xref: /qemu/block/qed.h (revision 2f28d2ff)
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef BLOCK_QED_H
16 #define BLOCK_QED_H
17 
18 #include "block_int.h"
19 
20 /* The layout of a QED file is as follows:
21  *
22  * +--------+----------+----------+----------+-----+
23  * | header | L1 table | cluster0 | cluster1 | ... |
24  * +--------+----------+----------+----------+-----+
25  *
26  * There is a 2-level pagetable for cluster allocation:
27  *
28  *                     +----------+
29  *                     | L1 table |
30  *                     +----------+
31  *                ,------'  |  '------.
32  *           +----------+   |    +----------+
33  *           | L2 table |  ...   | L2 table |
34  *           +----------+        +----------+
35  *       ,------'  |  '------.
36  *  +----------+   |    +----------+
37  *  |   Data   |  ...   |   Data   |
38  *  +----------+        +----------+
39  *
40  * The L1 table is fixed size and always present.  L2 tables are allocated on
41  * demand.  The L1 table size determines the maximum possible image size; it
42  * can be influenced using the cluster_size and table_size values.
43  *
44  * All fields are little-endian on disk.
45  */
46 
47 enum {
48     QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
49 
50     /* The image supports a backing file */
51     QED_F_BACKING_FILE = 0x01,
52 
53     /* The image needs a consistency check before use */
54     QED_F_NEED_CHECK = 0x02,
55 
56     /* The backing file format must not be probed, treat as raw image */
57     QED_F_BACKING_FORMAT_NO_PROBE = 0x04,
58 
59     /* Feature bits must be used when the on-disk format changes */
60     QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */
61                        QED_F_NEED_CHECK |
62                        QED_F_BACKING_FORMAT_NO_PROBE,
63     QED_COMPAT_FEATURE_MASK = 0,            /* supported compat feature bits */
64     QED_AUTOCLEAR_FEATURE_MASK = 0,         /* supported autoclear feature bits */
65 
66     /* Data is stored in groups of sectors called clusters.  Cluster size must
67      * be large to avoid keeping too much metadata.  I/O requests that have
68      * sub-cluster size will require read-modify-write.
69      */
70     QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */
71     QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024,
72     QED_DEFAULT_CLUSTER_SIZE = 64 * 1024,
73 
74     /* Allocated clusters are tracked using a 2-level pagetable.  Table size is
75      * a multiple of clusters so large maximum image sizes can be supported
76      * without jacking up the cluster size too much.
77      */
78     QED_MIN_TABLE_SIZE = 1,        /* in clusters */
79     QED_MAX_TABLE_SIZE = 16,
80     QED_DEFAULT_TABLE_SIZE = 4,
81 
82     /* Delay to flush and clean image after last allocating write completes */
83     QED_NEED_CHECK_TIMEOUT = 5,    /* in seconds */
84 };
85 
86 typedef struct {
87     uint32_t magic;                 /* QED\0 */
88 
89     uint32_t cluster_size;          /* in bytes */
90     uint32_t table_size;            /* for L1 and L2 tables, in clusters */
91     uint32_t header_size;           /* in clusters */
92 
93     uint64_t features;              /* format feature bits */
94     uint64_t compat_features;       /* compatible feature bits */
95     uint64_t autoclear_features;    /* self-resetting feature bits */
96 
97     uint64_t l1_table_offset;       /* in bytes */
98     uint64_t image_size;            /* total logical image size, in bytes */
99 
100     /* if (features & QED_F_BACKING_FILE) */
101     uint32_t backing_filename_offset; /* in bytes from start of header */
102     uint32_t backing_filename_size;   /* in bytes */
103 } QEDHeader;
104 
105 typedef struct {
106     uint64_t offsets[0];            /* in bytes */
107 } QEDTable;
108 
109 /* The L2 cache is a simple write-through cache for L2 structures */
110 typedef struct CachedL2Table {
111     QEDTable *table;
112     uint64_t offset;    /* offset=0 indicates an invalidate entry */
113     QTAILQ_ENTRY(CachedL2Table) node;
114     int ref;
115 } CachedL2Table;
116 
117 typedef struct {
118     QTAILQ_HEAD(, CachedL2Table) entries;
119     unsigned int n_entries;
120 } L2TableCache;
121 
122 typedef struct QEDRequest {
123     CachedL2Table *l2_table;
124 } QEDRequest;
125 
126 typedef struct QEDAIOCB {
127     BlockDriverAIOCB common;
128     QEMUBH *bh;
129     int bh_ret;                     /* final return status for completion bh */
130     QSIMPLEQ_ENTRY(QEDAIOCB) next;  /* next request */
131     bool is_write;                  /* false - read, true - write */
132     bool *finished;                 /* signal for cancel completion */
133     uint64_t end_pos;               /* request end on block device, in bytes */
134 
135     /* User scatter-gather list */
136     QEMUIOVector *qiov;
137     size_t qiov_offset;             /* byte count already processed */
138 
139     /* Current cluster scatter-gather list */
140     QEMUIOVector cur_qiov;
141     uint64_t cur_pos;               /* position on block device, in bytes */
142     uint64_t cur_cluster;           /* cluster offset in image file */
143     unsigned int cur_nclusters;     /* number of clusters being accessed */
144     int find_cluster_ret;           /* used for L1/L2 update */
145 
146     QEDRequest request;
147 } QEDAIOCB;
148 
149 typedef struct {
150     BlockDriverState *bs;           /* device */
151     uint64_t file_size;             /* length of image file, in bytes */
152 
153     QEDHeader header;               /* always cpu-endian */
154     QEDTable *l1_table;
155     L2TableCache l2_cache;          /* l2 table cache */
156     uint32_t table_nelems;
157     uint32_t l1_shift;
158     uint32_t l2_shift;
159     uint32_t l2_mask;
160 
161     /* Allocating write request queue */
162     QSIMPLEQ_HEAD(, QEDAIOCB) allocating_write_reqs;
163     bool allocating_write_reqs_plugged;
164 
165     /* Periodic flush and clear need check flag */
166     QEMUTimer *need_check_timer;
167 
168     Error *migration_blocker;
169 } BDRVQEDState;
170 
171 enum {
172     QED_CLUSTER_FOUND,         /* cluster found */
173     QED_CLUSTER_ZERO,          /* zero cluster found */
174     QED_CLUSTER_L2,            /* cluster missing in L2 */
175     QED_CLUSTER_L1,            /* cluster missing in L1 */
176 };
177 
178 /**
179  * qed_find_cluster() completion callback
180  *
181  * @opaque:     User data for completion callback
182  * @ret:        QED_CLUSTER_FOUND   Success
183  *              QED_CLUSTER_L2      Data cluster unallocated in L2
184  *              QED_CLUSTER_L1      L2 unallocated in L1
185  *              -errno              POSIX error occurred
186  * @offset:     Data cluster offset
187  * @len:        Contiguous bytes starting from cluster offset
188  *
189  * This function is invoked when qed_find_cluster() completes.
190  *
191  * On success ret is QED_CLUSTER_FOUND and offset/len are a contiguous range
192  * in the image file.
193  *
194  * On failure ret is QED_CLUSTER_L2 or QED_CLUSTER_L1 for missing L2 or L1
195  * table offset, respectively.  len is number of contiguous unallocated bytes.
196  */
197 typedef void QEDFindClusterFunc(void *opaque, int ret, uint64_t offset, size_t len);
198 
199 /**
200  * Generic callback for chaining async callbacks
201  */
202 typedef struct {
203     BlockDriverCompletionFunc *cb;
204     void *opaque;
205 } GenericCB;
206 
207 void *gencb_alloc(size_t len, BlockDriverCompletionFunc *cb, void *opaque);
208 void gencb_complete(void *opaque, int ret);
209 
210 /**
211  * L2 cache functions
212  */
213 void qed_init_l2_cache(L2TableCache *l2_cache);
214 void qed_free_l2_cache(L2TableCache *l2_cache);
215 CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache);
216 void qed_unref_l2_cache_entry(CachedL2Table *entry);
217 CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset);
218 void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table);
219 
220 /**
221  * Table I/O functions
222  */
223 int qed_read_l1_table_sync(BDRVQEDState *s);
224 void qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n,
225                         BlockDriverCompletionFunc *cb, void *opaque);
226 int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
227                             unsigned int n);
228 int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
229                            uint64_t offset);
230 void qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset,
231                        BlockDriverCompletionFunc *cb, void *opaque);
232 void qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
233                         unsigned int index, unsigned int n, bool flush,
234                         BlockDriverCompletionFunc *cb, void *opaque);
235 int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
236                             unsigned int index, unsigned int n, bool flush);
237 
238 /**
239  * Cluster functions
240  */
241 void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
242                       size_t len, QEDFindClusterFunc *cb, void *opaque);
243 
244 /**
245  * Consistency check
246  */
247 int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix);
248 
249 QEDTable *qed_alloc_table(BDRVQEDState *s);
250 
251 /**
252  * Round down to the start of a cluster
253  */
254 static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset)
255 {
256     return offset & ~(uint64_t)(s->header.cluster_size - 1);
257 }
258 
259 static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset)
260 {
261     return offset & (s->header.cluster_size - 1);
262 }
263 
264 static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes)
265 {
266     return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) /
267            (s->header.cluster_size - 1);
268 }
269 
270 static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos)
271 {
272     return pos >> s->l1_shift;
273 }
274 
275 static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos)
276 {
277     return (pos >> s->l2_shift) & s->l2_mask;
278 }
279 
280 /**
281  * Test if a cluster offset is valid
282  */
283 static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset)
284 {
285     uint64_t header_size = (uint64_t)s->header.header_size *
286                            s->header.cluster_size;
287 
288     if (offset & (s->header.cluster_size - 1)) {
289         return false;
290     }
291     return offset >= header_size && offset < s->file_size;
292 }
293 
294 /**
295  * Test if a table offset is valid
296  */
297 static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset)
298 {
299     uint64_t end_offset = offset + (s->header.table_size - 1) *
300                           s->header.cluster_size;
301 
302     /* Overflow check */
303     if (end_offset <= offset) {
304         return false;
305     }
306 
307     return qed_check_cluster_offset(s, offset) &&
308            qed_check_cluster_offset(s, end_offset);
309 }
310 
311 static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s,
312                                                  uint64_t offset)
313 {
314     if (qed_offset_into_cluster(s, offset)) {
315         return false;
316     }
317     return true;
318 }
319 
320 static inline bool qed_offset_is_unalloc_cluster(uint64_t offset)
321 {
322     if (offset == 0) {
323         return true;
324     }
325     return false;
326 }
327 
328 static inline bool qed_offset_is_zero_cluster(uint64_t offset)
329 {
330     if (offset == 1) {
331         return true;
332     }
333     return false;
334 }
335 
336 #endif /* BLOCK_QED_H */
337