xref: /qemu/block/qcow2-refcount.c (revision b8158192)
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35                             int64_t offset, int64_t length, uint64_t addend,
36                             bool decrease, enum qcow2_discard_type type);
37 
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45 
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47                              uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59                              uint64_t value);
60 
61 
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63     &get_refcount_ro0,
64     &get_refcount_ro1,
65     &get_refcount_ro2,
66     &get_refcount_ro3,
67     &get_refcount_ro4,
68     &get_refcount_ro5,
69     &get_refcount_ro6
70 };
71 
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73     &set_refcount_ro0,
74     &set_refcount_ro1,
75     &set_refcount_ro2,
76     &set_refcount_ro3,
77     &set_refcount_ro4,
78     &set_refcount_ro5,
79     &set_refcount_ro6
80 };
81 
82 
83 /*********************************************************/
84 /* refcount handling */
85 
86 static void update_max_refcount_table_index(BDRVQcow2State *s)
87 {
88     unsigned i = s->refcount_table_size - 1;
89     while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90         i--;
91     }
92     /* Set s->max_refcount_table_index to the index of the last used entry */
93     s->max_refcount_table_index = i;
94 }
95 
96 int qcow2_refcount_init(BlockDriverState *bs)
97 {
98     BDRVQcow2State *s = bs->opaque;
99     unsigned int refcount_table_size2, i;
100     int ret;
101 
102     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103 
104     s->get_refcount = get_refcount_funcs[s->refcount_order];
105     s->set_refcount = set_refcount_funcs[s->refcount_order];
106 
107     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
108     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
109     s->refcount_table = g_try_malloc(refcount_table_size2);
110 
111     if (s->refcount_table_size > 0) {
112         if (s->refcount_table == NULL) {
113             ret = -ENOMEM;
114             goto fail;
115         }
116         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
117         ret = bdrv_pread(bs->file, s->refcount_table_offset,
118                          s->refcount_table, refcount_table_size2);
119         if (ret < 0) {
120             goto fail;
121         }
122         for(i = 0; i < s->refcount_table_size; i++)
123             be64_to_cpus(&s->refcount_table[i]);
124         update_max_refcount_table_index(s);
125     }
126     return 0;
127  fail:
128     return ret;
129 }
130 
131 void qcow2_refcount_close(BlockDriverState *bs)
132 {
133     BDRVQcow2State *s = bs->opaque;
134     g_free(s->refcount_table);
135 }
136 
137 
138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139 {
140     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141 }
142 
143 static void set_refcount_ro0(void *refcount_array, uint64_t index,
144                              uint64_t value)
145 {
146     assert(!(value >> 1));
147     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149 }
150 
151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152 {
153     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154            & 0x3;
155 }
156 
157 static void set_refcount_ro1(void *refcount_array, uint64_t index,
158                              uint64_t value)
159 {
160     assert(!(value >> 2));
161     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163 }
164 
165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166 {
167     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168            & 0xf;
169 }
170 
171 static void set_refcount_ro2(void *refcount_array, uint64_t index,
172                              uint64_t value)
173 {
174     assert(!(value >> 4));
175     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177 }
178 
179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180 {
181     return ((const uint8_t *)refcount_array)[index];
182 }
183 
184 static void set_refcount_ro3(void *refcount_array, uint64_t index,
185                              uint64_t value)
186 {
187     assert(!(value >> 8));
188     ((uint8_t *)refcount_array)[index] = value;
189 }
190 
191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192 {
193     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194 }
195 
196 static void set_refcount_ro4(void *refcount_array, uint64_t index,
197                              uint64_t value)
198 {
199     assert(!(value >> 16));
200     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201 }
202 
203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204 {
205     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206 }
207 
208 static void set_refcount_ro5(void *refcount_array, uint64_t index,
209                              uint64_t value)
210 {
211     assert(!(value >> 32));
212     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213 }
214 
215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216 {
217     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218 }
219 
220 static void set_refcount_ro6(void *refcount_array, uint64_t index,
221                              uint64_t value)
222 {
223     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224 }
225 
226 
227 static int load_refcount_block(BlockDriverState *bs,
228                                int64_t refcount_block_offset,
229                                void **refcount_block)
230 {
231     BDRVQcow2State *s = bs->opaque;
232 
233     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
234     return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235                            refcount_block);
236 }
237 
238 /*
239  * Retrieves the refcount of the cluster given by its index and stores it in
240  * *refcount. Returns 0 on success and -errno on failure.
241  */
242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
243                        uint64_t *refcount)
244 {
245     BDRVQcow2State *s = bs->opaque;
246     uint64_t refcount_table_index, block_index;
247     int64_t refcount_block_offset;
248     int ret;
249     void *refcount_block;
250 
251     refcount_table_index = cluster_index >> s->refcount_block_bits;
252     if (refcount_table_index >= s->refcount_table_size) {
253         *refcount = 0;
254         return 0;
255     }
256     refcount_block_offset =
257         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
258     if (!refcount_block_offset) {
259         *refcount = 0;
260         return 0;
261     }
262 
263     if (offset_into_cluster(s, refcount_block_offset)) {
264         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265                                 " unaligned (reftable index: %#" PRIx64 ")",
266                                 refcount_block_offset, refcount_table_index);
267         return -EIO;
268     }
269 
270     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
271                           &refcount_block);
272     if (ret < 0) {
273         return ret;
274     }
275 
276     block_index = cluster_index & (s->refcount_block_size - 1);
277     *refcount = s->get_refcount(refcount_block, block_index);
278 
279     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
280 
281     return 0;
282 }
283 
284 /*
285  * Rounds the refcount table size up to avoid growing the table for each single
286  * refcount block that is allocated.
287  */
288 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
289     unsigned int min_size)
290 {
291     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
292     unsigned int refcount_table_clusters =
293         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
294 
295     while (min_clusters > refcount_table_clusters) {
296         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
297     }
298 
299     return refcount_table_clusters << (s->cluster_bits - 3);
300 }
301 
302 
303 /* Checks if two offsets are described by the same refcount block */
304 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
305     uint64_t offset_b)
306 {
307     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
308     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
309 
310     return (block_a == block_b);
311 }
312 
313 /*
314  * Loads a refcount block. If it doesn't exist yet, it is allocated first
315  * (including growing the refcount table if needed).
316  *
317  * Returns 0 on success or -errno in error case
318  */
319 static int alloc_refcount_block(BlockDriverState *bs,
320                                 int64_t cluster_index, void **refcount_block)
321 {
322     BDRVQcow2State *s = bs->opaque;
323     unsigned int refcount_table_index;
324     int ret;
325 
326     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
327 
328     /* Find the refcount block for the given cluster */
329     refcount_table_index = cluster_index >> s->refcount_block_bits;
330 
331     if (refcount_table_index < s->refcount_table_size) {
332 
333         uint64_t refcount_block_offset =
334             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
335 
336         /* If it's already there, we're done */
337         if (refcount_block_offset) {
338             if (offset_into_cluster(s, refcount_block_offset)) {
339                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
340                                         PRIx64 " unaligned (reftable index: "
341                                         "%#x)", refcount_block_offset,
342                                         refcount_table_index);
343                 return -EIO;
344             }
345 
346              return load_refcount_block(bs, refcount_block_offset,
347                                         refcount_block);
348         }
349     }
350 
351     /*
352      * If we came here, we need to allocate something. Something is at least
353      * a cluster for the new refcount block. It may also include a new refcount
354      * table if the old refcount table is too small.
355      *
356      * Note that allocating clusters here needs some special care:
357      *
358      * - We can't use the normal qcow2_alloc_clusters(), it would try to
359      *   increase the refcount and very likely we would end up with an endless
360      *   recursion. Instead we must place the refcount blocks in a way that
361      *   they can describe them themselves.
362      *
363      * - We need to consider that at this point we are inside update_refcounts
364      *   and potentially doing an initial refcount increase. This means that
365      *   some clusters have already been allocated by the caller, but their
366      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
367      *   need to return -EAGAIN to signal the caller that it needs to restart
368      *   the search for free clusters.
369      *
370      * - alloc_clusters_noref and qcow2_free_clusters may load a different
371      *   refcount block into the cache
372      */
373 
374     *refcount_block = NULL;
375 
376     /* We write to the refcount table, so we might depend on L2 tables */
377     ret = qcow2_cache_flush(bs, s->l2_table_cache);
378     if (ret < 0) {
379         return ret;
380     }
381 
382     /* Allocate the refcount block itself and mark it as used */
383     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
384     if (new_block < 0) {
385         return new_block;
386     }
387 
388 #ifdef DEBUG_ALLOC2
389     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
390         " at %" PRIx64 "\n",
391         refcount_table_index, cluster_index << s->cluster_bits, new_block);
392 #endif
393 
394     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
395         /* Zero the new refcount block before updating it */
396         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
397                                     refcount_block);
398         if (ret < 0) {
399             goto fail_block;
400         }
401 
402         memset(*refcount_block, 0, s->cluster_size);
403 
404         /* The block describes itself, need to update the cache */
405         int block_index = (new_block >> s->cluster_bits) &
406             (s->refcount_block_size - 1);
407         s->set_refcount(*refcount_block, block_index, 1);
408     } else {
409         /* Described somewhere else. This can recurse at most twice before we
410          * arrive at a block that describes itself. */
411         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
412                               QCOW2_DISCARD_NEVER);
413         if (ret < 0) {
414             goto fail_block;
415         }
416 
417         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418         if (ret < 0) {
419             goto fail_block;
420         }
421 
422         /* Initialize the new refcount block only after updating its refcount,
423          * update_refcount uses the refcount cache itself */
424         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
425                                     refcount_block);
426         if (ret < 0) {
427             goto fail_block;
428         }
429 
430         memset(*refcount_block, 0, s->cluster_size);
431     }
432 
433     /* Now the new refcount block needs to be written to disk */
434     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
435     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
436     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
437     if (ret < 0) {
438         goto fail_block;
439     }
440 
441     /* If the refcount table is big enough, just hook the block up there */
442     if (refcount_table_index < s->refcount_table_size) {
443         uint64_t data64 = cpu_to_be64(new_block);
444         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
445         ret = bdrv_pwrite_sync(bs->file,
446             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
447             &data64, sizeof(data64));
448         if (ret < 0) {
449             goto fail_block;
450         }
451 
452         s->refcount_table[refcount_table_index] = new_block;
453         /* If there's a hole in s->refcount_table then it can happen
454          * that refcount_table_index < s->max_refcount_table_index */
455         s->max_refcount_table_index =
456             MAX(s->max_refcount_table_index, refcount_table_index);
457 
458         /* The new refcount block may be where the caller intended to put its
459          * data, so let it restart the search. */
460         return -EAGAIN;
461     }
462 
463     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
464 
465     /*
466      * If we come here, we need to grow the refcount table. Again, a new
467      * refcount table needs some space and we can't simply allocate to avoid
468      * endless recursion.
469      *
470      * Therefore let's grab new refcount blocks at the end of the image, which
471      * will describe themselves and the new refcount table. This way we can
472      * reference them only in the new table and do the switch to the new
473      * refcount table at once without producing an inconsistent state in
474      * between.
475      */
476     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
477 
478     /* Calculate the number of refcount blocks needed so far; this will be the
479      * basis for calculating the index of the first cluster used for the
480      * self-describing refcount structures which we are about to create.
481      *
482      * Because we reached this point, there cannot be any refcount entries for
483      * cluster_index or higher indices yet. However, because new_block has been
484      * allocated to describe that cluster (and it will assume this role later
485      * on), we cannot use that index; also, new_block may actually have a higher
486      * cluster index than cluster_index, so it needs to be taken into account
487      * here (and 1 needs to be added to its value because that cluster is used).
488      */
489     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
490                                             (new_block >> s->cluster_bits) + 1),
491                                         s->refcount_block_size);
492 
493     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
494         return -EFBIG;
495     }
496 
497     /* And now we need at least one block more for the new metadata */
498     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
499     uint64_t last_table_size;
500     uint64_t blocks_clusters;
501     do {
502         uint64_t table_clusters =
503             size_to_clusters(s, table_size * sizeof(uint64_t));
504         blocks_clusters = 1 +
505             DIV_ROUND_UP(table_clusters, s->refcount_block_size);
506         uint64_t meta_clusters = table_clusters + blocks_clusters;
507 
508         last_table_size = table_size;
509         table_size = next_refcount_table_size(s, blocks_used +
510             DIV_ROUND_UP(meta_clusters, s->refcount_block_size));
511 
512     } while (last_table_size != table_size);
513 
514 #ifdef DEBUG_ALLOC2
515     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
516         s->refcount_table_size, table_size);
517 #endif
518 
519     /* Create the new refcount table and blocks */
520     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
521         s->cluster_size;
522     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
523     uint64_t *new_table = g_try_new0(uint64_t, table_size);
524     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
525 
526     assert(table_size > 0 && blocks_clusters > 0);
527     if (new_table == NULL || new_blocks == NULL) {
528         ret = -ENOMEM;
529         goto fail_table;
530     }
531 
532     /* Fill the new refcount table */
533     memcpy(new_table, s->refcount_table,
534         s->refcount_table_size * sizeof(uint64_t));
535     new_table[refcount_table_index] = new_block;
536 
537     int i;
538     for (i = 0; i < blocks_clusters; i++) {
539         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
540     }
541 
542     /* Fill the refcount blocks */
543     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
544     int block = 0;
545     for (i = 0; i < table_clusters + blocks_clusters; i++) {
546         s->set_refcount(new_blocks, block++, 1);
547     }
548 
549     /* Write refcount blocks to disk */
550     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
551     ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
552         blocks_clusters * s->cluster_size);
553     g_free(new_blocks);
554     new_blocks = NULL;
555     if (ret < 0) {
556         goto fail_table;
557     }
558 
559     /* Write refcount table to disk */
560     for(i = 0; i < table_size; i++) {
561         cpu_to_be64s(&new_table[i]);
562     }
563 
564     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
565     ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
566         table_size * sizeof(uint64_t));
567     if (ret < 0) {
568         goto fail_table;
569     }
570 
571     for(i = 0; i < table_size; i++) {
572         be64_to_cpus(&new_table[i]);
573     }
574 
575     /* Hook up the new refcount table in the qcow2 header */
576     struct QEMU_PACKED {
577         uint64_t d64;
578         uint32_t d32;
579     } data;
580     data.d64 = cpu_to_be64(table_offset);
581     data.d32 = cpu_to_be32(table_clusters);
582     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
583     ret = bdrv_pwrite_sync(bs->file,
584                            offsetof(QCowHeader, refcount_table_offset),
585                            &data, sizeof(data));
586     if (ret < 0) {
587         goto fail_table;
588     }
589 
590     /* And switch it in memory */
591     uint64_t old_table_offset = s->refcount_table_offset;
592     uint64_t old_table_size = s->refcount_table_size;
593 
594     g_free(s->refcount_table);
595     s->refcount_table = new_table;
596     s->refcount_table_size = table_size;
597     s->refcount_table_offset = table_offset;
598     update_max_refcount_table_index(s);
599 
600     /* Free old table. */
601     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
602                         QCOW2_DISCARD_OTHER);
603 
604     ret = load_refcount_block(bs, new_block, refcount_block);
605     if (ret < 0) {
606         return ret;
607     }
608 
609     /* If we were trying to do the initial refcount update for some cluster
610      * allocation, we might have used the same clusters to store newly
611      * allocated metadata. Make the caller search some new space. */
612     return -EAGAIN;
613 
614 fail_table:
615     g_free(new_blocks);
616     g_free(new_table);
617 fail_block:
618     if (*refcount_block != NULL) {
619         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
620     }
621     return ret;
622 }
623 
624 void qcow2_process_discards(BlockDriverState *bs, int ret)
625 {
626     BDRVQcow2State *s = bs->opaque;
627     Qcow2DiscardRegion *d, *next;
628 
629     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
630         QTAILQ_REMOVE(&s->discards, d, next);
631 
632         /* Discard is optional, ignore the return value */
633         if (ret >= 0) {
634             bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
635         }
636 
637         g_free(d);
638     }
639 }
640 
641 static void update_refcount_discard(BlockDriverState *bs,
642                                     uint64_t offset, uint64_t length)
643 {
644     BDRVQcow2State *s = bs->opaque;
645     Qcow2DiscardRegion *d, *p, *next;
646 
647     QTAILQ_FOREACH(d, &s->discards, next) {
648         uint64_t new_start = MIN(offset, d->offset);
649         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
650 
651         if (new_end - new_start <= length + d->bytes) {
652             /* There can't be any overlap, areas ending up here have no
653              * references any more and therefore shouldn't get freed another
654              * time. */
655             assert(d->bytes + length == new_end - new_start);
656             d->offset = new_start;
657             d->bytes = new_end - new_start;
658             goto found;
659         }
660     }
661 
662     d = g_malloc(sizeof(*d));
663     *d = (Qcow2DiscardRegion) {
664         .bs     = bs,
665         .offset = offset,
666         .bytes  = length,
667     };
668     QTAILQ_INSERT_TAIL(&s->discards, d, next);
669 
670 found:
671     /* Merge discard requests if they are adjacent now */
672     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
673         if (p == d
674             || p->offset > d->offset + d->bytes
675             || d->offset > p->offset + p->bytes)
676         {
677             continue;
678         }
679 
680         /* Still no overlap possible */
681         assert(p->offset == d->offset + d->bytes
682             || d->offset == p->offset + p->bytes);
683 
684         QTAILQ_REMOVE(&s->discards, p, next);
685         d->offset = MIN(d->offset, p->offset);
686         d->bytes += p->bytes;
687         g_free(p);
688     }
689 }
690 
691 /* XXX: cache several refcount block clusters ? */
692 /* @addend is the absolute value of the addend; if @decrease is set, @addend
693  * will be subtracted from the current refcount, otherwise it will be added */
694 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
695                                                    int64_t offset,
696                                                    int64_t length,
697                                                    uint64_t addend,
698                                                    bool decrease,
699                                                    enum qcow2_discard_type type)
700 {
701     BDRVQcow2State *s = bs->opaque;
702     int64_t start, last, cluster_offset;
703     void *refcount_block = NULL;
704     int64_t old_table_index = -1;
705     int ret;
706 
707 #ifdef DEBUG_ALLOC2
708     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
709             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
710             addend);
711 #endif
712     if (length < 0) {
713         return -EINVAL;
714     } else if (length == 0) {
715         return 0;
716     }
717 
718     if (decrease) {
719         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
720             s->l2_table_cache);
721     }
722 
723     start = start_of_cluster(s, offset);
724     last = start_of_cluster(s, offset + length - 1);
725     for(cluster_offset = start; cluster_offset <= last;
726         cluster_offset += s->cluster_size)
727     {
728         int block_index;
729         uint64_t refcount;
730         int64_t cluster_index = cluster_offset >> s->cluster_bits;
731         int64_t table_index = cluster_index >> s->refcount_block_bits;
732 
733         /* Load the refcount block and allocate it if needed */
734         if (table_index != old_table_index) {
735             if (refcount_block) {
736                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
737             }
738             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
739             if (ret < 0) {
740                 goto fail;
741             }
742         }
743         old_table_index = table_index;
744 
745         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
746                                      refcount_block);
747 
748         /* we can update the count and save it */
749         block_index = cluster_index & (s->refcount_block_size - 1);
750 
751         refcount = s->get_refcount(refcount_block, block_index);
752         if (decrease ? (refcount - addend > refcount)
753                      : (refcount + addend < refcount ||
754                         refcount + addend > s->refcount_max))
755         {
756             ret = -EINVAL;
757             goto fail;
758         }
759         if (decrease) {
760             refcount -= addend;
761         } else {
762             refcount += addend;
763         }
764         if (refcount == 0 && cluster_index < s->free_cluster_index) {
765             s->free_cluster_index = cluster_index;
766         }
767         s->set_refcount(refcount_block, block_index, refcount);
768 
769         if (refcount == 0 && s->discard_passthrough[type]) {
770             update_refcount_discard(bs, cluster_offset, s->cluster_size);
771         }
772     }
773 
774     ret = 0;
775 fail:
776     if (!s->cache_discards) {
777         qcow2_process_discards(bs, ret);
778     }
779 
780     /* Write last changed block to disk */
781     if (refcount_block) {
782         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
783     }
784 
785     /*
786      * Try do undo any updates if an error is returned (This may succeed in
787      * some cases like ENOSPC for allocating a new refcount block)
788      */
789     if (ret < 0) {
790         int dummy;
791         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
792                                 !decrease, QCOW2_DISCARD_NEVER);
793         (void)dummy;
794     }
795 
796     return ret;
797 }
798 
799 /*
800  * Increases or decreases the refcount of a given cluster.
801  *
802  * @addend is the absolute value of the addend; if @decrease is set, @addend
803  * will be subtracted from the current refcount, otherwise it will be added.
804  *
805  * On success 0 is returned; on failure -errno is returned.
806  */
807 int qcow2_update_cluster_refcount(BlockDriverState *bs,
808                                   int64_t cluster_index,
809                                   uint64_t addend, bool decrease,
810                                   enum qcow2_discard_type type)
811 {
812     BDRVQcow2State *s = bs->opaque;
813     int ret;
814 
815     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
816                           decrease, type);
817     if (ret < 0) {
818         return ret;
819     }
820 
821     return 0;
822 }
823 
824 
825 
826 /*********************************************************/
827 /* cluster allocation functions */
828 
829 
830 
831 /* return < 0 if error */
832 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
833 {
834     BDRVQcow2State *s = bs->opaque;
835     uint64_t i, nb_clusters, refcount;
836     int ret;
837 
838     /* We can't allocate clusters if they may still be queued for discard. */
839     if (s->cache_discards) {
840         qcow2_process_discards(bs, 0);
841     }
842 
843     nb_clusters = size_to_clusters(s, size);
844 retry:
845     for(i = 0; i < nb_clusters; i++) {
846         uint64_t next_cluster_index = s->free_cluster_index++;
847         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
848 
849         if (ret < 0) {
850             return ret;
851         } else if (refcount != 0) {
852             goto retry;
853         }
854     }
855 
856     /* Make sure that all offsets in the "allocated" range are representable
857      * in an int64_t */
858     if (s->free_cluster_index > 0 &&
859         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
860     {
861         return -EFBIG;
862     }
863 
864 #ifdef DEBUG_ALLOC2
865     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
866             size,
867             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
868 #endif
869     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
870 }
871 
872 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
873 {
874     int64_t offset;
875     int ret;
876 
877     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
878     do {
879         offset = alloc_clusters_noref(bs, size);
880         if (offset < 0) {
881             return offset;
882         }
883 
884         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
885     } while (ret == -EAGAIN);
886 
887     if (ret < 0) {
888         return ret;
889     }
890 
891     return offset;
892 }
893 
894 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
895                                 int64_t nb_clusters)
896 {
897     BDRVQcow2State *s = bs->opaque;
898     uint64_t cluster_index, refcount;
899     uint64_t i;
900     int ret;
901 
902     assert(nb_clusters >= 0);
903     if (nb_clusters == 0) {
904         return 0;
905     }
906 
907     do {
908         /* Check how many clusters there are free */
909         cluster_index = offset >> s->cluster_bits;
910         for(i = 0; i < nb_clusters; i++) {
911             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
912             if (ret < 0) {
913                 return ret;
914             } else if (refcount != 0) {
915                 break;
916             }
917         }
918 
919         /* And then allocate them */
920         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
921                               QCOW2_DISCARD_NEVER);
922     } while (ret == -EAGAIN);
923 
924     if (ret < 0) {
925         return ret;
926     }
927 
928     return i;
929 }
930 
931 /* only used to allocate compressed sectors. We try to allocate
932    contiguous sectors. size must be <= cluster_size */
933 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
934 {
935     BDRVQcow2State *s = bs->opaque;
936     int64_t offset;
937     size_t free_in_cluster;
938     int ret;
939 
940     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
941     assert(size > 0 && size <= s->cluster_size);
942     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
943 
944     offset = s->free_byte_offset;
945 
946     if (offset) {
947         uint64_t refcount;
948         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
949         if (ret < 0) {
950             return ret;
951         }
952 
953         if (refcount == s->refcount_max) {
954             offset = 0;
955         }
956     }
957 
958     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
959     do {
960         if (!offset || free_in_cluster < size) {
961             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
962             if (new_cluster < 0) {
963                 return new_cluster;
964             }
965 
966             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
967                 offset = new_cluster;
968                 free_in_cluster = s->cluster_size;
969             } else {
970                 free_in_cluster += s->cluster_size;
971             }
972         }
973 
974         assert(offset);
975         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
976         if (ret < 0) {
977             offset = 0;
978         }
979     } while (ret == -EAGAIN);
980     if (ret < 0) {
981         return ret;
982     }
983 
984     /* The cluster refcount was incremented; refcount blocks must be flushed
985      * before the caller's L2 table updates. */
986     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
987 
988     s->free_byte_offset = offset + size;
989     if (!offset_into_cluster(s, s->free_byte_offset)) {
990         s->free_byte_offset = 0;
991     }
992 
993     return offset;
994 }
995 
996 void qcow2_free_clusters(BlockDriverState *bs,
997                           int64_t offset, int64_t size,
998                           enum qcow2_discard_type type)
999 {
1000     int ret;
1001 
1002     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1003     ret = update_refcount(bs, offset, size, 1, true, type);
1004     if (ret < 0) {
1005         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1006         /* TODO Remember the clusters to free them later and avoid leaking */
1007     }
1008 }
1009 
1010 /*
1011  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1012  * normal cluster, compressed cluster, etc.)
1013  */
1014 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1015                              int nb_clusters, enum qcow2_discard_type type)
1016 {
1017     BDRVQcow2State *s = bs->opaque;
1018 
1019     switch (qcow2_get_cluster_type(l2_entry)) {
1020     case QCOW2_CLUSTER_COMPRESSED:
1021         {
1022             int nb_csectors;
1023             nb_csectors = ((l2_entry >> s->csize_shift) &
1024                            s->csize_mask) + 1;
1025             qcow2_free_clusters(bs,
1026                 (l2_entry & s->cluster_offset_mask) & ~511,
1027                 nb_csectors * 512, type);
1028         }
1029         break;
1030     case QCOW2_CLUSTER_NORMAL:
1031     case QCOW2_CLUSTER_ZERO_ALLOC:
1032         if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1033             qcow2_signal_corruption(bs, false, -1, -1,
1034                                     "Cannot free unaligned cluster %#llx",
1035                                     l2_entry & L2E_OFFSET_MASK);
1036         } else {
1037             qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1038                                 nb_clusters << s->cluster_bits, type);
1039         }
1040         break;
1041     case QCOW2_CLUSTER_ZERO_PLAIN:
1042     case QCOW2_CLUSTER_UNALLOCATED:
1043         break;
1044     default:
1045         abort();
1046     }
1047 }
1048 
1049 
1050 
1051 /*********************************************************/
1052 /* snapshots and image creation */
1053 
1054 
1055 
1056 /* update the refcounts of snapshots and the copied flag */
1057 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1058     int64_t l1_table_offset, int l1_size, int addend)
1059 {
1060     BDRVQcow2State *s = bs->opaque;
1061     uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1062     bool l1_allocated = false;
1063     int64_t old_entry, old_l2_offset;
1064     int i, j, l1_modified = 0, nb_csectors;
1065     int ret;
1066 
1067     assert(addend >= -1 && addend <= 1);
1068 
1069     l2_table = NULL;
1070     l1_table = NULL;
1071     l1_size2 = l1_size * sizeof(uint64_t);
1072 
1073     s->cache_discards = true;
1074 
1075     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1076      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1077      * when changing this! */
1078     if (l1_table_offset != s->l1_table_offset) {
1079         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1080         if (l1_size2 && l1_table == NULL) {
1081             ret = -ENOMEM;
1082             goto fail;
1083         }
1084         l1_allocated = true;
1085 
1086         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1087         if (ret < 0) {
1088             goto fail;
1089         }
1090 
1091         for (i = 0; i < l1_size; i++) {
1092             be64_to_cpus(&l1_table[i]);
1093         }
1094     } else {
1095         assert(l1_size == s->l1_size);
1096         l1_table = s->l1_table;
1097         l1_allocated = false;
1098     }
1099 
1100     for (i = 0; i < l1_size; i++) {
1101         l2_offset = l1_table[i];
1102         if (l2_offset) {
1103             old_l2_offset = l2_offset;
1104             l2_offset &= L1E_OFFSET_MASK;
1105 
1106             if (offset_into_cluster(s, l2_offset)) {
1107                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1108                                         PRIx64 " unaligned (L1 index: %#x)",
1109                                         l2_offset, i);
1110                 ret = -EIO;
1111                 goto fail;
1112             }
1113 
1114             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1115                 (void**) &l2_table);
1116             if (ret < 0) {
1117                 goto fail;
1118             }
1119 
1120             for (j = 0; j < s->l2_size; j++) {
1121                 uint64_t cluster_index;
1122                 uint64_t offset;
1123 
1124                 entry = be64_to_cpu(l2_table[j]);
1125                 old_entry = entry;
1126                 entry &= ~QCOW_OFLAG_COPIED;
1127                 offset = entry & L2E_OFFSET_MASK;
1128 
1129                 switch (qcow2_get_cluster_type(entry)) {
1130                 case QCOW2_CLUSTER_COMPRESSED:
1131                     nb_csectors = ((entry >> s->csize_shift) &
1132                                    s->csize_mask) + 1;
1133                     if (addend != 0) {
1134                         ret = update_refcount(bs,
1135                                 (entry & s->cluster_offset_mask) & ~511,
1136                                 nb_csectors * 512, abs(addend), addend < 0,
1137                                 QCOW2_DISCARD_SNAPSHOT);
1138                         if (ret < 0) {
1139                             goto fail;
1140                         }
1141                     }
1142                     /* compressed clusters are never modified */
1143                     refcount = 2;
1144                     break;
1145 
1146                 case QCOW2_CLUSTER_NORMAL:
1147                 case QCOW2_CLUSTER_ZERO_ALLOC:
1148                     if (offset_into_cluster(s, offset)) {
1149                         qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1150                                                 "allocation offset %#" PRIx64
1151                                                 " unaligned (L2 offset: %#"
1152                                                 PRIx64 ", L2 index: %#x)",
1153                                                 offset, l2_offset, j);
1154                         ret = -EIO;
1155                         goto fail;
1156                     }
1157 
1158                     cluster_index = offset >> s->cluster_bits;
1159                     assert(cluster_index);
1160                     if (addend != 0) {
1161                         ret = qcow2_update_cluster_refcount(bs,
1162                                     cluster_index, abs(addend), addend < 0,
1163                                     QCOW2_DISCARD_SNAPSHOT);
1164                         if (ret < 0) {
1165                             goto fail;
1166                         }
1167                     }
1168 
1169                     ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1170                     if (ret < 0) {
1171                         goto fail;
1172                     }
1173                     break;
1174 
1175                 case QCOW2_CLUSTER_ZERO_PLAIN:
1176                 case QCOW2_CLUSTER_UNALLOCATED:
1177                     refcount = 0;
1178                     break;
1179 
1180                 default:
1181                     abort();
1182                 }
1183 
1184                 if (refcount == 1) {
1185                     entry |= QCOW_OFLAG_COPIED;
1186                 }
1187                 if (entry != old_entry) {
1188                     if (addend > 0) {
1189                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1190                             s->refcount_block_cache);
1191                     }
1192                     l2_table[j] = cpu_to_be64(entry);
1193                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1194                                                  l2_table);
1195                 }
1196             }
1197 
1198             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1199 
1200             if (addend != 0) {
1201                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1202                                                         s->cluster_bits,
1203                                                     abs(addend), addend < 0,
1204                                                     QCOW2_DISCARD_SNAPSHOT);
1205                 if (ret < 0) {
1206                     goto fail;
1207                 }
1208             }
1209             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1210                                      &refcount);
1211             if (ret < 0) {
1212                 goto fail;
1213             } else if (refcount == 1) {
1214                 l2_offset |= QCOW_OFLAG_COPIED;
1215             }
1216             if (l2_offset != old_l2_offset) {
1217                 l1_table[i] = l2_offset;
1218                 l1_modified = 1;
1219             }
1220         }
1221     }
1222 
1223     ret = bdrv_flush(bs);
1224 fail:
1225     if (l2_table) {
1226         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1227     }
1228 
1229     s->cache_discards = false;
1230     qcow2_process_discards(bs, ret);
1231 
1232     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1233     if (ret == 0 && addend >= 0 && l1_modified) {
1234         for (i = 0; i < l1_size; i++) {
1235             cpu_to_be64s(&l1_table[i]);
1236         }
1237 
1238         ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1239                                l1_table, l1_size2);
1240 
1241         for (i = 0; i < l1_size; i++) {
1242             be64_to_cpus(&l1_table[i]);
1243         }
1244     }
1245     if (l1_allocated)
1246         g_free(l1_table);
1247     return ret;
1248 }
1249 
1250 
1251 
1252 
1253 /*********************************************************/
1254 /* refcount checking functions */
1255 
1256 
1257 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1258 {
1259     /* This assertion holds because there is no way we can address more than
1260      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1261      * offsets have to be representable in bytes); due to every cluster
1262      * corresponding to one refcount entry, we are well below that limit */
1263     assert(entries < (UINT64_C(1) << (64 - 9)));
1264 
1265     /* Thanks to the assertion this will not overflow, because
1266      * s->refcount_order < 7.
1267      * (note: x << s->refcount_order == x * s->refcount_bits) */
1268     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1269 }
1270 
1271 /**
1272  * Reallocates *array so that it can hold new_size entries. *size must contain
1273  * the current number of entries in *array. If the reallocation fails, *array
1274  * and *size will not be modified and -errno will be returned. If the
1275  * reallocation is successful, *array will be set to the new buffer, *size
1276  * will be set to new_size and 0 will be returned. The size of the reallocated
1277  * refcount array buffer will be aligned to a cluster boundary, and the newly
1278  * allocated area will be zeroed.
1279  */
1280 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1281                                   int64_t *size, int64_t new_size)
1282 {
1283     int64_t old_byte_size, new_byte_size;
1284     void *new_ptr;
1285 
1286     /* Round to clusters so the array can be directly written to disk */
1287     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1288                     * s->cluster_size;
1289     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1290                     * s->cluster_size;
1291 
1292     if (new_byte_size == old_byte_size) {
1293         *size = new_size;
1294         return 0;
1295     }
1296 
1297     assert(new_byte_size > 0);
1298 
1299     if (new_byte_size > SIZE_MAX) {
1300         return -ENOMEM;
1301     }
1302 
1303     new_ptr = g_try_realloc(*array, new_byte_size);
1304     if (!new_ptr) {
1305         return -ENOMEM;
1306     }
1307 
1308     if (new_byte_size > old_byte_size) {
1309         memset((char *)new_ptr + old_byte_size, 0,
1310                new_byte_size - old_byte_size);
1311     }
1312 
1313     *array = new_ptr;
1314     *size  = new_size;
1315 
1316     return 0;
1317 }
1318 
1319 /*
1320  * Increases the refcount for a range of clusters in a given refcount table.
1321  * This is used to construct a temporary refcount table out of L1 and L2 tables
1322  * which can be compared to the refcount table saved in the image.
1323  *
1324  * Modifies the number of errors in res.
1325  */
1326 static int inc_refcounts(BlockDriverState *bs,
1327                          BdrvCheckResult *res,
1328                          void **refcount_table,
1329                          int64_t *refcount_table_size,
1330                          int64_t offset, int64_t size)
1331 {
1332     BDRVQcow2State *s = bs->opaque;
1333     uint64_t start, last, cluster_offset, k, refcount;
1334     int ret;
1335 
1336     if (size <= 0) {
1337         return 0;
1338     }
1339 
1340     start = start_of_cluster(s, offset);
1341     last = start_of_cluster(s, offset + size - 1);
1342     for(cluster_offset = start; cluster_offset <= last;
1343         cluster_offset += s->cluster_size) {
1344         k = cluster_offset >> s->cluster_bits;
1345         if (k >= *refcount_table_size) {
1346             ret = realloc_refcount_array(s, refcount_table,
1347                                          refcount_table_size, k + 1);
1348             if (ret < 0) {
1349                 res->check_errors++;
1350                 return ret;
1351             }
1352         }
1353 
1354         refcount = s->get_refcount(*refcount_table, k);
1355         if (refcount == s->refcount_max) {
1356             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1357                     "\n", cluster_offset);
1358             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1359                     "width or qemu-img convert to create a clean copy if the "
1360                     "image cannot be opened for writing\n");
1361             res->corruptions++;
1362             continue;
1363         }
1364         s->set_refcount(*refcount_table, k, refcount + 1);
1365     }
1366 
1367     return 0;
1368 }
1369 
1370 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1371 enum {
1372     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1373 };
1374 
1375 /*
1376  * Increases the refcount in the given refcount table for the all clusters
1377  * referenced in the L2 table. While doing so, performs some checks on L2
1378  * entries.
1379  *
1380  * Returns the number of errors found by the checks or -errno if an internal
1381  * error occurred.
1382  */
1383 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1384                               void **refcount_table,
1385                               int64_t *refcount_table_size, int64_t l2_offset,
1386                               int flags)
1387 {
1388     BDRVQcow2State *s = bs->opaque;
1389     uint64_t *l2_table, l2_entry;
1390     uint64_t next_contiguous_offset = 0;
1391     int i, l2_size, nb_csectors, ret;
1392 
1393     /* Read L2 table from disk */
1394     l2_size = s->l2_size * sizeof(uint64_t);
1395     l2_table = g_malloc(l2_size);
1396 
1397     ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1398     if (ret < 0) {
1399         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1400         res->check_errors++;
1401         goto fail;
1402     }
1403 
1404     /* Do the actual checks */
1405     for(i = 0; i < s->l2_size; i++) {
1406         l2_entry = be64_to_cpu(l2_table[i]);
1407 
1408         switch (qcow2_get_cluster_type(l2_entry)) {
1409         case QCOW2_CLUSTER_COMPRESSED:
1410             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1411             if (l2_entry & QCOW_OFLAG_COPIED) {
1412                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1413                     "copied flag must never be set for compressed "
1414                     "clusters\n", l2_entry >> s->cluster_bits);
1415                 l2_entry &= ~QCOW_OFLAG_COPIED;
1416                 res->corruptions++;
1417             }
1418 
1419             /* Mark cluster as used */
1420             nb_csectors = ((l2_entry >> s->csize_shift) &
1421                            s->csize_mask) + 1;
1422             l2_entry &= s->cluster_offset_mask;
1423             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1424                                 l2_entry & ~511, nb_csectors * 512);
1425             if (ret < 0) {
1426                 goto fail;
1427             }
1428 
1429             if (flags & CHECK_FRAG_INFO) {
1430                 res->bfi.allocated_clusters++;
1431                 res->bfi.compressed_clusters++;
1432 
1433                 /* Compressed clusters are fragmented by nature.  Since they
1434                  * take up sub-sector space but we only have sector granularity
1435                  * I/O we need to re-read the same sectors even for adjacent
1436                  * compressed clusters.
1437                  */
1438                 res->bfi.fragmented_clusters++;
1439             }
1440             break;
1441 
1442         case QCOW2_CLUSTER_ZERO_ALLOC:
1443         case QCOW2_CLUSTER_NORMAL:
1444         {
1445             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1446 
1447             if (flags & CHECK_FRAG_INFO) {
1448                 res->bfi.allocated_clusters++;
1449                 if (next_contiguous_offset &&
1450                     offset != next_contiguous_offset) {
1451                     res->bfi.fragmented_clusters++;
1452                 }
1453                 next_contiguous_offset = offset + s->cluster_size;
1454             }
1455 
1456             /* Mark cluster as used */
1457             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1458                                 offset, s->cluster_size);
1459             if (ret < 0) {
1460                 goto fail;
1461             }
1462 
1463             /* Correct offsets are cluster aligned */
1464             if (offset_into_cluster(s, offset)) {
1465                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1466                     "properly aligned; L2 entry corrupted.\n", offset);
1467                 res->corruptions++;
1468             }
1469             break;
1470         }
1471 
1472         case QCOW2_CLUSTER_ZERO_PLAIN:
1473         case QCOW2_CLUSTER_UNALLOCATED:
1474             break;
1475 
1476         default:
1477             abort();
1478         }
1479     }
1480 
1481     g_free(l2_table);
1482     return 0;
1483 
1484 fail:
1485     g_free(l2_table);
1486     return ret;
1487 }
1488 
1489 /*
1490  * Increases the refcount for the L1 table, its L2 tables and all referenced
1491  * clusters in the given refcount table. While doing so, performs some checks
1492  * on L1 and L2 entries.
1493  *
1494  * Returns the number of errors found by the checks or -errno if an internal
1495  * error occurred.
1496  */
1497 static int check_refcounts_l1(BlockDriverState *bs,
1498                               BdrvCheckResult *res,
1499                               void **refcount_table,
1500                               int64_t *refcount_table_size,
1501                               int64_t l1_table_offset, int l1_size,
1502                               int flags)
1503 {
1504     BDRVQcow2State *s = bs->opaque;
1505     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1506     int i, ret;
1507 
1508     l1_size2 = l1_size * sizeof(uint64_t);
1509 
1510     /* Mark L1 table as used */
1511     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1512                         l1_table_offset, l1_size2);
1513     if (ret < 0) {
1514         goto fail;
1515     }
1516 
1517     /* Read L1 table entries from disk */
1518     if (l1_size2 > 0) {
1519         l1_table = g_try_malloc(l1_size2);
1520         if (l1_table == NULL) {
1521             ret = -ENOMEM;
1522             res->check_errors++;
1523             goto fail;
1524         }
1525         ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1526         if (ret < 0) {
1527             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1528             res->check_errors++;
1529             goto fail;
1530         }
1531         for(i = 0;i < l1_size; i++)
1532             be64_to_cpus(&l1_table[i]);
1533     }
1534 
1535     /* Do the actual checks */
1536     for(i = 0; i < l1_size; i++) {
1537         l2_offset = l1_table[i];
1538         if (l2_offset) {
1539             /* Mark L2 table as used */
1540             l2_offset &= L1E_OFFSET_MASK;
1541             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1542                                 l2_offset, s->cluster_size);
1543             if (ret < 0) {
1544                 goto fail;
1545             }
1546 
1547             /* L2 tables are cluster aligned */
1548             if (offset_into_cluster(s, l2_offset)) {
1549                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1550                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1551                 res->corruptions++;
1552             }
1553 
1554             /* Process and check L2 entries */
1555             ret = check_refcounts_l2(bs, res, refcount_table,
1556                                      refcount_table_size, l2_offset, flags);
1557             if (ret < 0) {
1558                 goto fail;
1559             }
1560         }
1561     }
1562     g_free(l1_table);
1563     return 0;
1564 
1565 fail:
1566     g_free(l1_table);
1567     return ret;
1568 }
1569 
1570 /*
1571  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1572  *
1573  * This function does not print an error message nor does it increment
1574  * check_errors if qcow2_get_refcount fails (this is because such an error will
1575  * have been already detected and sufficiently signaled by the calling function
1576  * (qcow2_check_refcounts) by the time this function is called).
1577  */
1578 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1579                               BdrvCheckMode fix)
1580 {
1581     BDRVQcow2State *s = bs->opaque;
1582     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1583     int ret;
1584     uint64_t refcount;
1585     int i, j;
1586 
1587     for (i = 0; i < s->l1_size; i++) {
1588         uint64_t l1_entry = s->l1_table[i];
1589         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1590         bool l2_dirty = false;
1591 
1592         if (!l2_offset) {
1593             continue;
1594         }
1595 
1596         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1597                                  &refcount);
1598         if (ret < 0) {
1599             /* don't print message nor increment check_errors */
1600             continue;
1601         }
1602         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1603             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1604                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1605                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1606                                             "ERROR",
1607                     i, l1_entry, refcount);
1608             if (fix & BDRV_FIX_ERRORS) {
1609                 s->l1_table[i] = refcount == 1
1610                                ? l1_entry |  QCOW_OFLAG_COPIED
1611                                : l1_entry & ~QCOW_OFLAG_COPIED;
1612                 ret = qcow2_write_l1_entry(bs, i);
1613                 if (ret < 0) {
1614                     res->check_errors++;
1615                     goto fail;
1616                 }
1617                 res->corruptions_fixed++;
1618             } else {
1619                 res->corruptions++;
1620             }
1621         }
1622 
1623         ret = bdrv_pread(bs->file, l2_offset, l2_table,
1624                          s->l2_size * sizeof(uint64_t));
1625         if (ret < 0) {
1626             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1627                     strerror(-ret));
1628             res->check_errors++;
1629             goto fail;
1630         }
1631 
1632         for (j = 0; j < s->l2_size; j++) {
1633             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1634             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1635             QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1636 
1637             if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1638                 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1639                 ret = qcow2_get_refcount(bs,
1640                                          data_offset >> s->cluster_bits,
1641                                          &refcount);
1642                 if (ret < 0) {
1643                     /* don't print message nor increment check_errors */
1644                     continue;
1645                 }
1646                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1647                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1648                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1649                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1650                                                     "ERROR",
1651                             l2_entry, refcount);
1652                     if (fix & BDRV_FIX_ERRORS) {
1653                         l2_table[j] = cpu_to_be64(refcount == 1
1654                                     ? l2_entry |  QCOW_OFLAG_COPIED
1655                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1656                         l2_dirty = true;
1657                         res->corruptions_fixed++;
1658                     } else {
1659                         res->corruptions++;
1660                     }
1661                 }
1662             }
1663         }
1664 
1665         if (l2_dirty) {
1666             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1667                                                 l2_offset, s->cluster_size);
1668             if (ret < 0) {
1669                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1670                         "overlap check failed: %s\n", strerror(-ret));
1671                 res->check_errors++;
1672                 goto fail;
1673             }
1674 
1675             ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1676                               s->cluster_size);
1677             if (ret < 0) {
1678                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1679                         strerror(-ret));
1680                 res->check_errors++;
1681                 goto fail;
1682             }
1683         }
1684     }
1685 
1686     ret = 0;
1687 
1688 fail:
1689     qemu_vfree(l2_table);
1690     return ret;
1691 }
1692 
1693 /*
1694  * Checks consistency of refblocks and accounts for each refblock in
1695  * *refcount_table.
1696  */
1697 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1698                            BdrvCheckMode fix, bool *rebuild,
1699                            void **refcount_table, int64_t *nb_clusters)
1700 {
1701     BDRVQcow2State *s = bs->opaque;
1702     int64_t i, size;
1703     int ret;
1704 
1705     for(i = 0; i < s->refcount_table_size; i++) {
1706         uint64_t offset, cluster;
1707         offset = s->refcount_table[i];
1708         cluster = offset >> s->cluster_bits;
1709 
1710         /* Refcount blocks are cluster aligned */
1711         if (offset_into_cluster(s, offset)) {
1712             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1713                 "cluster aligned; refcount table entry corrupted\n", i);
1714             res->corruptions++;
1715             *rebuild = true;
1716             continue;
1717         }
1718 
1719         if (cluster >= *nb_clusters) {
1720             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1721                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1722 
1723             if (fix & BDRV_FIX_ERRORS) {
1724                 int64_t new_nb_clusters;
1725                 Error *local_err = NULL;
1726 
1727                 if (offset > INT64_MAX - s->cluster_size) {
1728                     ret = -EINVAL;
1729                     goto resize_fail;
1730                 }
1731 
1732                 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1733                                     &local_err);
1734                 if (ret < 0) {
1735                     error_report_err(local_err);
1736                     goto resize_fail;
1737                 }
1738                 size = bdrv_getlength(bs->file->bs);
1739                 if (size < 0) {
1740                     ret = size;
1741                     goto resize_fail;
1742                 }
1743 
1744                 new_nb_clusters = size_to_clusters(s, size);
1745                 assert(new_nb_clusters >= *nb_clusters);
1746 
1747                 ret = realloc_refcount_array(s, refcount_table,
1748                                              nb_clusters, new_nb_clusters);
1749                 if (ret < 0) {
1750                     res->check_errors++;
1751                     return ret;
1752                 }
1753 
1754                 if (cluster >= *nb_clusters) {
1755                     ret = -EINVAL;
1756                     goto resize_fail;
1757                 }
1758 
1759                 res->corruptions_fixed++;
1760                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1761                                     offset, s->cluster_size);
1762                 if (ret < 0) {
1763                     return ret;
1764                 }
1765                 /* No need to check whether the refcount is now greater than 1:
1766                  * This area was just allocated and zeroed, so it can only be
1767                  * exactly 1 after inc_refcounts() */
1768                 continue;
1769 
1770 resize_fail:
1771                 res->corruptions++;
1772                 *rebuild = true;
1773                 fprintf(stderr, "ERROR could not resize image: %s\n",
1774                         strerror(-ret));
1775             } else {
1776                 res->corruptions++;
1777             }
1778             continue;
1779         }
1780 
1781         if (offset != 0) {
1782             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1783                                 offset, s->cluster_size);
1784             if (ret < 0) {
1785                 return ret;
1786             }
1787             if (s->get_refcount(*refcount_table, cluster) != 1) {
1788                 fprintf(stderr, "ERROR refcount block %" PRId64
1789                         " refcount=%" PRIu64 "\n", i,
1790                         s->get_refcount(*refcount_table, cluster));
1791                 res->corruptions++;
1792                 *rebuild = true;
1793             }
1794         }
1795     }
1796 
1797     return 0;
1798 }
1799 
1800 /*
1801  * Calculates an in-memory refcount table.
1802  */
1803 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1804                                BdrvCheckMode fix, bool *rebuild,
1805                                void **refcount_table, int64_t *nb_clusters)
1806 {
1807     BDRVQcow2State *s = bs->opaque;
1808     int64_t i;
1809     QCowSnapshot *sn;
1810     int ret;
1811 
1812     if (!*refcount_table) {
1813         int64_t old_size = 0;
1814         ret = realloc_refcount_array(s, refcount_table,
1815                                      &old_size, *nb_clusters);
1816         if (ret < 0) {
1817             res->check_errors++;
1818             return ret;
1819         }
1820     }
1821 
1822     /* header */
1823     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1824                         0, s->cluster_size);
1825     if (ret < 0) {
1826         return ret;
1827     }
1828 
1829     /* current L1 table */
1830     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1831                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1832     if (ret < 0) {
1833         return ret;
1834     }
1835 
1836     /* snapshots */
1837     for (i = 0; i < s->nb_snapshots; i++) {
1838         sn = s->snapshots + i;
1839         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1840                                  sn->l1_table_offset, sn->l1_size, 0);
1841         if (ret < 0) {
1842             return ret;
1843         }
1844     }
1845     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1846                         s->snapshots_offset, s->snapshots_size);
1847     if (ret < 0) {
1848         return ret;
1849     }
1850 
1851     /* refcount data */
1852     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1853                         s->refcount_table_offset,
1854                         s->refcount_table_size * sizeof(uint64_t));
1855     if (ret < 0) {
1856         return ret;
1857     }
1858 
1859     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1860 }
1861 
1862 /*
1863  * Compares the actual reference count for each cluster in the image against the
1864  * refcount as reported by the refcount structures on-disk.
1865  */
1866 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1867                               BdrvCheckMode fix, bool *rebuild,
1868                               int64_t *highest_cluster,
1869                               void *refcount_table, int64_t nb_clusters)
1870 {
1871     BDRVQcow2State *s = bs->opaque;
1872     int64_t i;
1873     uint64_t refcount1, refcount2;
1874     int ret;
1875 
1876     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1877         ret = qcow2_get_refcount(bs, i, &refcount1);
1878         if (ret < 0) {
1879             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1880                     i, strerror(-ret));
1881             res->check_errors++;
1882             continue;
1883         }
1884 
1885         refcount2 = s->get_refcount(refcount_table, i);
1886 
1887         if (refcount1 > 0 || refcount2 > 0) {
1888             *highest_cluster = i;
1889         }
1890 
1891         if (refcount1 != refcount2) {
1892             /* Check if we're allowed to fix the mismatch */
1893             int *num_fixed = NULL;
1894             if (refcount1 == 0) {
1895                 *rebuild = true;
1896             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1897                 num_fixed = &res->leaks_fixed;
1898             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1899                 num_fixed = &res->corruptions_fixed;
1900             }
1901 
1902             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1903                     " reference=%" PRIu64 "\n",
1904                    num_fixed != NULL     ? "Repairing" :
1905                    refcount1 < refcount2 ? "ERROR" :
1906                                            "Leaked",
1907                    i, refcount1, refcount2);
1908 
1909             if (num_fixed) {
1910                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1911                                       refcount_diff(refcount1, refcount2),
1912                                       refcount1 > refcount2,
1913                                       QCOW2_DISCARD_ALWAYS);
1914                 if (ret >= 0) {
1915                     (*num_fixed)++;
1916                     continue;
1917                 }
1918             }
1919 
1920             /* And if we couldn't, print an error */
1921             if (refcount1 < refcount2) {
1922                 res->corruptions++;
1923             } else {
1924                 res->leaks++;
1925             }
1926         }
1927     }
1928 }
1929 
1930 /*
1931  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1932  * the on-disk refcount structures.
1933  *
1934  * On input, *first_free_cluster tells where to start looking, and need not
1935  * actually be a free cluster; the returned offset will not be before that
1936  * cluster.  On output, *first_free_cluster points to the first gap found, even
1937  * if that gap was too small to be used as the returned offset.
1938  *
1939  * Note that *first_free_cluster is a cluster index whereas the return value is
1940  * an offset.
1941  */
1942 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1943                                    int cluster_count,
1944                                    void **refcount_table,
1945                                    int64_t *imrt_nb_clusters,
1946                                    int64_t *first_free_cluster)
1947 {
1948     BDRVQcow2State *s = bs->opaque;
1949     int64_t cluster = *first_free_cluster, i;
1950     bool first_gap = true;
1951     int contiguous_free_clusters;
1952     int ret;
1953 
1954     /* Starting at *first_free_cluster, find a range of at least cluster_count
1955      * continuously free clusters */
1956     for (contiguous_free_clusters = 0;
1957          cluster < *imrt_nb_clusters &&
1958          contiguous_free_clusters < cluster_count;
1959          cluster++)
1960     {
1961         if (!s->get_refcount(*refcount_table, cluster)) {
1962             contiguous_free_clusters++;
1963             if (first_gap) {
1964                 /* If this is the first free cluster found, update
1965                  * *first_free_cluster accordingly */
1966                 *first_free_cluster = cluster;
1967                 first_gap = false;
1968             }
1969         } else if (contiguous_free_clusters) {
1970             contiguous_free_clusters = 0;
1971         }
1972     }
1973 
1974     /* If contiguous_free_clusters is greater than zero, it contains the number
1975      * of continuously free clusters until the current cluster; the first free
1976      * cluster in the current "gap" is therefore
1977      * cluster - contiguous_free_clusters */
1978 
1979     /* If no such range could be found, grow the in-memory refcount table
1980      * accordingly to append free clusters at the end of the image */
1981     if (contiguous_free_clusters < cluster_count) {
1982         /* contiguous_free_clusters clusters are already empty at the image end;
1983          * we need cluster_count clusters; therefore, we have to allocate
1984          * cluster_count - contiguous_free_clusters new clusters at the end of
1985          * the image (which is the current value of cluster; note that cluster
1986          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1987          * the image end) */
1988         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1989                                      cluster + cluster_count
1990                                      - contiguous_free_clusters);
1991         if (ret < 0) {
1992             return ret;
1993         }
1994     }
1995 
1996     /* Go back to the first free cluster */
1997     cluster -= contiguous_free_clusters;
1998     for (i = 0; i < cluster_count; i++) {
1999         s->set_refcount(*refcount_table, cluster + i, 1);
2000     }
2001 
2002     return cluster << s->cluster_bits;
2003 }
2004 
2005 /*
2006  * Creates a new refcount structure based solely on the in-memory information
2007  * given through *refcount_table. All necessary allocations will be reflected
2008  * in that array.
2009  *
2010  * On success, the old refcount structure is leaked (it will be covered by the
2011  * new refcount structure).
2012  */
2013 static int rebuild_refcount_structure(BlockDriverState *bs,
2014                                       BdrvCheckResult *res,
2015                                       void **refcount_table,
2016                                       int64_t *nb_clusters)
2017 {
2018     BDRVQcow2State *s = bs->opaque;
2019     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2020     int64_t refblock_offset, refblock_start, refblock_index;
2021     uint32_t reftable_size = 0;
2022     uint64_t *on_disk_reftable = NULL;
2023     void *on_disk_refblock;
2024     int ret = 0;
2025     struct {
2026         uint64_t reftable_offset;
2027         uint32_t reftable_clusters;
2028     } QEMU_PACKED reftable_offset_and_clusters;
2029 
2030     qcow2_cache_empty(bs, s->refcount_block_cache);
2031 
2032 write_refblocks:
2033     for (; cluster < *nb_clusters; cluster++) {
2034         if (!s->get_refcount(*refcount_table, cluster)) {
2035             continue;
2036         }
2037 
2038         refblock_index = cluster >> s->refcount_block_bits;
2039         refblock_start = refblock_index << s->refcount_block_bits;
2040 
2041         /* Don't allocate a cluster in a refblock already written to disk */
2042         if (first_free_cluster < refblock_start) {
2043             first_free_cluster = refblock_start;
2044         }
2045         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2046                                               nb_clusters, &first_free_cluster);
2047         if (refblock_offset < 0) {
2048             fprintf(stderr, "ERROR allocating refblock: %s\n",
2049                     strerror(-refblock_offset));
2050             res->check_errors++;
2051             ret = refblock_offset;
2052             goto fail;
2053         }
2054 
2055         if (reftable_size <= refblock_index) {
2056             uint32_t old_reftable_size = reftable_size;
2057             uint64_t *new_on_disk_reftable;
2058 
2059             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2060                                      s->cluster_size) / sizeof(uint64_t);
2061             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2062                                                  reftable_size *
2063                                                  sizeof(uint64_t));
2064             if (!new_on_disk_reftable) {
2065                 res->check_errors++;
2066                 ret = -ENOMEM;
2067                 goto fail;
2068             }
2069             on_disk_reftable = new_on_disk_reftable;
2070 
2071             memset(on_disk_reftable + old_reftable_size, 0,
2072                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2073 
2074             /* The offset we have for the reftable is now no longer valid;
2075              * this will leak that range, but we can easily fix that by running
2076              * a leak-fixing check after this rebuild operation */
2077             reftable_offset = -1;
2078         }
2079         on_disk_reftable[refblock_index] = refblock_offset;
2080 
2081         /* If this is apparently the last refblock (for now), try to squeeze the
2082          * reftable in */
2083         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2084             reftable_offset < 0)
2085         {
2086             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2087                                                           sizeof(uint64_t));
2088             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2089                                                   refcount_table, nb_clusters,
2090                                                   &first_free_cluster);
2091             if (reftable_offset < 0) {
2092                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2093                         strerror(-reftable_offset));
2094                 res->check_errors++;
2095                 ret = reftable_offset;
2096                 goto fail;
2097             }
2098         }
2099 
2100         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2101                                             s->cluster_size);
2102         if (ret < 0) {
2103             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2104             goto fail;
2105         }
2106 
2107         /* The size of *refcount_table is always cluster-aligned, therefore the
2108          * write operation will not overflow */
2109         on_disk_refblock = (void *)((char *) *refcount_table +
2110                                     refblock_index * s->cluster_size);
2111 
2112         ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2113                          on_disk_refblock, s->cluster_sectors);
2114         if (ret < 0) {
2115             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2116             goto fail;
2117         }
2118 
2119         /* Go to the end of this refblock */
2120         cluster = refblock_start + s->refcount_block_size - 1;
2121     }
2122 
2123     if (reftable_offset < 0) {
2124         uint64_t post_refblock_start, reftable_clusters;
2125 
2126         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2127         reftable_clusters = size_to_clusters(s,
2128                                              reftable_size * sizeof(uint64_t));
2129         /* Not pretty but simple */
2130         if (first_free_cluster < post_refblock_start) {
2131             first_free_cluster = post_refblock_start;
2132         }
2133         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2134                                               refcount_table, nb_clusters,
2135                                               &first_free_cluster);
2136         if (reftable_offset < 0) {
2137             fprintf(stderr, "ERROR allocating reftable: %s\n",
2138                     strerror(-reftable_offset));
2139             res->check_errors++;
2140             ret = reftable_offset;
2141             goto fail;
2142         }
2143 
2144         goto write_refblocks;
2145     }
2146 
2147     assert(on_disk_reftable);
2148 
2149     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2150         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2151     }
2152 
2153     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2154                                         reftable_size * sizeof(uint64_t));
2155     if (ret < 0) {
2156         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2157         goto fail;
2158     }
2159 
2160     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2161     ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2162                       reftable_size * sizeof(uint64_t));
2163     if (ret < 0) {
2164         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2165         goto fail;
2166     }
2167 
2168     /* Enter new reftable into the image header */
2169     reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2170     reftable_offset_and_clusters.reftable_clusters =
2171         cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2172     ret = bdrv_pwrite_sync(bs->file,
2173                            offsetof(QCowHeader, refcount_table_offset),
2174                            &reftable_offset_and_clusters,
2175                            sizeof(reftable_offset_and_clusters));
2176     if (ret < 0) {
2177         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2178         goto fail;
2179     }
2180 
2181     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2182         be64_to_cpus(&on_disk_reftable[refblock_index]);
2183     }
2184     s->refcount_table = on_disk_reftable;
2185     s->refcount_table_offset = reftable_offset;
2186     s->refcount_table_size = reftable_size;
2187     update_max_refcount_table_index(s);
2188 
2189     return 0;
2190 
2191 fail:
2192     g_free(on_disk_reftable);
2193     return ret;
2194 }
2195 
2196 /*
2197  * Checks an image for refcount consistency.
2198  *
2199  * Returns 0 if no errors are found, the number of errors in case the image is
2200  * detected as corrupted, and -errno when an internal error occurred.
2201  */
2202 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2203                           BdrvCheckMode fix)
2204 {
2205     BDRVQcow2State *s = bs->opaque;
2206     BdrvCheckResult pre_compare_res;
2207     int64_t size, highest_cluster, nb_clusters;
2208     void *refcount_table = NULL;
2209     bool rebuild = false;
2210     int ret;
2211 
2212     size = bdrv_getlength(bs->file->bs);
2213     if (size < 0) {
2214         res->check_errors++;
2215         return size;
2216     }
2217 
2218     nb_clusters = size_to_clusters(s, size);
2219     if (nb_clusters > INT_MAX) {
2220         res->check_errors++;
2221         return -EFBIG;
2222     }
2223 
2224     res->bfi.total_clusters =
2225         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2226 
2227     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2228                               &nb_clusters);
2229     if (ret < 0) {
2230         goto fail;
2231     }
2232 
2233     /* In case we don't need to rebuild the refcount structure (but want to fix
2234      * something), this function is immediately called again, in which case the
2235      * result should be ignored */
2236     pre_compare_res = *res;
2237     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2238                       nb_clusters);
2239 
2240     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2241         BdrvCheckResult old_res = *res;
2242         int fresh_leaks = 0;
2243 
2244         fprintf(stderr, "Rebuilding refcount structure\n");
2245         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2246                                          &nb_clusters);
2247         if (ret < 0) {
2248             goto fail;
2249         }
2250 
2251         res->corruptions = 0;
2252         res->leaks = 0;
2253 
2254         /* Because the old reftable has been exchanged for a new one the
2255          * references have to be recalculated */
2256         rebuild = false;
2257         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2258         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2259                                   &nb_clusters);
2260         if (ret < 0) {
2261             goto fail;
2262         }
2263 
2264         if (fix & BDRV_FIX_LEAKS) {
2265             /* The old refcount structures are now leaked, fix it; the result
2266              * can be ignored, aside from leaks which were introduced by
2267              * rebuild_refcount_structure() that could not be fixed */
2268             BdrvCheckResult saved_res = *res;
2269             *res = (BdrvCheckResult){ 0 };
2270 
2271             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2272                               &highest_cluster, refcount_table, nb_clusters);
2273             if (rebuild) {
2274                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2275                         "broken\n");
2276             }
2277 
2278             /* Any leaks accounted for here were introduced by
2279              * rebuild_refcount_structure() because that function has created a
2280              * new refcount structure from scratch */
2281             fresh_leaks = res->leaks;
2282             *res = saved_res;
2283         }
2284 
2285         if (res->corruptions < old_res.corruptions) {
2286             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2287         }
2288         if (res->leaks < old_res.leaks) {
2289             res->leaks_fixed += old_res.leaks - res->leaks;
2290         }
2291         res->leaks += fresh_leaks;
2292     } else if (fix) {
2293         if (rebuild) {
2294             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2295             res->check_errors++;
2296             ret = -EIO;
2297             goto fail;
2298         }
2299 
2300         if (res->leaks || res->corruptions) {
2301             *res = pre_compare_res;
2302             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2303                               refcount_table, nb_clusters);
2304         }
2305     }
2306 
2307     /* check OFLAG_COPIED */
2308     ret = check_oflag_copied(bs, res, fix);
2309     if (ret < 0) {
2310         goto fail;
2311     }
2312 
2313     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2314     ret = 0;
2315 
2316 fail:
2317     g_free(refcount_table);
2318 
2319     return ret;
2320 }
2321 
2322 #define overlaps_with(ofs, sz) \
2323     ranges_overlap(offset, size, ofs, sz)
2324 
2325 /*
2326  * Checks if the given offset into the image file is actually free to use by
2327  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2328  * i.e. a sanity check without relying on the refcount tables.
2329  *
2330  * The ign parameter specifies what checks not to perform (being a bitmask of
2331  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2332  *
2333  * Returns:
2334  * - 0 if writing to this offset will not affect the mentioned metadata
2335  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2336  * - a negative value (-errno) indicating an error while performing a check,
2337  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2338  */
2339 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2340                                  int64_t size)
2341 {
2342     BDRVQcow2State *s = bs->opaque;
2343     int chk = s->overlap_check & ~ign;
2344     int i, j;
2345 
2346     if (!size) {
2347         return 0;
2348     }
2349 
2350     if (chk & QCOW2_OL_MAIN_HEADER) {
2351         if (offset < s->cluster_size) {
2352             return QCOW2_OL_MAIN_HEADER;
2353         }
2354     }
2355 
2356     /* align range to test to cluster boundaries */
2357     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2358     offset = start_of_cluster(s, offset);
2359 
2360     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2361         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2362             return QCOW2_OL_ACTIVE_L1;
2363         }
2364     }
2365 
2366     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2367         if (overlaps_with(s->refcount_table_offset,
2368             s->refcount_table_size * sizeof(uint64_t))) {
2369             return QCOW2_OL_REFCOUNT_TABLE;
2370         }
2371     }
2372 
2373     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2374         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2375             return QCOW2_OL_SNAPSHOT_TABLE;
2376         }
2377     }
2378 
2379     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2380         for (i = 0; i < s->nb_snapshots; i++) {
2381             if (s->snapshots[i].l1_size &&
2382                 overlaps_with(s->snapshots[i].l1_table_offset,
2383                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2384                 return QCOW2_OL_INACTIVE_L1;
2385             }
2386         }
2387     }
2388 
2389     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2390         for (i = 0; i < s->l1_size; i++) {
2391             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2392                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2393                 s->cluster_size)) {
2394                 return QCOW2_OL_ACTIVE_L2;
2395             }
2396         }
2397     }
2398 
2399     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2400         unsigned last_entry = s->max_refcount_table_index;
2401         assert(last_entry < s->refcount_table_size);
2402         assert(last_entry + 1 == s->refcount_table_size ||
2403                (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2404         for (i = 0; i <= last_entry; i++) {
2405             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2406                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2407                 s->cluster_size)) {
2408                 return QCOW2_OL_REFCOUNT_BLOCK;
2409             }
2410         }
2411     }
2412 
2413     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2414         for (i = 0; i < s->nb_snapshots; i++) {
2415             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2416             uint32_t l1_sz  = s->snapshots[i].l1_size;
2417             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2418             uint64_t *l1 = g_try_malloc(l1_sz2);
2419             int ret;
2420 
2421             if (l1_sz2 && l1 == NULL) {
2422                 return -ENOMEM;
2423             }
2424 
2425             ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2426             if (ret < 0) {
2427                 g_free(l1);
2428                 return ret;
2429             }
2430 
2431             for (j = 0; j < l1_sz; j++) {
2432                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2433                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2434                     g_free(l1);
2435                     return QCOW2_OL_INACTIVE_L2;
2436                 }
2437             }
2438 
2439             g_free(l1);
2440         }
2441     }
2442 
2443     return 0;
2444 }
2445 
2446 static const char *metadata_ol_names[] = {
2447     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2448     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2449     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2450     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2451     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2452     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2453     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2454     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2455 };
2456 
2457 /*
2458  * First performs a check for metadata overlaps (through
2459  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2460  * while performing a check), that value is returned. If an impending overlap
2461  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2462  * and -EIO returned.
2463  *
2464  * Returns 0 if there were neither overlaps nor errors while checking for
2465  * overlaps; or a negative value (-errno) on error.
2466  */
2467 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2468                                   int64_t size)
2469 {
2470     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2471 
2472     if (ret < 0) {
2473         return ret;
2474     } else if (ret > 0) {
2475         int metadata_ol_bitnr = ctz32(ret);
2476         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2477 
2478         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2479                                 "write on metadata (overlaps with %s)",
2480                                 metadata_ol_names[metadata_ol_bitnr]);
2481         return -EIO;
2482     }
2483 
2484     return 0;
2485 }
2486 
2487 /* A pointer to a function of this type is given to walk_over_reftable(). That
2488  * function will create refblocks and pass them to a RefblockFinishOp once they
2489  * are completed (@refblock). @refblock_empty is set if the refblock is
2490  * completely empty.
2491  *
2492  * Along with the refblock, a corresponding reftable entry is passed, in the
2493  * reftable @reftable (which may be reallocated) at @reftable_index.
2494  *
2495  * @allocated should be set to true if a new cluster has been allocated.
2496  */
2497 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2498                                uint64_t reftable_index, uint64_t *reftable_size,
2499                                void *refblock, bool refblock_empty,
2500                                bool *allocated, Error **errp);
2501 
2502 /**
2503  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2504  * it is not empty) and inserts its offset into the new reftable. The size of
2505  * this new reftable is increased as required.
2506  */
2507 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2508                           uint64_t reftable_index, uint64_t *reftable_size,
2509                           void *refblock, bool refblock_empty, bool *allocated,
2510                           Error **errp)
2511 {
2512     BDRVQcow2State *s = bs->opaque;
2513     int64_t offset;
2514 
2515     if (!refblock_empty && reftable_index >= *reftable_size) {
2516         uint64_t *new_reftable;
2517         uint64_t new_reftable_size;
2518 
2519         new_reftable_size = ROUND_UP(reftable_index + 1,
2520                                      s->cluster_size / sizeof(uint64_t));
2521         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2522             error_setg(errp,
2523                        "This operation would make the refcount table grow "
2524                        "beyond the maximum size supported by QEMU, aborting");
2525             return -ENOTSUP;
2526         }
2527 
2528         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2529                                                 sizeof(uint64_t));
2530         if (!new_reftable) {
2531             error_setg(errp, "Failed to increase reftable buffer size");
2532             return -ENOMEM;
2533         }
2534 
2535         memset(new_reftable + *reftable_size, 0,
2536                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2537 
2538         *reftable      = new_reftable;
2539         *reftable_size = new_reftable_size;
2540     }
2541 
2542     if (!refblock_empty && !(*reftable)[reftable_index]) {
2543         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2544         if (offset < 0) {
2545             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2546             return offset;
2547         }
2548         (*reftable)[reftable_index] = offset;
2549         *allocated = true;
2550     }
2551 
2552     return 0;
2553 }
2554 
2555 /**
2556  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2557  * offset specified by the new reftable's entry. It does not modify the new
2558  * reftable or change any refcounts.
2559  */
2560 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2561                           uint64_t reftable_index, uint64_t *reftable_size,
2562                           void *refblock, bool refblock_empty, bool *allocated,
2563                           Error **errp)
2564 {
2565     BDRVQcow2State *s = bs->opaque;
2566     int64_t offset;
2567     int ret;
2568 
2569     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2570         offset = (*reftable)[reftable_index];
2571 
2572         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2573         if (ret < 0) {
2574             error_setg_errno(errp, -ret, "Overlap check failed");
2575             return ret;
2576         }
2577 
2578         ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2579         if (ret < 0) {
2580             error_setg_errno(errp, -ret, "Failed to write refblock");
2581             return ret;
2582         }
2583     } else {
2584         assert(refblock_empty);
2585     }
2586 
2587     return 0;
2588 }
2589 
2590 /**
2591  * This function walks over the existing reftable and every referenced refblock;
2592  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2593  * create an equal new entry in the passed @new_refblock. Once that
2594  * @new_refblock is completely filled, @operation will be called.
2595  *
2596  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2597  * @index is the index of the walk_over_reftable() calls and @total is the total
2598  * number of walk_over_reftable() calls per amend operation. Both are used for
2599  * calculating the parameters for the status callback.
2600  *
2601  * @allocated is set to true if a new cluster has been allocated.
2602  */
2603 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2604                               uint64_t *new_reftable_index,
2605                               uint64_t *new_reftable_size,
2606                               void *new_refblock, int new_refblock_size,
2607                               int new_refcount_bits,
2608                               RefblockFinishOp *operation, bool *allocated,
2609                               Qcow2SetRefcountFunc *new_set_refcount,
2610                               BlockDriverAmendStatusCB *status_cb,
2611                               void *cb_opaque, int index, int total,
2612                               Error **errp)
2613 {
2614     BDRVQcow2State *s = bs->opaque;
2615     uint64_t reftable_index;
2616     bool new_refblock_empty = true;
2617     int refblock_index;
2618     int new_refblock_index = 0;
2619     int ret;
2620 
2621     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2622          reftable_index++)
2623     {
2624         uint64_t refblock_offset = s->refcount_table[reftable_index]
2625                                  & REFT_OFFSET_MASK;
2626 
2627         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2628                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2629 
2630         if (refblock_offset) {
2631             void *refblock;
2632 
2633             if (offset_into_cluster(s, refblock_offset)) {
2634                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2635                                         PRIx64 " unaligned (reftable index: %#"
2636                                         PRIx64 ")", refblock_offset,
2637                                         reftable_index);
2638                 error_setg(errp,
2639                            "Image is corrupt (unaligned refblock offset)");
2640                 return -EIO;
2641             }
2642 
2643             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2644                                   &refblock);
2645             if (ret < 0) {
2646                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2647                 return ret;
2648             }
2649 
2650             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2651                  refblock_index++)
2652             {
2653                 uint64_t refcount;
2654 
2655                 if (new_refblock_index >= new_refblock_size) {
2656                     /* new_refblock is now complete */
2657                     ret = operation(bs, new_reftable, *new_reftable_index,
2658                                     new_reftable_size, new_refblock,
2659                                     new_refblock_empty, allocated, errp);
2660                     if (ret < 0) {
2661                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2662                         return ret;
2663                     }
2664 
2665                     (*new_reftable_index)++;
2666                     new_refblock_index = 0;
2667                     new_refblock_empty = true;
2668                 }
2669 
2670                 refcount = s->get_refcount(refblock, refblock_index);
2671                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2672                     uint64_t offset;
2673 
2674                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2675 
2676                     offset = ((reftable_index << s->refcount_block_bits)
2677                               + refblock_index) << s->cluster_bits;
2678 
2679                     error_setg(errp, "Cannot decrease refcount entry width to "
2680                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2681                                "refcount of %" PRIu64, new_refcount_bits,
2682                                offset, refcount);
2683                     return -EINVAL;
2684                 }
2685 
2686                 if (new_set_refcount) {
2687                     new_set_refcount(new_refblock, new_refblock_index++,
2688                                      refcount);
2689                 } else {
2690                     new_refblock_index++;
2691                 }
2692                 new_refblock_empty = new_refblock_empty && refcount == 0;
2693             }
2694 
2695             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2696         } else {
2697             /* No refblock means every refcount is 0 */
2698             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2699                  refblock_index++)
2700             {
2701                 if (new_refblock_index >= new_refblock_size) {
2702                     /* new_refblock is now complete */
2703                     ret = operation(bs, new_reftable, *new_reftable_index,
2704                                     new_reftable_size, new_refblock,
2705                                     new_refblock_empty, allocated, errp);
2706                     if (ret < 0) {
2707                         return ret;
2708                     }
2709 
2710                     (*new_reftable_index)++;
2711                     new_refblock_index = 0;
2712                     new_refblock_empty = true;
2713                 }
2714 
2715                 if (new_set_refcount) {
2716                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2717                 } else {
2718                     new_refblock_index++;
2719                 }
2720             }
2721         }
2722     }
2723 
2724     if (new_refblock_index > 0) {
2725         /* Complete the potentially existing partially filled final refblock */
2726         if (new_set_refcount) {
2727             for (; new_refblock_index < new_refblock_size;
2728                  new_refblock_index++)
2729             {
2730                 new_set_refcount(new_refblock, new_refblock_index, 0);
2731             }
2732         }
2733 
2734         ret = operation(bs, new_reftable, *new_reftable_index,
2735                         new_reftable_size, new_refblock, new_refblock_empty,
2736                         allocated, errp);
2737         if (ret < 0) {
2738             return ret;
2739         }
2740 
2741         (*new_reftable_index)++;
2742     }
2743 
2744     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2745               (uint64_t)total * s->refcount_table_size, cb_opaque);
2746 
2747     return 0;
2748 }
2749 
2750 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2751                                 BlockDriverAmendStatusCB *status_cb,
2752                                 void *cb_opaque, Error **errp)
2753 {
2754     BDRVQcow2State *s = bs->opaque;
2755     Qcow2GetRefcountFunc *new_get_refcount;
2756     Qcow2SetRefcountFunc *new_set_refcount;
2757     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2758     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2759     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2760     uint64_t new_reftable_index = 0;
2761     uint64_t i;
2762     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2763     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2764     int old_refcount_order;
2765     int walk_index = 0;
2766     int ret;
2767     bool new_allocation;
2768 
2769     assert(s->qcow_version >= 3);
2770     assert(refcount_order >= 0 && refcount_order <= 6);
2771 
2772     /* see qcow2_open() */
2773     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2774 
2775     new_get_refcount = get_refcount_funcs[refcount_order];
2776     new_set_refcount = set_refcount_funcs[refcount_order];
2777 
2778 
2779     do {
2780         int total_walks;
2781 
2782         new_allocation = false;
2783 
2784         /* At least we have to do this walk and the one which writes the
2785          * refblocks; also, at least we have to do this loop here at least
2786          * twice (normally), first to do the allocations, and second to
2787          * determine that everything is correctly allocated, this then makes
2788          * three walks in total */
2789         total_walks = MAX(walk_index + 2, 3);
2790 
2791         /* First, allocate the structures so they are present in the refcount
2792          * structures */
2793         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2794                                  &new_reftable_size, NULL, new_refblock_size,
2795                                  new_refcount_bits, &alloc_refblock,
2796                                  &new_allocation, NULL, status_cb, cb_opaque,
2797                                  walk_index++, total_walks, errp);
2798         if (ret < 0) {
2799             goto done;
2800         }
2801 
2802         new_reftable_index = 0;
2803 
2804         if (new_allocation) {
2805             if (new_reftable_offset) {
2806                 qcow2_free_clusters(bs, new_reftable_offset,
2807                                     allocated_reftable_size * sizeof(uint64_t),
2808                                     QCOW2_DISCARD_NEVER);
2809             }
2810 
2811             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2812                                                            sizeof(uint64_t));
2813             if (new_reftable_offset < 0) {
2814                 error_setg_errno(errp, -new_reftable_offset,
2815                                  "Failed to allocate the new reftable");
2816                 ret = new_reftable_offset;
2817                 goto done;
2818             }
2819             allocated_reftable_size = new_reftable_size;
2820         }
2821     } while (new_allocation);
2822 
2823     /* Second, write the new refblocks */
2824     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2825                              &new_reftable_size, new_refblock,
2826                              new_refblock_size, new_refcount_bits,
2827                              &flush_refblock, &new_allocation, new_set_refcount,
2828                              status_cb, cb_opaque, walk_index, walk_index + 1,
2829                              errp);
2830     if (ret < 0) {
2831         goto done;
2832     }
2833     assert(!new_allocation);
2834 
2835 
2836     /* Write the new reftable */
2837     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2838                                         new_reftable_size * sizeof(uint64_t));
2839     if (ret < 0) {
2840         error_setg_errno(errp, -ret, "Overlap check failed");
2841         goto done;
2842     }
2843 
2844     for (i = 0; i < new_reftable_size; i++) {
2845         cpu_to_be64s(&new_reftable[i]);
2846     }
2847 
2848     ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2849                       new_reftable_size * sizeof(uint64_t));
2850 
2851     for (i = 0; i < new_reftable_size; i++) {
2852         be64_to_cpus(&new_reftable[i]);
2853     }
2854 
2855     if (ret < 0) {
2856         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2857         goto done;
2858     }
2859 
2860 
2861     /* Empty the refcount cache */
2862     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2863     if (ret < 0) {
2864         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2865         goto done;
2866     }
2867 
2868     /* Update the image header to point to the new reftable; this only updates
2869      * the fields which are relevant to qcow2_update_header(); other fields
2870      * such as s->refcount_table or s->refcount_bits stay stale for now
2871      * (because we have to restore everything if qcow2_update_header() fails) */
2872     old_refcount_order  = s->refcount_order;
2873     old_reftable_size   = s->refcount_table_size;
2874     old_reftable_offset = s->refcount_table_offset;
2875 
2876     s->refcount_order        = refcount_order;
2877     s->refcount_table_size   = new_reftable_size;
2878     s->refcount_table_offset = new_reftable_offset;
2879 
2880     ret = qcow2_update_header(bs);
2881     if (ret < 0) {
2882         s->refcount_order        = old_refcount_order;
2883         s->refcount_table_size   = old_reftable_size;
2884         s->refcount_table_offset = old_reftable_offset;
2885         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2886         goto done;
2887     }
2888 
2889     /* Now update the rest of the in-memory information */
2890     old_reftable = s->refcount_table;
2891     s->refcount_table = new_reftable;
2892     update_max_refcount_table_index(s);
2893 
2894     s->refcount_bits = 1 << refcount_order;
2895     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2896     s->refcount_max += s->refcount_max - 1;
2897 
2898     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2899     s->refcount_block_size = 1 << s->refcount_block_bits;
2900 
2901     s->get_refcount = new_get_refcount;
2902     s->set_refcount = new_set_refcount;
2903 
2904     /* For cleaning up all old refblocks and the old reftable below the "done"
2905      * label */
2906     new_reftable        = old_reftable;
2907     new_reftable_size   = old_reftable_size;
2908     new_reftable_offset = old_reftable_offset;
2909 
2910 done:
2911     if (new_reftable) {
2912         /* On success, new_reftable actually points to the old reftable (and
2913          * new_reftable_size is the old reftable's size); but that is just
2914          * fine */
2915         for (i = 0; i < new_reftable_size; i++) {
2916             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2917             if (offset) {
2918                 qcow2_free_clusters(bs, offset, s->cluster_size,
2919                                     QCOW2_DISCARD_OTHER);
2920             }
2921         }
2922         g_free(new_reftable);
2923 
2924         if (new_reftable_offset > 0) {
2925             qcow2_free_clusters(bs, new_reftable_offset,
2926                                 new_reftable_size * sizeof(uint64_t),
2927                                 QCOW2_DISCARD_OTHER);
2928         }
2929     }
2930 
2931     qemu_vfree(new_refblock);
2932     return ret;
2933 }
2934