xref: /qemu/block/qed.c (revision 2f28d2ff)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu-timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qerror.h"
19 #include "migration.h"
20 
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23     QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24     bool finished = false;
25 
26     /* Wait for the request to finish */
27     acb->finished = &finished;
28     while (!finished) {
29         qemu_aio_wait();
30     }
31 }
32 
33 static AIOPool qed_aio_pool = {
34     .aiocb_size         = sizeof(QEDAIOCB),
35     .cancel             = qed_aio_cancel,
36 };
37 
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39                           const char *filename)
40 {
41     const QEDHeader *header = (const QEDHeader *)buf;
42 
43     if (buf_size < sizeof(*header)) {
44         return 0;
45     }
46     if (le32_to_cpu(header->magic) != QED_MAGIC) {
47         return 0;
48     }
49     return 100;
50 }
51 
52 /**
53  * Check whether an image format is raw
54  *
55  * @fmt:    Backing file format, may be NULL
56  */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59     return fmt && strcmp(fmt, "raw") == 0;
60 }
61 
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64     cpu->magic = le32_to_cpu(le->magic);
65     cpu->cluster_size = le32_to_cpu(le->cluster_size);
66     cpu->table_size = le32_to_cpu(le->table_size);
67     cpu->header_size = le32_to_cpu(le->header_size);
68     cpu->features = le64_to_cpu(le->features);
69     cpu->compat_features = le64_to_cpu(le->compat_features);
70     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72     cpu->image_size = le64_to_cpu(le->image_size);
73     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76 
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79     le->magic = cpu_to_le32(cpu->magic);
80     le->cluster_size = cpu_to_le32(cpu->cluster_size);
81     le->table_size = cpu_to_le32(cpu->table_size);
82     le->header_size = cpu_to_le32(cpu->header_size);
83     le->features = cpu_to_le64(cpu->features);
84     le->compat_features = cpu_to_le64(cpu->compat_features);
85     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87     le->image_size = cpu_to_le64(cpu->image_size);
88     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91 
92 static int qed_write_header_sync(BDRVQEDState *s)
93 {
94     QEDHeader le;
95     int ret;
96 
97     qed_header_cpu_to_le(&s->header, &le);
98     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99     if (ret != sizeof(le)) {
100         return ret;
101     }
102     return 0;
103 }
104 
105 typedef struct {
106     GenericCB gencb;
107     BDRVQEDState *s;
108     struct iovec iov;
109     QEMUIOVector qiov;
110     int nsectors;
111     uint8_t *buf;
112 } QEDWriteHeaderCB;
113 
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116     QEDWriteHeaderCB *write_header_cb = opaque;
117 
118     qemu_vfree(write_header_cb->buf);
119     gencb_complete(write_header_cb, ret);
120 }
121 
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124     QEDWriteHeaderCB *write_header_cb = opaque;
125     BDRVQEDState *s = write_header_cb->s;
126 
127     if (ret) {
128         qed_write_header_cb(write_header_cb, ret);
129         return;
130     }
131 
132     /* Update header */
133     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134 
135     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136                     write_header_cb->nsectors, qed_write_header_cb,
137                     write_header_cb);
138 }
139 
140 /**
141  * Update header in-place (does not rewrite backing filename or other strings)
142  *
143  * This function only updates known header fields in-place and does not affect
144  * extra data after the QED header.
145  */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147                              void *opaque)
148 {
149     /* We must write full sectors for O_DIRECT but cannot necessarily generate
150      * the data following the header if an unrecognized compat feature is
151      * active.  Therefore, first read the sectors containing the header, update
152      * them, and write back.
153      */
154 
155     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156                    BDRV_SECTOR_SIZE;
157     size_t len = nsectors * BDRV_SECTOR_SIZE;
158     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159                                                     cb, opaque);
160 
161     write_header_cb->s = s;
162     write_header_cb->nsectors = nsectors;
163     write_header_cb->buf = qemu_blockalign(s->bs, len);
164     write_header_cb->iov.iov_base = write_header_cb->buf;
165     write_header_cb->iov.iov_len = len;
166     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167 
168     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169                    qed_write_header_read_cb, write_header_cb);
170 }
171 
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174     uint64_t table_entries;
175     uint64_t l2_size;
176 
177     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178     l2_size = table_entries * cluster_size;
179 
180     return l2_size * table_entries;
181 }
182 
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186         cluster_size > QED_MAX_CLUSTER_SIZE) {
187         return false;
188     }
189     if (cluster_size & (cluster_size - 1)) {
190         return false; /* not power of 2 */
191     }
192     return true;
193 }
194 
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197     if (table_size < QED_MIN_TABLE_SIZE ||
198         table_size > QED_MAX_TABLE_SIZE) {
199         return false;
200     }
201     if (table_size & (table_size - 1)) {
202         return false; /* not power of 2 */
203     }
204     return true;
205 }
206 
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208                                     uint32_t table_size)
209 {
210     if (image_size % BDRV_SECTOR_SIZE != 0) {
211         return false; /* not multiple of sector size */
212     }
213     if (image_size > qed_max_image_size(cluster_size, table_size)) {
214         return false; /* image is too large */
215     }
216     return true;
217 }
218 
219 /**
220  * Read a string of known length from the image file
221  *
222  * @file:       Image file
223  * @offset:     File offset to start of string, in bytes
224  * @n:          String length in bytes
225  * @buf:        Destination buffer
226  * @buflen:     Destination buffer length in bytes
227  * @ret:        0 on success, -errno on failure
228  *
229  * The string is NUL-terminated.
230  */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232                            char *buf, size_t buflen)
233 {
234     int ret;
235     if (n >= buflen) {
236         return -EINVAL;
237     }
238     ret = bdrv_pread(file, offset, buf, n);
239     if (ret < 0) {
240         return ret;
241     }
242     buf[n] = '\0';
243     return 0;
244 }
245 
246 /**
247  * Allocate new clusters
248  *
249  * @s:          QED state
250  * @n:          Number of contiguous clusters to allocate
251  * @ret:        Offset of first allocated cluster
252  *
253  * This function only produces the offset where the new clusters should be
254  * written.  It updates BDRVQEDState but does not make any changes to the image
255  * file.
256  */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259     uint64_t offset = s->file_size;
260     s->file_size += n * s->header.cluster_size;
261     return offset;
262 }
263 
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266     /* Honor O_DIRECT memory alignment requirements */
267     return qemu_blockalign(s->bs,
268                            s->header.cluster_size * s->header.table_size);
269 }
270 
271 /**
272  * Allocate a new zeroed L2 table
273  */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277 
278     l2_table->table = qed_alloc_table(s);
279     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280 
281     memset(l2_table->table->offsets, 0,
282            s->header.cluster_size * s->header.table_size);
283     return l2_table;
284 }
285 
286 static void qed_aio_next_io(void *opaque, int ret);
287 
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290     assert(!s->allocating_write_reqs_plugged);
291 
292     s->allocating_write_reqs_plugged = true;
293 }
294 
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297     QEDAIOCB *acb;
298 
299     assert(s->allocating_write_reqs_plugged);
300 
301     s->allocating_write_reqs_plugged = false;
302 
303     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304     if (acb) {
305         qed_aio_next_io(acb, 0);
306     }
307 }
308 
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311     /* Do nothing */
312 }
313 
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316     BDRVQEDState *s = opaque;
317 
318     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319 
320     /* No need to wait until flush completes */
321     qed_unplug_allocating_write_reqs(s);
322 }
323 
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326     BDRVQEDState *s = opaque;
327 
328     if (ret) {
329         qed_unplug_allocating_write_reqs(s);
330         return;
331     }
332 
333     s->header.features &= ~QED_F_NEED_CHECK;
334     qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336 
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339     BDRVQEDState *s = opaque;
340 
341     /* The timer should only fire when allocating writes have drained */
342     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343 
344     trace_qed_need_check_timer_cb(s);
345 
346     qed_plug_allocating_write_reqs(s);
347 
348     /* Ensure writes are on disk before clearing flag */
349     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351 
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354     trace_qed_start_need_check_timer(s);
355 
356     /* Use vm_clock so we don't alter the image file while suspended for
357      * migration.
358      */
359     qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
360                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362 
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366     trace_qed_cancel_need_check_timer(s);
367     qemu_del_timer(s->need_check_timer);
368 }
369 
370 static int bdrv_qed_open(BlockDriverState *bs, int flags)
371 {
372     BDRVQEDState *s = bs->opaque;
373     QEDHeader le_header;
374     int64_t file_size;
375     int ret;
376 
377     s->bs = bs;
378     QSIMPLEQ_INIT(&s->allocating_write_reqs);
379 
380     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
381     if (ret < 0) {
382         return ret;
383     }
384     qed_header_le_to_cpu(&le_header, &s->header);
385 
386     if (s->header.magic != QED_MAGIC) {
387         return -EINVAL;
388     }
389     if (s->header.features & ~QED_FEATURE_MASK) {
390         /* image uses unsupported feature bits */
391         char buf[64];
392         snprintf(buf, sizeof(buf), "%" PRIx64,
393             s->header.features & ~QED_FEATURE_MASK);
394         qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
395             bs->device_name, "QED", buf);
396         return -ENOTSUP;
397     }
398     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
399         return -EINVAL;
400     }
401 
402     /* Round down file size to the last cluster */
403     file_size = bdrv_getlength(bs->file);
404     if (file_size < 0) {
405         return file_size;
406     }
407     s->file_size = qed_start_of_cluster(s, file_size);
408 
409     if (!qed_is_table_size_valid(s->header.table_size)) {
410         return -EINVAL;
411     }
412     if (!qed_is_image_size_valid(s->header.image_size,
413                                  s->header.cluster_size,
414                                  s->header.table_size)) {
415         return -EINVAL;
416     }
417     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
418         return -EINVAL;
419     }
420 
421     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
422                       sizeof(uint64_t);
423     s->l2_shift = ffs(s->header.cluster_size) - 1;
424     s->l2_mask = s->table_nelems - 1;
425     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
426 
427     if ((s->header.features & QED_F_BACKING_FILE)) {
428         if ((uint64_t)s->header.backing_filename_offset +
429             s->header.backing_filename_size >
430             s->header.cluster_size * s->header.header_size) {
431             return -EINVAL;
432         }
433 
434         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
435                               s->header.backing_filename_size, bs->backing_file,
436                               sizeof(bs->backing_file));
437         if (ret < 0) {
438             return ret;
439         }
440 
441         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
442             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
443         }
444     }
445 
446     /* Reset unknown autoclear feature bits.  This is a backwards
447      * compatibility mechanism that allows images to be opened by older
448      * programs, which "knock out" unknown feature bits.  When an image is
449      * opened by a newer program again it can detect that the autoclear
450      * feature is no longer valid.
451      */
452     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
453         !bdrv_is_read_only(bs->file)) {
454         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
455 
456         ret = qed_write_header_sync(s);
457         if (ret) {
458             return ret;
459         }
460 
461         /* From here on only known autoclear feature bits are valid */
462         bdrv_flush(bs->file);
463     }
464 
465     s->l1_table = qed_alloc_table(s);
466     qed_init_l2_cache(&s->l2_cache);
467 
468     ret = qed_read_l1_table_sync(s);
469     if (ret) {
470         goto out;
471     }
472 
473     /* If image was not closed cleanly, check consistency */
474     if (s->header.features & QED_F_NEED_CHECK) {
475         /* Read-only images cannot be fixed.  There is no risk of corruption
476          * since write operations are not possible.  Therefore, allow
477          * potentially inconsistent images to be opened read-only.  This can
478          * aid data recovery from an otherwise inconsistent image.
479          */
480         if (!bdrv_is_read_only(bs->file)) {
481             BdrvCheckResult result = {0};
482 
483             ret = qed_check(s, &result, true);
484             if (ret) {
485                 goto out;
486             }
487             if (!result.corruptions && !result.check_errors) {
488                 /* Ensure fixes reach storage before clearing check bit */
489                 bdrv_flush(s->bs);
490 
491                 s->header.features &= ~QED_F_NEED_CHECK;
492                 qed_write_header_sync(s);
493             }
494         }
495     }
496 
497     s->need_check_timer = qemu_new_timer_ns(vm_clock,
498                                             qed_need_check_timer_cb, s);
499 
500     error_set(&s->migration_blocker,
501               QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
502               "qed", bs->device_name, "live migration");
503     migrate_add_blocker(s->migration_blocker);
504 
505 
506 out:
507     if (ret) {
508         qed_free_l2_cache(&s->l2_cache);
509         qemu_vfree(s->l1_table);
510     }
511     return ret;
512 }
513 
514 static void bdrv_qed_close(BlockDriverState *bs)
515 {
516     BDRVQEDState *s = bs->opaque;
517 
518     migrate_del_blocker(s->migration_blocker);
519     error_free(s->migration_blocker);
520 
521     qed_cancel_need_check_timer(s);
522     qemu_free_timer(s->need_check_timer);
523 
524     /* Ensure writes reach stable storage */
525     bdrv_flush(bs->file);
526 
527     /* Clean shutdown, no check required on next open */
528     if (s->header.features & QED_F_NEED_CHECK) {
529         s->header.features &= ~QED_F_NEED_CHECK;
530         qed_write_header_sync(s);
531     }
532 
533     qed_free_l2_cache(&s->l2_cache);
534     qemu_vfree(s->l1_table);
535 }
536 
537 static int qed_create(const char *filename, uint32_t cluster_size,
538                       uint64_t image_size, uint32_t table_size,
539                       const char *backing_file, const char *backing_fmt)
540 {
541     QEDHeader header = {
542         .magic = QED_MAGIC,
543         .cluster_size = cluster_size,
544         .table_size = table_size,
545         .header_size = 1,
546         .features = 0,
547         .compat_features = 0,
548         .l1_table_offset = cluster_size,
549         .image_size = image_size,
550     };
551     QEDHeader le_header;
552     uint8_t *l1_table = NULL;
553     size_t l1_size = header.cluster_size * header.table_size;
554     int ret = 0;
555     BlockDriverState *bs = NULL;
556 
557     ret = bdrv_create_file(filename, NULL);
558     if (ret < 0) {
559         return ret;
560     }
561 
562     ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
563     if (ret < 0) {
564         return ret;
565     }
566 
567     /* File must start empty and grow, check truncate is supported */
568     ret = bdrv_truncate(bs, 0);
569     if (ret < 0) {
570         goto out;
571     }
572 
573     if (backing_file) {
574         header.features |= QED_F_BACKING_FILE;
575         header.backing_filename_offset = sizeof(le_header);
576         header.backing_filename_size = strlen(backing_file);
577 
578         if (qed_fmt_is_raw(backing_fmt)) {
579             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
580         }
581     }
582 
583     qed_header_cpu_to_le(&header, &le_header);
584     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
585     if (ret < 0) {
586         goto out;
587     }
588     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
589                       header.backing_filename_size);
590     if (ret < 0) {
591         goto out;
592     }
593 
594     l1_table = g_malloc0(l1_size);
595     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
596     if (ret < 0) {
597         goto out;
598     }
599 
600     ret = 0; /* success */
601 out:
602     g_free(l1_table);
603     bdrv_delete(bs);
604     return ret;
605 }
606 
607 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
608 {
609     uint64_t image_size = 0;
610     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
611     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
612     const char *backing_file = NULL;
613     const char *backing_fmt = NULL;
614 
615     while (options && options->name) {
616         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
617             image_size = options->value.n;
618         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
619             backing_file = options->value.s;
620         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
621             backing_fmt = options->value.s;
622         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
623             if (options->value.n) {
624                 cluster_size = options->value.n;
625             }
626         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
627             if (options->value.n) {
628                 table_size = options->value.n;
629             }
630         }
631         options++;
632     }
633 
634     if (!qed_is_cluster_size_valid(cluster_size)) {
635         fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
636                 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
637         return -EINVAL;
638     }
639     if (!qed_is_table_size_valid(table_size)) {
640         fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
641                 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
642         return -EINVAL;
643     }
644     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
645         fprintf(stderr, "QED image size must be a non-zero multiple of "
646                         "cluster size and less than %" PRIu64 " bytes\n",
647                 qed_max_image_size(cluster_size, table_size));
648         return -EINVAL;
649     }
650 
651     return qed_create(filename, cluster_size, image_size, table_size,
652                       backing_file, backing_fmt);
653 }
654 
655 typedef struct {
656     Coroutine *co;
657     int is_allocated;
658     int *pnum;
659 } QEDIsAllocatedCB;
660 
661 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
662 {
663     QEDIsAllocatedCB *cb = opaque;
664     *cb->pnum = len / BDRV_SECTOR_SIZE;
665     cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
666     if (cb->co) {
667         qemu_coroutine_enter(cb->co, NULL);
668     }
669 }
670 
671 static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
672                                                  int64_t sector_num,
673                                                  int nb_sectors, int *pnum)
674 {
675     BDRVQEDState *s = bs->opaque;
676     uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
677     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
678     QEDIsAllocatedCB cb = {
679         .is_allocated = -1,
680         .pnum = pnum,
681     };
682     QEDRequest request = { .l2_table = NULL };
683 
684     qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
685 
686     /* Now sleep if the callback wasn't invoked immediately */
687     while (cb.is_allocated == -1) {
688         cb.co = qemu_coroutine_self();
689         qemu_coroutine_yield();
690     }
691 
692     qed_unref_l2_cache_entry(request.l2_table);
693 
694     return cb.is_allocated;
695 }
696 
697 static int bdrv_qed_make_empty(BlockDriverState *bs)
698 {
699     return -ENOTSUP;
700 }
701 
702 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
703 {
704     return acb->common.bs->opaque;
705 }
706 
707 /**
708  * Read from the backing file or zero-fill if no backing file
709  *
710  * @s:          QED state
711  * @pos:        Byte position in device
712  * @qiov:       Destination I/O vector
713  * @cb:         Completion function
714  * @opaque:     User data for completion function
715  *
716  * This function reads qiov->size bytes starting at pos from the backing file.
717  * If there is no backing file then zeroes are read.
718  */
719 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
720                                   QEMUIOVector *qiov,
721                                   BlockDriverCompletionFunc *cb, void *opaque)
722 {
723     uint64_t backing_length = 0;
724     size_t size;
725 
726     /* If there is a backing file, get its length.  Treat the absence of a
727      * backing file like a zero length backing file.
728      */
729     if (s->bs->backing_hd) {
730         int64_t l = bdrv_getlength(s->bs->backing_hd);
731         if (l < 0) {
732             cb(opaque, l);
733             return;
734         }
735         backing_length = l;
736     }
737 
738     /* Zero all sectors if reading beyond the end of the backing file */
739     if (pos >= backing_length ||
740         pos + qiov->size > backing_length) {
741         qemu_iovec_memset(qiov, 0, qiov->size);
742     }
743 
744     /* Complete now if there are no backing file sectors to read */
745     if (pos >= backing_length) {
746         cb(opaque, 0);
747         return;
748     }
749 
750     /* If the read straddles the end of the backing file, shorten it */
751     size = MIN((uint64_t)backing_length - pos, qiov->size);
752 
753     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
754     bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
755                    qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
756 }
757 
758 typedef struct {
759     GenericCB gencb;
760     BDRVQEDState *s;
761     QEMUIOVector qiov;
762     struct iovec iov;
763     uint64_t offset;
764 } CopyFromBackingFileCB;
765 
766 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
767 {
768     CopyFromBackingFileCB *copy_cb = opaque;
769     qemu_vfree(copy_cb->iov.iov_base);
770     gencb_complete(&copy_cb->gencb, ret);
771 }
772 
773 static void qed_copy_from_backing_file_write(void *opaque, int ret)
774 {
775     CopyFromBackingFileCB *copy_cb = opaque;
776     BDRVQEDState *s = copy_cb->s;
777 
778     if (ret) {
779         qed_copy_from_backing_file_cb(copy_cb, ret);
780         return;
781     }
782 
783     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
784     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
785                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
786                     qed_copy_from_backing_file_cb, copy_cb);
787 }
788 
789 /**
790  * Copy data from backing file into the image
791  *
792  * @s:          QED state
793  * @pos:        Byte position in device
794  * @len:        Number of bytes
795  * @offset:     Byte offset in image file
796  * @cb:         Completion function
797  * @opaque:     User data for completion function
798  */
799 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
800                                        uint64_t len, uint64_t offset,
801                                        BlockDriverCompletionFunc *cb,
802                                        void *opaque)
803 {
804     CopyFromBackingFileCB *copy_cb;
805 
806     /* Skip copy entirely if there is no work to do */
807     if (len == 0) {
808         cb(opaque, 0);
809         return;
810     }
811 
812     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
813     copy_cb->s = s;
814     copy_cb->offset = offset;
815     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
816     copy_cb->iov.iov_len = len;
817     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
818 
819     qed_read_backing_file(s, pos, &copy_cb->qiov,
820                           qed_copy_from_backing_file_write, copy_cb);
821 }
822 
823 /**
824  * Link one or more contiguous clusters into a table
825  *
826  * @s:              QED state
827  * @table:          L2 table
828  * @index:          First cluster index
829  * @n:              Number of contiguous clusters
830  * @cluster:        First cluster offset
831  *
832  * The cluster offset may be an allocated byte offset in the image file, the
833  * zero cluster marker, or the unallocated cluster marker.
834  */
835 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
836                                 unsigned int n, uint64_t cluster)
837 {
838     int i;
839     for (i = index; i < index + n; i++) {
840         table->offsets[i] = cluster;
841         if (!qed_offset_is_unalloc_cluster(cluster) &&
842             !qed_offset_is_zero_cluster(cluster)) {
843             cluster += s->header.cluster_size;
844         }
845     }
846 }
847 
848 static void qed_aio_complete_bh(void *opaque)
849 {
850     QEDAIOCB *acb = opaque;
851     BlockDriverCompletionFunc *cb = acb->common.cb;
852     void *user_opaque = acb->common.opaque;
853     int ret = acb->bh_ret;
854     bool *finished = acb->finished;
855 
856     qemu_bh_delete(acb->bh);
857     qemu_aio_release(acb);
858 
859     /* Invoke callback */
860     cb(user_opaque, ret);
861 
862     /* Signal cancel completion */
863     if (finished) {
864         *finished = true;
865     }
866 }
867 
868 static void qed_aio_complete(QEDAIOCB *acb, int ret)
869 {
870     BDRVQEDState *s = acb_to_s(acb);
871 
872     trace_qed_aio_complete(s, acb, ret);
873 
874     /* Free resources */
875     qemu_iovec_destroy(&acb->cur_qiov);
876     qed_unref_l2_cache_entry(acb->request.l2_table);
877 
878     /* Arrange for a bh to invoke the completion function */
879     acb->bh_ret = ret;
880     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
881     qemu_bh_schedule(acb->bh);
882 
883     /* Start next allocating write request waiting behind this one.  Note that
884      * requests enqueue themselves when they first hit an unallocated cluster
885      * but they wait until the entire request is finished before waking up the
886      * next request in the queue.  This ensures that we don't cycle through
887      * requests multiple times but rather finish one at a time completely.
888      */
889     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
890         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
891         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
892         if (acb) {
893             qed_aio_next_io(acb, 0);
894         } else if (s->header.features & QED_F_NEED_CHECK) {
895             qed_start_need_check_timer(s);
896         }
897     }
898 }
899 
900 /**
901  * Commit the current L2 table to the cache
902  */
903 static void qed_commit_l2_update(void *opaque, int ret)
904 {
905     QEDAIOCB *acb = opaque;
906     BDRVQEDState *s = acb_to_s(acb);
907     CachedL2Table *l2_table = acb->request.l2_table;
908     uint64_t l2_offset = l2_table->offset;
909 
910     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
911 
912     /* This is guaranteed to succeed because we just committed the entry to the
913      * cache.
914      */
915     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
916     assert(acb->request.l2_table != NULL);
917 
918     qed_aio_next_io(opaque, ret);
919 }
920 
921 /**
922  * Update L1 table with new L2 table offset and write it out
923  */
924 static void qed_aio_write_l1_update(void *opaque, int ret)
925 {
926     QEDAIOCB *acb = opaque;
927     BDRVQEDState *s = acb_to_s(acb);
928     int index;
929 
930     if (ret) {
931         qed_aio_complete(acb, ret);
932         return;
933     }
934 
935     index = qed_l1_index(s, acb->cur_pos);
936     s->l1_table->offsets[index] = acb->request.l2_table->offset;
937 
938     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
939 }
940 
941 /**
942  * Update L2 table with new cluster offsets and write them out
943  */
944 static void qed_aio_write_l2_update(void *opaque, int ret)
945 {
946     QEDAIOCB *acb = opaque;
947     BDRVQEDState *s = acb_to_s(acb);
948     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
949     int index;
950 
951     if (ret) {
952         goto err;
953     }
954 
955     if (need_alloc) {
956         qed_unref_l2_cache_entry(acb->request.l2_table);
957         acb->request.l2_table = qed_new_l2_table(s);
958     }
959 
960     index = qed_l2_index(s, acb->cur_pos);
961     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
962                          acb->cur_cluster);
963 
964     if (need_alloc) {
965         /* Write out the whole new L2 table */
966         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
967                             qed_aio_write_l1_update, acb);
968     } else {
969         /* Write out only the updated part of the L2 table */
970         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
971                             qed_aio_next_io, acb);
972     }
973     return;
974 
975 err:
976     qed_aio_complete(acb, ret);
977 }
978 
979 /**
980  * Flush new data clusters before updating the L2 table
981  *
982  * This flush is necessary when a backing file is in use.  A crash during an
983  * allocating write could result in empty clusters in the image.  If the write
984  * only touched a subregion of the cluster, then backing image sectors have
985  * been lost in the untouched region.  The solution is to flush after writing a
986  * new data cluster and before updating the L2 table.
987  */
988 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
989 {
990     QEDAIOCB *acb = opaque;
991     BDRVQEDState *s = acb_to_s(acb);
992 
993     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
994         qed_aio_complete(acb, -EIO);
995     }
996 }
997 
998 /**
999  * Write data to the image file
1000  */
1001 static void qed_aio_write_main(void *opaque, int ret)
1002 {
1003     QEDAIOCB *acb = opaque;
1004     BDRVQEDState *s = acb_to_s(acb);
1005     uint64_t offset = acb->cur_cluster +
1006                       qed_offset_into_cluster(s, acb->cur_pos);
1007     BlockDriverCompletionFunc *next_fn;
1008 
1009     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1010 
1011     if (ret) {
1012         qed_aio_complete(acb, ret);
1013         return;
1014     }
1015 
1016     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1017         next_fn = qed_aio_next_io;
1018     } else {
1019         if (s->bs->backing_hd) {
1020             next_fn = qed_aio_write_flush_before_l2_update;
1021         } else {
1022             next_fn = qed_aio_write_l2_update;
1023         }
1024     }
1025 
1026     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1027     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1028                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1029                     next_fn, acb);
1030 }
1031 
1032 /**
1033  * Populate back untouched region of new data cluster
1034  */
1035 static void qed_aio_write_postfill(void *opaque, int ret)
1036 {
1037     QEDAIOCB *acb = opaque;
1038     BDRVQEDState *s = acb_to_s(acb);
1039     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1040     uint64_t len =
1041         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1042     uint64_t offset = acb->cur_cluster +
1043                       qed_offset_into_cluster(s, acb->cur_pos) +
1044                       acb->cur_qiov.size;
1045 
1046     if (ret) {
1047         qed_aio_complete(acb, ret);
1048         return;
1049     }
1050 
1051     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1052     qed_copy_from_backing_file(s, start, len, offset,
1053                                 qed_aio_write_main, acb);
1054 }
1055 
1056 /**
1057  * Populate front untouched region of new data cluster
1058  */
1059 static void qed_aio_write_prefill(void *opaque, int ret)
1060 {
1061     QEDAIOCB *acb = opaque;
1062     BDRVQEDState *s = acb_to_s(acb);
1063     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1064     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1065 
1066     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1067     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1068                                 qed_aio_write_postfill, acb);
1069 }
1070 
1071 /**
1072  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1073  */
1074 static bool qed_should_set_need_check(BDRVQEDState *s)
1075 {
1076     /* The flush before L2 update path ensures consistency */
1077     if (s->bs->backing_hd) {
1078         return false;
1079     }
1080 
1081     return !(s->header.features & QED_F_NEED_CHECK);
1082 }
1083 
1084 /**
1085  * Write new data cluster
1086  *
1087  * @acb:        Write request
1088  * @len:        Length in bytes
1089  *
1090  * This path is taken when writing to previously unallocated clusters.
1091  */
1092 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1093 {
1094     BDRVQEDState *s = acb_to_s(acb);
1095 
1096     /* Cancel timer when the first allocating request comes in */
1097     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1098         qed_cancel_need_check_timer(s);
1099     }
1100 
1101     /* Freeze this request if another allocating write is in progress */
1102     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1103         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1104     }
1105     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1106         s->allocating_write_reqs_plugged) {
1107         return; /* wait for existing request to finish */
1108     }
1109 
1110     acb->cur_nclusters = qed_bytes_to_clusters(s,
1111             qed_offset_into_cluster(s, acb->cur_pos) + len);
1112     acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1113     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1114 
1115     if (qed_should_set_need_check(s)) {
1116         s->header.features |= QED_F_NEED_CHECK;
1117         qed_write_header(s, qed_aio_write_prefill, acb);
1118     } else {
1119         qed_aio_write_prefill(acb, 0);
1120     }
1121 }
1122 
1123 /**
1124  * Write data cluster in place
1125  *
1126  * @acb:        Write request
1127  * @offset:     Cluster offset in bytes
1128  * @len:        Length in bytes
1129  *
1130  * This path is taken when writing to already allocated clusters.
1131  */
1132 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1133 {
1134     /* Calculate the I/O vector */
1135     acb->cur_cluster = offset;
1136     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1137 
1138     /* Do the actual write */
1139     qed_aio_write_main(acb, 0);
1140 }
1141 
1142 /**
1143  * Write data cluster
1144  *
1145  * @opaque:     Write request
1146  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1147  *              or -errno
1148  * @offset:     Cluster offset in bytes
1149  * @len:        Length in bytes
1150  *
1151  * Callback from qed_find_cluster().
1152  */
1153 static void qed_aio_write_data(void *opaque, int ret,
1154                                uint64_t offset, size_t len)
1155 {
1156     QEDAIOCB *acb = opaque;
1157 
1158     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1159 
1160     acb->find_cluster_ret = ret;
1161 
1162     switch (ret) {
1163     case QED_CLUSTER_FOUND:
1164         qed_aio_write_inplace(acb, offset, len);
1165         break;
1166 
1167     case QED_CLUSTER_L2:
1168     case QED_CLUSTER_L1:
1169     case QED_CLUSTER_ZERO:
1170         qed_aio_write_alloc(acb, len);
1171         break;
1172 
1173     default:
1174         qed_aio_complete(acb, ret);
1175         break;
1176     }
1177 }
1178 
1179 /**
1180  * Read data cluster
1181  *
1182  * @opaque:     Read request
1183  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1184  *              or -errno
1185  * @offset:     Cluster offset in bytes
1186  * @len:        Length in bytes
1187  *
1188  * Callback from qed_find_cluster().
1189  */
1190 static void qed_aio_read_data(void *opaque, int ret,
1191                               uint64_t offset, size_t len)
1192 {
1193     QEDAIOCB *acb = opaque;
1194     BDRVQEDState *s = acb_to_s(acb);
1195     BlockDriverState *bs = acb->common.bs;
1196 
1197     /* Adjust offset into cluster */
1198     offset += qed_offset_into_cluster(s, acb->cur_pos);
1199 
1200     trace_qed_aio_read_data(s, acb, ret, offset, len);
1201 
1202     if (ret < 0) {
1203         goto err;
1204     }
1205 
1206     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1207 
1208     /* Handle zero cluster and backing file reads */
1209     if (ret == QED_CLUSTER_ZERO) {
1210         qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1211         qed_aio_next_io(acb, 0);
1212         return;
1213     } else if (ret != QED_CLUSTER_FOUND) {
1214         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1215                               qed_aio_next_io, acb);
1216         return;
1217     }
1218 
1219     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1220     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1221                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1222                    qed_aio_next_io, acb);
1223     return;
1224 
1225 err:
1226     qed_aio_complete(acb, ret);
1227 }
1228 
1229 /**
1230  * Begin next I/O or complete the request
1231  */
1232 static void qed_aio_next_io(void *opaque, int ret)
1233 {
1234     QEDAIOCB *acb = opaque;
1235     BDRVQEDState *s = acb_to_s(acb);
1236     QEDFindClusterFunc *io_fn =
1237         acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1238 
1239     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1240 
1241     /* Handle I/O error */
1242     if (ret) {
1243         qed_aio_complete(acb, ret);
1244         return;
1245     }
1246 
1247     acb->qiov_offset += acb->cur_qiov.size;
1248     acb->cur_pos += acb->cur_qiov.size;
1249     qemu_iovec_reset(&acb->cur_qiov);
1250 
1251     /* Complete request */
1252     if (acb->cur_pos >= acb->end_pos) {
1253         qed_aio_complete(acb, 0);
1254         return;
1255     }
1256 
1257     /* Find next cluster and start I/O */
1258     qed_find_cluster(s, &acb->request,
1259                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1260                       io_fn, acb);
1261 }
1262 
1263 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1264                                        int64_t sector_num,
1265                                        QEMUIOVector *qiov, int nb_sectors,
1266                                        BlockDriverCompletionFunc *cb,
1267                                        void *opaque, bool is_write)
1268 {
1269     QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1270 
1271     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1272                          opaque, is_write);
1273 
1274     acb->is_write = is_write;
1275     acb->finished = NULL;
1276     acb->qiov = qiov;
1277     acb->qiov_offset = 0;
1278     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1279     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1280     acb->request.l2_table = NULL;
1281     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1282 
1283     /* Start request */
1284     qed_aio_next_io(acb, 0);
1285     return &acb->common;
1286 }
1287 
1288 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1289                                             int64_t sector_num,
1290                                             QEMUIOVector *qiov, int nb_sectors,
1291                                             BlockDriverCompletionFunc *cb,
1292                                             void *opaque)
1293 {
1294     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1295 }
1296 
1297 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1298                                              int64_t sector_num,
1299                                              QEMUIOVector *qiov, int nb_sectors,
1300                                              BlockDriverCompletionFunc *cb,
1301                                              void *opaque)
1302 {
1303     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1304 }
1305 
1306 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1307                                             BlockDriverCompletionFunc *cb,
1308                                             void *opaque)
1309 {
1310     return bdrv_aio_flush(bs->file, cb, opaque);
1311 }
1312 
1313 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1314 {
1315     BDRVQEDState *s = bs->opaque;
1316     uint64_t old_image_size;
1317     int ret;
1318 
1319     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1320                                  s->header.table_size)) {
1321         return -EINVAL;
1322     }
1323 
1324     /* Shrinking is currently not supported */
1325     if ((uint64_t)offset < s->header.image_size) {
1326         return -ENOTSUP;
1327     }
1328 
1329     old_image_size = s->header.image_size;
1330     s->header.image_size = offset;
1331     ret = qed_write_header_sync(s);
1332     if (ret < 0) {
1333         s->header.image_size = old_image_size;
1334     }
1335     return ret;
1336 }
1337 
1338 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1339 {
1340     BDRVQEDState *s = bs->opaque;
1341     return s->header.image_size;
1342 }
1343 
1344 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1345 {
1346     BDRVQEDState *s = bs->opaque;
1347 
1348     memset(bdi, 0, sizeof(*bdi));
1349     bdi->cluster_size = s->header.cluster_size;
1350     return 0;
1351 }
1352 
1353 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1354                                         const char *backing_file,
1355                                         const char *backing_fmt)
1356 {
1357     BDRVQEDState *s = bs->opaque;
1358     QEDHeader new_header, le_header;
1359     void *buffer;
1360     size_t buffer_len, backing_file_len;
1361     int ret;
1362 
1363     /* Refuse to set backing filename if unknown compat feature bits are
1364      * active.  If the image uses an unknown compat feature then we may not
1365      * know the layout of data following the header structure and cannot safely
1366      * add a new string.
1367      */
1368     if (backing_file && (s->header.compat_features &
1369                          ~QED_COMPAT_FEATURE_MASK)) {
1370         return -ENOTSUP;
1371     }
1372 
1373     memcpy(&new_header, &s->header, sizeof(new_header));
1374 
1375     new_header.features &= ~(QED_F_BACKING_FILE |
1376                              QED_F_BACKING_FORMAT_NO_PROBE);
1377 
1378     /* Adjust feature flags */
1379     if (backing_file) {
1380         new_header.features |= QED_F_BACKING_FILE;
1381 
1382         if (qed_fmt_is_raw(backing_fmt)) {
1383             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1384         }
1385     }
1386 
1387     /* Calculate new header size */
1388     backing_file_len = 0;
1389 
1390     if (backing_file) {
1391         backing_file_len = strlen(backing_file);
1392     }
1393 
1394     buffer_len = sizeof(new_header);
1395     new_header.backing_filename_offset = buffer_len;
1396     new_header.backing_filename_size = backing_file_len;
1397     buffer_len += backing_file_len;
1398 
1399     /* Make sure we can rewrite header without failing */
1400     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1401         return -ENOSPC;
1402     }
1403 
1404     /* Prepare new header */
1405     buffer = g_malloc(buffer_len);
1406 
1407     qed_header_cpu_to_le(&new_header, &le_header);
1408     memcpy(buffer, &le_header, sizeof(le_header));
1409     buffer_len = sizeof(le_header);
1410 
1411     if (backing_file) {
1412         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1413         buffer_len += backing_file_len;
1414     }
1415 
1416     /* Write new header */
1417     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1418     g_free(buffer);
1419     if (ret == 0) {
1420         memcpy(&s->header, &new_header, sizeof(new_header));
1421     }
1422     return ret;
1423 }
1424 
1425 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1426 {
1427     BDRVQEDState *s = bs->opaque;
1428 
1429     return qed_check(s, result, false);
1430 }
1431 
1432 static QEMUOptionParameter qed_create_options[] = {
1433     {
1434         .name = BLOCK_OPT_SIZE,
1435         .type = OPT_SIZE,
1436         .help = "Virtual disk size (in bytes)"
1437     }, {
1438         .name = BLOCK_OPT_BACKING_FILE,
1439         .type = OPT_STRING,
1440         .help = "File name of a base image"
1441     }, {
1442         .name = BLOCK_OPT_BACKING_FMT,
1443         .type = OPT_STRING,
1444         .help = "Image format of the base image"
1445     }, {
1446         .name = BLOCK_OPT_CLUSTER_SIZE,
1447         .type = OPT_SIZE,
1448         .help = "Cluster size (in bytes)",
1449         .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1450     }, {
1451         .name = BLOCK_OPT_TABLE_SIZE,
1452         .type = OPT_SIZE,
1453         .help = "L1/L2 table size (in clusters)"
1454     },
1455     { /* end of list */ }
1456 };
1457 
1458 static BlockDriver bdrv_qed = {
1459     .format_name              = "qed",
1460     .instance_size            = sizeof(BDRVQEDState),
1461     .create_options           = qed_create_options,
1462 
1463     .bdrv_probe               = bdrv_qed_probe,
1464     .bdrv_open                = bdrv_qed_open,
1465     .bdrv_close               = bdrv_qed_close,
1466     .bdrv_create              = bdrv_qed_create,
1467     .bdrv_co_is_allocated     = bdrv_qed_co_is_allocated,
1468     .bdrv_make_empty          = bdrv_qed_make_empty,
1469     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1470     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1471     .bdrv_aio_flush           = bdrv_qed_aio_flush,
1472     .bdrv_truncate            = bdrv_qed_truncate,
1473     .bdrv_getlength           = bdrv_qed_getlength,
1474     .bdrv_get_info            = bdrv_qed_get_info,
1475     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1476     .bdrv_check               = bdrv_qed_check,
1477 };
1478 
1479 static void bdrv_qed_init(void)
1480 {
1481     bdrv_register(&bdrv_qed);
1482 }
1483 
1484 block_init(bdrv_qed_init);
1485