xref: /qemu/block/qed.c (revision 7267c094)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu-timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qerror.h"
19 
20 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21 {
22     QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23     bool finished = false;
24 
25     /* Wait for the request to finish */
26     acb->finished = &finished;
27     while (!finished) {
28         qemu_aio_wait();
29     }
30 }
31 
32 static AIOPool qed_aio_pool = {
33     .aiocb_size         = sizeof(QEDAIOCB),
34     .cancel             = qed_aio_cancel,
35 };
36 
37 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38                           const char *filename)
39 {
40     const QEDHeader *header = (const QEDHeader *)buf;
41 
42     if (buf_size < sizeof(*header)) {
43         return 0;
44     }
45     if (le32_to_cpu(header->magic) != QED_MAGIC) {
46         return 0;
47     }
48     return 100;
49 }
50 
51 /**
52  * Check whether an image format is raw
53  *
54  * @fmt:    Backing file format, may be NULL
55  */
56 static bool qed_fmt_is_raw(const char *fmt)
57 {
58     return fmt && strcmp(fmt, "raw") == 0;
59 }
60 
61 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62 {
63     cpu->magic = le32_to_cpu(le->magic);
64     cpu->cluster_size = le32_to_cpu(le->cluster_size);
65     cpu->table_size = le32_to_cpu(le->table_size);
66     cpu->header_size = le32_to_cpu(le->header_size);
67     cpu->features = le64_to_cpu(le->features);
68     cpu->compat_features = le64_to_cpu(le->compat_features);
69     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71     cpu->image_size = le64_to_cpu(le->image_size);
72     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
74 }
75 
76 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77 {
78     le->magic = cpu_to_le32(cpu->magic);
79     le->cluster_size = cpu_to_le32(cpu->cluster_size);
80     le->table_size = cpu_to_le32(cpu->table_size);
81     le->header_size = cpu_to_le32(cpu->header_size);
82     le->features = cpu_to_le64(cpu->features);
83     le->compat_features = cpu_to_le64(cpu->compat_features);
84     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86     le->image_size = cpu_to_le64(cpu->image_size);
87     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
89 }
90 
91 static int qed_write_header_sync(BDRVQEDState *s)
92 {
93     QEDHeader le;
94     int ret;
95 
96     qed_header_cpu_to_le(&s->header, &le);
97     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98     if (ret != sizeof(le)) {
99         return ret;
100     }
101     return 0;
102 }
103 
104 typedef struct {
105     GenericCB gencb;
106     BDRVQEDState *s;
107     struct iovec iov;
108     QEMUIOVector qiov;
109     int nsectors;
110     uint8_t *buf;
111 } QEDWriteHeaderCB;
112 
113 static void qed_write_header_cb(void *opaque, int ret)
114 {
115     QEDWriteHeaderCB *write_header_cb = opaque;
116 
117     qemu_vfree(write_header_cb->buf);
118     gencb_complete(write_header_cb, ret);
119 }
120 
121 static void qed_write_header_read_cb(void *opaque, int ret)
122 {
123     QEDWriteHeaderCB *write_header_cb = opaque;
124     BDRVQEDState *s = write_header_cb->s;
125     BlockDriverAIOCB *acb;
126 
127     if (ret) {
128         qed_write_header_cb(write_header_cb, ret);
129         return;
130     }
131 
132     /* Update header */
133     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134 
135     acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136                           write_header_cb->nsectors, qed_write_header_cb,
137                           write_header_cb);
138     if (!acb) {
139         qed_write_header_cb(write_header_cb, -EIO);
140     }
141 }
142 
143 /**
144  * Update header in-place (does not rewrite backing filename or other strings)
145  *
146  * This function only updates known header fields in-place and does not affect
147  * extra data after the QED header.
148  */
149 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150                              void *opaque)
151 {
152     /* We must write full sectors for O_DIRECT but cannot necessarily generate
153      * the data following the header if an unrecognized compat feature is
154      * active.  Therefore, first read the sectors containing the header, update
155      * them, and write back.
156      */
157 
158     BlockDriverAIOCB *acb;
159     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160                    BDRV_SECTOR_SIZE;
161     size_t len = nsectors * BDRV_SECTOR_SIZE;
162     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163                                                     cb, opaque);
164 
165     write_header_cb->s = s;
166     write_header_cb->nsectors = nsectors;
167     write_header_cb->buf = qemu_blockalign(s->bs, len);
168     write_header_cb->iov.iov_base = write_header_cb->buf;
169     write_header_cb->iov.iov_len = len;
170     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171 
172     acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173                          qed_write_header_read_cb, write_header_cb);
174     if (!acb) {
175         qed_write_header_cb(write_header_cb, -EIO);
176     }
177 }
178 
179 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180 {
181     uint64_t table_entries;
182     uint64_t l2_size;
183 
184     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185     l2_size = table_entries * cluster_size;
186 
187     return l2_size * table_entries;
188 }
189 
190 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191 {
192     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193         cluster_size > QED_MAX_CLUSTER_SIZE) {
194         return false;
195     }
196     if (cluster_size & (cluster_size - 1)) {
197         return false; /* not power of 2 */
198     }
199     return true;
200 }
201 
202 static bool qed_is_table_size_valid(uint32_t table_size)
203 {
204     if (table_size < QED_MIN_TABLE_SIZE ||
205         table_size > QED_MAX_TABLE_SIZE) {
206         return false;
207     }
208     if (table_size & (table_size - 1)) {
209         return false; /* not power of 2 */
210     }
211     return true;
212 }
213 
214 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215                                     uint32_t table_size)
216 {
217     if (image_size % BDRV_SECTOR_SIZE != 0) {
218         return false; /* not multiple of sector size */
219     }
220     if (image_size > qed_max_image_size(cluster_size, table_size)) {
221         return false; /* image is too large */
222     }
223     return true;
224 }
225 
226 /**
227  * Read a string of known length from the image file
228  *
229  * @file:       Image file
230  * @offset:     File offset to start of string, in bytes
231  * @n:          String length in bytes
232  * @buf:        Destination buffer
233  * @buflen:     Destination buffer length in bytes
234  * @ret:        0 on success, -errno on failure
235  *
236  * The string is NUL-terminated.
237  */
238 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239                            char *buf, size_t buflen)
240 {
241     int ret;
242     if (n >= buflen) {
243         return -EINVAL;
244     }
245     ret = bdrv_pread(file, offset, buf, n);
246     if (ret < 0) {
247         return ret;
248     }
249     buf[n] = '\0';
250     return 0;
251 }
252 
253 /**
254  * Allocate new clusters
255  *
256  * @s:          QED state
257  * @n:          Number of contiguous clusters to allocate
258  * @ret:        Offset of first allocated cluster
259  *
260  * This function only produces the offset where the new clusters should be
261  * written.  It updates BDRVQEDState but does not make any changes to the image
262  * file.
263  */
264 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265 {
266     uint64_t offset = s->file_size;
267     s->file_size += n * s->header.cluster_size;
268     return offset;
269 }
270 
271 QEDTable *qed_alloc_table(BDRVQEDState *s)
272 {
273     /* Honor O_DIRECT memory alignment requirements */
274     return qemu_blockalign(s->bs,
275                            s->header.cluster_size * s->header.table_size);
276 }
277 
278 /**
279  * Allocate a new zeroed L2 table
280  */
281 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282 {
283     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284 
285     l2_table->table = qed_alloc_table(s);
286     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287 
288     memset(l2_table->table->offsets, 0,
289            s->header.cluster_size * s->header.table_size);
290     return l2_table;
291 }
292 
293 static void qed_aio_next_io(void *opaque, int ret);
294 
295 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
296 {
297     assert(!s->allocating_write_reqs_plugged);
298 
299     s->allocating_write_reqs_plugged = true;
300 }
301 
302 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
303 {
304     QEDAIOCB *acb;
305 
306     assert(s->allocating_write_reqs_plugged);
307 
308     s->allocating_write_reqs_plugged = false;
309 
310     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311     if (acb) {
312         qed_aio_next_io(acb, 0);
313     }
314 }
315 
316 static void qed_finish_clear_need_check(void *opaque, int ret)
317 {
318     /* Do nothing */
319 }
320 
321 static void qed_flush_after_clear_need_check(void *opaque, int ret)
322 {
323     BDRVQEDState *s = opaque;
324 
325     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
326 
327     /* No need to wait until flush completes */
328     qed_unplug_allocating_write_reqs(s);
329 }
330 
331 static void qed_clear_need_check(void *opaque, int ret)
332 {
333     BDRVQEDState *s = opaque;
334 
335     if (ret) {
336         qed_unplug_allocating_write_reqs(s);
337         return;
338     }
339 
340     s->header.features &= ~QED_F_NEED_CHECK;
341     qed_write_header(s, qed_flush_after_clear_need_check, s);
342 }
343 
344 static void qed_need_check_timer_cb(void *opaque)
345 {
346     BDRVQEDState *s = opaque;
347 
348     /* The timer should only fire when allocating writes have drained */
349     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
350 
351     trace_qed_need_check_timer_cb(s);
352 
353     qed_plug_allocating_write_reqs(s);
354 
355     /* Ensure writes are on disk before clearing flag */
356     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
357 }
358 
359 static void qed_start_need_check_timer(BDRVQEDState *s)
360 {
361     trace_qed_start_need_check_timer(s);
362 
363     /* Use vm_clock so we don't alter the image file while suspended for
364      * migration.
365      */
366     qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
368 }
369 
370 /* It's okay to call this multiple times or when no timer is started */
371 static void qed_cancel_need_check_timer(BDRVQEDState *s)
372 {
373     trace_qed_cancel_need_check_timer(s);
374     qemu_del_timer(s->need_check_timer);
375 }
376 
377 static int bdrv_qed_open(BlockDriverState *bs, int flags)
378 {
379     BDRVQEDState *s = bs->opaque;
380     QEDHeader le_header;
381     int64_t file_size;
382     int ret;
383 
384     s->bs = bs;
385     QSIMPLEQ_INIT(&s->allocating_write_reqs);
386 
387     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388     if (ret < 0) {
389         return ret;
390     }
391     ret = 0; /* ret should always be 0 or -errno */
392     qed_header_le_to_cpu(&le_header, &s->header);
393 
394     if (s->header.magic != QED_MAGIC) {
395         return -EINVAL;
396     }
397     if (s->header.features & ~QED_FEATURE_MASK) {
398         /* image uses unsupported feature bits */
399         char buf[64];
400         snprintf(buf, sizeof(buf), "%" PRIx64,
401             s->header.features & ~QED_FEATURE_MASK);
402         qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403             bs->device_name, "QED", buf);
404         return -ENOTSUP;
405     }
406     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407         return -EINVAL;
408     }
409 
410     /* Round down file size to the last cluster */
411     file_size = bdrv_getlength(bs->file);
412     if (file_size < 0) {
413         return file_size;
414     }
415     s->file_size = qed_start_of_cluster(s, file_size);
416 
417     if (!qed_is_table_size_valid(s->header.table_size)) {
418         return -EINVAL;
419     }
420     if (!qed_is_image_size_valid(s->header.image_size,
421                                  s->header.cluster_size,
422                                  s->header.table_size)) {
423         return -EINVAL;
424     }
425     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426         return -EINVAL;
427     }
428 
429     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430                       sizeof(uint64_t);
431     s->l2_shift = ffs(s->header.cluster_size) - 1;
432     s->l2_mask = s->table_nelems - 1;
433     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 
435     if ((s->header.features & QED_F_BACKING_FILE)) {
436         if ((uint64_t)s->header.backing_filename_offset +
437             s->header.backing_filename_size >
438             s->header.cluster_size * s->header.header_size) {
439             return -EINVAL;
440         }
441 
442         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443                               s->header.backing_filename_size, bs->backing_file,
444                               sizeof(bs->backing_file));
445         if (ret < 0) {
446             return ret;
447         }
448 
449         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451         }
452     }
453 
454     /* Reset unknown autoclear feature bits.  This is a backwards
455      * compatibility mechanism that allows images to be opened by older
456      * programs, which "knock out" unknown feature bits.  When an image is
457      * opened by a newer program again it can detect that the autoclear
458      * feature is no longer valid.
459      */
460     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461         !bdrv_is_read_only(bs->file)) {
462         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 
464         ret = qed_write_header_sync(s);
465         if (ret) {
466             return ret;
467         }
468 
469         /* From here on only known autoclear feature bits are valid */
470         bdrv_flush(bs->file);
471     }
472 
473     s->l1_table = qed_alloc_table(s);
474     qed_init_l2_cache(&s->l2_cache);
475 
476     ret = qed_read_l1_table_sync(s);
477     if (ret) {
478         goto out;
479     }
480 
481     /* If image was not closed cleanly, check consistency */
482     if (s->header.features & QED_F_NEED_CHECK) {
483         /* Read-only images cannot be fixed.  There is no risk of corruption
484          * since write operations are not possible.  Therefore, allow
485          * potentially inconsistent images to be opened read-only.  This can
486          * aid data recovery from an otherwise inconsistent image.
487          */
488         if (!bdrv_is_read_only(bs->file)) {
489             BdrvCheckResult result = {0};
490 
491             ret = qed_check(s, &result, true);
492             if (ret) {
493                 goto out;
494             }
495             if (!result.corruptions && !result.check_errors) {
496                 /* Ensure fixes reach storage before clearing check bit */
497                 bdrv_flush(s->bs);
498 
499                 s->header.features &= ~QED_F_NEED_CHECK;
500                 qed_write_header_sync(s);
501             }
502         }
503     }
504 
505     s->need_check_timer = qemu_new_timer_ns(vm_clock,
506                                             qed_need_check_timer_cb, s);
507 
508 out:
509     if (ret) {
510         qed_free_l2_cache(&s->l2_cache);
511         qemu_vfree(s->l1_table);
512     }
513     return ret;
514 }
515 
516 static void bdrv_qed_close(BlockDriverState *bs)
517 {
518     BDRVQEDState *s = bs->opaque;
519 
520     qed_cancel_need_check_timer(s);
521     qemu_free_timer(s->need_check_timer);
522 
523     /* Ensure writes reach stable storage */
524     bdrv_flush(bs->file);
525 
526     /* Clean shutdown, no check required on next open */
527     if (s->header.features & QED_F_NEED_CHECK) {
528         s->header.features &= ~QED_F_NEED_CHECK;
529         qed_write_header_sync(s);
530     }
531 
532     qed_free_l2_cache(&s->l2_cache);
533     qemu_vfree(s->l1_table);
534 }
535 
536 static int bdrv_qed_flush(BlockDriverState *bs)
537 {
538     return bdrv_flush(bs->file);
539 }
540 
541 static int qed_create(const char *filename, uint32_t cluster_size,
542                       uint64_t image_size, uint32_t table_size,
543                       const char *backing_file, const char *backing_fmt)
544 {
545     QEDHeader header = {
546         .magic = QED_MAGIC,
547         .cluster_size = cluster_size,
548         .table_size = table_size,
549         .header_size = 1,
550         .features = 0,
551         .compat_features = 0,
552         .l1_table_offset = cluster_size,
553         .image_size = image_size,
554     };
555     QEDHeader le_header;
556     uint8_t *l1_table = NULL;
557     size_t l1_size = header.cluster_size * header.table_size;
558     int ret = 0;
559     BlockDriverState *bs = NULL;
560 
561     ret = bdrv_create_file(filename, NULL);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
567     if (ret < 0) {
568         return ret;
569     }
570 
571     /* File must start empty and grow, check truncate is supported */
572     ret = bdrv_truncate(bs, 0);
573     if (ret < 0) {
574         goto out;
575     }
576 
577     if (backing_file) {
578         header.features |= QED_F_BACKING_FILE;
579         header.backing_filename_offset = sizeof(le_header);
580         header.backing_filename_size = strlen(backing_file);
581 
582         if (qed_fmt_is_raw(backing_fmt)) {
583             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
584         }
585     }
586 
587     qed_header_cpu_to_le(&header, &le_header);
588     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
589     if (ret < 0) {
590         goto out;
591     }
592     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
593                       header.backing_filename_size);
594     if (ret < 0) {
595         goto out;
596     }
597 
598     l1_table = g_malloc0(l1_size);
599     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
600     if (ret < 0) {
601         goto out;
602     }
603 
604     ret = 0; /* success */
605 out:
606     g_free(l1_table);
607     bdrv_delete(bs);
608     return ret;
609 }
610 
611 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
612 {
613     uint64_t image_size = 0;
614     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
615     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
616     const char *backing_file = NULL;
617     const char *backing_fmt = NULL;
618 
619     while (options && options->name) {
620         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
621             image_size = options->value.n;
622         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
623             backing_file = options->value.s;
624         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
625             backing_fmt = options->value.s;
626         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
627             if (options->value.n) {
628                 cluster_size = options->value.n;
629             }
630         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
631             if (options->value.n) {
632                 table_size = options->value.n;
633             }
634         }
635         options++;
636     }
637 
638     if (!qed_is_cluster_size_valid(cluster_size)) {
639         fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
640                 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
641         return -EINVAL;
642     }
643     if (!qed_is_table_size_valid(table_size)) {
644         fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
645                 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
646         return -EINVAL;
647     }
648     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
649         fprintf(stderr, "QED image size must be a non-zero multiple of "
650                         "cluster size and less than %" PRIu64 " bytes\n",
651                 qed_max_image_size(cluster_size, table_size));
652         return -EINVAL;
653     }
654 
655     return qed_create(filename, cluster_size, image_size, table_size,
656                       backing_file, backing_fmt);
657 }
658 
659 typedef struct {
660     int is_allocated;
661     int *pnum;
662 } QEDIsAllocatedCB;
663 
664 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
665 {
666     QEDIsAllocatedCB *cb = opaque;
667     *cb->pnum = len / BDRV_SECTOR_SIZE;
668     cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
669 }
670 
671 static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
672                                   int nb_sectors, int *pnum)
673 {
674     BDRVQEDState *s = bs->opaque;
675     uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
676     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
677     QEDIsAllocatedCB cb = {
678         .is_allocated = -1,
679         .pnum = pnum,
680     };
681     QEDRequest request = { .l2_table = NULL };
682 
683     qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
684 
685     while (cb.is_allocated == -1) {
686         qemu_aio_wait();
687     }
688 
689     qed_unref_l2_cache_entry(request.l2_table);
690 
691     return cb.is_allocated;
692 }
693 
694 static int bdrv_qed_make_empty(BlockDriverState *bs)
695 {
696     return -ENOTSUP;
697 }
698 
699 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
700 {
701     return acb->common.bs->opaque;
702 }
703 
704 /**
705  * Read from the backing file or zero-fill if no backing file
706  *
707  * @s:          QED state
708  * @pos:        Byte position in device
709  * @qiov:       Destination I/O vector
710  * @cb:         Completion function
711  * @opaque:     User data for completion function
712  *
713  * This function reads qiov->size bytes starting at pos from the backing file.
714  * If there is no backing file then zeroes are read.
715  */
716 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
717                                   QEMUIOVector *qiov,
718                                   BlockDriverCompletionFunc *cb, void *opaque)
719 {
720     BlockDriverAIOCB *aiocb;
721     uint64_t backing_length = 0;
722     size_t size;
723 
724     /* If there is a backing file, get its length.  Treat the absence of a
725      * backing file like a zero length backing file.
726      */
727     if (s->bs->backing_hd) {
728         int64_t l = bdrv_getlength(s->bs->backing_hd);
729         if (l < 0) {
730             cb(opaque, l);
731             return;
732         }
733         backing_length = l;
734     }
735 
736     /* Zero all sectors if reading beyond the end of the backing file */
737     if (pos >= backing_length ||
738         pos + qiov->size > backing_length) {
739         qemu_iovec_memset(qiov, 0, qiov->size);
740     }
741 
742     /* Complete now if there are no backing file sectors to read */
743     if (pos >= backing_length) {
744         cb(opaque, 0);
745         return;
746     }
747 
748     /* If the read straddles the end of the backing file, shorten it */
749     size = MIN((uint64_t)backing_length - pos, qiov->size);
750 
751     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
752     aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
753                            qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
754     if (!aiocb) {
755         cb(opaque, -EIO);
756     }
757 }
758 
759 typedef struct {
760     GenericCB gencb;
761     BDRVQEDState *s;
762     QEMUIOVector qiov;
763     struct iovec iov;
764     uint64_t offset;
765 } CopyFromBackingFileCB;
766 
767 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
768 {
769     CopyFromBackingFileCB *copy_cb = opaque;
770     qemu_vfree(copy_cb->iov.iov_base);
771     gencb_complete(&copy_cb->gencb, ret);
772 }
773 
774 static void qed_copy_from_backing_file_write(void *opaque, int ret)
775 {
776     CopyFromBackingFileCB *copy_cb = opaque;
777     BDRVQEDState *s = copy_cb->s;
778     BlockDriverAIOCB *aiocb;
779 
780     if (ret) {
781         qed_copy_from_backing_file_cb(copy_cb, ret);
782         return;
783     }
784 
785     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
786     aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
787                             &copy_cb->qiov,
788                             copy_cb->qiov.size / BDRV_SECTOR_SIZE,
789                             qed_copy_from_backing_file_cb, copy_cb);
790     if (!aiocb) {
791         qed_copy_from_backing_file_cb(copy_cb, -EIO);
792     }
793 }
794 
795 /**
796  * Copy data from backing file into the image
797  *
798  * @s:          QED state
799  * @pos:        Byte position in device
800  * @len:        Number of bytes
801  * @offset:     Byte offset in image file
802  * @cb:         Completion function
803  * @opaque:     User data for completion function
804  */
805 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
806                                        uint64_t len, uint64_t offset,
807                                        BlockDriverCompletionFunc *cb,
808                                        void *opaque)
809 {
810     CopyFromBackingFileCB *copy_cb;
811 
812     /* Skip copy entirely if there is no work to do */
813     if (len == 0) {
814         cb(opaque, 0);
815         return;
816     }
817 
818     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
819     copy_cb->s = s;
820     copy_cb->offset = offset;
821     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
822     copy_cb->iov.iov_len = len;
823     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
824 
825     qed_read_backing_file(s, pos, &copy_cb->qiov,
826                           qed_copy_from_backing_file_write, copy_cb);
827 }
828 
829 /**
830  * Link one or more contiguous clusters into a table
831  *
832  * @s:              QED state
833  * @table:          L2 table
834  * @index:          First cluster index
835  * @n:              Number of contiguous clusters
836  * @cluster:        First cluster offset
837  *
838  * The cluster offset may be an allocated byte offset in the image file, the
839  * zero cluster marker, or the unallocated cluster marker.
840  */
841 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
842                                 unsigned int n, uint64_t cluster)
843 {
844     int i;
845     for (i = index; i < index + n; i++) {
846         table->offsets[i] = cluster;
847         if (!qed_offset_is_unalloc_cluster(cluster) &&
848             !qed_offset_is_zero_cluster(cluster)) {
849             cluster += s->header.cluster_size;
850         }
851     }
852 }
853 
854 static void qed_aio_complete_bh(void *opaque)
855 {
856     QEDAIOCB *acb = opaque;
857     BlockDriverCompletionFunc *cb = acb->common.cb;
858     void *user_opaque = acb->common.opaque;
859     int ret = acb->bh_ret;
860     bool *finished = acb->finished;
861 
862     qemu_bh_delete(acb->bh);
863     qemu_aio_release(acb);
864 
865     /* Invoke callback */
866     cb(user_opaque, ret);
867 
868     /* Signal cancel completion */
869     if (finished) {
870         *finished = true;
871     }
872 }
873 
874 static void qed_aio_complete(QEDAIOCB *acb, int ret)
875 {
876     BDRVQEDState *s = acb_to_s(acb);
877 
878     trace_qed_aio_complete(s, acb, ret);
879 
880     /* Free resources */
881     qemu_iovec_destroy(&acb->cur_qiov);
882     qed_unref_l2_cache_entry(acb->request.l2_table);
883 
884     /* Arrange for a bh to invoke the completion function */
885     acb->bh_ret = ret;
886     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
887     qemu_bh_schedule(acb->bh);
888 
889     /* Start next allocating write request waiting behind this one.  Note that
890      * requests enqueue themselves when they first hit an unallocated cluster
891      * but they wait until the entire request is finished before waking up the
892      * next request in the queue.  This ensures that we don't cycle through
893      * requests multiple times but rather finish one at a time completely.
894      */
895     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
896         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
897         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
898         if (acb) {
899             qed_aio_next_io(acb, 0);
900         } else if (s->header.features & QED_F_NEED_CHECK) {
901             qed_start_need_check_timer(s);
902         }
903     }
904 }
905 
906 /**
907  * Commit the current L2 table to the cache
908  */
909 static void qed_commit_l2_update(void *opaque, int ret)
910 {
911     QEDAIOCB *acb = opaque;
912     BDRVQEDState *s = acb_to_s(acb);
913     CachedL2Table *l2_table = acb->request.l2_table;
914 
915     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
916 
917     /* This is guaranteed to succeed because we just committed the entry to the
918      * cache.
919      */
920     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
921                                                     l2_table->offset);
922     assert(acb->request.l2_table != NULL);
923 
924     qed_aio_next_io(opaque, ret);
925 }
926 
927 /**
928  * Update L1 table with new L2 table offset and write it out
929  */
930 static void qed_aio_write_l1_update(void *opaque, int ret)
931 {
932     QEDAIOCB *acb = opaque;
933     BDRVQEDState *s = acb_to_s(acb);
934     int index;
935 
936     if (ret) {
937         qed_aio_complete(acb, ret);
938         return;
939     }
940 
941     index = qed_l1_index(s, acb->cur_pos);
942     s->l1_table->offsets[index] = acb->request.l2_table->offset;
943 
944     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
945 }
946 
947 /**
948  * Update L2 table with new cluster offsets and write them out
949  */
950 static void qed_aio_write_l2_update(void *opaque, int ret)
951 {
952     QEDAIOCB *acb = opaque;
953     BDRVQEDState *s = acb_to_s(acb);
954     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
955     int index;
956 
957     if (ret) {
958         goto err;
959     }
960 
961     if (need_alloc) {
962         qed_unref_l2_cache_entry(acb->request.l2_table);
963         acb->request.l2_table = qed_new_l2_table(s);
964     }
965 
966     index = qed_l2_index(s, acb->cur_pos);
967     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
968                          acb->cur_cluster);
969 
970     if (need_alloc) {
971         /* Write out the whole new L2 table */
972         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
973                             qed_aio_write_l1_update, acb);
974     } else {
975         /* Write out only the updated part of the L2 table */
976         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
977                             qed_aio_next_io, acb);
978     }
979     return;
980 
981 err:
982     qed_aio_complete(acb, ret);
983 }
984 
985 /**
986  * Flush new data clusters before updating the L2 table
987  *
988  * This flush is necessary when a backing file is in use.  A crash during an
989  * allocating write could result in empty clusters in the image.  If the write
990  * only touched a subregion of the cluster, then backing image sectors have
991  * been lost in the untouched region.  The solution is to flush after writing a
992  * new data cluster and before updating the L2 table.
993  */
994 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
995 {
996     QEDAIOCB *acb = opaque;
997     BDRVQEDState *s = acb_to_s(acb);
998 
999     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
1000         qed_aio_complete(acb, -EIO);
1001     }
1002 }
1003 
1004 /**
1005  * Write data to the image file
1006  */
1007 static void qed_aio_write_main(void *opaque, int ret)
1008 {
1009     QEDAIOCB *acb = opaque;
1010     BDRVQEDState *s = acb_to_s(acb);
1011     uint64_t offset = acb->cur_cluster +
1012                       qed_offset_into_cluster(s, acb->cur_pos);
1013     BlockDriverCompletionFunc *next_fn;
1014     BlockDriverAIOCB *file_acb;
1015 
1016     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1017 
1018     if (ret) {
1019         qed_aio_complete(acb, ret);
1020         return;
1021     }
1022 
1023     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1024         next_fn = qed_aio_next_io;
1025     } else {
1026         if (s->bs->backing_hd) {
1027             next_fn = qed_aio_write_flush_before_l2_update;
1028         } else {
1029             next_fn = qed_aio_write_l2_update;
1030         }
1031     }
1032 
1033     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1034     file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1035                                &acb->cur_qiov,
1036                                acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1037                                next_fn, acb);
1038     if (!file_acb) {
1039         qed_aio_complete(acb, -EIO);
1040     }
1041 }
1042 
1043 /**
1044  * Populate back untouched region of new data cluster
1045  */
1046 static void qed_aio_write_postfill(void *opaque, int ret)
1047 {
1048     QEDAIOCB *acb = opaque;
1049     BDRVQEDState *s = acb_to_s(acb);
1050     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1051     uint64_t len =
1052         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1053     uint64_t offset = acb->cur_cluster +
1054                       qed_offset_into_cluster(s, acb->cur_pos) +
1055                       acb->cur_qiov.size;
1056 
1057     if (ret) {
1058         qed_aio_complete(acb, ret);
1059         return;
1060     }
1061 
1062     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1063     qed_copy_from_backing_file(s, start, len, offset,
1064                                 qed_aio_write_main, acb);
1065 }
1066 
1067 /**
1068  * Populate front untouched region of new data cluster
1069  */
1070 static void qed_aio_write_prefill(void *opaque, int ret)
1071 {
1072     QEDAIOCB *acb = opaque;
1073     BDRVQEDState *s = acb_to_s(acb);
1074     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1075     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1076 
1077     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1078     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1079                                 qed_aio_write_postfill, acb);
1080 }
1081 
1082 /**
1083  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1084  */
1085 static bool qed_should_set_need_check(BDRVQEDState *s)
1086 {
1087     /* The flush before L2 update path ensures consistency */
1088     if (s->bs->backing_hd) {
1089         return false;
1090     }
1091 
1092     return !(s->header.features & QED_F_NEED_CHECK);
1093 }
1094 
1095 /**
1096  * Write new data cluster
1097  *
1098  * @acb:        Write request
1099  * @len:        Length in bytes
1100  *
1101  * This path is taken when writing to previously unallocated clusters.
1102  */
1103 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1104 {
1105     BDRVQEDState *s = acb_to_s(acb);
1106 
1107     /* Cancel timer when the first allocating request comes in */
1108     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1109         qed_cancel_need_check_timer(s);
1110     }
1111 
1112     /* Freeze this request if another allocating write is in progress */
1113     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1114         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1115     }
1116     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1117         s->allocating_write_reqs_plugged) {
1118         return; /* wait for existing request to finish */
1119     }
1120 
1121     acb->cur_nclusters = qed_bytes_to_clusters(s,
1122             qed_offset_into_cluster(s, acb->cur_pos) + len);
1123     acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1124     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1125 
1126     if (qed_should_set_need_check(s)) {
1127         s->header.features |= QED_F_NEED_CHECK;
1128         qed_write_header(s, qed_aio_write_prefill, acb);
1129     } else {
1130         qed_aio_write_prefill(acb, 0);
1131     }
1132 }
1133 
1134 /**
1135  * Write data cluster in place
1136  *
1137  * @acb:        Write request
1138  * @offset:     Cluster offset in bytes
1139  * @len:        Length in bytes
1140  *
1141  * This path is taken when writing to already allocated clusters.
1142  */
1143 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1144 {
1145     /* Calculate the I/O vector */
1146     acb->cur_cluster = offset;
1147     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1148 
1149     /* Do the actual write */
1150     qed_aio_write_main(acb, 0);
1151 }
1152 
1153 /**
1154  * Write data cluster
1155  *
1156  * @opaque:     Write request
1157  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1158  *              or -errno
1159  * @offset:     Cluster offset in bytes
1160  * @len:        Length in bytes
1161  *
1162  * Callback from qed_find_cluster().
1163  */
1164 static void qed_aio_write_data(void *opaque, int ret,
1165                                uint64_t offset, size_t len)
1166 {
1167     QEDAIOCB *acb = opaque;
1168 
1169     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1170 
1171     acb->find_cluster_ret = ret;
1172 
1173     switch (ret) {
1174     case QED_CLUSTER_FOUND:
1175         qed_aio_write_inplace(acb, offset, len);
1176         break;
1177 
1178     case QED_CLUSTER_L2:
1179     case QED_CLUSTER_L1:
1180     case QED_CLUSTER_ZERO:
1181         qed_aio_write_alloc(acb, len);
1182         break;
1183 
1184     default:
1185         qed_aio_complete(acb, ret);
1186         break;
1187     }
1188 }
1189 
1190 /**
1191  * Read data cluster
1192  *
1193  * @opaque:     Read request
1194  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1195  *              or -errno
1196  * @offset:     Cluster offset in bytes
1197  * @len:        Length in bytes
1198  *
1199  * Callback from qed_find_cluster().
1200  */
1201 static void qed_aio_read_data(void *opaque, int ret,
1202                               uint64_t offset, size_t len)
1203 {
1204     QEDAIOCB *acb = opaque;
1205     BDRVQEDState *s = acb_to_s(acb);
1206     BlockDriverState *bs = acb->common.bs;
1207     BlockDriverAIOCB *file_acb;
1208 
1209     /* Adjust offset into cluster */
1210     offset += qed_offset_into_cluster(s, acb->cur_pos);
1211 
1212     trace_qed_aio_read_data(s, acb, ret, offset, len);
1213 
1214     if (ret < 0) {
1215         goto err;
1216     }
1217 
1218     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1219 
1220     /* Handle zero cluster and backing file reads */
1221     if (ret == QED_CLUSTER_ZERO) {
1222         qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1223         qed_aio_next_io(acb, 0);
1224         return;
1225     } else if (ret != QED_CLUSTER_FOUND) {
1226         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1227                               qed_aio_next_io, acb);
1228         return;
1229     }
1230 
1231     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1232     file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1233                               &acb->cur_qiov,
1234                               acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1235                               qed_aio_next_io, acb);
1236     if (!file_acb) {
1237         ret = -EIO;
1238         goto err;
1239     }
1240     return;
1241 
1242 err:
1243     qed_aio_complete(acb, ret);
1244 }
1245 
1246 /**
1247  * Begin next I/O or complete the request
1248  */
1249 static void qed_aio_next_io(void *opaque, int ret)
1250 {
1251     QEDAIOCB *acb = opaque;
1252     BDRVQEDState *s = acb_to_s(acb);
1253     QEDFindClusterFunc *io_fn =
1254         acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1255 
1256     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1257 
1258     /* Handle I/O error */
1259     if (ret) {
1260         qed_aio_complete(acb, ret);
1261         return;
1262     }
1263 
1264     acb->qiov_offset += acb->cur_qiov.size;
1265     acb->cur_pos += acb->cur_qiov.size;
1266     qemu_iovec_reset(&acb->cur_qiov);
1267 
1268     /* Complete request */
1269     if (acb->cur_pos >= acb->end_pos) {
1270         qed_aio_complete(acb, 0);
1271         return;
1272     }
1273 
1274     /* Find next cluster and start I/O */
1275     qed_find_cluster(s, &acb->request,
1276                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1277                       io_fn, acb);
1278 }
1279 
1280 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1281                                        int64_t sector_num,
1282                                        QEMUIOVector *qiov, int nb_sectors,
1283                                        BlockDriverCompletionFunc *cb,
1284                                        void *opaque, bool is_write)
1285 {
1286     QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1287 
1288     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1289                          opaque, is_write);
1290 
1291     acb->is_write = is_write;
1292     acb->finished = NULL;
1293     acb->qiov = qiov;
1294     acb->qiov_offset = 0;
1295     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1296     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1297     acb->request.l2_table = NULL;
1298     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1299 
1300     /* Start request */
1301     qed_aio_next_io(acb, 0);
1302     return &acb->common;
1303 }
1304 
1305 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1306                                             int64_t sector_num,
1307                                             QEMUIOVector *qiov, int nb_sectors,
1308                                             BlockDriverCompletionFunc *cb,
1309                                             void *opaque)
1310 {
1311     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1312 }
1313 
1314 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1315                                              int64_t sector_num,
1316                                              QEMUIOVector *qiov, int nb_sectors,
1317                                              BlockDriverCompletionFunc *cb,
1318                                              void *opaque)
1319 {
1320     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1321 }
1322 
1323 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1324                                             BlockDriverCompletionFunc *cb,
1325                                             void *opaque)
1326 {
1327     return bdrv_aio_flush(bs->file, cb, opaque);
1328 }
1329 
1330 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1331 {
1332     BDRVQEDState *s = bs->opaque;
1333     uint64_t old_image_size;
1334     int ret;
1335 
1336     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1337                                  s->header.table_size)) {
1338         return -EINVAL;
1339     }
1340 
1341     /* Shrinking is currently not supported */
1342     if ((uint64_t)offset < s->header.image_size) {
1343         return -ENOTSUP;
1344     }
1345 
1346     old_image_size = s->header.image_size;
1347     s->header.image_size = offset;
1348     ret = qed_write_header_sync(s);
1349     if (ret < 0) {
1350         s->header.image_size = old_image_size;
1351     }
1352     return ret;
1353 }
1354 
1355 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1356 {
1357     BDRVQEDState *s = bs->opaque;
1358     return s->header.image_size;
1359 }
1360 
1361 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1362 {
1363     BDRVQEDState *s = bs->opaque;
1364 
1365     memset(bdi, 0, sizeof(*bdi));
1366     bdi->cluster_size = s->header.cluster_size;
1367     return 0;
1368 }
1369 
1370 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1371                                         const char *backing_file,
1372                                         const char *backing_fmt)
1373 {
1374     BDRVQEDState *s = bs->opaque;
1375     QEDHeader new_header, le_header;
1376     void *buffer;
1377     size_t buffer_len, backing_file_len;
1378     int ret;
1379 
1380     /* Refuse to set backing filename if unknown compat feature bits are
1381      * active.  If the image uses an unknown compat feature then we may not
1382      * know the layout of data following the header structure and cannot safely
1383      * add a new string.
1384      */
1385     if (backing_file && (s->header.compat_features &
1386                          ~QED_COMPAT_FEATURE_MASK)) {
1387         return -ENOTSUP;
1388     }
1389 
1390     memcpy(&new_header, &s->header, sizeof(new_header));
1391 
1392     new_header.features &= ~(QED_F_BACKING_FILE |
1393                              QED_F_BACKING_FORMAT_NO_PROBE);
1394 
1395     /* Adjust feature flags */
1396     if (backing_file) {
1397         new_header.features |= QED_F_BACKING_FILE;
1398 
1399         if (qed_fmt_is_raw(backing_fmt)) {
1400             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1401         }
1402     }
1403 
1404     /* Calculate new header size */
1405     backing_file_len = 0;
1406 
1407     if (backing_file) {
1408         backing_file_len = strlen(backing_file);
1409     }
1410 
1411     buffer_len = sizeof(new_header);
1412     new_header.backing_filename_offset = buffer_len;
1413     new_header.backing_filename_size = backing_file_len;
1414     buffer_len += backing_file_len;
1415 
1416     /* Make sure we can rewrite header without failing */
1417     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1418         return -ENOSPC;
1419     }
1420 
1421     /* Prepare new header */
1422     buffer = g_malloc(buffer_len);
1423 
1424     qed_header_cpu_to_le(&new_header, &le_header);
1425     memcpy(buffer, &le_header, sizeof(le_header));
1426     buffer_len = sizeof(le_header);
1427 
1428     memcpy(buffer + buffer_len, backing_file, backing_file_len);
1429     buffer_len += backing_file_len;
1430 
1431     /* Write new header */
1432     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1433     g_free(buffer);
1434     if (ret == 0) {
1435         memcpy(&s->header, &new_header, sizeof(new_header));
1436     }
1437     return ret;
1438 }
1439 
1440 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1441 {
1442     BDRVQEDState *s = bs->opaque;
1443 
1444     return qed_check(s, result, false);
1445 }
1446 
1447 static QEMUOptionParameter qed_create_options[] = {
1448     {
1449         .name = BLOCK_OPT_SIZE,
1450         .type = OPT_SIZE,
1451         .help = "Virtual disk size (in bytes)"
1452     }, {
1453         .name = BLOCK_OPT_BACKING_FILE,
1454         .type = OPT_STRING,
1455         .help = "File name of a base image"
1456     }, {
1457         .name = BLOCK_OPT_BACKING_FMT,
1458         .type = OPT_STRING,
1459         .help = "Image format of the base image"
1460     }, {
1461         .name = BLOCK_OPT_CLUSTER_SIZE,
1462         .type = OPT_SIZE,
1463         .help = "Cluster size (in bytes)",
1464         .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1465     }, {
1466         .name = BLOCK_OPT_TABLE_SIZE,
1467         .type = OPT_SIZE,
1468         .help = "L1/L2 table size (in clusters)"
1469     },
1470     { /* end of list */ }
1471 };
1472 
1473 static BlockDriver bdrv_qed = {
1474     .format_name              = "qed",
1475     .instance_size            = sizeof(BDRVQEDState),
1476     .create_options           = qed_create_options,
1477 
1478     .bdrv_probe               = bdrv_qed_probe,
1479     .bdrv_open                = bdrv_qed_open,
1480     .bdrv_close               = bdrv_qed_close,
1481     .bdrv_create              = bdrv_qed_create,
1482     .bdrv_flush               = bdrv_qed_flush,
1483     .bdrv_is_allocated        = bdrv_qed_is_allocated,
1484     .bdrv_make_empty          = bdrv_qed_make_empty,
1485     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1486     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1487     .bdrv_aio_flush           = bdrv_qed_aio_flush,
1488     .bdrv_truncate            = bdrv_qed_truncate,
1489     .bdrv_getlength           = bdrv_qed_getlength,
1490     .bdrv_get_info            = bdrv_qed_get_info,
1491     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1492     .bdrv_check               = bdrv_qed_check,
1493 };
1494 
1495 static void bdrv_qed_init(void)
1496 {
1497     bdrv_register(&bdrv_qed);
1498 }
1499 
1500 block_init(bdrv_qed_init);
1501