 
2129         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2130         reftable_clusters = size_to_clusters(s,
2131                                              reftable_size * sizeof(uint64_t));
2132         /* Not pretty but simple */
2133         if (first_free_cluster < post_refblock_start) {
2134             first_free_cluster = post_refblock_start;
2135         }
2136         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2137                                               refcount_table, nb_clusters,
2138                                               &first_free_cluster);
2139         if (reftable_offset < 0) {
2140             fprintf(stderr, "ERROR allocating reftable: %s\n",
2141                     strerror(-reftable_offset));
2142             res->check_errors++;
2143             ret = reftable_offset;
2144             goto fail;
2145         }
2146 
2147         goto write_refblocks;
2148     }
2149 
2150     assert(on_disk_reftable);
2151 
2152     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2153         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2154     }
2155 
2156     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2157                                         reftable_size * sizeof(uint64_t));
2158     if (ret < 0) {
2159         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2160         goto fail;
2161     }
2162 
2163     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2164     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2165                       reftable_size * sizeof(uint64_t));
2166     if (ret < 0) {
2167         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2168         goto fail;
2169     }
2170 
2171     /* Enter new reftable into the image header */
2172     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2173     reftable_offset_and_clusters.reftable_clusters =
2174         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2175     ret = bdrv_pwrite_sync(bs->file,
2176                            offsetof(QCowHeader, refcount_table_offset),
2177                            &reftable_offset_and_clusters,
2178                            sizeof(reftable_offset_and_clusters));
2179     if (ret < 0) {
2180         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2181         goto fail;
2182     }
2183 
2184     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2185         be64_to_cpus(&on_disk_reftable[refblock_index]);
2186     }
2187     s->refcount_table = on_disk_reftable;
2188     s->refcount_table_offset = reftable_offset;
2189     s->refcount_table_size = reftable_size;
2190     update_max_refcount_table_index(s);
2191 
2192     return 0;
2193 
2194 fail:
2195     g_free(on_disk_reftable);
2196     return ret;
2197 }
2198 
2199 /*
2200  * Checks an image for refcount consistency.
2201  *
2202  * Returns 0 if no errors are found, the number of errors in case the image is
2203  * detected as corrupted, and -errno when an internal error occurred.
2204  */
2205 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2206                           BdrvCheckMode fix)
2207 {
2208     BDRVQcow2State *s = bs->opaque;
2209     BdrvCheckResult pre_compare_res;
2210     int64_t size, highest_cluster, nb_clusters;
2211     void *refcount_table = NULL;
2212     bool rebuild = false;
2213     int ret;
2214 
2215     size = bdrv_getlength(bs->file->bs);
2216     if (size < 0) {
2217         res->check_errors++;
2218         return size;
2219     }
2220 
2221     nb_clusters = size_to_clusters(s, size);
2222     if (nb_clusters > INT_MAX) {
2223         res->check_errors++;
2224         return -EFBIG;
2225     }
2226 
2227     res->bfi.total_clusters =
2228         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2229 
2230     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2231                               &nb_clusters);
2232     if (ret < 0) {
2233         goto fail;
2234     }
2235 
2236     /* In case we don't need to rebuild the refcount structure (but want to fix
2237      * something), this function is immediately called again, in which case the
2238      * result should be ignored */
2239     pre_compare_res = *res;
2240     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2241                       nb_clusters);
2242 
2243     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2244         BdrvCheckResult old_res = *res;
2245         int fresh_leaks = 0;
2246 
2247         fprintf(stderr, "Rebuilding refcount structure\n");
2248         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2249                                          &nb_clusters);
2250         if (ret < 0) {
2251             goto fail;
2252         }
2253 
2254         res->corruptions = 0;
2255         res->leaks = 0;
2256 
2257         /* Because the old reftable has been exchanged for a new one the
2258          * references have to be recalculated */
2259         rebuild = false;
2260         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2261         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2262                                   &nb_clusters);
2263         if (ret < 0) {
2264             goto fail;
2265         }
2266 
2267         if (fix & BDRV_FIX_LEAKS) {
2268             /* The old refcount structures are now leaked, fix it; the result
2269              * can be ignored, aside from leaks which were introduced by
2270              * rebuild_refcount_structure() that could not be fixed */
2271             BdrvCheckResult saved_res = *res;
2272             *res = (BdrvCheckResult){ 0 };
2273 
2274             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2275                               &highest_cluster, refcount_table, nb_clusters);
2276             if (rebuild) {
2277                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2278                         "broken\n");
2279             }
2280 
2281             /* Any leaks accounted for here were introduced by
2282              * rebuild_refcount_structure() because that function has created a
2283              * new refcount structure from scratch */
2284             fresh_leaks = res->leaks;
2285             *res = saved_res;
2286         }
2287 
2288         if (res->corruptions < old_res.corruptions) {
2289             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2290         }
2291         if (res->leaks < old_res.leaks) {
2292             res->leaks_fixed += old_res.leaks - res->leaks;
2293         }
2294         res->leaks += fresh_leaks;
2295     } else if (fix) {
2296         if (rebuild) {
2297             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2298             res->check_errors++;
2299             ret = -EIO;
2300             goto fail;
2301         }
2302 
2303         if (res->leaks || res->corruptions) {
2304             *res = pre_compare_res;
2305             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2306                               refcount_table, nb_clusters);
2307         }
2308     }
2309 
2310     /* check OFLAG_COPIED */
2311     ret = check_oflag_copied(bs, res, fix);
2312     if (ret < 0) {
2313         goto fail;
2314     }
2315 
2316     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2317     ret = 0;
2318 
2319 fail:
2320     g_free(refcount_table);
2321 
2322     return ret;
2323 }
2324 
2325 #define overlaps_with(ofs, sz) \
2326     ranges_overlap(offset, size, ofs, sz)
2327 
2328 /*
2329  * Checks if the given offset into the image file is actually free to use by
2330  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2331  * i.e. a sanity check without relying on the refcount tables.
2332  *
2333  * The ign parameter specifies what checks not to perform (being a bitmask of
2334  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2335  *
2336  * Returns:
2337  * - 0 if writing to this offset will not affect the mentioned metadata
2338  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2339  * - a negative value (-errno) indicating an error while performing a check,
2340  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2341  */
2342 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2343                                  int64_t size)
2344 {
2345     BDRVQcow2State *s = bs->opaque;
2346     int chk = s->overlap_check & ~ign;
2347     int i, j;
2348 
2349     if (!size) {
2350         return 0;
2351     }
2352 
2353     if (chk & QCOW2_OL_MAIN_HEADER) {
2354         if (offset < s->cluster_size) {
2355             return QCOW2_OL_MAIN_HEADER;
2356         }
2357     }
2358 
2359     /* align range to test to cluster boundaries */
2360     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2361     offset = start_of_cluster(s, offset);
2362 
2363     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2364         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2365             return QCOW2_OL_ACTIVE_L1;
2366         }
2367     }
2368 
2369     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2370         if (overlaps_with(s->refcount_table_offset,
2371             s->refcount_table_size * sizeof(uint64_t))) {
2372             return QCOW2_OL_REFCOUNT_TABLE;
2373         }
2374     }
2375 
2376     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2377         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2378             return QCOW2_OL_SNAPSHOT_TABLE;
2379         }
2380     }
2381 
2382     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2383         for (i = 0; i < s->nb_snapshots; i++) {
2384             if (s->snapshots[i].l1_size &&
2385                 overlaps_with(s->snapshots[i].l1_table_offset,
2386                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2387                 return QCOW2_OL_INACTIVE_L1;
2388             }
2389         }
2390     }
2391 
2392     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2393         for (i = 0; i < s->l1_size; i++) {
2394             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2395                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2396                 s->cluster_size)) {
2397                 return QCOW2_OL_ACTIVE_L2;
2398             }
2399         }
2400     }
2401 
2402     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2403         unsigned last_entry = s->max_refcount_table_index;
2404         assert(last_entry < s->refcount_table_size);
2405         assert(last_entry + 1 == s->refcount_table_size ||
2406                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2407         for (i = 0; i <= last_entry; i++) {
2408             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2409                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2410                 s->cluster_size)) {
2411                 return QCOW2_OL_REFCOUNT_BLOCK;
2412             }
2413         }
2414     }
2415 
2416     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2417         for (i = 0; i < s->nb_snapshots; i++) {
2418             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2419             uint32_t l1_sz  = s->snapshots[i].l1_size;
2420             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2421             uint64_t *l1 = g_try_malloc(l1_sz2);
2422             int ret;
2423 
2424             if (l1_sz2 && l1 == NULL) {
2425                 return -ENOMEM;
2426             }
2427 
2428             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2429             if (ret < 0) {
2430                 g_free(l1);
2431                 return ret;
2432             }
2433 
2434             for (j = 0; j < l1_sz; j++) {
2435                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2436                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2437                     g_free(l1);
2438                     return QCOW2_OL_INACTIVE_L2;
2439                 }
2440             }
2441 
2442             g_free(l1);
2443         }
2444     }
2445 
2446     return 0;
2447 }
2448 
2449 static const char *metadata_ol_names[] = {
2450     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2451     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2452     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2453     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2454     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2455     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2456     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2457     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2458 };
2459 
2460 /*
2461  * First performs a check for metadata overlaps (through
2462  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2463  * while performing a check), that value is returned. If an impending overlap
2464  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2465  * and -EIO returned.
2466  *
2467  * Returns 0 if there were neither overlaps nor errors while checking for
2468  * overlaps; or a negative value (-errno) on error.
2469  */
2470 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2471                                   int64_t size)
2472 {
2473     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2474 
2475     if (ret < 0) {
2476         return ret;
2477     } else if (ret > 0) {
2478         int metadata_ol_bitnr = ctz32(ret);
2479         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2480 
2481         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2482                                 "write on metadata (overlaps with %s)",
2483                                 metadata_ol_names[metadata_ol_bitnr]);
2484         return -EIO;
2485     }
2486 
2487     return 0;
2488 }
2489 
2490 /* A pointer to a function of this type is given to walk_over_reftable(). That
2491  * function will create refblocks and pass them to a RefblockFinishOp once they
2492  * are completed (@refblock). @refblock_empty is set if the refblock is
2493  * completely empty.
2494  *
2495  * Along with the refblock, a corresponding reftable entry is passed, in the
2496  * reftable @reftable (which may be reallocated) at @reftable_index.
2497  *
2498  * @allocated should be set to true if a new cluster has been allocated.
2499  */
2500 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2501                                uint64_t reftable_index, uint64_t *reftable_size,
2502                                void *refblock, bool refblock_empty,
2503                                bool *allocated, Error **errp);
2504 
2505 /**
2506  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2507  * it is not empty) and inserts its offset into the new reftable. The size of
2508  * this new reftable is increased as required.
2509  */
2510 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2511                           uint64_t reftable_index, uint64_t *reftable_size,
2512                           void *refblock, bool refblock_empty, bool *allocated,
2513                           Error **errp)
2514 {
2515     BDRVQcow2State *s = bs->opaque;
2516     int64_t offset;
2517 
2518     if (!refblock_empty && reftable_index >= *reftable_size) {
2519         uint64_t *new_reftable;
2520         uint64_t new_reftable_size;
2521 
2522         new_reftable_size = ROUND_UP(reftable_index + 1,
2523                                      s->cluster_size / sizeof(uint64_t));
2524         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2525             error_setg(errp,
2526                        "This operation would make the refcount table grow "
2527                        "beyond the maximum size supported by QEMU, aborting");
2528             return -ENOTSUP;
2529         }
2530 
2531         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2532                                                 sizeof(uint64_t));
2533         if (!new_reftable) {
2534             error_setg(errp, "Failed to increase reftable buffer size");
2535             return -ENOMEM;
2536         }
2537 
2538         memset(new_reftable + *reftable_size, 0,
2539                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2540 
2541         *reftable      = new_reftable;
2542         *reftable_size = new_reftable_size;
2543     }
2544 
2545     if (!refblock_empty && !(*reftable)[reftable_index]) {
2546         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2547         if (offset < 0) {
2548             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2549             return offset;
2550         }
2551         (*reftable)[reftable_index] = offset;
2552         *allocated = true;
2553     }
2554 
2555     return 0;
2556 }
2557 
2558 /**
2559  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2560  * offset specified by the new reftable's entry. It does not modify the new
2561  * reftable or change any refcounts.
2562  */
2563 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2564                           uint64_t reftable_index, uint64_t *reftable_size,
2565                           void *refblock, bool refblock_empty, bool *allocated,
2566                           Error **errp)
2567 {
2568     BDRVQcow2State *s = bs->opaque;
2569     int64_t offset;
2570     int ret;
2571 
2572     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2573         offset = (*reftable)[reftable_index];
2574 
2575         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2576         if (ret < 0) {
2577             error_setg_errno(errp, -ret, "Overlap check failed");
2578             return ret;
2579         }
2580 
2581         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2582         if (ret < 0) {
2583             error_setg_errno(errp, -ret, "Failed to write refblock");
2584             return ret;
2585         }
2586     } else {
2587         assert(refblock_empty);
2588     }
2589 
2590     return 0;
2591 }
2592 
2593 /**
2594  * This function walks over the existing reftable and every referenced refblock;
2595  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2596  * create an equal new entry in the passed @new_refblock. Once that
2597  * @new_refblock is completely filled, @operation will be called.
2598  *
2599  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2600  * @index is the index of the walk_over_reftable() calls and @total is the total
2601  * number of walk_over_reftable() calls per amend operation. Both are used for
2602  * calculating the parameters for the status callback.
2603  *
2604  * @allocated is set to true if a new cluster has been allocated.
2605  */
2606 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2607                               uint64_t *new_reftable_index,
2608                               uint64_t *new_reftable_size,
2609                               void *new_refblock, int new_refblock_size,
2610                               int new_refcount_bits,
2611                               RefblockFinishOp *operation, bool *allocated,
2612                               Qcow2SetRefcountFunc *new_set_refcount,
2613                               BlockDriverAmendStatusCB *status_cb,
2614                               void *cb_opaque, int index, int total,
2615                               Error **errp)
2616 {
2617     BDRVQcow2State *s = bs->opaque;
2618     uint64_t reftable_index;
2619     bool new_refblock_empty = true;
2620     int refblock_index;
2621     int new_refblock_index = 0;
2622     int ret;
2623 
2624     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2625          reftable_index++)
2626     {
2627         uint64_t refblock_offset = s->refcount_table[reftable_index]
2628                                  & REFT_OFFSET_MASK;
2629 
2630         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2631                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2632 
2633         if (refblock_offset) {
2634             void *refblock;
2635 
2636             if (offset_into_cluster(s, refblock_offset)) {
2637                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2638                                         PRIx64 " unaligned (reftable index: %#"
2639                                         PRIx64 ")", refblock_offset,
2640                                         reftable_index);
2641                 error_setg(errp,
2642                            "Image is corrupt (unaligned refblock offset)");
2643                 return -EIO;
2644             }
2645 
2646             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2647                                   &refblock);
2648             if (ret < 0) {
2649                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2650                 return ret;
2651             }
2652 
2653             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2654                  refblock_index++)
2655             {
2656                 uint64_t refcount;
2657 
2658                 if (new_refblock_index >= new_refblock_size) {
2659                     /* new_refblock is now complete */
2660                     ret = operation(bs, new_reftable, *new_reftable_index,
2661                                     new_reftable_size, new_refblock,
2662                                     new_refblock_empty, allocated, errp);
2663                     if (ret < 0) {
2664                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2665                         return ret;
2666                     }
2667 
2668                     (*new_reftable_index)++;
2669                     new_refblock_index = 0;
2670                     new_refblock_empty = true;
2671                 }
2672 
2673                 refcount = s->get_refcount(refblock, refblock_index);
2674                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2675                     uint64_t offset;
2676 
2677                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2678 
2679                     offset = ((reftable_index << s->refcount_block_bits)
2680                               + refblock_index) << s->cluster_bits;
2681 
2682                     error_setg(errp, "Cannot decrease refcount entry width to "
2683                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2684                                "refcount of %" PRIu64, new_refcount_bits,
2685                                offset, refcount);
2686                     return -EINVAL;
2687                 }
2688 
2689                 if (new_set_refcount) {
2690                     new_set_refcount(new_refblock, new_refblock_index++,
2691                                      refcount);
2692                 } else {
2693                     new_refblock_index++;
2694                 }
2695                 new_refblock_empty = new_refblock_empty && refcount == 0;
2696             }
2697 
2698             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2699         } else {
2700             /* No refblock means every refcount is 0 */
2701             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2702                  refblock_index++)
2703             {
2704                 if (new_refblock_index >= new_refblock_size) {
2705                     /* new_refblock is now complete */
2706                     ret = operation(bs, new_reftable, *new_reftable_index,
2707                                     new_reftable_size, new_refblock,
2708                                     new_refblock_empty, allocated, errp);
2709                     if (ret < 0) {
2710                         return ret;
2711                     }
2712 
2713                     (*new_reftable_index)++;
2714                     new_refblock_index = 0;
2715                     new_refblock_empty = true;
2716                 }
2717 
2718                 if (new_set_refcount) {
2719                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2720                 } else {
2721                     new_refblock_index++;
2722                 }
2723             }
2724         }
2725     }
2726 
2727     if (new_refblock_index > 0) {
2728         /* Complete the potentially existing partially filled final refblock */
2729         if (new_set_refcount) {
2730             for (; new_refblock_index < new_refblock_size;
2731                  new_refblock_index++)
2732             {
2733                 new_set_refcount(new_refblock, new_refblock_index, 0);
2734             }
2735         }
2736 
2737         ret = operation(bs, new_reftable, *new_reftable_index,
2738                         new_reftable_size, new_refblock, new_refblock_empty,
2739                         allocated, errp);
2740         if (ret < 0) {
2741             return ret;
2742         }
2743 
2744         (*new_reftable_index)++;
2745     }
2746 
2747     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2748               (uint64_t)total * s->refcount_table_size, cb_opaque);
2749 
2750     return 0;
2751 }
2752 
2753 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2754                                 BlockDriverAmendStatusCB *status_cb,
2755                                 void *cb_opaque, Error **errp)
2756 {
2757     BDRVQcow2State *s = bs->opaque;
2758     Qcow2GetRefcountFunc *new_get_refcount;
2759     Qcow2SetRefcountFunc *new_set_refcount;
2760     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2761     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2762     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2763     uint64_t new_reftable_index = 0;
2764     uint64_t i;
2765     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2766     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2767     int old_refcount_order;
2768     int walk_index = 0;
2769     int ret;
2770     bool new_allocation;
2771 
2772     assert(s->qcow_version >= 3);
2773     assert(refcount_order >= 0 && refcount_order <= 6);
2774 
2775     /* see qcow2_open() */
2776     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2777 
2778     new_get_refcount = get_refcount_funcs[refcount_order];
2779     new_set_refcount = set_refcount_funcs[refcount_order];
2780 
2781 
2782     do {
2783         int total_walks;
2784 
2785         new_allocation = false;
2786 
2787         /* At least we have to do this walk and the one which writes the
2788          * refblocks; also, at least we have to do this loop here at least
2789          * twice (normally), first to do the allocations, and second to
2790          * determine that everything is correctly allocated, this then makes
2791          * three walks in total */
2792         total_walks = MAX(walk_index + 2, 3);
2793 
2794         /* First, allocate the structures so they are present in the refcount
2795          * structures */
2796         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2797                                  &new_reftable_size, NULL, new_refblock_size,
2798                                  new_refcount_bits, &alloc_refblock,
2799                                  &new_allocation, NULL, status_cb, cb_opaque,
2800                                  walk_index++, total_walks, errp);
2801         if (ret < 0) {
2802             goto done;
2803         }
2804 
2805         new_reftable_index = 0;
2806 
2807         if (new_allocation) {
2808             if (new_reftable_offset) {
2809                 qcow2_free_clusters(bs, new_reftable_offset,
2810                                     allocated_reftable_size * sizeof(uint64_t),
2811                                     QCOW2_DISCARD_NEVER);
2812             }
2813 
2814             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2815                                                            sizeof(uint64_t));
2816             if (new_reftable_offset < 0) {
2817                 error_setg_errno(errp, -new_reftable_offset,
2818                                  "Failed to allocate the new reftable");
2819                 ret = new_reftable_offset;
2820                 goto done;
2821             }
2822             allocated_reftable_size = new_reftable_size;
2823         }
2824     } while (new_allocation);
2825 
2826     /* Second, write the new refblocks */
2827     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2828                              &new_reftable_size, new_refblock,
2829                              new_refblock_size, new_refcount_bits,
2830                              &flush_refblock, &new_allocation, new_set_refcount,
2831                              status_cb, cb_opaque, walk_index, walk_index + 1,
2832                              errp);
2833     if (ret < 0) {
2834         goto done;
2835     }
2836     assert(!new_allocation);
2837 
2838 
2839     /* Write the new reftable */
2840     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2841                                         new_reftable_size * sizeof(uint64_t));
2842     if (ret < 0) {
2843         error_setg_errno(errp, -ret, "Overlap check failed");
2844         goto done;
2845     }
2846 
2847     for (i = 0; i < new_reftable_size; i++) {
2848         cpu_to_be64s(&new_reftable[i]);
2849     }
2850 
2851     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2852                       new_reftable_size * sizeof(uint64_t));
2853 
2854     for (i = 0; i < new_reftable_size; i++) {
2855         be64_to_cpus(&new_reftable[i]);
2856     }
2857 
2858     if (ret < 0) {
2859         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2860         goto done;
2861     }
2862 
2863 
2864     /* Empty the refcount cache */
2865     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2866     if (ret < 0) {
2867         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2868         goto done;
2869     }
2870 
2871     /* Update the image header to point to the new reftable; this only updates
2872      * the fields which are relevant to qcow2_update_header(); other fields
2873      * such as s->refcount_table or s->refcount_bits stay stale for now
2874      * (because we have to restore everything if qcow2_update_header() fails) */
2875     old_refcount_order  = s->refcount_order;
2876     old_reftable_size   = s->refcount_table_size;
2877     old_reftable_offset = s->refcount_table_offset;
2878 
2879     s->refcount_order        = refcount_order;
2880     s->refcount_table_size   = new_reftable_size;
2881     s->refcount_table_offset = new_reftable_offset;
2882 
2883     ret = qcow2_update_header(bs);
2884     if (ret < 0) {
2885         s->refcount_order        = old_refcount_order;
2886         s->refcount_table_size   = old_reftable_size;
2887         s->refcount_table_offset = old_reftable_offset;
2888         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2889         goto done;
2890     }
2891 
2892     /* Now update the rest of the in-memory information */
2893     old_reftable = s->refcount_table;
2894     s->refcount_table = new_reftable;
2895     update_max_refcount_table_index(s);
2896 
2897     s->refcount_bits = 1 << refcount_order;
2898     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2899     s->refcount_max += s->refcount_max - 1;
2900 
2901     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2902     s->refcount_block_size = 1 << s->refcount_block_bits;
2903 
2904     s->get_refcount = new_get_refcount;
2905     s->set_refcount = new_set_refcount;
2906 
2907     /* For cleaning up all old refblocks and the old reftable below the "done"
2908      * label */
2909     new_reftable        = old_reftable;
2910     new_reftable_size   = old_reftable_size;
2911     new_reftable_offset = old_reftable_offset;
2912 
2913 done:
2914     if (new_reftable) {
2915         /* On success, new_reftable actually points to the old reftable (and
2916          * new_reftable_size is the old reftable's size); but that is just
2917          * fine */
2918         for (i = 0; i < new_reftable_size; i++) {
2919             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2920             if (offset) {
2921                 qcow2_free_clusters(bs, offset, s->cluster_size,
2922                                     QCOW2_DISCARD_OTHER);
2923             }
2924         }
2925         g_free(new_reftable);
2926 
2927         if (new_reftable_offset > 0) {
2928             qcow2_free_clusters(bs, new_reftable_offset,
2929                                 new_reftable_size * sizeof(uint64_t),
2930                                 QCOW2_DISCARD_OTHER);
2931         }
2932     }
2933 
2934     qemu_vfree(new_refblock);
2935     return ret;
2936 }
2937