xref: /qemu/block/qed.c (revision 99dbfd1d)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "migration/migration.h"
23 #include "sysemu/block-backend.h"
24 
25 static const AIOCBInfo qed_aiocb_info = {
26     .aiocb_size         = sizeof(QEDAIOCB),
27 };
28 
29 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
30                           const char *filename)
31 {
32     const QEDHeader *header = (const QEDHeader *)buf;
33 
34     if (buf_size < sizeof(*header)) {
35         return 0;
36     }
37     if (le32_to_cpu(header->magic) != QED_MAGIC) {
38         return 0;
39     }
40     return 100;
41 }
42 
43 /**
44  * Check whether an image format is raw
45  *
46  * @fmt:    Backing file format, may be NULL
47  */
48 static bool qed_fmt_is_raw(const char *fmt)
49 {
50     return fmt && strcmp(fmt, "raw") == 0;
51 }
52 
53 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
54 {
55     cpu->magic = le32_to_cpu(le->magic);
56     cpu->cluster_size = le32_to_cpu(le->cluster_size);
57     cpu->table_size = le32_to_cpu(le->table_size);
58     cpu->header_size = le32_to_cpu(le->header_size);
59     cpu->features = le64_to_cpu(le->features);
60     cpu->compat_features = le64_to_cpu(le->compat_features);
61     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
62     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
63     cpu->image_size = le64_to_cpu(le->image_size);
64     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
65     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
66 }
67 
68 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
69 {
70     le->magic = cpu_to_le32(cpu->magic);
71     le->cluster_size = cpu_to_le32(cpu->cluster_size);
72     le->table_size = cpu_to_le32(cpu->table_size);
73     le->header_size = cpu_to_le32(cpu->header_size);
74     le->features = cpu_to_le64(cpu->features);
75     le->compat_features = cpu_to_le64(cpu->compat_features);
76     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
77     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
78     le->image_size = cpu_to_le64(cpu->image_size);
79     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
80     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
81 }
82 
83 int qed_write_header_sync(BDRVQEDState *s)
84 {
85     QEDHeader le;
86     int ret;
87 
88     qed_header_cpu_to_le(&s->header, &le);
89     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
90     if (ret != sizeof(le)) {
91         return ret;
92     }
93     return 0;
94 }
95 
96 typedef struct {
97     GenericCB gencb;
98     BDRVQEDState *s;
99     struct iovec iov;
100     QEMUIOVector qiov;
101     int nsectors;
102     uint8_t *buf;
103 } QEDWriteHeaderCB;
104 
105 static void qed_write_header_cb(void *opaque, int ret)
106 {
107     QEDWriteHeaderCB *write_header_cb = opaque;
108 
109     qemu_vfree(write_header_cb->buf);
110     gencb_complete(write_header_cb, ret);
111 }
112 
113 static void qed_write_header_read_cb(void *opaque, int ret)
114 {
115     QEDWriteHeaderCB *write_header_cb = opaque;
116     BDRVQEDState *s = write_header_cb->s;
117 
118     if (ret) {
119         qed_write_header_cb(write_header_cb, ret);
120         return;
121     }
122 
123     /* Update header */
124     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
125 
126     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
127                     write_header_cb->nsectors, qed_write_header_cb,
128                     write_header_cb);
129 }
130 
131 /**
132  * Update header in-place (does not rewrite backing filename or other strings)
133  *
134  * This function only updates known header fields in-place and does not affect
135  * extra data after the QED header.
136  */
137 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
138                              void *opaque)
139 {
140     /* We must write full sectors for O_DIRECT but cannot necessarily generate
141      * the data following the header if an unrecognized compat feature is
142      * active.  Therefore, first read the sectors containing the header, update
143      * them, and write back.
144      */
145 
146     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
147     size_t len = nsectors * BDRV_SECTOR_SIZE;
148     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
149                                                     cb, opaque);
150 
151     write_header_cb->s = s;
152     write_header_cb->nsectors = nsectors;
153     write_header_cb->buf = qemu_blockalign(s->bs, len);
154     write_header_cb->iov.iov_base = write_header_cb->buf;
155     write_header_cb->iov.iov_len = len;
156     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
157 
158     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
159                    qed_write_header_read_cb, write_header_cb);
160 }
161 
162 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
163 {
164     uint64_t table_entries;
165     uint64_t l2_size;
166 
167     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
168     l2_size = table_entries * cluster_size;
169 
170     return l2_size * table_entries;
171 }
172 
173 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
174 {
175     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
176         cluster_size > QED_MAX_CLUSTER_SIZE) {
177         return false;
178     }
179     if (cluster_size & (cluster_size - 1)) {
180         return false; /* not power of 2 */
181     }
182     return true;
183 }
184 
185 static bool qed_is_table_size_valid(uint32_t table_size)
186 {
187     if (table_size < QED_MIN_TABLE_SIZE ||
188         table_size > QED_MAX_TABLE_SIZE) {
189         return false;
190     }
191     if (table_size & (table_size - 1)) {
192         return false; /* not power of 2 */
193     }
194     return true;
195 }
196 
197 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
198                                     uint32_t table_size)
199 {
200     if (image_size % BDRV_SECTOR_SIZE != 0) {
201         return false; /* not multiple of sector size */
202     }
203     if (image_size > qed_max_image_size(cluster_size, table_size)) {
204         return false; /* image is too large */
205     }
206     return true;
207 }
208 
209 /**
210  * Read a string of known length from the image file
211  *
212  * @file:       Image file
213  * @offset:     File offset to start of string, in bytes
214  * @n:          String length in bytes
215  * @buf:        Destination buffer
216  * @buflen:     Destination buffer length in bytes
217  * @ret:        0 on success, -errno on failure
218  *
219  * The string is NUL-terminated.
220  */
221 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
222                            char *buf, size_t buflen)
223 {
224     int ret;
225     if (n >= buflen) {
226         return -EINVAL;
227     }
228     ret = bdrv_pread(file, offset, buf, n);
229     if (ret < 0) {
230         return ret;
231     }
232     buf[n] = '\0';
233     return 0;
234 }
235 
236 /**
237  * Allocate new clusters
238  *
239  * @s:          QED state
240  * @n:          Number of contiguous clusters to allocate
241  * @ret:        Offset of first allocated cluster
242  *
243  * This function only produces the offset where the new clusters should be
244  * written.  It updates BDRVQEDState but does not make any changes to the image
245  * file.
246  */
247 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
248 {
249     uint64_t offset = s->file_size;
250     s->file_size += n * s->header.cluster_size;
251     return offset;
252 }
253 
254 QEDTable *qed_alloc_table(BDRVQEDState *s)
255 {
256     /* Honor O_DIRECT memory alignment requirements */
257     return qemu_blockalign(s->bs,
258                            s->header.cluster_size * s->header.table_size);
259 }
260 
261 /**
262  * Allocate a new zeroed L2 table
263  */
264 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
265 {
266     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
267 
268     l2_table->table = qed_alloc_table(s);
269     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
270 
271     memset(l2_table->table->offsets, 0,
272            s->header.cluster_size * s->header.table_size);
273     return l2_table;
274 }
275 
276 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
277 
278 static void qed_aio_start_io(QEDAIOCB *acb)
279 {
280     qed_aio_next_io(acb, 0);
281 }
282 
283 static void qed_aio_next_io_cb(void *opaque, int ret)
284 {
285     QEDAIOCB *acb = opaque;
286 
287     qed_aio_next_io(acb, ret);
288 }
289 
290 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
291 {
292     assert(!s->allocating_write_reqs_plugged);
293 
294     s->allocating_write_reqs_plugged = true;
295 }
296 
297 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
298 {
299     QEDAIOCB *acb;
300 
301     assert(s->allocating_write_reqs_plugged);
302 
303     s->allocating_write_reqs_plugged = false;
304 
305     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
306     if (acb) {
307         qed_aio_start_io(acb);
308     }
309 }
310 
311 static void qed_finish_clear_need_check(void *opaque, int ret)
312 {
313     /* Do nothing */
314 }
315 
316 static void qed_flush_after_clear_need_check(void *opaque, int ret)
317 {
318     BDRVQEDState *s = opaque;
319 
320     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
321 
322     /* No need to wait until flush completes */
323     qed_unplug_allocating_write_reqs(s);
324 }
325 
326 static void qed_clear_need_check(void *opaque, int ret)
327 {
328     BDRVQEDState *s = opaque;
329 
330     if (ret) {
331         qed_unplug_allocating_write_reqs(s);
332         return;
333     }
334 
335     s->header.features &= ~QED_F_NEED_CHECK;
336     qed_write_header(s, qed_flush_after_clear_need_check, s);
337 }
338 
339 static void qed_need_check_timer_cb(void *opaque)
340 {
341     BDRVQEDState *s = opaque;
342 
343     /* The timer should only fire when allocating writes have drained */
344     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
345 
346     trace_qed_need_check_timer_cb(s);
347 
348     qed_acquire(s);
349     qed_plug_allocating_write_reqs(s);
350 
351     /* Ensure writes are on disk before clearing flag */
352     bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
353     qed_release(s);
354 }
355 
356 void qed_acquire(BDRVQEDState *s)
357 {
358     aio_context_acquire(bdrv_get_aio_context(s->bs));
359 }
360 
361 void qed_release(BDRVQEDState *s)
362 {
363     aio_context_release(bdrv_get_aio_context(s->bs));
364 }
365 
366 static void qed_start_need_check_timer(BDRVQEDState *s)
367 {
368     trace_qed_start_need_check_timer(s);
369 
370     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
371      * migration.
372      */
373     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
374                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
375 }
376 
377 /* It's okay to call this multiple times or when no timer is started */
378 static void qed_cancel_need_check_timer(BDRVQEDState *s)
379 {
380     trace_qed_cancel_need_check_timer(s);
381     timer_del(s->need_check_timer);
382 }
383 
384 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
385 {
386     BDRVQEDState *s = bs->opaque;
387 
388     qed_cancel_need_check_timer(s);
389     timer_free(s->need_check_timer);
390 }
391 
392 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
393                                         AioContext *new_context)
394 {
395     BDRVQEDState *s = bs->opaque;
396 
397     s->need_check_timer = aio_timer_new(new_context,
398                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
399                                         qed_need_check_timer_cb, s);
400     if (s->header.features & QED_F_NEED_CHECK) {
401         qed_start_need_check_timer(s);
402     }
403 }
404 
405 static void bdrv_qed_drain(BlockDriverState *bs)
406 {
407     BDRVQEDState *s = bs->opaque;
408 
409     /* Fire the timer immediately in order to start doing I/O as soon as the
410      * header is flushed.
411      */
412     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
413         qed_cancel_need_check_timer(s);
414         qed_need_check_timer_cb(s);
415     }
416 }
417 
418 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
419                             Error **errp)
420 {
421     BDRVQEDState *s = bs->opaque;
422     QEDHeader le_header;
423     int64_t file_size;
424     int ret;
425 
426     s->bs = bs;
427     QSIMPLEQ_INIT(&s->allocating_write_reqs);
428 
429     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
430     if (ret < 0) {
431         return ret;
432     }
433     qed_header_le_to_cpu(&le_header, &s->header);
434 
435     if (s->header.magic != QED_MAGIC) {
436         error_setg(errp, "Image not in QED format");
437         return -EINVAL;
438     }
439     if (s->header.features & ~QED_FEATURE_MASK) {
440         /* image uses unsupported feature bits */
441         error_setg(errp, "Unsupported QED features: %" PRIx64,
442                    s->header.features & ~QED_FEATURE_MASK);
443         return -ENOTSUP;
444     }
445     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
446         return -EINVAL;
447     }
448 
449     /* Round down file size to the last cluster */
450     file_size = bdrv_getlength(bs->file->bs);
451     if (file_size < 0) {
452         return file_size;
453     }
454     s->file_size = qed_start_of_cluster(s, file_size);
455 
456     if (!qed_is_table_size_valid(s->header.table_size)) {
457         return -EINVAL;
458     }
459     if (!qed_is_image_size_valid(s->header.image_size,
460                                  s->header.cluster_size,
461                                  s->header.table_size)) {
462         return -EINVAL;
463     }
464     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
465         return -EINVAL;
466     }
467 
468     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
469                       sizeof(uint64_t);
470     s->l2_shift = ctz32(s->header.cluster_size);
471     s->l2_mask = s->table_nelems - 1;
472     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
473 
474     /* Header size calculation must not overflow uint32_t */
475     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
476         return -EINVAL;
477     }
478 
479     if ((s->header.features & QED_F_BACKING_FILE)) {
480         if ((uint64_t)s->header.backing_filename_offset +
481             s->header.backing_filename_size >
482             s->header.cluster_size * s->header.header_size) {
483             return -EINVAL;
484         }
485 
486         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
487                               s->header.backing_filename_size, bs->backing_file,
488                               sizeof(bs->backing_file));
489         if (ret < 0) {
490             return ret;
491         }
492 
493         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
494             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
495         }
496     }
497 
498     /* Reset unknown autoclear feature bits.  This is a backwards
499      * compatibility mechanism that allows images to be opened by older
500      * programs, which "knock out" unknown feature bits.  When an image is
501      * opened by a newer program again it can detect that the autoclear
502      * feature is no longer valid.
503      */
504     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
505         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
506         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
507 
508         ret = qed_write_header_sync(s);
509         if (ret) {
510             return ret;
511         }
512 
513         /* From here on only known autoclear feature bits are valid */
514         bdrv_flush(bs->file->bs);
515     }
516 
517     s->l1_table = qed_alloc_table(s);
518     qed_init_l2_cache(&s->l2_cache);
519 
520     ret = qed_read_l1_table_sync(s);
521     if (ret) {
522         goto out;
523     }
524 
525     /* If image was not closed cleanly, check consistency */
526     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
527         /* Read-only images cannot be fixed.  There is no risk of corruption
528          * since write operations are not possible.  Therefore, allow
529          * potentially inconsistent images to be opened read-only.  This can
530          * aid data recovery from an otherwise inconsistent image.
531          */
532         if (!bdrv_is_read_only(bs->file->bs) &&
533             !(flags & BDRV_O_INACTIVE)) {
534             BdrvCheckResult result = {0};
535 
536             ret = qed_check(s, &result, true);
537             if (ret) {
538                 goto out;
539             }
540         }
541     }
542 
543     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
544 
545 out:
546     if (ret) {
547         qed_free_l2_cache(&s->l2_cache);
548         qemu_vfree(s->l1_table);
549     }
550     return ret;
551 }
552 
553 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
554                          Error **errp)
555 {
556     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
557                                false, errp);
558     if (!bs->file) {
559         return -EINVAL;
560     }
561 
562     return bdrv_qed_do_open(bs, options, flags, errp);
563 }
564 
565 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
566 {
567     BDRVQEDState *s = bs->opaque;
568 
569     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
570 }
571 
572 /* We have nothing to do for QED reopen, stubs just return
573  * success */
574 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
575                                    BlockReopenQueue *queue, Error **errp)
576 {
577     return 0;
578 }
579 
580 static void bdrv_qed_close(BlockDriverState *bs)
581 {
582     BDRVQEDState *s = bs->opaque;
583 
584     bdrv_qed_detach_aio_context(bs);
585 
586     /* Ensure writes reach stable storage */
587     bdrv_flush(bs->file->bs);
588 
589     /* Clean shutdown, no check required on next open */
590     if (s->header.features & QED_F_NEED_CHECK) {
591         s->header.features &= ~QED_F_NEED_CHECK;
592         qed_write_header_sync(s);
593     }
594 
595     qed_free_l2_cache(&s->l2_cache);
596     qemu_vfree(s->l1_table);
597 }
598 
599 static int qed_create(const char *filename, uint32_t cluster_size,
600                       uint64_t image_size, uint32_t table_size,
601                       const char *backing_file, const char *backing_fmt,
602                       QemuOpts *opts, Error **errp)
603 {
604     QEDHeader header = {
605         .magic = QED_MAGIC,
606         .cluster_size = cluster_size,
607         .table_size = table_size,
608         .header_size = 1,
609         .features = 0,
610         .compat_features = 0,
611         .l1_table_offset = cluster_size,
612         .image_size = image_size,
613     };
614     QEDHeader le_header;
615     uint8_t *l1_table = NULL;
616     size_t l1_size = header.cluster_size * header.table_size;
617     Error *local_err = NULL;
618     int ret = 0;
619     BlockBackend *blk;
620 
621     ret = bdrv_create_file(filename, opts, &local_err);
622     if (ret < 0) {
623         error_propagate(errp, local_err);
624         return ret;
625     }
626 
627     blk = blk_new_open(filename, NULL, NULL,
628                        BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
629                        &local_err);
630     if (blk == NULL) {
631         error_propagate(errp, local_err);
632         return -EIO;
633     }
634 
635     blk_set_allow_write_beyond_eof(blk, true);
636 
637     /* File must start empty and grow, check truncate is supported */
638     ret = blk_truncate(blk, 0);
639     if (ret < 0) {
640         goto out;
641     }
642 
643     if (backing_file) {
644         header.features |= QED_F_BACKING_FILE;
645         header.backing_filename_offset = sizeof(le_header);
646         header.backing_filename_size = strlen(backing_file);
647 
648         if (qed_fmt_is_raw(backing_fmt)) {
649             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
650         }
651     }
652 
653     qed_header_cpu_to_le(&header, &le_header);
654     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
655     if (ret < 0) {
656         goto out;
657     }
658     ret = blk_pwrite(blk, sizeof(le_header), backing_file,
659                      header.backing_filename_size, 0);
660     if (ret < 0) {
661         goto out;
662     }
663 
664     l1_table = g_malloc0(l1_size);
665     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
666     if (ret < 0) {
667         goto out;
668     }
669 
670     ret = 0; /* success */
671 out:
672     g_free(l1_table);
673     blk_unref(blk);
674     return ret;
675 }
676 
677 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
678 {
679     uint64_t image_size = 0;
680     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
681     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
682     char *backing_file = NULL;
683     char *backing_fmt = NULL;
684     int ret;
685 
686     image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
687                           BDRV_SECTOR_SIZE);
688     backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
689     backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
690     cluster_size = qemu_opt_get_size_del(opts,
691                                          BLOCK_OPT_CLUSTER_SIZE,
692                                          QED_DEFAULT_CLUSTER_SIZE);
693     table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
694                                        QED_DEFAULT_TABLE_SIZE);
695 
696     if (!qed_is_cluster_size_valid(cluster_size)) {
697         error_setg(errp, "QED cluster size must be within range [%u, %u] "
698                          "and power of 2",
699                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
700         ret = -EINVAL;
701         goto finish;
702     }
703     if (!qed_is_table_size_valid(table_size)) {
704         error_setg(errp, "QED table size must be within range [%u, %u] "
705                          "and power of 2",
706                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
707         ret = -EINVAL;
708         goto finish;
709     }
710     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
711         error_setg(errp, "QED image size must be a non-zero multiple of "
712                          "cluster size and less than %" PRIu64 " bytes",
713                    qed_max_image_size(cluster_size, table_size));
714         ret = -EINVAL;
715         goto finish;
716     }
717 
718     ret = qed_create(filename, cluster_size, image_size, table_size,
719                      backing_file, backing_fmt, opts, errp);
720 
721 finish:
722     g_free(backing_file);
723     g_free(backing_fmt);
724     return ret;
725 }
726 
727 typedef struct {
728     BlockDriverState *bs;
729     Coroutine *co;
730     uint64_t pos;
731     int64_t status;
732     int *pnum;
733     BlockDriverState **file;
734 } QEDIsAllocatedCB;
735 
736 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
737 {
738     QEDIsAllocatedCB *cb = opaque;
739     BDRVQEDState *s = cb->bs->opaque;
740     *cb->pnum = len / BDRV_SECTOR_SIZE;
741     switch (ret) {
742     case QED_CLUSTER_FOUND:
743         offset |= qed_offset_into_cluster(s, cb->pos);
744         cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
745         *cb->file = cb->bs->file->bs;
746         break;
747     case QED_CLUSTER_ZERO:
748         cb->status = BDRV_BLOCK_ZERO;
749         break;
750     case QED_CLUSTER_L2:
751     case QED_CLUSTER_L1:
752         cb->status = 0;
753         break;
754     default:
755         assert(ret < 0);
756         cb->status = ret;
757         break;
758     }
759 
760     if (cb->co) {
761         aio_co_wake(cb->co);
762     }
763 }
764 
765 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
766                                                  int64_t sector_num,
767                                                  int nb_sectors, int *pnum,
768                                                  BlockDriverState **file)
769 {
770     BDRVQEDState *s = bs->opaque;
771     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
772     QEDIsAllocatedCB cb = {
773         .bs = bs,
774         .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
775         .status = BDRV_BLOCK_OFFSET_MASK,
776         .pnum = pnum,
777         .file = file,
778     };
779     QEDRequest request = { .l2_table = NULL };
780 
781     qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
782 
783     /* Now sleep if the callback wasn't invoked immediately */
784     while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
785         cb.co = qemu_coroutine_self();
786         qemu_coroutine_yield();
787     }
788 
789     qed_unref_l2_cache_entry(request.l2_table);
790 
791     return cb.status;
792 }
793 
794 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
795 {
796     return acb->common.bs->opaque;
797 }
798 
799 /**
800  * Read from the backing file or zero-fill if no backing file
801  *
802  * @s:              QED state
803  * @pos:            Byte position in device
804  * @qiov:           Destination I/O vector
805  * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
806  * @cb:             Completion function
807  * @opaque:         User data for completion function
808  *
809  * This function reads qiov->size bytes starting at pos from the backing file.
810  * If there is no backing file then zeroes are read.
811  */
812 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
813                                   QEMUIOVector *qiov,
814                                   QEMUIOVector **backing_qiov,
815                                   BlockCompletionFunc *cb, void *opaque)
816 {
817     uint64_t backing_length = 0;
818     size_t size;
819 
820     /* If there is a backing file, get its length.  Treat the absence of a
821      * backing file like a zero length backing file.
822      */
823     if (s->bs->backing) {
824         int64_t l = bdrv_getlength(s->bs->backing->bs);
825         if (l < 0) {
826             cb(opaque, l);
827             return;
828         }
829         backing_length = l;
830     }
831 
832     /* Zero all sectors if reading beyond the end of the backing file */
833     if (pos >= backing_length ||
834         pos + qiov->size > backing_length) {
835         qemu_iovec_memset(qiov, 0, 0, qiov->size);
836     }
837 
838     /* Complete now if there are no backing file sectors to read */
839     if (pos >= backing_length) {
840         cb(opaque, 0);
841         return;
842     }
843 
844     /* If the read straddles the end of the backing file, shorten it */
845     size = MIN((uint64_t)backing_length - pos, qiov->size);
846 
847     assert(*backing_qiov == NULL);
848     *backing_qiov = g_new(QEMUIOVector, 1);
849     qemu_iovec_init(*backing_qiov, qiov->niov);
850     qemu_iovec_concat(*backing_qiov, qiov, 0, size);
851 
852     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
853     bdrv_aio_readv(s->bs->backing, pos / BDRV_SECTOR_SIZE,
854                    *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
855 }
856 
857 typedef struct {
858     GenericCB gencb;
859     BDRVQEDState *s;
860     QEMUIOVector qiov;
861     QEMUIOVector *backing_qiov;
862     struct iovec iov;
863     uint64_t offset;
864 } CopyFromBackingFileCB;
865 
866 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
867 {
868     CopyFromBackingFileCB *copy_cb = opaque;
869     qemu_vfree(copy_cb->iov.iov_base);
870     gencb_complete(&copy_cb->gencb, ret);
871 }
872 
873 static void qed_copy_from_backing_file_write(void *opaque, int ret)
874 {
875     CopyFromBackingFileCB *copy_cb = opaque;
876     BDRVQEDState *s = copy_cb->s;
877 
878     if (copy_cb->backing_qiov) {
879         qemu_iovec_destroy(copy_cb->backing_qiov);
880         g_free(copy_cb->backing_qiov);
881         copy_cb->backing_qiov = NULL;
882     }
883 
884     if (ret) {
885         qed_copy_from_backing_file_cb(copy_cb, ret);
886         return;
887     }
888 
889     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
890     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
891                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
892                     qed_copy_from_backing_file_cb, copy_cb);
893 }
894 
895 /**
896  * Copy data from backing file into the image
897  *
898  * @s:          QED state
899  * @pos:        Byte position in device
900  * @len:        Number of bytes
901  * @offset:     Byte offset in image file
902  * @cb:         Completion function
903  * @opaque:     User data for completion function
904  */
905 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
906                                        uint64_t len, uint64_t offset,
907                                        BlockCompletionFunc *cb,
908                                        void *opaque)
909 {
910     CopyFromBackingFileCB *copy_cb;
911 
912     /* Skip copy entirely if there is no work to do */
913     if (len == 0) {
914         cb(opaque, 0);
915         return;
916     }
917 
918     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
919     copy_cb->s = s;
920     copy_cb->offset = offset;
921     copy_cb->backing_qiov = NULL;
922     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
923     copy_cb->iov.iov_len = len;
924     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
925 
926     qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
927                           qed_copy_from_backing_file_write, copy_cb);
928 }
929 
930 /**
931  * Link one or more contiguous clusters into a table
932  *
933  * @s:              QED state
934  * @table:          L2 table
935  * @index:          First cluster index
936  * @n:              Number of contiguous clusters
937  * @cluster:        First cluster offset
938  *
939  * The cluster offset may be an allocated byte offset in the image file, the
940  * zero cluster marker, or the unallocated cluster marker.
941  */
942 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
943                                 unsigned int n, uint64_t cluster)
944 {
945     int i;
946     for (i = index; i < index + n; i++) {
947         table->offsets[i] = cluster;
948         if (!qed_offset_is_unalloc_cluster(cluster) &&
949             !qed_offset_is_zero_cluster(cluster)) {
950             cluster += s->header.cluster_size;
951         }
952     }
953 }
954 
955 static void qed_aio_complete_bh(void *opaque)
956 {
957     QEDAIOCB *acb = opaque;
958     BDRVQEDState *s = acb_to_s(acb);
959     BlockCompletionFunc *cb = acb->common.cb;
960     void *user_opaque = acb->common.opaque;
961     int ret = acb->bh_ret;
962 
963     qemu_aio_unref(acb);
964 
965     /* Invoke callback */
966     qed_acquire(s);
967     cb(user_opaque, ret);
968     qed_release(s);
969 }
970 
971 static void qed_aio_complete(QEDAIOCB *acb, int ret)
972 {
973     BDRVQEDState *s = acb_to_s(acb);
974 
975     trace_qed_aio_complete(s, acb, ret);
976 
977     /* Free resources */
978     qemu_iovec_destroy(&acb->cur_qiov);
979     qed_unref_l2_cache_entry(acb->request.l2_table);
980 
981     /* Free the buffer we may have allocated for zero writes */
982     if (acb->flags & QED_AIOCB_ZERO) {
983         qemu_vfree(acb->qiov->iov[0].iov_base);
984         acb->qiov->iov[0].iov_base = NULL;
985     }
986 
987     /* Arrange for a bh to invoke the completion function */
988     acb->bh_ret = ret;
989     aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
990                             qed_aio_complete_bh, acb);
991 
992     /* Start next allocating write request waiting behind this one.  Note that
993      * requests enqueue themselves when they first hit an unallocated cluster
994      * but they wait until the entire request is finished before waking up the
995      * next request in the queue.  This ensures that we don't cycle through
996      * requests multiple times but rather finish one at a time completely.
997      */
998     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
999         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
1000         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
1001         if (acb) {
1002             qed_aio_start_io(acb);
1003         } else if (s->header.features & QED_F_NEED_CHECK) {
1004             qed_start_need_check_timer(s);
1005         }
1006     }
1007 }
1008 
1009 /**
1010  * Commit the current L2 table to the cache
1011  */
1012 static void qed_commit_l2_update(void *opaque, int ret)
1013 {
1014     QEDAIOCB *acb = opaque;
1015     BDRVQEDState *s = acb_to_s(acb);
1016     CachedL2Table *l2_table = acb->request.l2_table;
1017     uint64_t l2_offset = l2_table->offset;
1018 
1019     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1020 
1021     /* This is guaranteed to succeed because we just committed the entry to the
1022      * cache.
1023      */
1024     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1025     assert(acb->request.l2_table != NULL);
1026 
1027     qed_aio_next_io(acb, ret);
1028 }
1029 
1030 /**
1031  * Update L1 table with new L2 table offset and write it out
1032  */
1033 static void qed_aio_write_l1_update(void *opaque, int ret)
1034 {
1035     QEDAIOCB *acb = opaque;
1036     BDRVQEDState *s = acb_to_s(acb);
1037     int index;
1038 
1039     if (ret) {
1040         qed_aio_complete(acb, ret);
1041         return;
1042     }
1043 
1044     index = qed_l1_index(s, acb->cur_pos);
1045     s->l1_table->offsets[index] = acb->request.l2_table->offset;
1046 
1047     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1048 }
1049 
1050 /**
1051  * Update L2 table with new cluster offsets and write them out
1052  */
1053 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1054 {
1055     BDRVQEDState *s = acb_to_s(acb);
1056     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1057     int index;
1058 
1059     if (ret) {
1060         goto err;
1061     }
1062 
1063     if (need_alloc) {
1064         qed_unref_l2_cache_entry(acb->request.l2_table);
1065         acb->request.l2_table = qed_new_l2_table(s);
1066     }
1067 
1068     index = qed_l2_index(s, acb->cur_pos);
1069     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1070                          offset);
1071 
1072     if (need_alloc) {
1073         /* Write out the whole new L2 table */
1074         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1075                            qed_aio_write_l1_update, acb);
1076     } else {
1077         /* Write out only the updated part of the L2 table */
1078         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1079                            qed_aio_next_io_cb, acb);
1080     }
1081     return;
1082 
1083 err:
1084     qed_aio_complete(acb, ret);
1085 }
1086 
1087 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1088 {
1089     QEDAIOCB *acb = opaque;
1090     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1091 }
1092 
1093 /**
1094  * Flush new data clusters before updating the L2 table
1095  *
1096  * This flush is necessary when a backing file is in use.  A crash during an
1097  * allocating write could result in empty clusters in the image.  If the write
1098  * only touched a subregion of the cluster, then backing image sectors have
1099  * been lost in the untouched region.  The solution is to flush after writing a
1100  * new data cluster and before updating the L2 table.
1101  */
1102 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1103 {
1104     QEDAIOCB *acb = opaque;
1105     BDRVQEDState *s = acb_to_s(acb);
1106 
1107     if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1108         qed_aio_complete(acb, -EIO);
1109     }
1110 }
1111 
1112 /**
1113  * Write data to the image file
1114  */
1115 static void qed_aio_write_main(void *opaque, int ret)
1116 {
1117     QEDAIOCB *acb = opaque;
1118     BDRVQEDState *s = acb_to_s(acb);
1119     uint64_t offset = acb->cur_cluster +
1120                       qed_offset_into_cluster(s, acb->cur_pos);
1121     BlockCompletionFunc *next_fn;
1122 
1123     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1124 
1125     if (ret) {
1126         qed_aio_complete(acb, ret);
1127         return;
1128     }
1129 
1130     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1131         next_fn = qed_aio_next_io_cb;
1132     } else {
1133         if (s->bs->backing) {
1134             next_fn = qed_aio_write_flush_before_l2_update;
1135         } else {
1136             next_fn = qed_aio_write_l2_update_cb;
1137         }
1138     }
1139 
1140     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1141     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1142                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1143                     next_fn, acb);
1144 }
1145 
1146 /**
1147  * Populate back untouched region of new data cluster
1148  */
1149 static void qed_aio_write_postfill(void *opaque, int ret)
1150 {
1151     QEDAIOCB *acb = opaque;
1152     BDRVQEDState *s = acb_to_s(acb);
1153     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1154     uint64_t len =
1155         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1156     uint64_t offset = acb->cur_cluster +
1157                       qed_offset_into_cluster(s, acb->cur_pos) +
1158                       acb->cur_qiov.size;
1159 
1160     if (ret) {
1161         qed_aio_complete(acb, ret);
1162         return;
1163     }
1164 
1165     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1166     qed_copy_from_backing_file(s, start, len, offset,
1167                                 qed_aio_write_main, acb);
1168 }
1169 
1170 /**
1171  * Populate front untouched region of new data cluster
1172  */
1173 static void qed_aio_write_prefill(void *opaque, int ret)
1174 {
1175     QEDAIOCB *acb = opaque;
1176     BDRVQEDState *s = acb_to_s(acb);
1177     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1178     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1179 
1180     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1181     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1182                                 qed_aio_write_postfill, acb);
1183 }
1184 
1185 /**
1186  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1187  */
1188 static bool qed_should_set_need_check(BDRVQEDState *s)
1189 {
1190     /* The flush before L2 update path ensures consistency */
1191     if (s->bs->backing) {
1192         return false;
1193     }
1194 
1195     return !(s->header.features & QED_F_NEED_CHECK);
1196 }
1197 
1198 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1199 {
1200     QEDAIOCB *acb = opaque;
1201 
1202     if (ret) {
1203         qed_aio_complete(acb, ret);
1204         return;
1205     }
1206 
1207     qed_aio_write_l2_update(acb, 0, 1);
1208 }
1209 
1210 /**
1211  * Write new data cluster
1212  *
1213  * @acb:        Write request
1214  * @len:        Length in bytes
1215  *
1216  * This path is taken when writing to previously unallocated clusters.
1217  */
1218 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1219 {
1220     BDRVQEDState *s = acb_to_s(acb);
1221     BlockCompletionFunc *cb;
1222 
1223     /* Cancel timer when the first allocating request comes in */
1224     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1225         qed_cancel_need_check_timer(s);
1226     }
1227 
1228     /* Freeze this request if another allocating write is in progress */
1229     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1230         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1231     }
1232     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1233         s->allocating_write_reqs_plugged) {
1234         return; /* wait for existing request to finish */
1235     }
1236 
1237     acb->cur_nclusters = qed_bytes_to_clusters(s,
1238             qed_offset_into_cluster(s, acb->cur_pos) + len);
1239     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1240 
1241     if (acb->flags & QED_AIOCB_ZERO) {
1242         /* Skip ahead if the clusters are already zero */
1243         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1244             qed_aio_start_io(acb);
1245             return;
1246         }
1247 
1248         cb = qed_aio_write_zero_cluster;
1249     } else {
1250         cb = qed_aio_write_prefill;
1251         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1252     }
1253 
1254     if (qed_should_set_need_check(s)) {
1255         s->header.features |= QED_F_NEED_CHECK;
1256         qed_write_header(s, cb, acb);
1257     } else {
1258         cb(acb, 0);
1259     }
1260 }
1261 
1262 /**
1263  * Write data cluster in place
1264  *
1265  * @acb:        Write request
1266  * @offset:     Cluster offset in bytes
1267  * @len:        Length in bytes
1268  *
1269  * This path is taken when writing to already allocated clusters.
1270  */
1271 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1272 {
1273     /* Allocate buffer for zero writes */
1274     if (acb->flags & QED_AIOCB_ZERO) {
1275         struct iovec *iov = acb->qiov->iov;
1276 
1277         if (!iov->iov_base) {
1278             iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1279             if (iov->iov_base == NULL) {
1280                 qed_aio_complete(acb, -ENOMEM);
1281                 return;
1282             }
1283             memset(iov->iov_base, 0, iov->iov_len);
1284         }
1285     }
1286 
1287     /* Calculate the I/O vector */
1288     acb->cur_cluster = offset;
1289     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1290 
1291     /* Do the actual write */
1292     qed_aio_write_main(acb, 0);
1293 }
1294 
1295 /**
1296  * Write data cluster
1297  *
1298  * @opaque:     Write request
1299  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1300  *              or -errno
1301  * @offset:     Cluster offset in bytes
1302  * @len:        Length in bytes
1303  *
1304  * Callback from qed_find_cluster().
1305  */
1306 static void qed_aio_write_data(void *opaque, int ret,
1307                                uint64_t offset, size_t len)
1308 {
1309     QEDAIOCB *acb = opaque;
1310 
1311     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1312 
1313     acb->find_cluster_ret = ret;
1314 
1315     switch (ret) {
1316     case QED_CLUSTER_FOUND:
1317         qed_aio_write_inplace(acb, offset, len);
1318         break;
1319 
1320     case QED_CLUSTER_L2:
1321     case QED_CLUSTER_L1:
1322     case QED_CLUSTER_ZERO:
1323         qed_aio_write_alloc(acb, len);
1324         break;
1325 
1326     default:
1327         qed_aio_complete(acb, ret);
1328         break;
1329     }
1330 }
1331 
1332 /**
1333  * Read data cluster
1334  *
1335  * @opaque:     Read request
1336  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1337  *              or -errno
1338  * @offset:     Cluster offset in bytes
1339  * @len:        Length in bytes
1340  *
1341  * Callback from qed_find_cluster().
1342  */
1343 static void qed_aio_read_data(void *opaque, int ret,
1344                               uint64_t offset, size_t len)
1345 {
1346     QEDAIOCB *acb = opaque;
1347     BDRVQEDState *s = acb_to_s(acb);
1348     BlockDriverState *bs = acb->common.bs;
1349 
1350     /* Adjust offset into cluster */
1351     offset += qed_offset_into_cluster(s, acb->cur_pos);
1352 
1353     trace_qed_aio_read_data(s, acb, ret, offset, len);
1354 
1355     if (ret < 0) {
1356         goto err;
1357     }
1358 
1359     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1360 
1361     /* Handle zero cluster and backing file reads */
1362     if (ret == QED_CLUSTER_ZERO) {
1363         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1364         qed_aio_start_io(acb);
1365         return;
1366     } else if (ret != QED_CLUSTER_FOUND) {
1367         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1368                               &acb->backing_qiov, qed_aio_next_io_cb, acb);
1369         return;
1370     }
1371 
1372     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1373     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1374                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1375                    qed_aio_next_io_cb, acb);
1376     return;
1377 
1378 err:
1379     qed_aio_complete(acb, ret);
1380 }
1381 
1382 /**
1383  * Begin next I/O or complete the request
1384  */
1385 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1386 {
1387     BDRVQEDState *s = acb_to_s(acb);
1388     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1389                                 qed_aio_write_data : qed_aio_read_data;
1390 
1391     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1392 
1393     if (acb->backing_qiov) {
1394         qemu_iovec_destroy(acb->backing_qiov);
1395         g_free(acb->backing_qiov);
1396         acb->backing_qiov = NULL;
1397     }
1398 
1399     /* Handle I/O error */
1400     if (ret) {
1401         qed_aio_complete(acb, ret);
1402         return;
1403     }
1404 
1405     acb->qiov_offset += acb->cur_qiov.size;
1406     acb->cur_pos += acb->cur_qiov.size;
1407     qemu_iovec_reset(&acb->cur_qiov);
1408 
1409     /* Complete request */
1410     if (acb->cur_pos >= acb->end_pos) {
1411         qed_aio_complete(acb, 0);
1412         return;
1413     }
1414 
1415     /* Find next cluster and start I/O */
1416     qed_find_cluster(s, &acb->request,
1417                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1418                       io_fn, acb);
1419 }
1420 
1421 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1422                                  int64_t sector_num,
1423                                  QEMUIOVector *qiov, int nb_sectors,
1424                                  BlockCompletionFunc *cb,
1425                                  void *opaque, int flags)
1426 {
1427     QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1428 
1429     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1430                         opaque, flags);
1431 
1432     acb->flags = flags;
1433     acb->qiov = qiov;
1434     acb->qiov_offset = 0;
1435     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1436     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1437     acb->backing_qiov = NULL;
1438     acb->request.l2_table = NULL;
1439     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1440 
1441     /* Start request */
1442     qed_aio_start_io(acb);
1443     return &acb->common;
1444 }
1445 
1446 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1447                                       int64_t sector_num,
1448                                       QEMUIOVector *qiov, int nb_sectors,
1449                                       BlockCompletionFunc *cb,
1450                                       void *opaque)
1451 {
1452     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1453 }
1454 
1455 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1456                                        int64_t sector_num,
1457                                        QEMUIOVector *qiov, int nb_sectors,
1458                                        BlockCompletionFunc *cb,
1459                                        void *opaque)
1460 {
1461     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1462                          opaque, QED_AIOCB_WRITE);
1463 }
1464 
1465 typedef struct {
1466     Coroutine *co;
1467     int ret;
1468     bool done;
1469 } QEDWriteZeroesCB;
1470 
1471 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1472 {
1473     QEDWriteZeroesCB *cb = opaque;
1474 
1475     cb->done = true;
1476     cb->ret = ret;
1477     if (cb->co) {
1478         aio_co_wake(cb->co);
1479     }
1480 }
1481 
1482 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1483                                                   int64_t offset,
1484                                                   int count,
1485                                                   BdrvRequestFlags flags)
1486 {
1487     BlockAIOCB *blockacb;
1488     BDRVQEDState *s = bs->opaque;
1489     QEDWriteZeroesCB cb = { .done = false };
1490     QEMUIOVector qiov;
1491     struct iovec iov;
1492 
1493     /* Fall back if the request is not aligned */
1494     if (qed_offset_into_cluster(s, offset) ||
1495         qed_offset_into_cluster(s, count)) {
1496         return -ENOTSUP;
1497     }
1498 
1499     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1500      * then it will be allocated during request processing.
1501      */
1502     iov.iov_base = NULL;
1503     iov.iov_len = count;
1504 
1505     qemu_iovec_init_external(&qiov, &iov, 1);
1506     blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1507                              count >> BDRV_SECTOR_BITS,
1508                              qed_co_pwrite_zeroes_cb, &cb,
1509                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1510     if (!blockacb) {
1511         return -EIO;
1512     }
1513     if (!cb.done) {
1514         cb.co = qemu_coroutine_self();
1515         qemu_coroutine_yield();
1516     }
1517     assert(cb.done);
1518     return cb.ret;
1519 }
1520 
1521 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1522 {
1523     BDRVQEDState *s = bs->opaque;
1524     uint64_t old_image_size;
1525     int ret;
1526 
1527     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1528                                  s->header.table_size)) {
1529         return -EINVAL;
1530     }
1531 
1532     /* Shrinking is currently not supported */
1533     if ((uint64_t)offset < s->header.image_size) {
1534         return -ENOTSUP;
1535     }
1536 
1537     old_image_size = s->header.image_size;
1538     s->header.image_size = offset;
1539     ret = qed_write_header_sync(s);
1540     if (ret < 0) {
1541         s->header.image_size = old_image_size;
1542     }
1543     return ret;
1544 }
1545 
1546 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1547 {
1548     BDRVQEDState *s = bs->opaque;
1549     return s->header.image_size;
1550 }
1551 
1552 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1553 {
1554     BDRVQEDState *s = bs->opaque;
1555 
1556     memset(bdi, 0, sizeof(*bdi));
1557     bdi->cluster_size = s->header.cluster_size;
1558     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1559     bdi->unallocated_blocks_are_zero = true;
1560     bdi->can_write_zeroes_with_unmap = true;
1561     return 0;
1562 }
1563 
1564 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1565                                         const char *backing_file,
1566                                         const char *backing_fmt)
1567 {
1568     BDRVQEDState *s = bs->opaque;
1569     QEDHeader new_header, le_header;
1570     void *buffer;
1571     size_t buffer_len, backing_file_len;
1572     int ret;
1573 
1574     /* Refuse to set backing filename if unknown compat feature bits are
1575      * active.  If the image uses an unknown compat feature then we may not
1576      * know the layout of data following the header structure and cannot safely
1577      * add a new string.
1578      */
1579     if (backing_file && (s->header.compat_features &
1580                          ~QED_COMPAT_FEATURE_MASK)) {
1581         return -ENOTSUP;
1582     }
1583 
1584     memcpy(&new_header, &s->header, sizeof(new_header));
1585 
1586     new_header.features &= ~(QED_F_BACKING_FILE |
1587                              QED_F_BACKING_FORMAT_NO_PROBE);
1588 
1589     /* Adjust feature flags */
1590     if (backing_file) {
1591         new_header.features |= QED_F_BACKING_FILE;
1592 
1593         if (qed_fmt_is_raw(backing_fmt)) {
1594             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1595         }
1596     }
1597 
1598     /* Calculate new header size */
1599     backing_file_len = 0;
1600 
1601     if (backing_file) {
1602         backing_file_len = strlen(backing_file);
1603     }
1604 
1605     buffer_len = sizeof(new_header);
1606     new_header.backing_filename_offset = buffer_len;
1607     new_header.backing_filename_size = backing_file_len;
1608     buffer_len += backing_file_len;
1609 
1610     /* Make sure we can rewrite header without failing */
1611     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1612         return -ENOSPC;
1613     }
1614 
1615     /* Prepare new header */
1616     buffer = g_malloc(buffer_len);
1617 
1618     qed_header_cpu_to_le(&new_header, &le_header);
1619     memcpy(buffer, &le_header, sizeof(le_header));
1620     buffer_len = sizeof(le_header);
1621 
1622     if (backing_file) {
1623         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1624         buffer_len += backing_file_len;
1625     }
1626 
1627     /* Write new header */
1628     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1629     g_free(buffer);
1630     if (ret == 0) {
1631         memcpy(&s->header, &new_header, sizeof(new_header));
1632     }
1633     return ret;
1634 }
1635 
1636 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1637 {
1638     BDRVQEDState *s = bs->opaque;
1639     Error *local_err = NULL;
1640     int ret;
1641 
1642     bdrv_qed_close(bs);
1643 
1644     memset(s, 0, sizeof(BDRVQEDState));
1645     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1646     if (local_err) {
1647         error_propagate(errp, local_err);
1648         error_prepend(errp, "Could not reopen qed layer: ");
1649         return;
1650     } else if (ret < 0) {
1651         error_setg_errno(errp, -ret, "Could not reopen qed layer");
1652         return;
1653     }
1654 }
1655 
1656 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1657                           BdrvCheckMode fix)
1658 {
1659     BDRVQEDState *s = bs->opaque;
1660 
1661     return qed_check(s, result, !!fix);
1662 }
1663 
1664 static QemuOptsList qed_create_opts = {
1665     .name = "qed-create-opts",
1666     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1667     .desc = {
1668         {
1669             .name = BLOCK_OPT_SIZE,
1670             .type = QEMU_OPT_SIZE,
1671             .help = "Virtual disk size"
1672         },
1673         {
1674             .name = BLOCK_OPT_BACKING_FILE,
1675             .type = QEMU_OPT_STRING,
1676             .help = "File name of a base image"
1677         },
1678         {
1679             .name = BLOCK_OPT_BACKING_FMT,
1680             .type = QEMU_OPT_STRING,
1681             .help = "Image format of the base image"
1682         },
1683         {
1684             .name = BLOCK_OPT_CLUSTER_SIZE,
1685             .type = QEMU_OPT_SIZE,
1686             .help = "Cluster size (in bytes)",
1687             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1688         },
1689         {
1690             .name = BLOCK_OPT_TABLE_SIZE,
1691             .type = QEMU_OPT_SIZE,
1692             .help = "L1/L2 table size (in clusters)"
1693         },
1694         { /* end of list */ }
1695     }
1696 };
1697 
1698 static BlockDriver bdrv_qed = {
1699     .format_name              = "qed",
1700     .instance_size            = sizeof(BDRVQEDState),
1701     .create_opts              = &qed_create_opts,
1702     .supports_backing         = true,
1703 
1704     .bdrv_probe               = bdrv_qed_probe,
1705     .bdrv_open                = bdrv_qed_open,
1706     .bdrv_close               = bdrv_qed_close,
1707     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1708     .bdrv_child_perm          = bdrv_format_default_perms,
1709     .bdrv_create              = bdrv_qed_create,
1710     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1711     .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1712     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1713     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1714     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1715     .bdrv_truncate            = bdrv_qed_truncate,
1716     .bdrv_getlength           = bdrv_qed_getlength,
1717     .bdrv_get_info            = bdrv_qed_get_info,
1718     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1719     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1720     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1721     .bdrv_check               = bdrv_qed_check,
1722     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1723     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1724     .bdrv_drain               = bdrv_qed_drain,
1725 };
1726 
1727 static void bdrv_qed_init(void)
1728 {
1729     bdrv_register(&bdrv_qed);
1730 }
1731 
1732 block_init(bdrv_qed_init);
1733