xref: /qemu/block/qed.c (revision dc293f60)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "trace.h"
24 #include "qed.h"
25 #include "sysemu/block-backend.h"
26 #include "qapi/qmp/qdict.h"
27 #include "qapi/qobject-input-visitor.h"
28 #include "qapi/qapi-visit-block-core.h"
29 
30 static QemuOptsList qed_create_opts;
31 
32 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
33                           const char *filename)
34 {
35     const QEDHeader *header = (const QEDHeader *)buf;
36 
37     if (buf_size < sizeof(*header)) {
38         return 0;
39     }
40     if (le32_to_cpu(header->magic) != QED_MAGIC) {
41         return 0;
42     }
43     return 100;
44 }
45 
46 /**
47  * Check whether an image format is raw
48  *
49  * @fmt:    Backing file format, may be NULL
50  */
51 static bool qed_fmt_is_raw(const char *fmt)
52 {
53     return fmt && strcmp(fmt, "raw") == 0;
54 }
55 
56 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
57 {
58     cpu->magic = le32_to_cpu(le->magic);
59     cpu->cluster_size = le32_to_cpu(le->cluster_size);
60     cpu->table_size = le32_to_cpu(le->table_size);
61     cpu->header_size = le32_to_cpu(le->header_size);
62     cpu->features = le64_to_cpu(le->features);
63     cpu->compat_features = le64_to_cpu(le->compat_features);
64     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
65     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
66     cpu->image_size = le64_to_cpu(le->image_size);
67     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
68     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
69 }
70 
71 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
72 {
73     le->magic = cpu_to_le32(cpu->magic);
74     le->cluster_size = cpu_to_le32(cpu->cluster_size);
75     le->table_size = cpu_to_le32(cpu->table_size);
76     le->header_size = cpu_to_le32(cpu->header_size);
77     le->features = cpu_to_le64(cpu->features);
78     le->compat_features = cpu_to_le64(cpu->compat_features);
79     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
80     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
81     le->image_size = cpu_to_le64(cpu->image_size);
82     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
83     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
84 }
85 
86 int qed_write_header_sync(BDRVQEDState *s)
87 {
88     QEDHeader le;
89     int ret;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
93     if (ret != sizeof(le)) {
94         return ret;
95     }
96     return 0;
97 }
98 
99 /**
100  * Update header in-place (does not rewrite backing filename or other strings)
101  *
102  * This function only updates known header fields in-place and does not affect
103  * extra data after the QED header.
104  *
105  * No new allocating reqs can start while this function runs.
106  */
107 static int coroutine_fn qed_write_header(BDRVQEDState *s)
108 {
109     /* We must write full sectors for O_DIRECT but cannot necessarily generate
110      * the data following the header if an unrecognized compat feature is
111      * active.  Therefore, first read the sectors containing the header, update
112      * them, and write back.
113      */
114 
115     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
116     size_t len = nsectors * BDRV_SECTOR_SIZE;
117     uint8_t *buf;
118     int ret;
119 
120     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121 
122     buf = qemu_blockalign(s->bs, len);
123 
124     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
125     if (ret < 0) {
126         goto out;
127     }
128 
129     /* Update header */
130     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
131 
132     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
133     if (ret < 0) {
134         goto out;
135     }
136 
137     ret = 0;
138 out:
139     qemu_vfree(buf);
140     return ret;
141 }
142 
143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
144 {
145     uint64_t table_entries;
146     uint64_t l2_size;
147 
148     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
149     l2_size = table_entries * cluster_size;
150 
151     return l2_size * table_entries;
152 }
153 
154 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
155 {
156     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
157         cluster_size > QED_MAX_CLUSTER_SIZE) {
158         return false;
159     }
160     if (cluster_size & (cluster_size - 1)) {
161         return false; /* not power of 2 */
162     }
163     return true;
164 }
165 
166 static bool qed_is_table_size_valid(uint32_t table_size)
167 {
168     if (table_size < QED_MIN_TABLE_SIZE ||
169         table_size > QED_MAX_TABLE_SIZE) {
170         return false;
171     }
172     if (table_size & (table_size - 1)) {
173         return false; /* not power of 2 */
174     }
175     return true;
176 }
177 
178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
179                                     uint32_t table_size)
180 {
181     if (image_size % BDRV_SECTOR_SIZE != 0) {
182         return false; /* not multiple of sector size */
183     }
184     if (image_size > qed_max_image_size(cluster_size, table_size)) {
185         return false; /* image is too large */
186     }
187     return true;
188 }
189 
190 /**
191  * Read a string of known length from the image file
192  *
193  * @file:       Image file
194  * @offset:     File offset to start of string, in bytes
195  * @n:          String length in bytes
196  * @buf:        Destination buffer
197  * @buflen:     Destination buffer length in bytes
198  * @ret:        0 on success, -errno on failure
199  *
200  * The string is NUL-terminated.
201  */
202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
203                            char *buf, size_t buflen)
204 {
205     int ret;
206     if (n >= buflen) {
207         return -EINVAL;
208     }
209     ret = bdrv_pread(file, offset, buf, n);
210     if (ret < 0) {
211         return ret;
212     }
213     buf[n] = '\0';
214     return 0;
215 }
216 
217 /**
218  * Allocate new clusters
219  *
220  * @s:          QED state
221  * @n:          Number of contiguous clusters to allocate
222  * @ret:        Offset of first allocated cluster
223  *
224  * This function only produces the offset where the new clusters should be
225  * written.  It updates BDRVQEDState but does not make any changes to the image
226  * file.
227  *
228  * Called with table_lock held.
229  */
230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
231 {
232     uint64_t offset = s->file_size;
233     s->file_size += n * s->header.cluster_size;
234     return offset;
235 }
236 
237 QEDTable *qed_alloc_table(BDRVQEDState *s)
238 {
239     /* Honor O_DIRECT memory alignment requirements */
240     return qemu_blockalign(s->bs,
241                            s->header.cluster_size * s->header.table_size);
242 }
243 
244 /**
245  * Allocate a new zeroed L2 table
246  *
247  * Called with table_lock held.
248  */
249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
250 {
251     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
252 
253     l2_table->table = qed_alloc_table(s);
254     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
255 
256     memset(l2_table->table->offsets, 0,
257            s->header.cluster_size * s->header.table_size);
258     return l2_table;
259 }
260 
261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
262 {
263     qemu_co_mutex_lock(&s->table_lock);
264 
265     /* No reentrancy is allowed.  */
266     assert(!s->allocating_write_reqs_plugged);
267     if (s->allocating_acb != NULL) {
268         /* Another allocating write came concurrently.  This cannot happen
269          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
270          */
271         qemu_co_mutex_unlock(&s->table_lock);
272         return false;
273     }
274 
275     s->allocating_write_reqs_plugged = true;
276     qemu_co_mutex_unlock(&s->table_lock);
277     return true;
278 }
279 
280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
281 {
282     qemu_co_mutex_lock(&s->table_lock);
283     assert(s->allocating_write_reqs_plugged);
284     s->allocating_write_reqs_plugged = false;
285     qemu_co_queue_next(&s->allocating_write_reqs);
286     qemu_co_mutex_unlock(&s->table_lock);
287 }
288 
289 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
290 {
291     BDRVQEDState *s = opaque;
292     int ret;
293 
294     trace_qed_need_check_timer_cb(s);
295 
296     if (!qed_plug_allocating_write_reqs(s)) {
297         return;
298     }
299 
300     /* Ensure writes are on disk before clearing flag */
301     ret = bdrv_co_flush(s->bs->file->bs);
302     if (ret < 0) {
303         qed_unplug_allocating_write_reqs(s);
304         return;
305     }
306 
307     s->header.features &= ~QED_F_NEED_CHECK;
308     ret = qed_write_header(s);
309     (void) ret;
310 
311     qed_unplug_allocating_write_reqs(s);
312 
313     ret = bdrv_co_flush(s->bs);
314     (void) ret;
315 }
316 
317 static void qed_need_check_timer_cb(void *opaque)
318 {
319     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
320     qemu_coroutine_enter(co);
321 }
322 
323 static void qed_start_need_check_timer(BDRVQEDState *s)
324 {
325     trace_qed_start_need_check_timer(s);
326 
327     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
328      * migration.
329      */
330     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
331                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
332 }
333 
334 /* It's okay to call this multiple times or when no timer is started */
335 static void qed_cancel_need_check_timer(BDRVQEDState *s)
336 {
337     trace_qed_cancel_need_check_timer(s);
338     timer_del(s->need_check_timer);
339 }
340 
341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
342 {
343     BDRVQEDState *s = bs->opaque;
344 
345     qed_cancel_need_check_timer(s);
346     timer_free(s->need_check_timer);
347 }
348 
349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
350                                         AioContext *new_context)
351 {
352     BDRVQEDState *s = bs->opaque;
353 
354     s->need_check_timer = aio_timer_new(new_context,
355                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
356                                         qed_need_check_timer_cb, s);
357     if (s->header.features & QED_F_NEED_CHECK) {
358         qed_start_need_check_timer(s);
359     }
360 }
361 
362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
363 {
364     BDRVQEDState *s = bs->opaque;
365 
366     /* Fire the timer immediately in order to start doing I/O as soon as the
367      * header is flushed.
368      */
369     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
370         qed_cancel_need_check_timer(s);
371         qed_need_check_timer_entry(s);
372     }
373 }
374 
375 static void bdrv_qed_init_state(BlockDriverState *bs)
376 {
377     BDRVQEDState *s = bs->opaque;
378 
379     memset(s, 0, sizeof(BDRVQEDState));
380     s->bs = bs;
381     qemu_co_mutex_init(&s->table_lock);
382     qemu_co_queue_init(&s->allocating_write_reqs);
383 }
384 
385 /* Called with table_lock held.  */
386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
387                                          int flags, Error **errp)
388 {
389     BDRVQEDState *s = bs->opaque;
390     QEDHeader le_header;
391     int64_t file_size;
392     int ret;
393 
394     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
395     if (ret < 0) {
396         error_setg(errp, "Failed to read QED header");
397         return ret;
398     }
399     qed_header_le_to_cpu(&le_header, &s->header);
400 
401     if (s->header.magic != QED_MAGIC) {
402         error_setg(errp, "Image not in QED format");
403         return -EINVAL;
404     }
405     if (s->header.features & ~QED_FEATURE_MASK) {
406         /* image uses unsupported feature bits */
407         error_setg(errp, "Unsupported QED features: %" PRIx64,
408                    s->header.features & ~QED_FEATURE_MASK);
409         return -ENOTSUP;
410     }
411     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
412         error_setg(errp, "QED cluster size is invalid");
413         return -EINVAL;
414     }
415 
416     /* Round down file size to the last cluster */
417     file_size = bdrv_getlength(bs->file->bs);
418     if (file_size < 0) {
419         error_setg(errp, "Failed to get file length");
420         return file_size;
421     }
422     s->file_size = qed_start_of_cluster(s, file_size);
423 
424     if (!qed_is_table_size_valid(s->header.table_size)) {
425         error_setg(errp, "QED table size is invalid");
426         return -EINVAL;
427     }
428     if (!qed_is_image_size_valid(s->header.image_size,
429                                  s->header.cluster_size,
430                                  s->header.table_size)) {
431         error_setg(errp, "QED image size is invalid");
432         return -EINVAL;
433     }
434     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
435         error_setg(errp, "QED table offset is invalid");
436         return -EINVAL;
437     }
438 
439     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
440                       sizeof(uint64_t);
441     s->l2_shift = ctz32(s->header.cluster_size);
442     s->l2_mask = s->table_nelems - 1;
443     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
444 
445     /* Header size calculation must not overflow uint32_t */
446     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
447         error_setg(errp, "QED header size is too large");
448         return -EINVAL;
449     }
450 
451     if ((s->header.features & QED_F_BACKING_FILE)) {
452         if ((uint64_t)s->header.backing_filename_offset +
453             s->header.backing_filename_size >
454             s->header.cluster_size * s->header.header_size) {
455             error_setg(errp, "QED backing filename offset is invalid");
456             return -EINVAL;
457         }
458 
459         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
460                               s->header.backing_filename_size,
461                               bs->auto_backing_file,
462                               sizeof(bs->auto_backing_file));
463         if (ret < 0) {
464             error_setg(errp, "Failed to read backing filename");
465             return ret;
466         }
467         pstrcpy(bs->backing_file, sizeof(bs->backing_file),
468                 bs->auto_backing_file);
469 
470         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
471             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
472         }
473     }
474 
475     /* Reset unknown autoclear feature bits.  This is a backwards
476      * compatibility mechanism that allows images to be opened by older
477      * programs, which "knock out" unknown feature bits.  When an image is
478      * opened by a newer program again it can detect that the autoclear
479      * feature is no longer valid.
480      */
481     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
482         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
483         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
484 
485         ret = qed_write_header_sync(s);
486         if (ret) {
487             error_setg(errp, "Failed to update header");
488             return ret;
489         }
490 
491         /* From here on only known autoclear feature bits are valid */
492         bdrv_flush(bs->file->bs);
493     }
494 
495     s->l1_table = qed_alloc_table(s);
496     qed_init_l2_cache(&s->l2_cache);
497 
498     ret = qed_read_l1_table_sync(s);
499     if (ret) {
500         error_setg(errp, "Failed to read L1 table");
501         goto out;
502     }
503 
504     /* If image was not closed cleanly, check consistency */
505     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
506         /* Read-only images cannot be fixed.  There is no risk of corruption
507          * since write operations are not possible.  Therefore, allow
508          * potentially inconsistent images to be opened read-only.  This can
509          * aid data recovery from an otherwise inconsistent image.
510          */
511         if (!bdrv_is_read_only(bs->file->bs) &&
512             !(flags & BDRV_O_INACTIVE)) {
513             BdrvCheckResult result = {0};
514 
515             ret = qed_check(s, &result, true);
516             if (ret) {
517                 error_setg(errp, "Image corrupted");
518                 goto out;
519             }
520         }
521     }
522 
523     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
524 
525 out:
526     if (ret) {
527         qed_free_l2_cache(&s->l2_cache);
528         qemu_vfree(s->l1_table);
529     }
530     return ret;
531 }
532 
533 typedef struct QEDOpenCo {
534     BlockDriverState *bs;
535     QDict *options;
536     int flags;
537     Error **errp;
538     int ret;
539 } QEDOpenCo;
540 
541 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
542 {
543     QEDOpenCo *qoc = opaque;
544     BDRVQEDState *s = qoc->bs->opaque;
545 
546     qemu_co_mutex_lock(&s->table_lock);
547     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
548     qemu_co_mutex_unlock(&s->table_lock);
549 }
550 
551 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
552                          Error **errp)
553 {
554     QEDOpenCo qoc = {
555         .bs = bs,
556         .options = options,
557         .flags = flags,
558         .errp = errp,
559         .ret = -EINPROGRESS
560     };
561 
562     bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
563                                BDRV_CHILD_IMAGE, false, errp);
564     if (!bs->file) {
565         return -EINVAL;
566     }
567 
568     bdrv_qed_init_state(bs);
569     if (qemu_in_coroutine()) {
570         bdrv_qed_open_entry(&qoc);
571     } else {
572         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
573         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
574         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
575     }
576     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
577     return qoc.ret;
578 }
579 
580 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
581 {
582     BDRVQEDState *s = bs->opaque;
583 
584     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
585 }
586 
587 /* We have nothing to do for QED reopen, stubs just return
588  * success */
589 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
590                                    BlockReopenQueue *queue, Error **errp)
591 {
592     return 0;
593 }
594 
595 static void bdrv_qed_close(BlockDriverState *bs)
596 {
597     BDRVQEDState *s = bs->opaque;
598 
599     bdrv_qed_detach_aio_context(bs);
600 
601     /* Ensure writes reach stable storage */
602     bdrv_flush(bs->file->bs);
603 
604     /* Clean shutdown, no check required on next open */
605     if (s->header.features & QED_F_NEED_CHECK) {
606         s->header.features &= ~QED_F_NEED_CHECK;
607         qed_write_header_sync(s);
608     }
609 
610     qed_free_l2_cache(&s->l2_cache);
611     qemu_vfree(s->l1_table);
612 }
613 
614 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
615                                            Error **errp)
616 {
617     BlockdevCreateOptionsQed *qed_opts;
618     BlockBackend *blk = NULL;
619     BlockDriverState *bs = NULL;
620 
621     QEDHeader header;
622     QEDHeader le_header;
623     uint8_t *l1_table = NULL;
624     size_t l1_size;
625     int ret = 0;
626 
627     assert(opts->driver == BLOCKDEV_DRIVER_QED);
628     qed_opts = &opts->u.qed;
629 
630     /* Validate options and set default values */
631     if (!qed_opts->has_cluster_size) {
632         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
633     }
634     if (!qed_opts->has_table_size) {
635         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
636     }
637 
638     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
639         error_setg(errp, "QED cluster size must be within range [%u, %u] "
640                          "and power of 2",
641                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
642         return -EINVAL;
643     }
644     if (!qed_is_table_size_valid(qed_opts->table_size)) {
645         error_setg(errp, "QED table size must be within range [%u, %u] "
646                          "and power of 2",
647                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
648         return -EINVAL;
649     }
650     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
651                                  qed_opts->table_size))
652     {
653         error_setg(errp, "QED image size must be a non-zero multiple of "
654                          "cluster size and less than %" PRIu64 " bytes",
655                    qed_max_image_size(qed_opts->cluster_size,
656                                       qed_opts->table_size));
657         return -EINVAL;
658     }
659 
660     /* Create BlockBackend to write to the image */
661     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
662     if (bs == NULL) {
663         return -EIO;
664     }
665 
666     blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
667                           errp);
668     if (!blk) {
669         ret = -EPERM;
670         goto out;
671     }
672     blk_set_allow_write_beyond_eof(blk, true);
673 
674     /* Prepare image format */
675     header = (QEDHeader) {
676         .magic = QED_MAGIC,
677         .cluster_size = qed_opts->cluster_size,
678         .table_size = qed_opts->table_size,
679         .header_size = 1,
680         .features = 0,
681         .compat_features = 0,
682         .l1_table_offset = qed_opts->cluster_size,
683         .image_size = qed_opts->size,
684     };
685 
686     l1_size = header.cluster_size * header.table_size;
687 
688     /*
689      * The QED format associates file length with allocation status,
690      * so a new file (which is empty) must have a length of 0.
691      */
692     ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
693     if (ret < 0) {
694         goto out;
695     }
696 
697     if (qed_opts->has_backing_file) {
698         header.features |= QED_F_BACKING_FILE;
699         header.backing_filename_offset = sizeof(le_header);
700         header.backing_filename_size = strlen(qed_opts->backing_file);
701 
702         if (qed_opts->has_backing_fmt) {
703             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
704             if (qed_fmt_is_raw(backing_fmt)) {
705                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
706             }
707         }
708     }
709 
710     qed_header_cpu_to_le(&header, &le_header);
711     ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
712     if (ret < 0) {
713         goto out;
714     }
715     ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
716                      header.backing_filename_size, 0);
717     if (ret < 0) {
718         goto out;
719     }
720 
721     l1_table = g_malloc0(l1_size);
722     ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
723     if (ret < 0) {
724         goto out;
725     }
726 
727     ret = 0; /* success */
728 out:
729     g_free(l1_table);
730     blk_unref(blk);
731     bdrv_unref(bs);
732     return ret;
733 }
734 
735 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
736                                                 const char *filename,
737                                                 QemuOpts *opts,
738                                                 Error **errp)
739 {
740     BlockdevCreateOptions *create_options = NULL;
741     QDict *qdict;
742     Visitor *v;
743     BlockDriverState *bs = NULL;
744     int ret;
745 
746     static const QDictRenames opt_renames[] = {
747         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
748         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
749         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
750         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
751         { NULL, NULL },
752     };
753 
754     /* Parse options and convert legacy syntax */
755     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
756 
757     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
758         ret = -EINVAL;
759         goto fail;
760     }
761 
762     /* Create and open the file (protocol layer) */
763     ret = bdrv_create_file(filename, opts, errp);
764     if (ret < 0) {
765         goto fail;
766     }
767 
768     bs = bdrv_open(filename, NULL, NULL,
769                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
770     if (bs == NULL) {
771         ret = -EIO;
772         goto fail;
773     }
774 
775     /* Now get the QAPI type BlockdevCreateOptions */
776     qdict_put_str(qdict, "driver", "qed");
777     qdict_put_str(qdict, "file", bs->node_name);
778 
779     v = qobject_input_visitor_new_flat_confused(qdict, errp);
780     if (!v) {
781         ret = -EINVAL;
782         goto fail;
783     }
784 
785     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
786     visit_free(v);
787     if (!create_options) {
788         ret = -EINVAL;
789         goto fail;
790     }
791 
792     /* Silently round up size */
793     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
794     create_options->u.qed.size =
795         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
796 
797     /* Create the qed image (format layer) */
798     ret = bdrv_qed_co_create(create_options, errp);
799 
800 fail:
801     qobject_unref(qdict);
802     bdrv_unref(bs);
803     qapi_free_BlockdevCreateOptions(create_options);
804     return ret;
805 }
806 
807 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
808                                                  bool want_zero,
809                                                  int64_t pos, int64_t bytes,
810                                                  int64_t *pnum, int64_t *map,
811                                                  BlockDriverState **file)
812 {
813     BDRVQEDState *s = bs->opaque;
814     size_t len = MIN(bytes, SIZE_MAX);
815     int status;
816     QEDRequest request = { .l2_table = NULL };
817     uint64_t offset;
818     int ret;
819 
820     qemu_co_mutex_lock(&s->table_lock);
821     ret = qed_find_cluster(s, &request, pos, &len, &offset);
822 
823     *pnum = len;
824     switch (ret) {
825     case QED_CLUSTER_FOUND:
826         *map = offset | qed_offset_into_cluster(s, pos);
827         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
828         *file = bs->file->bs;
829         break;
830     case QED_CLUSTER_ZERO:
831         status = BDRV_BLOCK_ZERO;
832         break;
833     case QED_CLUSTER_L2:
834     case QED_CLUSTER_L1:
835         status = 0;
836         break;
837     default:
838         assert(ret < 0);
839         status = ret;
840         break;
841     }
842 
843     qed_unref_l2_cache_entry(request.l2_table);
844     qemu_co_mutex_unlock(&s->table_lock);
845 
846     return status;
847 }
848 
849 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
850 {
851     return acb->bs->opaque;
852 }
853 
854 /**
855  * Read from the backing file or zero-fill if no backing file
856  *
857  * @s:              QED state
858  * @pos:            Byte position in device
859  * @qiov:           Destination I/O vector
860  *
861  * This function reads qiov->size bytes starting at pos from the backing file.
862  * If there is no backing file then zeroes are read.
863  */
864 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
865                                               QEMUIOVector *qiov)
866 {
867     if (s->bs->backing) {
868         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
869         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
870     }
871     qemu_iovec_memset(qiov, 0, 0, qiov->size);
872     return 0;
873 }
874 
875 /**
876  * Copy data from backing file into the image
877  *
878  * @s:          QED state
879  * @pos:        Byte position in device
880  * @len:        Number of bytes
881  * @offset:     Byte offset in image file
882  */
883 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
884                                                    uint64_t pos, uint64_t len,
885                                                    uint64_t offset)
886 {
887     QEMUIOVector qiov;
888     int ret;
889 
890     /* Skip copy entirely if there is no work to do */
891     if (len == 0) {
892         return 0;
893     }
894 
895     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
896 
897     ret = qed_read_backing_file(s, pos, &qiov);
898 
899     if (ret) {
900         goto out;
901     }
902 
903     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
904     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
905     if (ret < 0) {
906         goto out;
907     }
908     ret = 0;
909 out:
910     qemu_vfree(qemu_iovec_buf(&qiov));
911     return ret;
912 }
913 
914 /**
915  * Link one or more contiguous clusters into a table
916  *
917  * @s:              QED state
918  * @table:          L2 table
919  * @index:          First cluster index
920  * @n:              Number of contiguous clusters
921  * @cluster:        First cluster offset
922  *
923  * The cluster offset may be an allocated byte offset in the image file, the
924  * zero cluster marker, or the unallocated cluster marker.
925  *
926  * Called with table_lock held.
927  */
928 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
929                                              int index, unsigned int n,
930                                              uint64_t cluster)
931 {
932     int i;
933     for (i = index; i < index + n; i++) {
934         table->offsets[i] = cluster;
935         if (!qed_offset_is_unalloc_cluster(cluster) &&
936             !qed_offset_is_zero_cluster(cluster)) {
937             cluster += s->header.cluster_size;
938         }
939     }
940 }
941 
942 /* Called with table_lock held.  */
943 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
944 {
945     BDRVQEDState *s = acb_to_s(acb);
946 
947     /* Free resources */
948     qemu_iovec_destroy(&acb->cur_qiov);
949     qed_unref_l2_cache_entry(acb->request.l2_table);
950 
951     /* Free the buffer we may have allocated for zero writes */
952     if (acb->flags & QED_AIOCB_ZERO) {
953         qemu_vfree(acb->qiov->iov[0].iov_base);
954         acb->qiov->iov[0].iov_base = NULL;
955     }
956 
957     /* Start next allocating write request waiting behind this one.  Note that
958      * requests enqueue themselves when they first hit an unallocated cluster
959      * but they wait until the entire request is finished before waking up the
960      * next request in the queue.  This ensures that we don't cycle through
961      * requests multiple times but rather finish one at a time completely.
962      */
963     if (acb == s->allocating_acb) {
964         s->allocating_acb = NULL;
965         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
966             qemu_co_queue_next(&s->allocating_write_reqs);
967         } else if (s->header.features & QED_F_NEED_CHECK) {
968             qed_start_need_check_timer(s);
969         }
970     }
971 }
972 
973 /**
974  * Update L1 table with new L2 table offset and write it out
975  *
976  * Called with table_lock held.
977  */
978 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
979 {
980     BDRVQEDState *s = acb_to_s(acb);
981     CachedL2Table *l2_table = acb->request.l2_table;
982     uint64_t l2_offset = l2_table->offset;
983     int index, ret;
984 
985     index = qed_l1_index(s, acb->cur_pos);
986     s->l1_table->offsets[index] = l2_table->offset;
987 
988     ret = qed_write_l1_table(s, index, 1);
989 
990     /* Commit the current L2 table to the cache */
991     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
992 
993     /* This is guaranteed to succeed because we just committed the entry to the
994      * cache.
995      */
996     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
997     assert(acb->request.l2_table != NULL);
998 
999     return ret;
1000 }
1001 
1002 
1003 /**
1004  * Update L2 table with new cluster offsets and write them out
1005  *
1006  * Called with table_lock held.
1007  */
1008 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1009 {
1010     BDRVQEDState *s = acb_to_s(acb);
1011     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1012     int index, ret;
1013 
1014     if (need_alloc) {
1015         qed_unref_l2_cache_entry(acb->request.l2_table);
1016         acb->request.l2_table = qed_new_l2_table(s);
1017     }
1018 
1019     index = qed_l2_index(s, acb->cur_pos);
1020     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1021                          offset);
1022 
1023     if (need_alloc) {
1024         /* Write out the whole new L2 table */
1025         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1026         if (ret) {
1027             return ret;
1028         }
1029         return qed_aio_write_l1_update(acb);
1030     } else {
1031         /* Write out only the updated part of the L2 table */
1032         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1033                                  false);
1034         if (ret) {
1035             return ret;
1036         }
1037     }
1038     return 0;
1039 }
1040 
1041 /**
1042  * Write data to the image file
1043  *
1044  * Called with table_lock *not* held.
1045  */
1046 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1047 {
1048     BDRVQEDState *s = acb_to_s(acb);
1049     uint64_t offset = acb->cur_cluster +
1050                       qed_offset_into_cluster(s, acb->cur_pos);
1051 
1052     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1053 
1054     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1055     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1056                            &acb->cur_qiov, 0);
1057 }
1058 
1059 /**
1060  * Populate untouched regions of new data cluster
1061  *
1062  * Called with table_lock held.
1063  */
1064 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1065 {
1066     BDRVQEDState *s = acb_to_s(acb);
1067     uint64_t start, len, offset;
1068     int ret;
1069 
1070     qemu_co_mutex_unlock(&s->table_lock);
1071 
1072     /* Populate front untouched region of new data cluster */
1073     start = qed_start_of_cluster(s, acb->cur_pos);
1074     len = qed_offset_into_cluster(s, acb->cur_pos);
1075 
1076     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1077     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1078     if (ret < 0) {
1079         goto out;
1080     }
1081 
1082     /* Populate back untouched region of new data cluster */
1083     start = acb->cur_pos + acb->cur_qiov.size;
1084     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1085     offset = acb->cur_cluster +
1086              qed_offset_into_cluster(s, acb->cur_pos) +
1087              acb->cur_qiov.size;
1088 
1089     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1090     ret = qed_copy_from_backing_file(s, start, len, offset);
1091     if (ret < 0) {
1092         goto out;
1093     }
1094 
1095     ret = qed_aio_write_main(acb);
1096     if (ret < 0) {
1097         goto out;
1098     }
1099 
1100     if (s->bs->backing) {
1101         /*
1102          * Flush new data clusters before updating the L2 table
1103          *
1104          * This flush is necessary when a backing file is in use.  A crash
1105          * during an allocating write could result in empty clusters in the
1106          * image.  If the write only touched a subregion of the cluster,
1107          * then backing image sectors have been lost in the untouched
1108          * region.  The solution is to flush after writing a new data
1109          * cluster and before updating the L2 table.
1110          */
1111         ret = bdrv_co_flush(s->bs->file->bs);
1112     }
1113 
1114 out:
1115     qemu_co_mutex_lock(&s->table_lock);
1116     return ret;
1117 }
1118 
1119 /**
1120  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1121  */
1122 static bool qed_should_set_need_check(BDRVQEDState *s)
1123 {
1124     /* The flush before L2 update path ensures consistency */
1125     if (s->bs->backing) {
1126         return false;
1127     }
1128 
1129     return !(s->header.features & QED_F_NEED_CHECK);
1130 }
1131 
1132 /**
1133  * Write new data cluster
1134  *
1135  * @acb:        Write request
1136  * @len:        Length in bytes
1137  *
1138  * This path is taken when writing to previously unallocated clusters.
1139  *
1140  * Called with table_lock held.
1141  */
1142 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1143 {
1144     BDRVQEDState *s = acb_to_s(acb);
1145     int ret;
1146 
1147     /* Cancel timer when the first allocating request comes in */
1148     if (s->allocating_acb == NULL) {
1149         qed_cancel_need_check_timer(s);
1150     }
1151 
1152     /* Freeze this request if another allocating write is in progress */
1153     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1154         if (s->allocating_acb != NULL) {
1155             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1156             assert(s->allocating_acb == NULL);
1157         }
1158         s->allocating_acb = acb;
1159         return -EAGAIN; /* start over with looking up table entries */
1160     }
1161 
1162     acb->cur_nclusters = qed_bytes_to_clusters(s,
1163             qed_offset_into_cluster(s, acb->cur_pos) + len);
1164     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1165 
1166     if (acb->flags & QED_AIOCB_ZERO) {
1167         /* Skip ahead if the clusters are already zero */
1168         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1169             return 0;
1170         }
1171         acb->cur_cluster = 1;
1172     } else {
1173         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1174     }
1175 
1176     if (qed_should_set_need_check(s)) {
1177         s->header.features |= QED_F_NEED_CHECK;
1178         ret = qed_write_header(s);
1179         if (ret < 0) {
1180             return ret;
1181         }
1182     }
1183 
1184     if (!(acb->flags & QED_AIOCB_ZERO)) {
1185         ret = qed_aio_write_cow(acb);
1186         if (ret < 0) {
1187             return ret;
1188         }
1189     }
1190 
1191     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1192 }
1193 
1194 /**
1195  * Write data cluster in place
1196  *
1197  * @acb:        Write request
1198  * @offset:     Cluster offset in bytes
1199  * @len:        Length in bytes
1200  *
1201  * This path is taken when writing to already allocated clusters.
1202  *
1203  * Called with table_lock held.
1204  */
1205 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1206                                               size_t len)
1207 {
1208     BDRVQEDState *s = acb_to_s(acb);
1209     int r;
1210 
1211     qemu_co_mutex_unlock(&s->table_lock);
1212 
1213     /* Allocate buffer for zero writes */
1214     if (acb->flags & QED_AIOCB_ZERO) {
1215         struct iovec *iov = acb->qiov->iov;
1216 
1217         if (!iov->iov_base) {
1218             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1219             if (iov->iov_base == NULL) {
1220                 r = -ENOMEM;
1221                 goto out;
1222             }
1223             memset(iov->iov_base, 0, iov->iov_len);
1224         }
1225     }
1226 
1227     /* Calculate the I/O vector */
1228     acb->cur_cluster = offset;
1229     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1230 
1231     /* Do the actual write.  */
1232     r = qed_aio_write_main(acb);
1233 out:
1234     qemu_co_mutex_lock(&s->table_lock);
1235     return r;
1236 }
1237 
1238 /**
1239  * Write data cluster
1240  *
1241  * @opaque:     Write request
1242  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1243  * @offset:     Cluster offset in bytes
1244  * @len:        Length in bytes
1245  *
1246  * Called with table_lock held.
1247  */
1248 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1249                                            uint64_t offset, size_t len)
1250 {
1251     QEDAIOCB *acb = opaque;
1252 
1253     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1254 
1255     acb->find_cluster_ret = ret;
1256 
1257     switch (ret) {
1258     case QED_CLUSTER_FOUND:
1259         return qed_aio_write_inplace(acb, offset, len);
1260 
1261     case QED_CLUSTER_L2:
1262     case QED_CLUSTER_L1:
1263     case QED_CLUSTER_ZERO:
1264         return qed_aio_write_alloc(acb, len);
1265 
1266     default:
1267         g_assert_not_reached();
1268     }
1269 }
1270 
1271 /**
1272  * Read data cluster
1273  *
1274  * @opaque:     Read request
1275  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1276  * @offset:     Cluster offset in bytes
1277  * @len:        Length in bytes
1278  *
1279  * Called with table_lock held.
1280  */
1281 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1282                                           uint64_t offset, size_t len)
1283 {
1284     QEDAIOCB *acb = opaque;
1285     BDRVQEDState *s = acb_to_s(acb);
1286     BlockDriverState *bs = acb->bs;
1287     int r;
1288 
1289     qemu_co_mutex_unlock(&s->table_lock);
1290 
1291     /* Adjust offset into cluster */
1292     offset += qed_offset_into_cluster(s, acb->cur_pos);
1293 
1294     trace_qed_aio_read_data(s, acb, ret, offset, len);
1295 
1296     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1297 
1298     /* Handle zero cluster and backing file reads, otherwise read
1299      * data cluster directly.
1300      */
1301     if (ret == QED_CLUSTER_ZERO) {
1302         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1303         r = 0;
1304     } else if (ret != QED_CLUSTER_FOUND) {
1305         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1306     } else {
1307         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1308         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1309                            &acb->cur_qiov, 0);
1310     }
1311 
1312     qemu_co_mutex_lock(&s->table_lock);
1313     return r;
1314 }
1315 
1316 /**
1317  * Begin next I/O or complete the request
1318  */
1319 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1320 {
1321     BDRVQEDState *s = acb_to_s(acb);
1322     uint64_t offset;
1323     size_t len;
1324     int ret;
1325 
1326     qemu_co_mutex_lock(&s->table_lock);
1327     while (1) {
1328         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1329 
1330         acb->qiov_offset += acb->cur_qiov.size;
1331         acb->cur_pos += acb->cur_qiov.size;
1332         qemu_iovec_reset(&acb->cur_qiov);
1333 
1334         /* Complete request */
1335         if (acb->cur_pos >= acb->end_pos) {
1336             ret = 0;
1337             break;
1338         }
1339 
1340         /* Find next cluster and start I/O */
1341         len = acb->end_pos - acb->cur_pos;
1342         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1343         if (ret < 0) {
1344             break;
1345         }
1346 
1347         if (acb->flags & QED_AIOCB_WRITE) {
1348             ret = qed_aio_write_data(acb, ret, offset, len);
1349         } else {
1350             ret = qed_aio_read_data(acb, ret, offset, len);
1351         }
1352 
1353         if (ret < 0 && ret != -EAGAIN) {
1354             break;
1355         }
1356     }
1357 
1358     trace_qed_aio_complete(s, acb, ret);
1359     qed_aio_complete(acb);
1360     qemu_co_mutex_unlock(&s->table_lock);
1361     return ret;
1362 }
1363 
1364 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1365                                        QEMUIOVector *qiov, int nb_sectors,
1366                                        int flags)
1367 {
1368     QEDAIOCB acb = {
1369         .bs         = bs,
1370         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1371         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1372         .qiov       = qiov,
1373         .flags      = flags,
1374     };
1375     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1376 
1377     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1378 
1379     /* Start request */
1380     return qed_aio_next_io(&acb);
1381 }
1382 
1383 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1384                                           int64_t sector_num, int nb_sectors,
1385                                           QEMUIOVector *qiov)
1386 {
1387     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1388 }
1389 
1390 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1391                                            int64_t sector_num, int nb_sectors,
1392                                            QEMUIOVector *qiov, int flags)
1393 {
1394     assert(!flags);
1395     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1396 }
1397 
1398 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1399                                                   int64_t offset,
1400                                                   int bytes,
1401                                                   BdrvRequestFlags flags)
1402 {
1403     BDRVQEDState *s = bs->opaque;
1404 
1405     /*
1406      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1407      * then it will be allocated during request processing.
1408      */
1409     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1410 
1411     /* Fall back if the request is not aligned */
1412     if (qed_offset_into_cluster(s, offset) ||
1413         qed_offset_into_cluster(s, bytes)) {
1414         return -ENOTSUP;
1415     }
1416 
1417     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1418                           bytes >> BDRV_SECTOR_BITS,
1419                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1420 }
1421 
1422 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1423                                              int64_t offset,
1424                                              bool exact,
1425                                              PreallocMode prealloc,
1426                                              BdrvRequestFlags flags,
1427                                              Error **errp)
1428 {
1429     BDRVQEDState *s = bs->opaque;
1430     uint64_t old_image_size;
1431     int ret;
1432 
1433     if (prealloc != PREALLOC_MODE_OFF) {
1434         error_setg(errp, "Unsupported preallocation mode '%s'",
1435                    PreallocMode_str(prealloc));
1436         return -ENOTSUP;
1437     }
1438 
1439     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1440                                  s->header.table_size)) {
1441         error_setg(errp, "Invalid image size specified");
1442         return -EINVAL;
1443     }
1444 
1445     if ((uint64_t)offset < s->header.image_size) {
1446         error_setg(errp, "Shrinking images is currently not supported");
1447         return -ENOTSUP;
1448     }
1449 
1450     old_image_size = s->header.image_size;
1451     s->header.image_size = offset;
1452     ret = qed_write_header_sync(s);
1453     if (ret < 0) {
1454         s->header.image_size = old_image_size;
1455         error_setg_errno(errp, -ret, "Failed to update the image size");
1456     }
1457     return ret;
1458 }
1459 
1460 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1461 {
1462     BDRVQEDState *s = bs->opaque;
1463     return s->header.image_size;
1464 }
1465 
1466 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1467 {
1468     BDRVQEDState *s = bs->opaque;
1469 
1470     memset(bdi, 0, sizeof(*bdi));
1471     bdi->cluster_size = s->header.cluster_size;
1472     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1473     return 0;
1474 }
1475 
1476 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1477                                         const char *backing_file,
1478                                         const char *backing_fmt)
1479 {
1480     BDRVQEDState *s = bs->opaque;
1481     QEDHeader new_header, le_header;
1482     void *buffer;
1483     size_t buffer_len, backing_file_len;
1484     int ret;
1485 
1486     /* Refuse to set backing filename if unknown compat feature bits are
1487      * active.  If the image uses an unknown compat feature then we may not
1488      * know the layout of data following the header structure and cannot safely
1489      * add a new string.
1490      */
1491     if (backing_file && (s->header.compat_features &
1492                          ~QED_COMPAT_FEATURE_MASK)) {
1493         return -ENOTSUP;
1494     }
1495 
1496     memcpy(&new_header, &s->header, sizeof(new_header));
1497 
1498     new_header.features &= ~(QED_F_BACKING_FILE |
1499                              QED_F_BACKING_FORMAT_NO_PROBE);
1500 
1501     /* Adjust feature flags */
1502     if (backing_file) {
1503         new_header.features |= QED_F_BACKING_FILE;
1504 
1505         if (qed_fmt_is_raw(backing_fmt)) {
1506             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1507         }
1508     }
1509 
1510     /* Calculate new header size */
1511     backing_file_len = 0;
1512 
1513     if (backing_file) {
1514         backing_file_len = strlen(backing_file);
1515     }
1516 
1517     buffer_len = sizeof(new_header);
1518     new_header.backing_filename_offset = buffer_len;
1519     new_header.backing_filename_size = backing_file_len;
1520     buffer_len += backing_file_len;
1521 
1522     /* Make sure we can rewrite header without failing */
1523     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1524         return -ENOSPC;
1525     }
1526 
1527     /* Prepare new header */
1528     buffer = g_malloc(buffer_len);
1529 
1530     qed_header_cpu_to_le(&new_header, &le_header);
1531     memcpy(buffer, &le_header, sizeof(le_header));
1532     buffer_len = sizeof(le_header);
1533 
1534     if (backing_file) {
1535         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1536         buffer_len += backing_file_len;
1537     }
1538 
1539     /* Write new header */
1540     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1541     g_free(buffer);
1542     if (ret == 0) {
1543         memcpy(&s->header, &new_header, sizeof(new_header));
1544     }
1545     return ret;
1546 }
1547 
1548 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1549                                                       Error **errp)
1550 {
1551     BDRVQEDState *s = bs->opaque;
1552     int ret;
1553 
1554     bdrv_qed_close(bs);
1555 
1556     bdrv_qed_init_state(bs);
1557     qemu_co_mutex_lock(&s->table_lock);
1558     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1559     qemu_co_mutex_unlock(&s->table_lock);
1560     if (ret < 0) {
1561         error_prepend(errp, "Could not reopen qed layer: ");
1562     }
1563 }
1564 
1565 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1566                                           BdrvCheckResult *result,
1567                                           BdrvCheckMode fix)
1568 {
1569     BDRVQEDState *s = bs->opaque;
1570     int ret;
1571 
1572     qemu_co_mutex_lock(&s->table_lock);
1573     ret = qed_check(s, result, !!fix);
1574     qemu_co_mutex_unlock(&s->table_lock);
1575 
1576     return ret;
1577 }
1578 
1579 static QemuOptsList qed_create_opts = {
1580     .name = "qed-create-opts",
1581     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1582     .desc = {
1583         {
1584             .name = BLOCK_OPT_SIZE,
1585             .type = QEMU_OPT_SIZE,
1586             .help = "Virtual disk size"
1587         },
1588         {
1589             .name = BLOCK_OPT_BACKING_FILE,
1590             .type = QEMU_OPT_STRING,
1591             .help = "File name of a base image"
1592         },
1593         {
1594             .name = BLOCK_OPT_BACKING_FMT,
1595             .type = QEMU_OPT_STRING,
1596             .help = "Image format of the base image"
1597         },
1598         {
1599             .name = BLOCK_OPT_CLUSTER_SIZE,
1600             .type = QEMU_OPT_SIZE,
1601             .help = "Cluster size (in bytes)",
1602             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1603         },
1604         {
1605             .name = BLOCK_OPT_TABLE_SIZE,
1606             .type = QEMU_OPT_SIZE,
1607             .help = "L1/L2 table size (in clusters)"
1608         },
1609         { /* end of list */ }
1610     }
1611 };
1612 
1613 static BlockDriver bdrv_qed = {
1614     .format_name              = "qed",
1615     .instance_size            = sizeof(BDRVQEDState),
1616     .create_opts              = &qed_create_opts,
1617     .is_format                = true,
1618     .supports_backing         = true,
1619 
1620     .bdrv_probe               = bdrv_qed_probe,
1621     .bdrv_open                = bdrv_qed_open,
1622     .bdrv_close               = bdrv_qed_close,
1623     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1624     .bdrv_child_perm          = bdrv_default_perms,
1625     .bdrv_co_create           = bdrv_qed_co_create,
1626     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1627     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1628     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1629     .bdrv_co_readv            = bdrv_qed_co_readv,
1630     .bdrv_co_writev           = bdrv_qed_co_writev,
1631     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1632     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1633     .bdrv_getlength           = bdrv_qed_getlength,
1634     .bdrv_get_info            = bdrv_qed_get_info,
1635     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1636     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1637     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1638     .bdrv_co_check            = bdrv_qed_co_check,
1639     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1640     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1641     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1642 };
1643 
1644 static void bdrv_qed_init(void)
1645 {
1646     bdrv_register(&bdrv_qed);
1647 }
1648 
1649 block_init(bdrv_qed_init);
1650