xref: /qemu/block/qed.c (revision 5be5df72)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
27 
28 static QemuOptsList qed_create_opts;
29 
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31                           const char *filename)
32 {
33     const QEDHeader *header = (const QEDHeader *)buf;
34 
35     if (buf_size < sizeof(*header)) {
36         return 0;
37     }
38     if (le32_to_cpu(header->magic) != QED_MAGIC) {
39         return 0;
40     }
41     return 100;
42 }
43 
44 /**
45  * Check whether an image format is raw
46  *
47  * @fmt:    Backing file format, may be NULL
48  */
49 static bool qed_fmt_is_raw(const char *fmt)
50 {
51     return fmt && strcmp(fmt, "raw") == 0;
52 }
53 
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
55 {
56     cpu->magic = le32_to_cpu(le->magic);
57     cpu->cluster_size = le32_to_cpu(le->cluster_size);
58     cpu->table_size = le32_to_cpu(le->table_size);
59     cpu->header_size = le32_to_cpu(le->header_size);
60     cpu->features = le64_to_cpu(le->features);
61     cpu->compat_features = le64_to_cpu(le->compat_features);
62     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64     cpu->image_size = le64_to_cpu(le->image_size);
65     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 }
68 
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
70 {
71     le->magic = cpu_to_le32(cpu->magic);
72     le->cluster_size = cpu_to_le32(cpu->cluster_size);
73     le->table_size = cpu_to_le32(cpu->table_size);
74     le->header_size = cpu_to_le32(cpu->header_size);
75     le->features = cpu_to_le64(cpu->features);
76     le->compat_features = cpu_to_le64(cpu->compat_features);
77     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79     le->image_size = cpu_to_le64(cpu->image_size);
80     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 }
83 
84 int qed_write_header_sync(BDRVQEDState *s)
85 {
86     QEDHeader le;
87     int ret;
88 
89     qed_header_cpu_to_le(&s->header, &le);
90     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91     if (ret != sizeof(le)) {
92         return ret;
93     }
94     return 0;
95 }
96 
97 /**
98  * Update header in-place (does not rewrite backing filename or other strings)
99  *
100  * This function only updates known header fields in-place and does not affect
101  * extra data after the QED header.
102  *
103  * No new allocating reqs can start while this function runs.
104  */
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
106 {
107     /* We must write full sectors for O_DIRECT but cannot necessarily generate
108      * the data following the header if an unrecognized compat feature is
109      * active.  Therefore, first read the sectors containing the header, update
110      * them, and write back.
111      */
112 
113     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114     size_t len = nsectors * BDRV_SECTOR_SIZE;
115     uint8_t *buf;
116     struct iovec iov;
117     QEMUIOVector qiov;
118     int ret;
119 
120     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121 
122     buf = qemu_blockalign(s->bs, len);
123     iov = (struct iovec) {
124         .iov_base = buf,
125         .iov_len = len,
126     };
127     qemu_iovec_init_external(&qiov, &iov, 1);
128 
129     ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
130     if (ret < 0) {
131         goto out;
132     }
133 
134     /* Update header */
135     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
136 
137     ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size,  &qiov, 0);
138     if (ret < 0) {
139         goto out;
140     }
141 
142     ret = 0;
143 out:
144     qemu_vfree(buf);
145     return ret;
146 }
147 
148 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
149 {
150     uint64_t table_entries;
151     uint64_t l2_size;
152 
153     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
154     l2_size = table_entries * cluster_size;
155 
156     return l2_size * table_entries;
157 }
158 
159 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
160 {
161     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
162         cluster_size > QED_MAX_CLUSTER_SIZE) {
163         return false;
164     }
165     if (cluster_size & (cluster_size - 1)) {
166         return false; /* not power of 2 */
167     }
168     return true;
169 }
170 
171 static bool qed_is_table_size_valid(uint32_t table_size)
172 {
173     if (table_size < QED_MIN_TABLE_SIZE ||
174         table_size > QED_MAX_TABLE_SIZE) {
175         return false;
176     }
177     if (table_size & (table_size - 1)) {
178         return false; /* not power of 2 */
179     }
180     return true;
181 }
182 
183 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
184                                     uint32_t table_size)
185 {
186     if (image_size % BDRV_SECTOR_SIZE != 0) {
187         return false; /* not multiple of sector size */
188     }
189     if (image_size > qed_max_image_size(cluster_size, table_size)) {
190         return false; /* image is too large */
191     }
192     return true;
193 }
194 
195 /**
196  * Read a string of known length from the image file
197  *
198  * @file:       Image file
199  * @offset:     File offset to start of string, in bytes
200  * @n:          String length in bytes
201  * @buf:        Destination buffer
202  * @buflen:     Destination buffer length in bytes
203  * @ret:        0 on success, -errno on failure
204  *
205  * The string is NUL-terminated.
206  */
207 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
208                            char *buf, size_t buflen)
209 {
210     int ret;
211     if (n >= buflen) {
212         return -EINVAL;
213     }
214     ret = bdrv_pread(file, offset, buf, n);
215     if (ret < 0) {
216         return ret;
217     }
218     buf[n] = '\0';
219     return 0;
220 }
221 
222 /**
223  * Allocate new clusters
224  *
225  * @s:          QED state
226  * @n:          Number of contiguous clusters to allocate
227  * @ret:        Offset of first allocated cluster
228  *
229  * This function only produces the offset where the new clusters should be
230  * written.  It updates BDRVQEDState but does not make any changes to the image
231  * file.
232  *
233  * Called with table_lock held.
234  */
235 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
236 {
237     uint64_t offset = s->file_size;
238     s->file_size += n * s->header.cluster_size;
239     return offset;
240 }
241 
242 QEDTable *qed_alloc_table(BDRVQEDState *s)
243 {
244     /* Honor O_DIRECT memory alignment requirements */
245     return qemu_blockalign(s->bs,
246                            s->header.cluster_size * s->header.table_size);
247 }
248 
249 /**
250  * Allocate a new zeroed L2 table
251  *
252  * Called with table_lock held.
253  */
254 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
255 {
256     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
257 
258     l2_table->table = qed_alloc_table(s);
259     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
260 
261     memset(l2_table->table->offsets, 0,
262            s->header.cluster_size * s->header.table_size);
263     return l2_table;
264 }
265 
266 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
267 {
268     qemu_co_mutex_lock(&s->table_lock);
269 
270     /* No reentrancy is allowed.  */
271     assert(!s->allocating_write_reqs_plugged);
272     if (s->allocating_acb != NULL) {
273         /* Another allocating write came concurrently.  This cannot happen
274          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
275          */
276         qemu_co_mutex_unlock(&s->table_lock);
277         return false;
278     }
279 
280     s->allocating_write_reqs_plugged = true;
281     qemu_co_mutex_unlock(&s->table_lock);
282     return true;
283 }
284 
285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
286 {
287     qemu_co_mutex_lock(&s->table_lock);
288     assert(s->allocating_write_reqs_plugged);
289     s->allocating_write_reqs_plugged = false;
290     qemu_co_queue_next(&s->allocating_write_reqs);
291     qemu_co_mutex_unlock(&s->table_lock);
292 }
293 
294 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
295 {
296     BDRVQEDState *s = opaque;
297     int ret;
298 
299     trace_qed_need_check_timer_cb(s);
300 
301     if (!qed_plug_allocating_write_reqs(s)) {
302         return;
303     }
304 
305     /* Ensure writes are on disk before clearing flag */
306     ret = bdrv_co_flush(s->bs->file->bs);
307     if (ret < 0) {
308         qed_unplug_allocating_write_reqs(s);
309         return;
310     }
311 
312     s->header.features &= ~QED_F_NEED_CHECK;
313     ret = qed_write_header(s);
314     (void) ret;
315 
316     qed_unplug_allocating_write_reqs(s);
317 
318     ret = bdrv_co_flush(s->bs);
319     (void) ret;
320 }
321 
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
325     qemu_coroutine_enter(co);
326 }
327 
328 static void qed_start_need_check_timer(BDRVQEDState *s)
329 {
330     trace_qed_start_need_check_timer(s);
331 
332     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
333      * migration.
334      */
335     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
336                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
337 }
338 
339 /* It's okay to call this multiple times or when no timer is started */
340 static void qed_cancel_need_check_timer(BDRVQEDState *s)
341 {
342     trace_qed_cancel_need_check_timer(s);
343     timer_del(s->need_check_timer);
344 }
345 
346 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
347 {
348     BDRVQEDState *s = bs->opaque;
349 
350     qed_cancel_need_check_timer(s);
351     timer_free(s->need_check_timer);
352 }
353 
354 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
355                                         AioContext *new_context)
356 {
357     BDRVQEDState *s = bs->opaque;
358 
359     s->need_check_timer = aio_timer_new(new_context,
360                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
361                                         qed_need_check_timer_cb, s);
362     if (s->header.features & QED_F_NEED_CHECK) {
363         qed_start_need_check_timer(s);
364     }
365 }
366 
367 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
368 {
369     BDRVQEDState *s = bs->opaque;
370 
371     /* Fire the timer immediately in order to start doing I/O as soon as the
372      * header is flushed.
373      */
374     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
375         qed_cancel_need_check_timer(s);
376         qed_need_check_timer_entry(s);
377     }
378 }
379 
380 static void bdrv_qed_init_state(BlockDriverState *bs)
381 {
382     BDRVQEDState *s = bs->opaque;
383 
384     memset(s, 0, sizeof(BDRVQEDState));
385     s->bs = bs;
386     qemu_co_mutex_init(&s->table_lock);
387     qemu_co_queue_init(&s->allocating_write_reqs);
388 }
389 
390 /* Called with table_lock held.  */
391 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
392                                          int flags, Error **errp)
393 {
394     BDRVQEDState *s = bs->opaque;
395     QEDHeader le_header;
396     int64_t file_size;
397     int ret;
398 
399     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
400     if (ret < 0) {
401         return ret;
402     }
403     qed_header_le_to_cpu(&le_header, &s->header);
404 
405     if (s->header.magic != QED_MAGIC) {
406         error_setg(errp, "Image not in QED format");
407         return -EINVAL;
408     }
409     if (s->header.features & ~QED_FEATURE_MASK) {
410         /* image uses unsupported feature bits */
411         error_setg(errp, "Unsupported QED features: %" PRIx64,
412                    s->header.features & ~QED_FEATURE_MASK);
413         return -ENOTSUP;
414     }
415     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
416         return -EINVAL;
417     }
418 
419     /* Round down file size to the last cluster */
420     file_size = bdrv_getlength(bs->file->bs);
421     if (file_size < 0) {
422         return file_size;
423     }
424     s->file_size = qed_start_of_cluster(s, file_size);
425 
426     if (!qed_is_table_size_valid(s->header.table_size)) {
427         return -EINVAL;
428     }
429     if (!qed_is_image_size_valid(s->header.image_size,
430                                  s->header.cluster_size,
431                                  s->header.table_size)) {
432         return -EINVAL;
433     }
434     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
435         return -EINVAL;
436     }
437 
438     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
439                       sizeof(uint64_t);
440     s->l2_shift = ctz32(s->header.cluster_size);
441     s->l2_mask = s->table_nelems - 1;
442     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
443 
444     /* Header size calculation must not overflow uint32_t */
445     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
446         return -EINVAL;
447     }
448 
449     if ((s->header.features & QED_F_BACKING_FILE)) {
450         if ((uint64_t)s->header.backing_filename_offset +
451             s->header.backing_filename_size >
452             s->header.cluster_size * s->header.header_size) {
453             return -EINVAL;
454         }
455 
456         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
457                               s->header.backing_filename_size, bs->backing_file,
458                               sizeof(bs->backing_file));
459         if (ret < 0) {
460             return ret;
461         }
462 
463         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
464             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
465         }
466     }
467 
468     /* Reset unknown autoclear feature bits.  This is a backwards
469      * compatibility mechanism that allows images to be opened by older
470      * programs, which "knock out" unknown feature bits.  When an image is
471      * opened by a newer program again it can detect that the autoclear
472      * feature is no longer valid.
473      */
474     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
475         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
476         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
477 
478         ret = qed_write_header_sync(s);
479         if (ret) {
480             return ret;
481         }
482 
483         /* From here on only known autoclear feature bits are valid */
484         bdrv_flush(bs->file->bs);
485     }
486 
487     s->l1_table = qed_alloc_table(s);
488     qed_init_l2_cache(&s->l2_cache);
489 
490     ret = qed_read_l1_table_sync(s);
491     if (ret) {
492         goto out;
493     }
494 
495     /* If image was not closed cleanly, check consistency */
496     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
497         /* Read-only images cannot be fixed.  There is no risk of corruption
498          * since write operations are not possible.  Therefore, allow
499          * potentially inconsistent images to be opened read-only.  This can
500          * aid data recovery from an otherwise inconsistent image.
501          */
502         if (!bdrv_is_read_only(bs->file->bs) &&
503             !(flags & BDRV_O_INACTIVE)) {
504             BdrvCheckResult result = {0};
505 
506             ret = qed_check(s, &result, true);
507             if (ret) {
508                 goto out;
509             }
510         }
511     }
512 
513     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
514 
515 out:
516     if (ret) {
517         qed_free_l2_cache(&s->l2_cache);
518         qemu_vfree(s->l1_table);
519     }
520     return ret;
521 }
522 
523 typedef struct QEDOpenCo {
524     BlockDriverState *bs;
525     QDict *options;
526     int flags;
527     Error **errp;
528     int ret;
529 } QEDOpenCo;
530 
531 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
532 {
533     QEDOpenCo *qoc = opaque;
534     BDRVQEDState *s = qoc->bs->opaque;
535 
536     qemu_co_mutex_lock(&s->table_lock);
537     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
538     qemu_co_mutex_unlock(&s->table_lock);
539 }
540 
541 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
542                          Error **errp)
543 {
544     QEDOpenCo qoc = {
545         .bs = bs,
546         .options = options,
547         .flags = flags,
548         .errp = errp,
549         .ret = -EINPROGRESS
550     };
551 
552     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
553                                false, errp);
554     if (!bs->file) {
555         return -EINVAL;
556     }
557 
558     bdrv_qed_init_state(bs);
559     if (qemu_in_coroutine()) {
560         bdrv_qed_open_entry(&qoc);
561     } else {
562         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
563         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
564     }
565     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
566     return qoc.ret;
567 }
568 
569 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
570 {
571     BDRVQEDState *s = bs->opaque;
572 
573     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
574 }
575 
576 /* We have nothing to do for QED reopen, stubs just return
577  * success */
578 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
579                                    BlockReopenQueue *queue, Error **errp)
580 {
581     return 0;
582 }
583 
584 static void bdrv_qed_close(BlockDriverState *bs)
585 {
586     BDRVQEDState *s = bs->opaque;
587 
588     bdrv_qed_detach_aio_context(bs);
589 
590     /* Ensure writes reach stable storage */
591     bdrv_flush(bs->file->bs);
592 
593     /* Clean shutdown, no check required on next open */
594     if (s->header.features & QED_F_NEED_CHECK) {
595         s->header.features &= ~QED_F_NEED_CHECK;
596         qed_write_header_sync(s);
597     }
598 
599     qed_free_l2_cache(&s->l2_cache);
600     qemu_vfree(s->l1_table);
601 }
602 
603 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
604                                            Error **errp)
605 {
606     BlockdevCreateOptionsQed *qed_opts;
607     BlockBackend *blk = NULL;
608     BlockDriverState *bs = NULL;
609 
610     QEDHeader header;
611     QEDHeader le_header;
612     uint8_t *l1_table = NULL;
613     size_t l1_size;
614     int ret = 0;
615 
616     assert(opts->driver == BLOCKDEV_DRIVER_QED);
617     qed_opts = &opts->u.qed;
618 
619     /* Validate options and set default values */
620     if (!qed_opts->has_cluster_size) {
621         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
622     }
623     if (!qed_opts->has_table_size) {
624         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
625     }
626 
627     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
628         error_setg(errp, "QED cluster size must be within range [%u, %u] "
629                          "and power of 2",
630                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
631         return -EINVAL;
632     }
633     if (!qed_is_table_size_valid(qed_opts->table_size)) {
634         error_setg(errp, "QED table size must be within range [%u, %u] "
635                          "and power of 2",
636                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
637         return -EINVAL;
638     }
639     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
640                                  qed_opts->table_size))
641     {
642         error_setg(errp, "QED image size must be a non-zero multiple of "
643                          "cluster size and less than %" PRIu64 " bytes",
644                    qed_max_image_size(qed_opts->cluster_size,
645                                       qed_opts->table_size));
646         return -EINVAL;
647     }
648 
649     /* Create BlockBackend to write to the image */
650     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
651     if (bs == NULL) {
652         return -EIO;
653     }
654 
655     blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
656     ret = blk_insert_bs(blk, bs, errp);
657     if (ret < 0) {
658         goto out;
659     }
660     blk_set_allow_write_beyond_eof(blk, true);
661 
662     /* Prepare image format */
663     header = (QEDHeader) {
664         .magic = QED_MAGIC,
665         .cluster_size = qed_opts->cluster_size,
666         .table_size = qed_opts->table_size,
667         .header_size = 1,
668         .features = 0,
669         .compat_features = 0,
670         .l1_table_offset = qed_opts->cluster_size,
671         .image_size = qed_opts->size,
672     };
673 
674     l1_size = header.cluster_size * header.table_size;
675 
676     /* File must start empty and grow, check truncate is supported */
677     ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
678     if (ret < 0) {
679         goto out;
680     }
681 
682     if (qed_opts->has_backing_file) {
683         header.features |= QED_F_BACKING_FILE;
684         header.backing_filename_offset = sizeof(le_header);
685         header.backing_filename_size = strlen(qed_opts->backing_file);
686 
687         if (qed_opts->has_backing_fmt) {
688             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
689             if (qed_fmt_is_raw(backing_fmt)) {
690                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
691             }
692         }
693     }
694 
695     qed_header_cpu_to_le(&header, &le_header);
696     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
697     if (ret < 0) {
698         goto out;
699     }
700     ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
701                      header.backing_filename_size, 0);
702     if (ret < 0) {
703         goto out;
704     }
705 
706     l1_table = g_malloc0(l1_size);
707     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
708     if (ret < 0) {
709         goto out;
710     }
711 
712     ret = 0; /* success */
713 out:
714     g_free(l1_table);
715     blk_unref(blk);
716     bdrv_unref(bs);
717     return ret;
718 }
719 
720 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
721                                                 QemuOpts *opts,
722                                                 Error **errp)
723 {
724     BlockdevCreateOptions *create_options = NULL;
725     QDict *qdict;
726     Visitor *v;
727     BlockDriverState *bs = NULL;
728     Error *local_err = NULL;
729     int ret;
730 
731     static const QDictRenames opt_renames[] = {
732         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
733         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
734         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
735         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
736         { NULL, NULL },
737     };
738 
739     /* Parse options and convert legacy syntax */
740     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
741 
742     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
743         ret = -EINVAL;
744         goto fail;
745     }
746 
747     /* Create and open the file (protocol layer) */
748     ret = bdrv_create_file(filename, opts, &local_err);
749     if (ret < 0) {
750         error_propagate(errp, local_err);
751         goto fail;
752     }
753 
754     bs = bdrv_open(filename, NULL, NULL,
755                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
756     if (bs == NULL) {
757         ret = -EIO;
758         goto fail;
759     }
760 
761     /* Now get the QAPI type BlockdevCreateOptions */
762     qdict_put_str(qdict, "driver", "qed");
763     qdict_put_str(qdict, "file", bs->node_name);
764 
765     v = qobject_input_visitor_new_flat_confused(qdict, errp);
766     if (!v) {
767         ret = -EINVAL;
768         goto fail;
769     }
770 
771     visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
772     visit_free(v);
773 
774     if (local_err) {
775         error_propagate(errp, local_err);
776         ret = -EINVAL;
777         goto fail;
778     }
779 
780     /* Silently round up size */
781     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
782     create_options->u.qed.size =
783         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
784 
785     /* Create the qed image (format layer) */
786     ret = bdrv_qed_co_create(create_options, errp);
787 
788 fail:
789     qobject_unref(qdict);
790     bdrv_unref(bs);
791     qapi_free_BlockdevCreateOptions(create_options);
792     return ret;
793 }
794 
795 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
796                                                  bool want_zero,
797                                                  int64_t pos, int64_t bytes,
798                                                  int64_t *pnum, int64_t *map,
799                                                  BlockDriverState **file)
800 {
801     BDRVQEDState *s = bs->opaque;
802     size_t len = MIN(bytes, SIZE_MAX);
803     int status;
804     QEDRequest request = { .l2_table = NULL };
805     uint64_t offset;
806     int ret;
807 
808     qemu_co_mutex_lock(&s->table_lock);
809     ret = qed_find_cluster(s, &request, pos, &len, &offset);
810 
811     *pnum = len;
812     switch (ret) {
813     case QED_CLUSTER_FOUND:
814         *map = offset | qed_offset_into_cluster(s, pos);
815         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
816         *file = bs->file->bs;
817         break;
818     case QED_CLUSTER_ZERO:
819         status = BDRV_BLOCK_ZERO;
820         break;
821     case QED_CLUSTER_L2:
822     case QED_CLUSTER_L1:
823         status = 0;
824         break;
825     default:
826         assert(ret < 0);
827         status = ret;
828         break;
829     }
830 
831     qed_unref_l2_cache_entry(request.l2_table);
832     qemu_co_mutex_unlock(&s->table_lock);
833 
834     return status;
835 }
836 
837 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
838 {
839     return acb->bs->opaque;
840 }
841 
842 /**
843  * Read from the backing file or zero-fill if no backing file
844  *
845  * @s:              QED state
846  * @pos:            Byte position in device
847  * @qiov:           Destination I/O vector
848  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
849  * @cb:             Completion function
850  * @opaque:         User data for completion function
851  *
852  * This function reads qiov->size bytes starting at pos from the backing file.
853  * If there is no backing file then zeroes are read.
854  */
855 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
856                                               QEMUIOVector *qiov,
857                                               QEMUIOVector **backing_qiov)
858 {
859     uint64_t backing_length = 0;
860     size_t size;
861     int ret;
862 
863     /* If there is a backing file, get its length.  Treat the absence of a
864      * backing file like a zero length backing file.
865      */
866     if (s->bs->backing) {
867         int64_t l = bdrv_getlength(s->bs->backing->bs);
868         if (l < 0) {
869             return l;
870         }
871         backing_length = l;
872     }
873 
874     /* Zero all sectors if reading beyond the end of the backing file */
875     if (pos >= backing_length ||
876         pos + qiov->size > backing_length) {
877         qemu_iovec_memset(qiov, 0, 0, qiov->size);
878     }
879 
880     /* Complete now if there are no backing file sectors to read */
881     if (pos >= backing_length) {
882         return 0;
883     }
884 
885     /* If the read straddles the end of the backing file, shorten it */
886     size = MIN((uint64_t)backing_length - pos, qiov->size);
887 
888     assert(*backing_qiov == NULL);
889     *backing_qiov = g_new(QEMUIOVector, 1);
890     qemu_iovec_init(*backing_qiov, qiov->niov);
891     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
892 
893     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
894     ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
895     if (ret < 0) {
896         return ret;
897     }
898     return 0;
899 }
900 
901 /**
902  * Copy data from backing file into the image
903  *
904  * @s:          QED state
905  * @pos:        Byte position in device
906  * @len:        Number of bytes
907  * @offset:     Byte offset in image file
908  */
909 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
910                                                    uint64_t pos, uint64_t len,
911                                                    uint64_t offset)
912 {
913     QEMUIOVector qiov;
914     QEMUIOVector *backing_qiov = NULL;
915     struct iovec iov;
916     int ret;
917 
918     /* Skip copy entirely if there is no work to do */
919     if (len == 0) {
920         return 0;
921     }
922 
923     iov = (struct iovec) {
924         .iov_base = qemu_blockalign(s->bs, len),
925         .iov_len = len,
926     };
927     qemu_iovec_init_external(&qiov, &iov, 1);
928 
929     ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
930 
931     if (backing_qiov) {
932         qemu_iovec_destroy(backing_qiov);
933         g_free(backing_qiov);
934         backing_qiov = NULL;
935     }
936 
937     if (ret) {
938         goto out;
939     }
940 
941     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
942     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
943     if (ret < 0) {
944         goto out;
945     }
946     ret = 0;
947 out:
948     qemu_vfree(iov.iov_base);
949     return ret;
950 }
951 
952 /**
953  * Link one or more contiguous clusters into a table
954  *
955  * @s:              QED state
956  * @table:          L2 table
957  * @index:          First cluster index
958  * @n:              Number of contiguous clusters
959  * @cluster:        First cluster offset
960  *
961  * The cluster offset may be an allocated byte offset in the image file, the
962  * zero cluster marker, or the unallocated cluster marker.
963  *
964  * Called with table_lock held.
965  */
966 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
967                                              int index, unsigned int n,
968                                              uint64_t cluster)
969 {
970     int i;
971     for (i = index; i < index + n; i++) {
972         table->offsets[i] = cluster;
973         if (!qed_offset_is_unalloc_cluster(cluster) &&
974             !qed_offset_is_zero_cluster(cluster)) {
975             cluster += s->header.cluster_size;
976         }
977     }
978 }
979 
980 /* Called with table_lock held.  */
981 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
982 {
983     BDRVQEDState *s = acb_to_s(acb);
984 
985     /* Free resources */
986     qemu_iovec_destroy(&acb->cur_qiov);
987     qed_unref_l2_cache_entry(acb->request.l2_table);
988 
989     /* Free the buffer we may have allocated for zero writes */
990     if (acb->flags & QED_AIOCB_ZERO) {
991         qemu_vfree(acb->qiov->iov[0].iov_base);
992         acb->qiov->iov[0].iov_base = NULL;
993     }
994 
995     /* Start next allocating write request waiting behind this one.  Note that
996      * requests enqueue themselves when they first hit an unallocated cluster
997      * but they wait until the entire request is finished before waking up the
998      * next request in the queue.  This ensures that we don't cycle through
999      * requests multiple times but rather finish one at a time completely.
1000      */
1001     if (acb == s->allocating_acb) {
1002         s->allocating_acb = NULL;
1003         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
1004             qemu_co_queue_next(&s->allocating_write_reqs);
1005         } else if (s->header.features & QED_F_NEED_CHECK) {
1006             qed_start_need_check_timer(s);
1007         }
1008     }
1009 }
1010 
1011 /**
1012  * Update L1 table with new L2 table offset and write it out
1013  *
1014  * Called with table_lock held.
1015  */
1016 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1017 {
1018     BDRVQEDState *s = acb_to_s(acb);
1019     CachedL2Table *l2_table = acb->request.l2_table;
1020     uint64_t l2_offset = l2_table->offset;
1021     int index, ret;
1022 
1023     index = qed_l1_index(s, acb->cur_pos);
1024     s->l1_table->offsets[index] = l2_table->offset;
1025 
1026     ret = qed_write_l1_table(s, index, 1);
1027 
1028     /* Commit the current L2 table to the cache */
1029     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1030 
1031     /* This is guaranteed to succeed because we just committed the entry to the
1032      * cache.
1033      */
1034     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1035     assert(acb->request.l2_table != NULL);
1036 
1037     return ret;
1038 }
1039 
1040 
1041 /**
1042  * Update L2 table with new cluster offsets and write them out
1043  *
1044  * Called with table_lock held.
1045  */
1046 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1047 {
1048     BDRVQEDState *s = acb_to_s(acb);
1049     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1050     int index, ret;
1051 
1052     if (need_alloc) {
1053         qed_unref_l2_cache_entry(acb->request.l2_table);
1054         acb->request.l2_table = qed_new_l2_table(s);
1055     }
1056 
1057     index = qed_l2_index(s, acb->cur_pos);
1058     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1059                          offset);
1060 
1061     if (need_alloc) {
1062         /* Write out the whole new L2 table */
1063         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1064         if (ret) {
1065             return ret;
1066         }
1067         return qed_aio_write_l1_update(acb);
1068     } else {
1069         /* Write out only the updated part of the L2 table */
1070         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1071                                  false);
1072         if (ret) {
1073             return ret;
1074         }
1075     }
1076     return 0;
1077 }
1078 
1079 /**
1080  * Write data to the image file
1081  *
1082  * Called with table_lock *not* held.
1083  */
1084 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1085 {
1086     BDRVQEDState *s = acb_to_s(acb);
1087     uint64_t offset = acb->cur_cluster +
1088                       qed_offset_into_cluster(s, acb->cur_pos);
1089 
1090     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1091 
1092     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1093     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1094                            &acb->cur_qiov, 0);
1095 }
1096 
1097 /**
1098  * Populate untouched regions of new data cluster
1099  *
1100  * Called with table_lock held.
1101  */
1102 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1103 {
1104     BDRVQEDState *s = acb_to_s(acb);
1105     uint64_t start, len, offset;
1106     int ret;
1107 
1108     qemu_co_mutex_unlock(&s->table_lock);
1109 
1110     /* Populate front untouched region of new data cluster */
1111     start = qed_start_of_cluster(s, acb->cur_pos);
1112     len = qed_offset_into_cluster(s, acb->cur_pos);
1113 
1114     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1115     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1116     if (ret < 0) {
1117         goto out;
1118     }
1119 
1120     /* Populate back untouched region of new data cluster */
1121     start = acb->cur_pos + acb->cur_qiov.size;
1122     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1123     offset = acb->cur_cluster +
1124              qed_offset_into_cluster(s, acb->cur_pos) +
1125              acb->cur_qiov.size;
1126 
1127     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1128     ret = qed_copy_from_backing_file(s, start, len, offset);
1129     if (ret < 0) {
1130         goto out;
1131     }
1132 
1133     ret = qed_aio_write_main(acb);
1134     if (ret < 0) {
1135         goto out;
1136     }
1137 
1138     if (s->bs->backing) {
1139         /*
1140          * Flush new data clusters before updating the L2 table
1141          *
1142          * This flush is necessary when a backing file is in use.  A crash
1143          * during an allocating write could result in empty clusters in the
1144          * image.  If the write only touched a subregion of the cluster,
1145          * then backing image sectors have been lost in the untouched
1146          * region.  The solution is to flush after writing a new data
1147          * cluster and before updating the L2 table.
1148          */
1149         ret = bdrv_co_flush(s->bs->file->bs);
1150     }
1151 
1152 out:
1153     qemu_co_mutex_lock(&s->table_lock);
1154     return ret;
1155 }
1156 
1157 /**
1158  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1159  */
1160 static bool qed_should_set_need_check(BDRVQEDState *s)
1161 {
1162     /* The flush before L2 update path ensures consistency */
1163     if (s->bs->backing) {
1164         return false;
1165     }
1166 
1167     return !(s->header.features & QED_F_NEED_CHECK);
1168 }
1169 
1170 /**
1171  * Write new data cluster
1172  *
1173  * @acb:        Write request
1174  * @len:        Length in bytes
1175  *
1176  * This path is taken when writing to previously unallocated clusters.
1177  *
1178  * Called with table_lock held.
1179  */
1180 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1181 {
1182     BDRVQEDState *s = acb_to_s(acb);
1183     int ret;
1184 
1185     /* Cancel timer when the first allocating request comes in */
1186     if (s->allocating_acb == NULL) {
1187         qed_cancel_need_check_timer(s);
1188     }
1189 
1190     /* Freeze this request if another allocating write is in progress */
1191     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1192         if (s->allocating_acb != NULL) {
1193             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1194             assert(s->allocating_acb == NULL);
1195         }
1196         s->allocating_acb = acb;
1197         return -EAGAIN; /* start over with looking up table entries */
1198     }
1199 
1200     acb->cur_nclusters = qed_bytes_to_clusters(s,
1201             qed_offset_into_cluster(s, acb->cur_pos) + len);
1202     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1203 
1204     if (acb->flags & QED_AIOCB_ZERO) {
1205         /* Skip ahead if the clusters are already zero */
1206         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1207             return 0;
1208         }
1209         acb->cur_cluster = 1;
1210     } else {
1211         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1212     }
1213 
1214     if (qed_should_set_need_check(s)) {
1215         s->header.features |= QED_F_NEED_CHECK;
1216         ret = qed_write_header(s);
1217         if (ret < 0) {
1218             return ret;
1219         }
1220     }
1221 
1222     if (!(acb->flags & QED_AIOCB_ZERO)) {
1223         ret = qed_aio_write_cow(acb);
1224         if (ret < 0) {
1225             return ret;
1226         }
1227     }
1228 
1229     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1230 }
1231 
1232 /**
1233  * Write data cluster in place
1234  *
1235  * @acb:        Write request
1236  * @offset:     Cluster offset in bytes
1237  * @len:        Length in bytes
1238  *
1239  * This path is taken when writing to already allocated clusters.
1240  *
1241  * Called with table_lock held.
1242  */
1243 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1244                                               size_t len)
1245 {
1246     BDRVQEDState *s = acb_to_s(acb);
1247     int r;
1248 
1249     qemu_co_mutex_unlock(&s->table_lock);
1250 
1251     /* Allocate buffer for zero writes */
1252     if (acb->flags & QED_AIOCB_ZERO) {
1253         struct iovec *iov = acb->qiov->iov;
1254 
1255         if (!iov->iov_base) {
1256             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1257             if (iov->iov_base == NULL) {
1258                 r = -ENOMEM;
1259                 goto out;
1260             }
1261             memset(iov->iov_base, 0, iov->iov_len);
1262         }
1263     }
1264 
1265     /* Calculate the I/O vector */
1266     acb->cur_cluster = offset;
1267     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1268 
1269     /* Do the actual write.  */
1270     r = qed_aio_write_main(acb);
1271 out:
1272     qemu_co_mutex_lock(&s->table_lock);
1273     return r;
1274 }
1275 
1276 /**
1277  * Write data cluster
1278  *
1279  * @opaque:     Write request
1280  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1281  * @offset:     Cluster offset in bytes
1282  * @len:        Length in bytes
1283  *
1284  * Called with table_lock held.
1285  */
1286 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1287                                            uint64_t offset, size_t len)
1288 {
1289     QEDAIOCB *acb = opaque;
1290 
1291     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1292 
1293     acb->find_cluster_ret = ret;
1294 
1295     switch (ret) {
1296     case QED_CLUSTER_FOUND:
1297         return qed_aio_write_inplace(acb, offset, len);
1298 
1299     case QED_CLUSTER_L2:
1300     case QED_CLUSTER_L1:
1301     case QED_CLUSTER_ZERO:
1302         return qed_aio_write_alloc(acb, len);
1303 
1304     default:
1305         g_assert_not_reached();
1306     }
1307 }
1308 
1309 /**
1310  * Read data cluster
1311  *
1312  * @opaque:     Read request
1313  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1314  * @offset:     Cluster offset in bytes
1315  * @len:        Length in bytes
1316  *
1317  * Called with table_lock held.
1318  */
1319 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1320                                           uint64_t offset, size_t len)
1321 {
1322     QEDAIOCB *acb = opaque;
1323     BDRVQEDState *s = acb_to_s(acb);
1324     BlockDriverState *bs = acb->bs;
1325     int r;
1326 
1327     qemu_co_mutex_unlock(&s->table_lock);
1328 
1329     /* Adjust offset into cluster */
1330     offset += qed_offset_into_cluster(s, acb->cur_pos);
1331 
1332     trace_qed_aio_read_data(s, acb, ret, offset, len);
1333 
1334     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1335 
1336     /* Handle zero cluster and backing file reads, otherwise read
1337      * data cluster directly.
1338      */
1339     if (ret == QED_CLUSTER_ZERO) {
1340         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1341         r = 0;
1342     } else if (ret != QED_CLUSTER_FOUND) {
1343         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1344                                   &acb->backing_qiov);
1345     } else {
1346         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1347         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1348                            &acb->cur_qiov, 0);
1349     }
1350 
1351     qemu_co_mutex_lock(&s->table_lock);
1352     return r;
1353 }
1354 
1355 /**
1356  * Begin next I/O or complete the request
1357  */
1358 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1359 {
1360     BDRVQEDState *s = acb_to_s(acb);
1361     uint64_t offset;
1362     size_t len;
1363     int ret;
1364 
1365     qemu_co_mutex_lock(&s->table_lock);
1366     while (1) {
1367         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1368 
1369         if (acb->backing_qiov) {
1370             qemu_iovec_destroy(acb->backing_qiov);
1371             g_free(acb->backing_qiov);
1372             acb->backing_qiov = NULL;
1373         }
1374 
1375         acb->qiov_offset += acb->cur_qiov.size;
1376         acb->cur_pos += acb->cur_qiov.size;
1377         qemu_iovec_reset(&acb->cur_qiov);
1378 
1379         /* Complete request */
1380         if (acb->cur_pos >= acb->end_pos) {
1381             ret = 0;
1382             break;
1383         }
1384 
1385         /* Find next cluster and start I/O */
1386         len = acb->end_pos - acb->cur_pos;
1387         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1388         if (ret < 0) {
1389             break;
1390         }
1391 
1392         if (acb->flags & QED_AIOCB_WRITE) {
1393             ret = qed_aio_write_data(acb, ret, offset, len);
1394         } else {
1395             ret = qed_aio_read_data(acb, ret, offset, len);
1396         }
1397 
1398         if (ret < 0 && ret != -EAGAIN) {
1399             break;
1400         }
1401     }
1402 
1403     trace_qed_aio_complete(s, acb, ret);
1404     qed_aio_complete(acb);
1405     qemu_co_mutex_unlock(&s->table_lock);
1406     return ret;
1407 }
1408 
1409 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1410                                        QEMUIOVector *qiov, int nb_sectors,
1411                                        int flags)
1412 {
1413     QEDAIOCB acb = {
1414         .bs         = bs,
1415         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1416         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1417         .qiov       = qiov,
1418         .flags      = flags,
1419     };
1420     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1421 
1422     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1423 
1424     /* Start request */
1425     return qed_aio_next_io(&acb);
1426 }
1427 
1428 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1429                                           int64_t sector_num, int nb_sectors,
1430                                           QEMUIOVector *qiov)
1431 {
1432     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1433 }
1434 
1435 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1436                                            int64_t sector_num, int nb_sectors,
1437                                            QEMUIOVector *qiov, int flags)
1438 {
1439     assert(!flags);
1440     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1441 }
1442 
1443 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1444                                                   int64_t offset,
1445                                                   int bytes,
1446                                                   BdrvRequestFlags flags)
1447 {
1448     BDRVQEDState *s = bs->opaque;
1449     QEMUIOVector qiov;
1450     struct iovec iov;
1451 
1452     /* Fall back if the request is not aligned */
1453     if (qed_offset_into_cluster(s, offset) ||
1454         qed_offset_into_cluster(s, bytes)) {
1455         return -ENOTSUP;
1456     }
1457 
1458     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1459      * then it will be allocated during request processing.
1460      */
1461     iov.iov_base = NULL;
1462     iov.iov_len = bytes;
1463 
1464     qemu_iovec_init_external(&qiov, &iov, 1);
1465     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1466                           bytes >> BDRV_SECTOR_BITS,
1467                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1468 }
1469 
1470 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1471                                              int64_t offset,
1472                                              PreallocMode prealloc,
1473                                              Error **errp)
1474 {
1475     BDRVQEDState *s = bs->opaque;
1476     uint64_t old_image_size;
1477     int ret;
1478 
1479     if (prealloc != PREALLOC_MODE_OFF) {
1480         error_setg(errp, "Unsupported preallocation mode '%s'",
1481                    PreallocMode_str(prealloc));
1482         return -ENOTSUP;
1483     }
1484 
1485     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1486                                  s->header.table_size)) {
1487         error_setg(errp, "Invalid image size specified");
1488         return -EINVAL;
1489     }
1490 
1491     if ((uint64_t)offset < s->header.image_size) {
1492         error_setg(errp, "Shrinking images is currently not supported");
1493         return -ENOTSUP;
1494     }
1495 
1496     old_image_size = s->header.image_size;
1497     s->header.image_size = offset;
1498     ret = qed_write_header_sync(s);
1499     if (ret < 0) {
1500         s->header.image_size = old_image_size;
1501         error_setg_errno(errp, -ret, "Failed to update the image size");
1502     }
1503     return ret;
1504 }
1505 
1506 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1507 {
1508     BDRVQEDState *s = bs->opaque;
1509     return s->header.image_size;
1510 }
1511 
1512 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1513 {
1514     BDRVQEDState *s = bs->opaque;
1515 
1516     memset(bdi, 0, sizeof(*bdi));
1517     bdi->cluster_size = s->header.cluster_size;
1518     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1519     bdi->unallocated_blocks_are_zero = true;
1520     return 0;
1521 }
1522 
1523 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1524                                         const char *backing_file,
1525                                         const char *backing_fmt)
1526 {
1527     BDRVQEDState *s = bs->opaque;
1528     QEDHeader new_header, le_header;
1529     void *buffer;
1530     size_t buffer_len, backing_file_len;
1531     int ret;
1532 
1533     /* Refuse to set backing filename if unknown compat feature bits are
1534      * active.  If the image uses an unknown compat feature then we may not
1535      * know the layout of data following the header structure and cannot safely
1536      * add a new string.
1537      */
1538     if (backing_file && (s->header.compat_features &
1539                          ~QED_COMPAT_FEATURE_MASK)) {
1540         return -ENOTSUP;
1541     }
1542 
1543     memcpy(&new_header, &s->header, sizeof(new_header));
1544 
1545     new_header.features &= ~(QED_F_BACKING_FILE |
1546                              QED_F_BACKING_FORMAT_NO_PROBE);
1547 
1548     /* Adjust feature flags */
1549     if (backing_file) {
1550         new_header.features |= QED_F_BACKING_FILE;
1551 
1552         if (qed_fmt_is_raw(backing_fmt)) {
1553             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1554         }
1555     }
1556 
1557     /* Calculate new header size */
1558     backing_file_len = 0;
1559 
1560     if (backing_file) {
1561         backing_file_len = strlen(backing_file);
1562     }
1563 
1564     buffer_len = sizeof(new_header);
1565     new_header.backing_filename_offset = buffer_len;
1566     new_header.backing_filename_size = backing_file_len;
1567     buffer_len += backing_file_len;
1568 
1569     /* Make sure we can rewrite header without failing */
1570     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1571         return -ENOSPC;
1572     }
1573 
1574     /* Prepare new header */
1575     buffer = g_malloc(buffer_len);
1576 
1577     qed_header_cpu_to_le(&new_header, &le_header);
1578     memcpy(buffer, &le_header, sizeof(le_header));
1579     buffer_len = sizeof(le_header);
1580 
1581     if (backing_file) {
1582         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1583         buffer_len += backing_file_len;
1584     }
1585 
1586     /* Write new header */
1587     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1588     g_free(buffer);
1589     if (ret == 0) {
1590         memcpy(&s->header, &new_header, sizeof(new_header));
1591     }
1592     return ret;
1593 }
1594 
1595 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1596                                                       Error **errp)
1597 {
1598     BDRVQEDState *s = bs->opaque;
1599     Error *local_err = NULL;
1600     int ret;
1601 
1602     bdrv_qed_close(bs);
1603 
1604     bdrv_qed_init_state(bs);
1605     qemu_co_mutex_lock(&s->table_lock);
1606     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1607     qemu_co_mutex_unlock(&s->table_lock);
1608     if (local_err) {
1609         error_propagate(errp, local_err);
1610         error_prepend(errp, "Could not reopen qed layer: ");
1611         return;
1612     } else if (ret < 0) {
1613         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1614         return;
1615     }
1616 }
1617 
1618 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1619                              BdrvCheckMode fix)
1620 {
1621     BDRVQEDState *s = bs->opaque;
1622     int ret;
1623 
1624     qemu_co_mutex_lock(&s->table_lock);
1625     ret = qed_check(s, result, !!fix);
1626     qemu_co_mutex_unlock(&s->table_lock);
1627 
1628     return ret;
1629 }
1630 
1631 static QemuOptsList qed_create_opts = {
1632     .name = "qed-create-opts",
1633     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1634     .desc = {
1635         {
1636             .name = BLOCK_OPT_SIZE,
1637             .type = QEMU_OPT_SIZE,
1638             .help = "Virtual disk size"
1639         },
1640         {
1641             .name = BLOCK_OPT_BACKING_FILE,
1642             .type = QEMU_OPT_STRING,
1643             .help = "File name of a base image"
1644         },
1645         {
1646             .name = BLOCK_OPT_BACKING_FMT,
1647             .type = QEMU_OPT_STRING,
1648             .help = "Image format of the base image"
1649         },
1650         {
1651             .name = BLOCK_OPT_CLUSTER_SIZE,
1652             .type = QEMU_OPT_SIZE,
1653             .help = "Cluster size (in bytes)",
1654             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1655         },
1656         {
1657             .name = BLOCK_OPT_TABLE_SIZE,
1658             .type = QEMU_OPT_SIZE,
1659             .help = "L1/L2 table size (in clusters)"
1660         },
1661         { /* end of list */ }
1662     }
1663 };
1664 
1665 static BlockDriver bdrv_qed = {
1666     .format_name              = "qed",
1667     .instance_size            = sizeof(BDRVQEDState),
1668     .create_opts              = &qed_create_opts,
1669     .supports_backing         = true,
1670 
1671     .bdrv_probe               = bdrv_qed_probe,
1672     .bdrv_open                = bdrv_qed_open,
1673     .bdrv_close               = bdrv_qed_close,
1674     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1675     .bdrv_child_perm          = bdrv_format_default_perms,
1676     .bdrv_co_create           = bdrv_qed_co_create,
1677     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1678     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1679     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1680     .bdrv_co_readv            = bdrv_qed_co_readv,
1681     .bdrv_co_writev           = bdrv_qed_co_writev,
1682     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1683     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1684     .bdrv_getlength           = bdrv_qed_getlength,
1685     .bdrv_get_info            = bdrv_qed_get_info,
1686     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1687     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1688     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1689     .bdrv_co_check            = bdrv_qed_co_check,
1690     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1691     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1692     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1693 };
1694 
1695 static void bdrv_qed_init(void)
1696 {
1697     bdrv_register(&bdrv_qed);
1698 }
1699 
1700 block_init(bdrv_qed_init);
1701