xref: /qemu/block/qed.c (revision e995d5cc)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30 
31 static QemuOptsList qed_create_opts;
32 
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34                           const char *filename)
35 {
36     const QEDHeader *header = (const QEDHeader *)buf;
37 
38     if (buf_size < sizeof(*header)) {
39         return 0;
40     }
41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
42         return 0;
43     }
44     return 100;
45 }
46 
47 /**
48  * Check whether an image format is raw
49  *
50  * @fmt:    Backing file format, may be NULL
51  */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54     return fmt && strcmp(fmt, "raw") == 0;
55 }
56 
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59     cpu->magic = le32_to_cpu(le->magic);
60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
61     cpu->table_size = le32_to_cpu(le->table_size);
62     cpu->header_size = le32_to_cpu(le->header_size);
63     cpu->features = le64_to_cpu(le->features);
64     cpu->compat_features = le64_to_cpu(le->compat_features);
65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67     cpu->image_size = le64_to_cpu(le->image_size);
68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71 
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74     le->magic = cpu_to_le32(cpu->magic);
75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
76     le->table_size = cpu_to_le32(cpu->table_size);
77     le->header_size = cpu_to_le32(cpu->header_size);
78     le->features = cpu_to_le64(cpu->features);
79     le->compat_features = cpu_to_le64(cpu->compat_features);
80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82     le->image_size = cpu_to_le64(cpu->image_size);
83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86 
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89     QEDHeader le;
90 
91     qed_header_cpu_to_le(&s->header, &le);
92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94 
95 /**
96  * Update header in-place (does not rewrite backing filename or other strings)
97  *
98  * This function only updates known header fields in-place and does not affect
99  * extra data after the QED header.
100  *
101  * No new allocating reqs can start while this function runs.
102  */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
106      * the data following the header if an unrecognized compat feature is
107      * active.  Therefore, first read the sectors containing the header, update
108      * them, and write back.
109      */
110 
111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112     size_t len = nsectors * BDRV_SECTOR_SIZE;
113     uint8_t *buf;
114     int ret;
115 
116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117 
118     buf = qemu_blockalign(s->bs, len);
119 
120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121     if (ret < 0) {
122         goto out;
123     }
124 
125     /* Update header */
126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127 
128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
129     if (ret < 0) {
130         goto out;
131     }
132 
133     ret = 0;
134 out:
135     qemu_vfree(buf);
136     return ret;
137 }
138 
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141     uint64_t table_entries;
142     uint64_t l2_size;
143 
144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145     l2_size = table_entries * cluster_size;
146 
147     return l2_size * table_entries;
148 }
149 
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153         cluster_size > QED_MAX_CLUSTER_SIZE) {
154         return false;
155     }
156     if (cluster_size & (cluster_size - 1)) {
157         return false; /* not power of 2 */
158     }
159     return true;
160 }
161 
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164     if (table_size < QED_MIN_TABLE_SIZE ||
165         table_size > QED_MAX_TABLE_SIZE) {
166         return false;
167     }
168     if (table_size & (table_size - 1)) {
169         return false; /* not power of 2 */
170     }
171     return true;
172 }
173 
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175                                     uint32_t table_size)
176 {
177     if (image_size % BDRV_SECTOR_SIZE != 0) {
178         return false; /* not multiple of sector size */
179     }
180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
181         return false; /* image is too large */
182     }
183     return true;
184 }
185 
186 /**
187  * Read a string of known length from the image file
188  *
189  * @file:       Image file
190  * @offset:     File offset to start of string, in bytes
191  * @n:          String length in bytes
192  * @buf:        Destination buffer
193  * @buflen:     Destination buffer length in bytes
194  * @ret:        0 on success, -errno on failure
195  *
196  * The string is NUL-terminated.
197  */
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199                            char *buf, size_t buflen)
200 {
201     int ret;
202     if (n >= buflen) {
203         return -EINVAL;
204     }
205     ret = bdrv_pread(file, offset, n, buf, 0);
206     if (ret < 0) {
207         return ret;
208     }
209     buf[n] = '\0';
210     return 0;
211 }
212 
213 /**
214  * Allocate new clusters
215  *
216  * @s:          QED state
217  * @n:          Number of contiguous clusters to allocate
218  * @ret:        Offset of first allocated cluster
219  *
220  * This function only produces the offset where the new clusters should be
221  * written.  It updates BDRVQEDState but does not make any changes to the image
222  * file.
223  *
224  * Called with table_lock held.
225  */
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
227 {
228     uint64_t offset = s->file_size;
229     s->file_size += n * s->header.cluster_size;
230     return offset;
231 }
232 
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
234 {
235     /* Honor O_DIRECT memory alignment requirements */
236     return qemu_blockalign(s->bs,
237                            s->header.cluster_size * s->header.table_size);
238 }
239 
240 /**
241  * Allocate a new zeroed L2 table
242  *
243  * Called with table_lock held.
244  */
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 {
247     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248 
249     l2_table->table = qed_alloc_table(s);
250     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251 
252     memset(l2_table->table->offsets, 0,
253            s->header.cluster_size * s->header.table_size);
254     return l2_table;
255 }
256 
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
258 {
259     qemu_co_mutex_lock(&s->table_lock);
260 
261     /* No reentrancy is allowed.  */
262     assert(!s->allocating_write_reqs_plugged);
263     if (s->allocating_acb != NULL) {
264         /* Another allocating write came concurrently.  This cannot happen
265          * from bdrv_qed_drain_begin, but it can happen when the timer runs.
266          */
267         qemu_co_mutex_unlock(&s->table_lock);
268         return false;
269     }
270 
271     s->allocating_write_reqs_plugged = true;
272     qemu_co_mutex_unlock(&s->table_lock);
273     return true;
274 }
275 
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
277 {
278     qemu_co_mutex_lock(&s->table_lock);
279     assert(s->allocating_write_reqs_plugged);
280     s->allocating_write_reqs_plugged = false;
281     qemu_co_queue_next(&s->allocating_write_reqs);
282     qemu_co_mutex_unlock(&s->table_lock);
283 }
284 
285 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
286 {
287     int ret;
288 
289     trace_qed_need_check_timer_cb(s);
290     assert_bdrv_graph_readable();
291 
292     if (!qed_plug_allocating_write_reqs(s)) {
293         return;
294     }
295 
296     /* Ensure writes are on disk before clearing flag */
297     ret = bdrv_co_flush(s->bs->file->bs);
298     if (ret < 0) {
299         qed_unplug_allocating_write_reqs(s);
300         return;
301     }
302 
303     s->header.features &= ~QED_F_NEED_CHECK;
304     ret = qed_write_header(s);
305     (void) ret;
306 
307     qed_unplug_allocating_write_reqs(s);
308 
309     ret = bdrv_co_flush(s->bs);
310     (void) ret;
311 }
312 
313 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
314 {
315     BDRVQEDState *s = opaque;
316     GRAPH_RDLOCK_GUARD();
317 
318     qed_need_check_timer(opaque);
319     bdrv_dec_in_flight(s->bs);
320 }
321 
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324     BDRVQEDState *s = opaque;
325     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
326 
327     bdrv_inc_in_flight(s->bs);
328     qemu_coroutine_enter(co);
329 }
330 
331 static void qed_start_need_check_timer(BDRVQEDState *s)
332 {
333     trace_qed_start_need_check_timer(s);
334 
335     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
336      * migration.
337      */
338     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
339                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
340 }
341 
342 /* It's okay to call this multiple times or when no timer is started */
343 static void qed_cancel_need_check_timer(BDRVQEDState *s)
344 {
345     trace_qed_cancel_need_check_timer(s);
346     timer_del(s->need_check_timer);
347 }
348 
349 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
350 {
351     BDRVQEDState *s = bs->opaque;
352 
353     qed_cancel_need_check_timer(s);
354     timer_free(s->need_check_timer);
355 }
356 
357 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
358                                         AioContext *new_context)
359 {
360     BDRVQEDState *s = bs->opaque;
361 
362     s->need_check_timer = aio_timer_new(new_context,
363                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
364                                         qed_need_check_timer_cb, s);
365     if (s->header.features & QED_F_NEED_CHECK) {
366         qed_start_need_check_timer(s);
367     }
368 }
369 
370 static void bdrv_qed_drain_begin(BlockDriverState *bs)
371 {
372     BDRVQEDState *s = bs->opaque;
373 
374     /* Fire the timer immediately in order to start doing I/O as soon as the
375      * header is flushed.
376      */
377     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
378         Coroutine *co;
379 
380         qed_cancel_need_check_timer(s);
381         co = qemu_coroutine_create(qed_need_check_timer_entry, s);
382         bdrv_inc_in_flight(bs);
383         aio_co_enter(bdrv_get_aio_context(bs), co);
384     }
385 }
386 
387 static void bdrv_qed_init_state(BlockDriverState *bs)
388 {
389     BDRVQEDState *s = bs->opaque;
390 
391     memset(s, 0, sizeof(BDRVQEDState));
392     s->bs = bs;
393     qemu_co_mutex_init(&s->table_lock);
394     qemu_co_queue_init(&s->allocating_write_reqs);
395 }
396 
397 /* Called with table_lock held.  */
398 static int coroutine_fn GRAPH_RDLOCK
399 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
400 {
401     BDRVQEDState *s = bs->opaque;
402     QEDHeader le_header;
403     int64_t file_size;
404     int ret;
405 
406     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
407     if (ret < 0) {
408         error_setg(errp, "Failed to read QED header");
409         return ret;
410     }
411     qed_header_le_to_cpu(&le_header, &s->header);
412 
413     if (s->header.magic != QED_MAGIC) {
414         error_setg(errp, "Image not in QED format");
415         return -EINVAL;
416     }
417     if (s->header.features & ~QED_FEATURE_MASK) {
418         /* image uses unsupported feature bits */
419         error_setg(errp, "Unsupported QED features: %" PRIx64,
420                    s->header.features & ~QED_FEATURE_MASK);
421         return -ENOTSUP;
422     }
423     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
424         error_setg(errp, "QED cluster size is invalid");
425         return -EINVAL;
426     }
427 
428     /* Round down file size to the last cluster */
429     file_size = bdrv_co_getlength(bs->file->bs);
430     if (file_size < 0) {
431         error_setg(errp, "Failed to get file length");
432         return file_size;
433     }
434     s->file_size = qed_start_of_cluster(s, file_size);
435 
436     if (!qed_is_table_size_valid(s->header.table_size)) {
437         error_setg(errp, "QED table size is invalid");
438         return -EINVAL;
439     }
440     if (!qed_is_image_size_valid(s->header.image_size,
441                                  s->header.cluster_size,
442                                  s->header.table_size)) {
443         error_setg(errp, "QED image size is invalid");
444         return -EINVAL;
445     }
446     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
447         error_setg(errp, "QED table offset is invalid");
448         return -EINVAL;
449     }
450 
451     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
452                       sizeof(uint64_t);
453     s->l2_shift = ctz32(s->header.cluster_size);
454     s->l2_mask = s->table_nelems - 1;
455     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
456 
457     /* Header size calculation must not overflow uint32_t */
458     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
459         error_setg(errp, "QED header size is too large");
460         return -EINVAL;
461     }
462 
463     if ((s->header.features & QED_F_BACKING_FILE)) {
464         g_autofree char *backing_file_str = NULL;
465 
466         if ((uint64_t)s->header.backing_filename_offset +
467             s->header.backing_filename_size >
468             s->header.cluster_size * s->header.header_size) {
469             error_setg(errp, "QED backing filename offset is invalid");
470             return -EINVAL;
471         }
472 
473         backing_file_str = g_malloc(sizeof(bs->backing_file));
474         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
475                               s->header.backing_filename_size,
476                               backing_file_str, sizeof(bs->backing_file));
477         if (ret < 0) {
478             error_setg(errp, "Failed to read backing filename");
479             return ret;
480         }
481 
482         if (!g_str_equal(backing_file_str, bs->backing_file)) {
483             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
484                     backing_file_str);
485             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
486                     backing_file_str);
487         }
488 
489         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
490             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
491         }
492     }
493 
494     /* Reset unknown autoclear feature bits.  This is a backwards
495      * compatibility mechanism that allows images to be opened by older
496      * programs, which "knock out" unknown feature bits.  When an image is
497      * opened by a newer program again it can detect that the autoclear
498      * feature is no longer valid.
499      */
500     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
501         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
502         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
503 
504         ret = qed_write_header_sync(s);
505         if (ret) {
506             error_setg(errp, "Failed to update header");
507             return ret;
508         }
509 
510         /* From here on only known autoclear feature bits are valid */
511         bdrv_co_flush(bs->file->bs);
512     }
513 
514     s->l1_table = qed_alloc_table(s);
515     qed_init_l2_cache(&s->l2_cache);
516 
517     ret = qed_read_l1_table_sync(s);
518     if (ret) {
519         error_setg(errp, "Failed to read L1 table");
520         goto out;
521     }
522 
523     /* If image was not closed cleanly, check consistency */
524     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
525         /* Read-only images cannot be fixed.  There is no risk of corruption
526          * since write operations are not possible.  Therefore, allow
527          * potentially inconsistent images to be opened read-only.  This can
528          * aid data recovery from an otherwise inconsistent image.
529          */
530         if (!bdrv_is_read_only(bs->file->bs) &&
531             !(flags & BDRV_O_INACTIVE)) {
532             BdrvCheckResult result = {0};
533 
534             ret = qed_check(s, &result, true);
535             if (ret) {
536                 error_setg(errp, "Image corrupted");
537                 goto out;
538             }
539         }
540     }
541 
542     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
543 
544 out:
545     if (ret) {
546         qed_free_l2_cache(&s->l2_cache);
547         qemu_vfree(s->l1_table);
548     }
549     return ret;
550 }
551 
552 typedef struct QEDOpenCo {
553     BlockDriverState *bs;
554     QDict *options;
555     int flags;
556     Error **errp;
557     int ret;
558 } QEDOpenCo;
559 
560 static void coroutine_fn GRAPH_RDLOCK bdrv_qed_open_entry(void *opaque)
561 {
562     QEDOpenCo *qoc = opaque;
563     BDRVQEDState *s = qoc->bs->opaque;
564 
565     qemu_co_mutex_lock(&s->table_lock);
566     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
567     qemu_co_mutex_unlock(&s->table_lock);
568 }
569 
570 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
571                          Error **errp)
572 {
573     QEDOpenCo qoc = {
574         .bs = bs,
575         .options = options,
576         .flags = flags,
577         .errp = errp,
578         .ret = -EINPROGRESS
579     };
580     int ret;
581 
582     assume_graph_lock(); /* FIXME */
583 
584     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
585     if (ret < 0) {
586         return ret;
587     }
588 
589     bdrv_qed_init_state(bs);
590     if (qemu_in_coroutine()) {
591         bdrv_qed_open_entry(&qoc);
592     } else {
593         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
594         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
595         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
596     }
597     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
598     return qoc.ret;
599 }
600 
601 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
602 {
603     BDRVQEDState *s = bs->opaque;
604 
605     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
606     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
607 }
608 
609 /* We have nothing to do for QED reopen, stubs just return
610  * success */
611 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
612                                    BlockReopenQueue *queue, Error **errp)
613 {
614     return 0;
615 }
616 
617 static void bdrv_qed_close(BlockDriverState *bs)
618 {
619     BDRVQEDState *s = bs->opaque;
620 
621     bdrv_qed_detach_aio_context(bs);
622 
623     /* Ensure writes reach stable storage */
624     bdrv_flush(bs->file->bs);
625 
626     /* Clean shutdown, no check required on next open */
627     if (s->header.features & QED_F_NEED_CHECK) {
628         s->header.features &= ~QED_F_NEED_CHECK;
629         qed_write_header_sync(s);
630     }
631 
632     qed_free_l2_cache(&s->l2_cache);
633     qemu_vfree(s->l1_table);
634 }
635 
636 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
637                                            Error **errp)
638 {
639     BlockdevCreateOptionsQed *qed_opts;
640     BlockBackend *blk = NULL;
641     BlockDriverState *bs = NULL;
642 
643     QEDHeader header;
644     QEDHeader le_header;
645     uint8_t *l1_table = NULL;
646     size_t l1_size;
647     int ret = 0;
648 
649     assert(opts->driver == BLOCKDEV_DRIVER_QED);
650     qed_opts = &opts->u.qed;
651 
652     /* Validate options and set default values */
653     if (!qed_opts->has_cluster_size) {
654         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
655     }
656     if (!qed_opts->has_table_size) {
657         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
658     }
659 
660     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
661         error_setg(errp, "QED cluster size must be within range [%u, %u] "
662                          "and power of 2",
663                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
664         return -EINVAL;
665     }
666     if (!qed_is_table_size_valid(qed_opts->table_size)) {
667         error_setg(errp, "QED table size must be within range [%u, %u] "
668                          "and power of 2",
669                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
670         return -EINVAL;
671     }
672     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
673                                  qed_opts->table_size))
674     {
675         error_setg(errp, "QED image size must be a non-zero multiple of "
676                          "cluster size and less than %" PRIu64 " bytes",
677                    qed_max_image_size(qed_opts->cluster_size,
678                                       qed_opts->table_size));
679         return -EINVAL;
680     }
681 
682     /* Create BlockBackend to write to the image */
683     bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
684     if (bs == NULL) {
685         return -EIO;
686     }
687 
688     blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
689                              errp);
690     if (!blk) {
691         ret = -EPERM;
692         goto out;
693     }
694     blk_set_allow_write_beyond_eof(blk, true);
695 
696     /* Prepare image format */
697     header = (QEDHeader) {
698         .magic = QED_MAGIC,
699         .cluster_size = qed_opts->cluster_size,
700         .table_size = qed_opts->table_size,
701         .header_size = 1,
702         .features = 0,
703         .compat_features = 0,
704         .l1_table_offset = qed_opts->cluster_size,
705         .image_size = qed_opts->size,
706     };
707 
708     l1_size = header.cluster_size * header.table_size;
709 
710     /*
711      * The QED format associates file length with allocation status,
712      * so a new file (which is empty) must have a length of 0.
713      */
714     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
715     if (ret < 0) {
716         goto out;
717     }
718 
719     if (qed_opts->backing_file) {
720         header.features |= QED_F_BACKING_FILE;
721         header.backing_filename_offset = sizeof(le_header);
722         header.backing_filename_size = strlen(qed_opts->backing_file);
723 
724         if (qed_opts->has_backing_fmt) {
725             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
726             if (qed_fmt_is_raw(backing_fmt)) {
727                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
728             }
729         }
730     }
731 
732     qed_header_cpu_to_le(&header, &le_header);
733     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
734     if (ret < 0) {
735         goto out;
736     }
737     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
738                      qed_opts->backing_file, 0);
739     if (ret < 0) {
740         goto out;
741     }
742 
743     l1_table = g_malloc0(l1_size);
744     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
745     if (ret < 0) {
746         goto out;
747     }
748 
749     ret = 0; /* success */
750 out:
751     g_free(l1_table);
752     blk_unref(blk);
753     bdrv_unref(bs);
754     return ret;
755 }
756 
757 static int coroutine_fn GRAPH_RDLOCK
758 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
759                         QemuOpts *opts, Error **errp)
760 {
761     BlockdevCreateOptions *create_options = NULL;
762     QDict *qdict;
763     Visitor *v;
764     BlockDriverState *bs = NULL;
765     int ret;
766 
767     static const QDictRenames opt_renames[] = {
768         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
769         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
770         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
771         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
772         { NULL, NULL },
773     };
774 
775     /* Parse options and convert legacy syntax */
776     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
777 
778     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
779         ret = -EINVAL;
780         goto fail;
781     }
782 
783     /* Create and open the file (protocol layer) */
784     ret = bdrv_co_create_file(filename, opts, errp);
785     if (ret < 0) {
786         goto fail;
787     }
788 
789     bs = bdrv_co_open(filename, NULL, NULL,
790                       BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
791     if (bs == NULL) {
792         ret = -EIO;
793         goto fail;
794     }
795 
796     /* Now get the QAPI type BlockdevCreateOptions */
797     qdict_put_str(qdict, "driver", "qed");
798     qdict_put_str(qdict, "file", bs->node_name);
799 
800     v = qobject_input_visitor_new_flat_confused(qdict, errp);
801     if (!v) {
802         ret = -EINVAL;
803         goto fail;
804     }
805 
806     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
807     visit_free(v);
808     if (!create_options) {
809         ret = -EINVAL;
810         goto fail;
811     }
812 
813     /* Silently round up size */
814     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
815     create_options->u.qed.size =
816         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
817 
818     /* Create the qed image (format layer) */
819     ret = bdrv_qed_co_create(create_options, errp);
820 
821 fail:
822     qobject_unref(qdict);
823     bdrv_unref(bs);
824     qapi_free_BlockdevCreateOptions(create_options);
825     return ret;
826 }
827 
828 static int coroutine_fn GRAPH_RDLOCK
829 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
830                          int64_t bytes, int64_t *pnum, int64_t *map,
831                          BlockDriverState **file)
832 {
833     BDRVQEDState *s = bs->opaque;
834     size_t len = MIN(bytes, SIZE_MAX);
835     int status;
836     QEDRequest request = { .l2_table = NULL };
837     uint64_t offset;
838     int ret;
839 
840     qemu_co_mutex_lock(&s->table_lock);
841     ret = qed_find_cluster(s, &request, pos, &len, &offset);
842 
843     *pnum = len;
844     switch (ret) {
845     case QED_CLUSTER_FOUND:
846         *map = offset | qed_offset_into_cluster(s, pos);
847         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
848         *file = bs->file->bs;
849         break;
850     case QED_CLUSTER_ZERO:
851         status = BDRV_BLOCK_ZERO;
852         break;
853     case QED_CLUSTER_L2:
854     case QED_CLUSTER_L1:
855         status = 0;
856         break;
857     default:
858         assert(ret < 0);
859         status = ret;
860         break;
861     }
862 
863     qed_unref_l2_cache_entry(request.l2_table);
864     qemu_co_mutex_unlock(&s->table_lock);
865 
866     return status;
867 }
868 
869 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
870 {
871     return acb->bs->opaque;
872 }
873 
874 /**
875  * Read from the backing file or zero-fill if no backing file
876  *
877  * @s:              QED state
878  * @pos:            Byte position in device
879  * @qiov:           Destination I/O vector
880  *
881  * This function reads qiov->size bytes starting at pos from the backing file.
882  * If there is no backing file then zeroes are read.
883  */
884 static int coroutine_fn GRAPH_RDLOCK
885 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
886 {
887     if (s->bs->backing) {
888         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
889         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
890     }
891     qemu_iovec_memset(qiov, 0, 0, qiov->size);
892     return 0;
893 }
894 
895 /**
896  * Copy data from backing file into the image
897  *
898  * @s:          QED state
899  * @pos:        Byte position in device
900  * @len:        Number of bytes
901  * @offset:     Byte offset in image file
902  */
903 static int coroutine_fn GRAPH_RDLOCK
904 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
905                            uint64_t offset)
906 {
907     QEMUIOVector qiov;
908     int ret;
909 
910     /* Skip copy entirely if there is no work to do */
911     if (len == 0) {
912         return 0;
913     }
914 
915     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
916 
917     ret = qed_read_backing_file(s, pos, &qiov);
918 
919     if (ret) {
920         goto out;
921     }
922 
923     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
924     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
925     if (ret < 0) {
926         goto out;
927     }
928     ret = 0;
929 out:
930     qemu_vfree(qemu_iovec_buf(&qiov));
931     return ret;
932 }
933 
934 /**
935  * Link one or more contiguous clusters into a table
936  *
937  * @s:              QED state
938  * @table:          L2 table
939  * @index:          First cluster index
940  * @n:              Number of contiguous clusters
941  * @cluster:        First cluster offset
942  *
943  * The cluster offset may be an allocated byte offset in the image file, the
944  * zero cluster marker, or the unallocated cluster marker.
945  *
946  * Called with table_lock held.
947  */
948 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
949                                              int index, unsigned int n,
950                                              uint64_t cluster)
951 {
952     int i;
953     for (i = index; i < index + n; i++) {
954         table->offsets[i] = cluster;
955         if (!qed_offset_is_unalloc_cluster(cluster) &&
956             !qed_offset_is_zero_cluster(cluster)) {
957             cluster += s->header.cluster_size;
958         }
959     }
960 }
961 
962 /* Called with table_lock held.  */
963 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
964 {
965     BDRVQEDState *s = acb_to_s(acb);
966 
967     /* Free resources */
968     qemu_iovec_destroy(&acb->cur_qiov);
969     qed_unref_l2_cache_entry(acb->request.l2_table);
970 
971     /* Free the buffer we may have allocated for zero writes */
972     if (acb->flags & QED_AIOCB_ZERO) {
973         qemu_vfree(acb->qiov->iov[0].iov_base);
974         acb->qiov->iov[0].iov_base = NULL;
975     }
976 
977     /* Start next allocating write request waiting behind this one.  Note that
978      * requests enqueue themselves when they first hit an unallocated cluster
979      * but they wait until the entire request is finished before waking up the
980      * next request in the queue.  This ensures that we don't cycle through
981      * requests multiple times but rather finish one at a time completely.
982      */
983     if (acb == s->allocating_acb) {
984         s->allocating_acb = NULL;
985         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
986             qemu_co_queue_next(&s->allocating_write_reqs);
987         } else if (s->header.features & QED_F_NEED_CHECK) {
988             qed_start_need_check_timer(s);
989         }
990     }
991 }
992 
993 /**
994  * Update L1 table with new L2 table offset and write it out
995  *
996  * Called with table_lock held.
997  */
998 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
999 {
1000     BDRVQEDState *s = acb_to_s(acb);
1001     CachedL2Table *l2_table = acb->request.l2_table;
1002     uint64_t l2_offset = l2_table->offset;
1003     int index, ret;
1004 
1005     index = qed_l1_index(s, acb->cur_pos);
1006     s->l1_table->offsets[index] = l2_table->offset;
1007 
1008     ret = qed_write_l1_table(s, index, 1);
1009 
1010     /* Commit the current L2 table to the cache */
1011     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1012 
1013     /* This is guaranteed to succeed because we just committed the entry to the
1014      * cache.
1015      */
1016     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1017     assert(acb->request.l2_table != NULL);
1018 
1019     return ret;
1020 }
1021 
1022 
1023 /**
1024  * Update L2 table with new cluster offsets and write them out
1025  *
1026  * Called with table_lock held.
1027  */
1028 static int coroutine_fn GRAPH_RDLOCK
1029 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1030 {
1031     BDRVQEDState *s = acb_to_s(acb);
1032     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1033     int index, ret;
1034 
1035     if (need_alloc) {
1036         qed_unref_l2_cache_entry(acb->request.l2_table);
1037         acb->request.l2_table = qed_new_l2_table(s);
1038     }
1039 
1040     index = qed_l2_index(s, acb->cur_pos);
1041     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1042                          offset);
1043 
1044     if (need_alloc) {
1045         /* Write out the whole new L2 table */
1046         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1047         if (ret) {
1048             return ret;
1049         }
1050         return qed_aio_write_l1_update(acb);
1051     } else {
1052         /* Write out only the updated part of the L2 table */
1053         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1054                                  false);
1055         if (ret) {
1056             return ret;
1057         }
1058     }
1059     return 0;
1060 }
1061 
1062 /**
1063  * Write data to the image file
1064  *
1065  * Called with table_lock *not* held.
1066  */
1067 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1068 {
1069     BDRVQEDState *s = acb_to_s(acb);
1070     uint64_t offset = acb->cur_cluster +
1071                       qed_offset_into_cluster(s, acb->cur_pos);
1072 
1073     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1074 
1075     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1076     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1077                            &acb->cur_qiov, 0);
1078 }
1079 
1080 /**
1081  * Populate untouched regions of new data cluster
1082  *
1083  * Called with table_lock held.
1084  */
1085 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1086 {
1087     BDRVQEDState *s = acb_to_s(acb);
1088     uint64_t start, len, offset;
1089     int ret;
1090 
1091     qemu_co_mutex_unlock(&s->table_lock);
1092 
1093     /* Populate front untouched region of new data cluster */
1094     start = qed_start_of_cluster(s, acb->cur_pos);
1095     len = qed_offset_into_cluster(s, acb->cur_pos);
1096 
1097     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1098     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1099     if (ret < 0) {
1100         goto out;
1101     }
1102 
1103     /* Populate back untouched region of new data cluster */
1104     start = acb->cur_pos + acb->cur_qiov.size;
1105     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1106     offset = acb->cur_cluster +
1107              qed_offset_into_cluster(s, acb->cur_pos) +
1108              acb->cur_qiov.size;
1109 
1110     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1111     ret = qed_copy_from_backing_file(s, start, len, offset);
1112     if (ret < 0) {
1113         goto out;
1114     }
1115 
1116     ret = qed_aio_write_main(acb);
1117     if (ret < 0) {
1118         goto out;
1119     }
1120 
1121     if (s->bs->backing) {
1122         /*
1123          * Flush new data clusters before updating the L2 table
1124          *
1125          * This flush is necessary when a backing file is in use.  A crash
1126          * during an allocating write could result in empty clusters in the
1127          * image.  If the write only touched a subregion of the cluster,
1128          * then backing image sectors have been lost in the untouched
1129          * region.  The solution is to flush after writing a new data
1130          * cluster and before updating the L2 table.
1131          */
1132         ret = bdrv_co_flush(s->bs->file->bs);
1133     }
1134 
1135 out:
1136     qemu_co_mutex_lock(&s->table_lock);
1137     return ret;
1138 }
1139 
1140 /**
1141  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1142  */
1143 static bool qed_should_set_need_check(BDRVQEDState *s)
1144 {
1145     /* The flush before L2 update path ensures consistency */
1146     if (s->bs->backing) {
1147         return false;
1148     }
1149 
1150     return !(s->header.features & QED_F_NEED_CHECK);
1151 }
1152 
1153 /**
1154  * Write new data cluster
1155  *
1156  * @acb:        Write request
1157  * @len:        Length in bytes
1158  *
1159  * This path is taken when writing to previously unallocated clusters.
1160  *
1161  * Called with table_lock held.
1162  */
1163 static int coroutine_fn GRAPH_RDLOCK
1164 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1165 {
1166     BDRVQEDState *s = acb_to_s(acb);
1167     int ret;
1168 
1169     /* Cancel timer when the first allocating request comes in */
1170     if (s->allocating_acb == NULL) {
1171         qed_cancel_need_check_timer(s);
1172     }
1173 
1174     /* Freeze this request if another allocating write is in progress */
1175     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1176         if (s->allocating_acb != NULL) {
1177             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1178             assert(s->allocating_acb == NULL);
1179         }
1180         s->allocating_acb = acb;
1181         return -EAGAIN; /* start over with looking up table entries */
1182     }
1183 
1184     acb->cur_nclusters = qed_bytes_to_clusters(s,
1185             qed_offset_into_cluster(s, acb->cur_pos) + len);
1186     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1187 
1188     if (acb->flags & QED_AIOCB_ZERO) {
1189         /* Skip ahead if the clusters are already zero */
1190         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1191             return 0;
1192         }
1193         acb->cur_cluster = 1;
1194     } else {
1195         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1196     }
1197 
1198     if (qed_should_set_need_check(s)) {
1199         s->header.features |= QED_F_NEED_CHECK;
1200         ret = qed_write_header(s);
1201         if (ret < 0) {
1202             return ret;
1203         }
1204     }
1205 
1206     if (!(acb->flags & QED_AIOCB_ZERO)) {
1207         ret = qed_aio_write_cow(acb);
1208         if (ret < 0) {
1209             return ret;
1210         }
1211     }
1212 
1213     return qed_aio_write_l2_update(acb, acb->cur_cluster);
1214 }
1215 
1216 /**
1217  * Write data cluster in place
1218  *
1219  * @acb:        Write request
1220  * @offset:     Cluster offset in bytes
1221  * @len:        Length in bytes
1222  *
1223  * This path is taken when writing to already allocated clusters.
1224  *
1225  * Called with table_lock held.
1226  */
1227 static int coroutine_fn GRAPH_RDLOCK
1228 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1229 {
1230     BDRVQEDState *s = acb_to_s(acb);
1231     int r;
1232 
1233     qemu_co_mutex_unlock(&s->table_lock);
1234 
1235     /* Allocate buffer for zero writes */
1236     if (acb->flags & QED_AIOCB_ZERO) {
1237         struct iovec *iov = acb->qiov->iov;
1238 
1239         if (!iov->iov_base) {
1240             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1241             if (iov->iov_base == NULL) {
1242                 r = -ENOMEM;
1243                 goto out;
1244             }
1245             memset(iov->iov_base, 0, iov->iov_len);
1246         }
1247     }
1248 
1249     /* Calculate the I/O vector */
1250     acb->cur_cluster = offset;
1251     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1252 
1253     /* Do the actual write.  */
1254     r = qed_aio_write_main(acb);
1255 out:
1256     qemu_co_mutex_lock(&s->table_lock);
1257     return r;
1258 }
1259 
1260 /**
1261  * Write data cluster
1262  *
1263  * @opaque:     Write request
1264  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1265  * @offset:     Cluster offset in bytes
1266  * @len:        Length in bytes
1267  *
1268  * Called with table_lock held.
1269  */
1270 static int coroutine_fn GRAPH_RDLOCK
1271 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1272 {
1273     QEDAIOCB *acb = opaque;
1274 
1275     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1276 
1277     acb->find_cluster_ret = ret;
1278 
1279     switch (ret) {
1280     case QED_CLUSTER_FOUND:
1281         return qed_aio_write_inplace(acb, offset, len);
1282 
1283     case QED_CLUSTER_L2:
1284     case QED_CLUSTER_L1:
1285     case QED_CLUSTER_ZERO:
1286         return qed_aio_write_alloc(acb, len);
1287 
1288     default:
1289         g_assert_not_reached();
1290     }
1291 }
1292 
1293 /**
1294  * Read data cluster
1295  *
1296  * @opaque:     Read request
1297  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1298  * @offset:     Cluster offset in bytes
1299  * @len:        Length in bytes
1300  *
1301  * Called with table_lock held.
1302  */
1303 static int coroutine_fn GRAPH_RDLOCK
1304 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1305 {
1306     QEDAIOCB *acb = opaque;
1307     BDRVQEDState *s = acb_to_s(acb);
1308     BlockDriverState *bs = acb->bs;
1309     int r;
1310 
1311     qemu_co_mutex_unlock(&s->table_lock);
1312 
1313     /* Adjust offset into cluster */
1314     offset += qed_offset_into_cluster(s, acb->cur_pos);
1315 
1316     trace_qed_aio_read_data(s, acb, ret, offset, len);
1317 
1318     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1319 
1320     /* Handle zero cluster and backing file reads, otherwise read
1321      * data cluster directly.
1322      */
1323     if (ret == QED_CLUSTER_ZERO) {
1324         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1325         r = 0;
1326     } else if (ret != QED_CLUSTER_FOUND) {
1327         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1328     } else {
1329         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1330         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1331                            &acb->cur_qiov, 0);
1332     }
1333 
1334     qemu_co_mutex_lock(&s->table_lock);
1335     return r;
1336 }
1337 
1338 /**
1339  * Begin next I/O or complete the request
1340  */
1341 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1342 {
1343     BDRVQEDState *s = acb_to_s(acb);
1344     uint64_t offset;
1345     size_t len;
1346     int ret;
1347 
1348     qemu_co_mutex_lock(&s->table_lock);
1349     while (1) {
1350         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1351 
1352         acb->qiov_offset += acb->cur_qiov.size;
1353         acb->cur_pos += acb->cur_qiov.size;
1354         qemu_iovec_reset(&acb->cur_qiov);
1355 
1356         /* Complete request */
1357         if (acb->cur_pos >= acb->end_pos) {
1358             ret = 0;
1359             break;
1360         }
1361 
1362         /* Find next cluster and start I/O */
1363         len = acb->end_pos - acb->cur_pos;
1364         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1365         if (ret < 0) {
1366             break;
1367         }
1368 
1369         if (acb->flags & QED_AIOCB_WRITE) {
1370             ret = qed_aio_write_data(acb, ret, offset, len);
1371         } else {
1372             ret = qed_aio_read_data(acb, ret, offset, len);
1373         }
1374 
1375         if (ret < 0 && ret != -EAGAIN) {
1376             break;
1377         }
1378     }
1379 
1380     trace_qed_aio_complete(s, acb, ret);
1381     qed_aio_complete(acb);
1382     qemu_co_mutex_unlock(&s->table_lock);
1383     return ret;
1384 }
1385 
1386 static int coroutine_fn GRAPH_RDLOCK
1387 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1388                int nb_sectors, int flags)
1389 {
1390     QEDAIOCB acb = {
1391         .bs         = bs,
1392         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1393         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1394         .qiov       = qiov,
1395         .flags      = flags,
1396     };
1397     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1398 
1399     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1400 
1401     /* Start request */
1402     return qed_aio_next_io(&acb);
1403 }
1404 
1405 static int coroutine_fn GRAPH_RDLOCK
1406 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1407                   QEMUIOVector *qiov)
1408 {
1409     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1410 }
1411 
1412 static int coroutine_fn GRAPH_RDLOCK
1413 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1414                    QEMUIOVector *qiov, int flags)
1415 {
1416     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1417 }
1418 
1419 static int coroutine_fn GRAPH_RDLOCK
1420 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1421                           BdrvRequestFlags flags)
1422 {
1423     BDRVQEDState *s = bs->opaque;
1424 
1425     /*
1426      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1427      * then it will be allocated during request processing.
1428      */
1429     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1430 
1431     /*
1432      * QED is not prepared for 63bit write-zero requests, so rely on
1433      * max_pwrite_zeroes.
1434      */
1435     assert(bytes <= INT_MAX);
1436 
1437     /* Fall back if the request is not aligned */
1438     if (qed_offset_into_cluster(s, offset) ||
1439         qed_offset_into_cluster(s, bytes)) {
1440         return -ENOTSUP;
1441     }
1442 
1443     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1444                           bytes >> BDRV_SECTOR_BITS,
1445                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1446 }
1447 
1448 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1449                                              int64_t offset,
1450                                              bool exact,
1451                                              PreallocMode prealloc,
1452                                              BdrvRequestFlags flags,
1453                                              Error **errp)
1454 {
1455     BDRVQEDState *s = bs->opaque;
1456     uint64_t old_image_size;
1457     int ret;
1458 
1459     if (prealloc != PREALLOC_MODE_OFF) {
1460         error_setg(errp, "Unsupported preallocation mode '%s'",
1461                    PreallocMode_str(prealloc));
1462         return -ENOTSUP;
1463     }
1464 
1465     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1466                                  s->header.table_size)) {
1467         error_setg(errp, "Invalid image size specified");
1468         return -EINVAL;
1469     }
1470 
1471     if ((uint64_t)offset < s->header.image_size) {
1472         error_setg(errp, "Shrinking images is currently not supported");
1473         return -ENOTSUP;
1474     }
1475 
1476     old_image_size = s->header.image_size;
1477     s->header.image_size = offset;
1478     ret = qed_write_header_sync(s);
1479     if (ret < 0) {
1480         s->header.image_size = old_image_size;
1481         error_setg_errno(errp, -ret, "Failed to update the image size");
1482     }
1483     return ret;
1484 }
1485 
1486 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1487 {
1488     BDRVQEDState *s = bs->opaque;
1489     return s->header.image_size;
1490 }
1491 
1492 static int coroutine_fn
1493 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1494 {
1495     BDRVQEDState *s = bs->opaque;
1496 
1497     memset(bdi, 0, sizeof(*bdi));
1498     bdi->cluster_size = s->header.cluster_size;
1499     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1500     return 0;
1501 }
1502 
1503 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1504                                         const char *backing_file,
1505                                         const char *backing_fmt)
1506 {
1507     BDRVQEDState *s = bs->opaque;
1508     QEDHeader new_header, le_header;
1509     void *buffer;
1510     size_t buffer_len, backing_file_len;
1511     int ret;
1512 
1513     /* Refuse to set backing filename if unknown compat feature bits are
1514      * active.  If the image uses an unknown compat feature then we may not
1515      * know the layout of data following the header structure and cannot safely
1516      * add a new string.
1517      */
1518     if (backing_file && (s->header.compat_features &
1519                          ~QED_COMPAT_FEATURE_MASK)) {
1520         return -ENOTSUP;
1521     }
1522 
1523     memcpy(&new_header, &s->header, sizeof(new_header));
1524 
1525     new_header.features &= ~(QED_F_BACKING_FILE |
1526                              QED_F_BACKING_FORMAT_NO_PROBE);
1527 
1528     /* Adjust feature flags */
1529     if (backing_file) {
1530         new_header.features |= QED_F_BACKING_FILE;
1531 
1532         if (qed_fmt_is_raw(backing_fmt)) {
1533             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1534         }
1535     }
1536 
1537     /* Calculate new header size */
1538     backing_file_len = 0;
1539 
1540     if (backing_file) {
1541         backing_file_len = strlen(backing_file);
1542     }
1543 
1544     buffer_len = sizeof(new_header);
1545     new_header.backing_filename_offset = buffer_len;
1546     new_header.backing_filename_size = backing_file_len;
1547     buffer_len += backing_file_len;
1548 
1549     /* Make sure we can rewrite header without failing */
1550     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1551         return -ENOSPC;
1552     }
1553 
1554     /* Prepare new header */
1555     buffer = g_malloc(buffer_len);
1556 
1557     qed_header_cpu_to_le(&new_header, &le_header);
1558     memcpy(buffer, &le_header, sizeof(le_header));
1559     buffer_len = sizeof(le_header);
1560 
1561     if (backing_file) {
1562         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1563         buffer_len += backing_file_len;
1564     }
1565 
1566     /* Write new header */
1567     ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1568     g_free(buffer);
1569     if (ret == 0) {
1570         memcpy(&s->header, &new_header, sizeof(new_header));
1571     }
1572     return ret;
1573 }
1574 
1575 static void coroutine_fn GRAPH_RDLOCK
1576 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1577 {
1578     BDRVQEDState *s = bs->opaque;
1579     int ret;
1580 
1581     bdrv_qed_close(bs);
1582 
1583     bdrv_qed_init_state(bs);
1584     qemu_co_mutex_lock(&s->table_lock);
1585     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1586     qemu_co_mutex_unlock(&s->table_lock);
1587     if (ret < 0) {
1588         error_prepend(errp, "Could not reopen qed layer: ");
1589     }
1590 }
1591 
1592 static int coroutine_fn GRAPH_RDLOCK
1593 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1594                   BdrvCheckMode fix)
1595 {
1596     BDRVQEDState *s = bs->opaque;
1597     int ret;
1598 
1599     qemu_co_mutex_lock(&s->table_lock);
1600     ret = qed_check(s, result, !!fix);
1601     qemu_co_mutex_unlock(&s->table_lock);
1602 
1603     return ret;
1604 }
1605 
1606 static QemuOptsList qed_create_opts = {
1607     .name = "qed-create-opts",
1608     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1609     .desc = {
1610         {
1611             .name = BLOCK_OPT_SIZE,
1612             .type = QEMU_OPT_SIZE,
1613             .help = "Virtual disk size"
1614         },
1615         {
1616             .name = BLOCK_OPT_BACKING_FILE,
1617             .type = QEMU_OPT_STRING,
1618             .help = "File name of a base image"
1619         },
1620         {
1621             .name = BLOCK_OPT_BACKING_FMT,
1622             .type = QEMU_OPT_STRING,
1623             .help = "Image format of the base image"
1624         },
1625         {
1626             .name = BLOCK_OPT_CLUSTER_SIZE,
1627             .type = QEMU_OPT_SIZE,
1628             .help = "Cluster size (in bytes)",
1629             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1630         },
1631         {
1632             .name = BLOCK_OPT_TABLE_SIZE,
1633             .type = QEMU_OPT_SIZE,
1634             .help = "L1/L2 table size (in clusters)"
1635         },
1636         { /* end of list */ }
1637     }
1638 };
1639 
1640 static BlockDriver bdrv_qed = {
1641     .format_name              = "qed",
1642     .instance_size            = sizeof(BDRVQEDState),
1643     .create_opts              = &qed_create_opts,
1644     .is_format                = true,
1645     .supports_backing         = true,
1646 
1647     .bdrv_probe               = bdrv_qed_probe,
1648     .bdrv_open                = bdrv_qed_open,
1649     .bdrv_close               = bdrv_qed_close,
1650     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1651     .bdrv_child_perm          = bdrv_default_perms,
1652     .bdrv_co_create           = bdrv_qed_co_create,
1653     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1654     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1655     .bdrv_co_block_status     = bdrv_qed_co_block_status,
1656     .bdrv_co_readv            = bdrv_qed_co_readv,
1657     .bdrv_co_writev           = bdrv_qed_co_writev,
1658     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1659     .bdrv_co_truncate         = bdrv_qed_co_truncate,
1660     .bdrv_co_getlength        = bdrv_qed_co_getlength,
1661     .bdrv_co_get_info         = bdrv_qed_co_get_info,
1662     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1663     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1664     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1665     .bdrv_co_check            = bdrv_qed_co_check,
1666     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1667     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1668     .bdrv_drain_begin         = bdrv_qed_drain_begin,
1669 };
1670 
1671 static void bdrv_qed_init(void)
1672 {
1673     bdrv_register(&bdrv_qed);
1674 }
1675 
1676 block_init(bdrv_qed_init);
1677