xref: /qemu/bsd-user/main.c (revision b43671f8)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <machine/trap.h>
22 
23 #include "qapi/error.h"
24 #include "qemu.h"
25 #include "qemu/config-file.h"
26 #include "qemu/path.h"
27 #include "qemu/help_option.h"
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "tcg.h"
31 #include "qemu/timer.h"
32 #include "qemu/envlist.h"
33 #include "exec/log.h"
34 #include "trace/control.h"
35 #include "glib-compat.h"
36 
37 int singlestep;
38 unsigned long mmap_min_addr;
39 unsigned long guest_base;
40 int have_guest_base;
41 unsigned long reserved_va;
42 
43 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
44 const char *qemu_uname_release;
45 extern char **environ;
46 enum BSDType bsd_type;
47 
48 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
49    we allocate a bigger stack. Need a better solution, for example
50    by remapping the process stack directly at the right place */
51 unsigned long x86_stack_size = 512 * 1024;
52 
53 void gemu_log(const char *fmt, ...)
54 {
55     va_list ap;
56 
57     va_start(ap, fmt);
58     vfprintf(stderr, fmt, ap);
59     va_end(ap);
60 }
61 
62 #if defined(TARGET_I386)
63 int cpu_get_pic_interrupt(CPUX86State *env)
64 {
65     return -1;
66 }
67 #endif
68 
69 void fork_start(void)
70 {
71 }
72 
73 void fork_end(int child)
74 {
75     if (child) {
76         gdbserver_fork(thread_cpu);
77     }
78 }
79 
80 #ifdef TARGET_I386
81 /***********************************************************/
82 /* CPUX86 core interface */
83 
84 uint64_t cpu_get_tsc(CPUX86State *env)
85 {
86     return cpu_get_host_ticks();
87 }
88 
89 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
90                      int flags)
91 {
92     unsigned int e1, e2;
93     uint32_t *p;
94     e1 = (addr << 16) | (limit & 0xffff);
95     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
96     e2 |= flags;
97     p = ptr;
98     p[0] = tswap32(e1);
99     p[1] = tswap32(e2);
100 }
101 
102 static uint64_t *idt_table;
103 #ifdef TARGET_X86_64
104 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
105                        uint64_t addr, unsigned int sel)
106 {
107     uint32_t *p, e1, e2;
108     e1 = (addr & 0xffff) | (sel << 16);
109     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
110     p = ptr;
111     p[0] = tswap32(e1);
112     p[1] = tswap32(e2);
113     p[2] = tswap32(addr >> 32);
114     p[3] = 0;
115 }
116 /* only dpl matters as we do only user space emulation */
117 static void set_idt(int n, unsigned int dpl)
118 {
119     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
120 }
121 #else
122 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
123                      uint32_t addr, unsigned int sel)
124 {
125     uint32_t *p, e1, e2;
126     e1 = (addr & 0xffff) | (sel << 16);
127     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
128     p = ptr;
129     p[0] = tswap32(e1);
130     p[1] = tswap32(e2);
131 }
132 
133 /* only dpl matters as we do only user space emulation */
134 static void set_idt(int n, unsigned int dpl)
135 {
136     set_gate(idt_table + n, 0, dpl, 0, 0);
137 }
138 #endif
139 
140 void cpu_loop(CPUX86State *env)
141 {
142     X86CPU *cpu = x86_env_get_cpu(env);
143     CPUState *cs = CPU(cpu);
144     int trapnr;
145     abi_ulong pc;
146     //target_siginfo_t info;
147 
148     for(;;) {
149         cpu_exec_start(cs);
150         trapnr = cpu_exec(cs);
151         cpu_exec_end(cs);
152         process_queued_cpu_work(cs);
153 
154         switch(trapnr) {
155         case 0x80:
156             /* syscall from int $0x80 */
157             if (bsd_type == target_freebsd) {
158                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
159                     sizeof(int32_t);
160                 int32_t syscall_nr = env->regs[R_EAX];
161                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
162 
163                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
164                     get_user_s32(syscall_nr, params);
165                     params += sizeof(int32_t);
166                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
167                     get_user_s32(syscall_nr, params);
168                     params += sizeof(int64_t);
169                 }
170                 get_user_s32(arg1, params);
171                 params += sizeof(int32_t);
172                 get_user_s32(arg2, params);
173                 params += sizeof(int32_t);
174                 get_user_s32(arg3, params);
175                 params += sizeof(int32_t);
176                 get_user_s32(arg4, params);
177                 params += sizeof(int32_t);
178                 get_user_s32(arg5, params);
179                 params += sizeof(int32_t);
180                 get_user_s32(arg6, params);
181                 params += sizeof(int32_t);
182                 get_user_s32(arg7, params);
183                 params += sizeof(int32_t);
184                 get_user_s32(arg8, params);
185                 env->regs[R_EAX] = do_freebsd_syscall(env,
186                                                       syscall_nr,
187                                                       arg1,
188                                                       arg2,
189                                                       arg3,
190                                                       arg4,
191                                                       arg5,
192                                                       arg6,
193                                                       arg7,
194                                                       arg8);
195             } else { //if (bsd_type == target_openbsd)
196                 env->regs[R_EAX] = do_openbsd_syscall(env,
197                                                       env->regs[R_EAX],
198                                                       env->regs[R_EBX],
199                                                       env->regs[R_ECX],
200                                                       env->regs[R_EDX],
201                                                       env->regs[R_ESI],
202                                                       env->regs[R_EDI],
203                                                       env->regs[R_EBP]);
204             }
205             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
206                 env->regs[R_EAX] = -env->regs[R_EAX];
207                 env->eflags |= CC_C;
208             } else {
209                 env->eflags &= ~CC_C;
210             }
211             break;
212 #ifndef TARGET_ABI32
213         case EXCP_SYSCALL:
214             /* syscall from syscall instruction */
215             if (bsd_type == target_freebsd)
216                 env->regs[R_EAX] = do_freebsd_syscall(env,
217                                                       env->regs[R_EAX],
218                                                       env->regs[R_EDI],
219                                                       env->regs[R_ESI],
220                                                       env->regs[R_EDX],
221                                                       env->regs[R_ECX],
222                                                       env->regs[8],
223                                                       env->regs[9], 0, 0);
224             else { //if (bsd_type == target_openbsd)
225                 env->regs[R_EAX] = do_openbsd_syscall(env,
226                                                       env->regs[R_EAX],
227                                                       env->regs[R_EDI],
228                                                       env->regs[R_ESI],
229                                                       env->regs[R_EDX],
230                                                       env->regs[10],
231                                                       env->regs[8],
232                                                       env->regs[9]);
233             }
234             env->eip = env->exception_next_eip;
235             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
236                 env->regs[R_EAX] = -env->regs[R_EAX];
237                 env->eflags |= CC_C;
238             } else {
239                 env->eflags &= ~CC_C;
240             }
241             break;
242 #endif
243 #if 0
244         case EXCP0B_NOSEG:
245         case EXCP0C_STACK:
246             info.si_signo = SIGBUS;
247             info.si_errno = 0;
248             info.si_code = TARGET_SI_KERNEL;
249             info._sifields._sigfault._addr = 0;
250             queue_signal(env, info.si_signo, &info);
251             break;
252         case EXCP0D_GPF:
253             /* XXX: potential problem if ABI32 */
254 #ifndef TARGET_X86_64
255             if (env->eflags & VM_MASK) {
256                 handle_vm86_fault(env);
257             } else
258 #endif
259             {
260                 info.si_signo = SIGSEGV;
261                 info.si_errno = 0;
262                 info.si_code = TARGET_SI_KERNEL;
263                 info._sifields._sigfault._addr = 0;
264                 queue_signal(env, info.si_signo, &info);
265             }
266             break;
267         case EXCP0E_PAGE:
268             info.si_signo = SIGSEGV;
269             info.si_errno = 0;
270             if (!(env->error_code & 1))
271                 info.si_code = TARGET_SEGV_MAPERR;
272             else
273                 info.si_code = TARGET_SEGV_ACCERR;
274             info._sifields._sigfault._addr = env->cr[2];
275             queue_signal(env, info.si_signo, &info);
276             break;
277         case EXCP00_DIVZ:
278 #ifndef TARGET_X86_64
279             if (env->eflags & VM_MASK) {
280                 handle_vm86_trap(env, trapnr);
281             } else
282 #endif
283             {
284                 /* division by zero */
285                 info.si_signo = SIGFPE;
286                 info.si_errno = 0;
287                 info.si_code = TARGET_FPE_INTDIV;
288                 info._sifields._sigfault._addr = env->eip;
289                 queue_signal(env, info.si_signo, &info);
290             }
291             break;
292         case EXCP01_DB:
293         case EXCP03_INT3:
294 #ifndef TARGET_X86_64
295             if (env->eflags & VM_MASK) {
296                 handle_vm86_trap(env, trapnr);
297             } else
298 #endif
299             {
300                 info.si_signo = SIGTRAP;
301                 info.si_errno = 0;
302                 if (trapnr == EXCP01_DB) {
303                     info.si_code = TARGET_TRAP_BRKPT;
304                     info._sifields._sigfault._addr = env->eip;
305                 } else {
306                     info.si_code = TARGET_SI_KERNEL;
307                     info._sifields._sigfault._addr = 0;
308                 }
309                 queue_signal(env, info.si_signo, &info);
310             }
311             break;
312         case EXCP04_INTO:
313         case EXCP05_BOUND:
314 #ifndef TARGET_X86_64
315             if (env->eflags & VM_MASK) {
316                 handle_vm86_trap(env, trapnr);
317             } else
318 #endif
319             {
320                 info.si_signo = SIGSEGV;
321                 info.si_errno = 0;
322                 info.si_code = TARGET_SI_KERNEL;
323                 info._sifields._sigfault._addr = 0;
324                 queue_signal(env, info.si_signo, &info);
325             }
326             break;
327         case EXCP06_ILLOP:
328             info.si_signo = SIGILL;
329             info.si_errno = 0;
330             info.si_code = TARGET_ILL_ILLOPN;
331             info._sifields._sigfault._addr = env->eip;
332             queue_signal(env, info.si_signo, &info);
333             break;
334 #endif
335         case EXCP_INTERRUPT:
336             /* just indicate that signals should be handled asap */
337             break;
338 #if 0
339         case EXCP_DEBUG:
340             {
341                 int sig;
342 
343                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
344                 if (sig)
345                   {
346                     info.si_signo = sig;
347                     info.si_errno = 0;
348                     info.si_code = TARGET_TRAP_BRKPT;
349                     queue_signal(env, info.si_signo, &info);
350                   }
351             }
352             break;
353 #endif
354         default:
355             pc = env->segs[R_CS].base + env->eip;
356             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
357                     (long)pc, trapnr);
358             abort();
359         }
360         process_pending_signals(env);
361     }
362 }
363 #endif
364 
365 #ifdef TARGET_SPARC
366 #define SPARC64_STACK_BIAS 2047
367 
368 //#define DEBUG_WIN
369 /* WARNING: dealing with register windows _is_ complicated. More info
370    can be found at http://www.sics.se/~psm/sparcstack.html */
371 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
372 {
373     index = (index + cwp * 16) % (16 * env->nwindows);
374     /* wrap handling : if cwp is on the last window, then we use the
375        registers 'after' the end */
376     if (index < 8 && env->cwp == env->nwindows - 1)
377         index += 16 * env->nwindows;
378     return index;
379 }
380 
381 /* save the register window 'cwp1' */
382 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
383 {
384     unsigned int i;
385     abi_ulong sp_ptr;
386 
387     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
388 #ifdef TARGET_SPARC64
389     if (sp_ptr & 3)
390         sp_ptr += SPARC64_STACK_BIAS;
391 #endif
392 #if defined(DEBUG_WIN)
393     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
394            sp_ptr, cwp1);
395 #endif
396     for(i = 0; i < 16; i++) {
397         /* FIXME - what to do if put_user() fails? */
398         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
399         sp_ptr += sizeof(abi_ulong);
400     }
401 }
402 
403 static void save_window(CPUSPARCState *env)
404 {
405 #ifndef TARGET_SPARC64
406     unsigned int new_wim;
407     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
408         ((1LL << env->nwindows) - 1);
409     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
410     env->wim = new_wim;
411 #else
412     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
413     env->cansave++;
414     env->canrestore--;
415 #endif
416 }
417 
418 static void restore_window(CPUSPARCState *env)
419 {
420 #ifndef TARGET_SPARC64
421     unsigned int new_wim;
422 #endif
423     unsigned int i, cwp1;
424     abi_ulong sp_ptr;
425 
426 #ifndef TARGET_SPARC64
427     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
428         ((1LL << env->nwindows) - 1);
429 #endif
430 
431     /* restore the invalid window */
432     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
433     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
434 #ifdef TARGET_SPARC64
435     if (sp_ptr & 3)
436         sp_ptr += SPARC64_STACK_BIAS;
437 #endif
438 #if defined(DEBUG_WIN)
439     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
440            sp_ptr, cwp1);
441 #endif
442     for(i = 0; i < 16; i++) {
443         /* FIXME - what to do if get_user() fails? */
444         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
445         sp_ptr += sizeof(abi_ulong);
446     }
447 #ifdef TARGET_SPARC64
448     env->canrestore++;
449     if (env->cleanwin < env->nwindows - 1)
450         env->cleanwin++;
451     env->cansave--;
452 #else
453     env->wim = new_wim;
454 #endif
455 }
456 
457 static void flush_windows(CPUSPARCState *env)
458 {
459     int offset, cwp1;
460 
461     offset = 1;
462     for(;;) {
463         /* if restore would invoke restore_window(), then we can stop */
464         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
465 #ifndef TARGET_SPARC64
466         if (env->wim & (1 << cwp1))
467             break;
468 #else
469         if (env->canrestore == 0)
470             break;
471         env->cansave++;
472         env->canrestore--;
473 #endif
474         save_window_offset(env, cwp1);
475         offset++;
476     }
477     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
478 #ifndef TARGET_SPARC64
479     /* set wim so that restore will reload the registers */
480     env->wim = 1 << cwp1;
481 #endif
482 #if defined(DEBUG_WIN)
483     printf("flush_windows: nb=%d\n", offset - 1);
484 #endif
485 }
486 
487 void cpu_loop(CPUSPARCState *env)
488 {
489     CPUState *cs = CPU(sparc_env_get_cpu(env));
490     int trapnr, ret, syscall_nr;
491     //target_siginfo_t info;
492 
493     while (1) {
494         cpu_exec_start(cs);
495         trapnr = cpu_exec(cs);
496         cpu_exec_end(cs);
497         process_queued_cpu_work(cs);
498 
499         switch (trapnr) {
500 #ifndef TARGET_SPARC64
501         case 0x80:
502 #else
503         /* FreeBSD uses 0x141 for syscalls too */
504         case 0x141:
505             if (bsd_type != target_freebsd)
506                 goto badtrap;
507         case 0x100:
508 #endif
509             syscall_nr = env->gregs[1];
510             if (bsd_type == target_freebsd)
511                 ret = do_freebsd_syscall(env, syscall_nr,
512                                          env->regwptr[0], env->regwptr[1],
513                                          env->regwptr[2], env->regwptr[3],
514                                          env->regwptr[4], env->regwptr[5], 0, 0);
515             else if (bsd_type == target_netbsd)
516                 ret = do_netbsd_syscall(env, syscall_nr,
517                                         env->regwptr[0], env->regwptr[1],
518                                         env->regwptr[2], env->regwptr[3],
519                                         env->regwptr[4], env->regwptr[5]);
520             else { //if (bsd_type == target_openbsd)
521 #if defined(TARGET_SPARC64)
522                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
523                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
524 #endif
525                 ret = do_openbsd_syscall(env, syscall_nr,
526                                          env->regwptr[0], env->regwptr[1],
527                                          env->regwptr[2], env->regwptr[3],
528                                          env->regwptr[4], env->regwptr[5]);
529             }
530             if ((unsigned int)ret >= (unsigned int)(-515)) {
531                 ret = -ret;
532 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
533                 env->xcc |= PSR_CARRY;
534 #else
535                 env->psr |= PSR_CARRY;
536 #endif
537             } else {
538 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
539                 env->xcc &= ~PSR_CARRY;
540 #else
541                 env->psr &= ~PSR_CARRY;
542 #endif
543             }
544             env->regwptr[0] = ret;
545             /* next instruction */
546 #if defined(TARGET_SPARC64)
547             if (bsd_type == target_openbsd &&
548                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
549                 env->pc = env->gregs[2];
550                 env->npc = env->pc + 4;
551             } else if (bsd_type == target_openbsd &&
552                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
553                 env->pc = env->gregs[7];
554                 env->npc = env->pc + 4;
555             } else {
556                 env->pc = env->npc;
557                 env->npc = env->npc + 4;
558             }
559 #else
560             env->pc = env->npc;
561             env->npc = env->npc + 4;
562 #endif
563             break;
564         case 0x83: /* flush windows */
565 #ifdef TARGET_ABI32
566         case 0x103:
567 #endif
568             flush_windows(env);
569             /* next instruction */
570             env->pc = env->npc;
571             env->npc = env->npc + 4;
572             break;
573 #ifndef TARGET_SPARC64
574         case TT_WIN_OVF: /* window overflow */
575             save_window(env);
576             break;
577         case TT_WIN_UNF: /* window underflow */
578             restore_window(env);
579             break;
580         case TT_TFAULT:
581         case TT_DFAULT:
582 #if 0
583             {
584                 info.si_signo = SIGSEGV;
585                 info.si_errno = 0;
586                 /* XXX: check env->error_code */
587                 info.si_code = TARGET_SEGV_MAPERR;
588                 info._sifields._sigfault._addr = env->mmuregs[4];
589                 queue_signal(env, info.si_signo, &info);
590             }
591 #endif
592             break;
593 #else
594         case TT_SPILL: /* window overflow */
595             save_window(env);
596             break;
597         case TT_FILL: /* window underflow */
598             restore_window(env);
599             break;
600         case TT_TFAULT:
601         case TT_DFAULT:
602 #if 0
603             {
604                 info.si_signo = SIGSEGV;
605                 info.si_errno = 0;
606                 /* XXX: check env->error_code */
607                 info.si_code = TARGET_SEGV_MAPERR;
608                 if (trapnr == TT_DFAULT)
609                     info._sifields._sigfault._addr = env->dmmuregs[4];
610                 else
611                     info._sifields._sigfault._addr = env->tsptr->tpc;
612                 //queue_signal(env, info.si_signo, &info);
613             }
614 #endif
615             break;
616 #endif
617         case EXCP_INTERRUPT:
618             /* just indicate that signals should be handled asap */
619             break;
620         case EXCP_DEBUG:
621             {
622                 int sig;
623 
624                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
625 #if 0
626                 if (sig)
627                   {
628                     info.si_signo = sig;
629                     info.si_errno = 0;
630                     info.si_code = TARGET_TRAP_BRKPT;
631                     //queue_signal(env, info.si_signo, &info);
632                   }
633 #endif
634             }
635             break;
636         default:
637 #ifdef TARGET_SPARC64
638         badtrap:
639 #endif
640             printf ("Unhandled trap: 0x%x\n", trapnr);
641             cpu_dump_state(cs, stderr, fprintf, 0);
642             exit (1);
643         }
644         process_pending_signals (env);
645     }
646 }
647 
648 #endif
649 
650 static void usage(void)
651 {
652     printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
653            "\n" QEMU_COPYRIGHT "\n"
654            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
655            "BSD CPU emulator (compiled for %s emulation)\n"
656            "\n"
657            "Standard options:\n"
658            "-h                print this help\n"
659            "-g port           wait gdb connection to port\n"
660            "-L path           set the elf interpreter prefix (default=%s)\n"
661            "-s size           set the stack size in bytes (default=%ld)\n"
662            "-cpu model        select CPU (-cpu help for list)\n"
663            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
664            "-E var=value      sets/modifies targets environment variable(s)\n"
665            "-U var            unsets targets environment variable(s)\n"
666            "-B address        set guest_base address to address\n"
667            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
668            "\n"
669            "Debug options:\n"
670            "-d item1[,...]    enable logging of specified items\n"
671            "                  (use '-d help' for a list of log items)\n"
672            "-D logfile        write logs to 'logfile' (default stderr)\n"
673            "-p pagesize       set the host page size to 'pagesize'\n"
674            "-singlestep       always run in singlestep mode\n"
675            "-strace           log system calls\n"
676            "-trace            [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
677            "                  specify tracing options\n"
678            "\n"
679            "Environment variables:\n"
680            "QEMU_STRACE       Print system calls and arguments similar to the\n"
681            "                  'strace' program.  Enable by setting to any value.\n"
682            "You can use -E and -U options to set/unset environment variables\n"
683            "for target process.  It is possible to provide several variables\n"
684            "by repeating the option.  For example:\n"
685            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
686            "Note that if you provide several changes to single variable\n"
687            "last change will stay in effect.\n"
688            ,
689            TARGET_NAME,
690            interp_prefix,
691            x86_stack_size);
692     exit(1);
693 }
694 
695 THREAD CPUState *thread_cpu;
696 
697 bool qemu_cpu_is_self(CPUState *cpu)
698 {
699     return thread_cpu == cpu;
700 }
701 
702 void qemu_cpu_kick(CPUState *cpu)
703 {
704     cpu_exit(cpu);
705 }
706 
707 /* Assumes contents are already zeroed.  */
708 void init_task_state(TaskState *ts)
709 {
710     int i;
711 
712     ts->used = 1;
713     ts->first_free = ts->sigqueue_table;
714     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
715         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
716     }
717     ts->sigqueue_table[i].next = NULL;
718 }
719 
720 int main(int argc, char **argv)
721 {
722     const char *filename;
723     const char *cpu_model;
724     const char *log_file = NULL;
725     const char *log_mask = NULL;
726     struct target_pt_regs regs1, *regs = &regs1;
727     struct image_info info1, *info = &info1;
728     TaskState ts1, *ts = &ts1;
729     CPUArchState *env;
730     CPUState *cpu;
731     int optind;
732     const char *r;
733     int gdbstub_port = 0;
734     char **target_environ, **wrk;
735     envlist_t *envlist = NULL;
736     char *trace_file = NULL;
737     bsd_type = target_openbsd;
738 
739     if (argc <= 1)
740         usage();
741 
742     module_call_init(MODULE_INIT_TRACE);
743     qemu_init_cpu_list();
744     module_call_init(MODULE_INIT_QOM);
745 
746     envlist = envlist_create();
747 
748     /* add current environment into the list */
749     for (wrk = environ; *wrk != NULL; wrk++) {
750         (void) envlist_setenv(envlist, *wrk);
751     }
752 
753     cpu_model = NULL;
754 
755     qemu_add_opts(&qemu_trace_opts);
756 
757     optind = 1;
758     for (;;) {
759         if (optind >= argc)
760             break;
761         r = argv[optind];
762         if (r[0] != '-')
763             break;
764         optind++;
765         r++;
766         if (!strcmp(r, "-")) {
767             break;
768         } else if (!strcmp(r, "d")) {
769             if (optind >= argc) {
770                 break;
771             }
772             log_mask = argv[optind++];
773         } else if (!strcmp(r, "D")) {
774             if (optind >= argc) {
775                 break;
776             }
777             log_file = argv[optind++];
778         } else if (!strcmp(r, "E")) {
779             r = argv[optind++];
780             if (envlist_setenv(envlist, r) != 0)
781                 usage();
782         } else if (!strcmp(r, "ignore-environment")) {
783             envlist_free(envlist);
784             envlist = envlist_create();
785         } else if (!strcmp(r, "U")) {
786             r = argv[optind++];
787             if (envlist_unsetenv(envlist, r) != 0)
788                 usage();
789         } else if (!strcmp(r, "s")) {
790             r = argv[optind++];
791             x86_stack_size = strtol(r, (char **)&r, 0);
792             if (x86_stack_size <= 0)
793                 usage();
794             if (*r == 'M')
795                 x86_stack_size *= 1024 * 1024;
796             else if (*r == 'k' || *r == 'K')
797                 x86_stack_size *= 1024;
798         } else if (!strcmp(r, "L")) {
799             interp_prefix = argv[optind++];
800         } else if (!strcmp(r, "p")) {
801             qemu_host_page_size = atoi(argv[optind++]);
802             if (qemu_host_page_size == 0 ||
803                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
804                 fprintf(stderr, "page size must be a power of two\n");
805                 exit(1);
806             }
807         } else if (!strcmp(r, "g")) {
808             gdbstub_port = atoi(argv[optind++]);
809         } else if (!strcmp(r, "r")) {
810             qemu_uname_release = argv[optind++];
811         } else if (!strcmp(r, "cpu")) {
812             cpu_model = argv[optind++];
813             if (is_help_option(cpu_model)) {
814 /* XXX: implement xxx_cpu_list for targets that still miss it */
815 #if defined(cpu_list)
816                     cpu_list(stdout, &fprintf);
817 #endif
818                 exit(1);
819             }
820         } else if (!strcmp(r, "B")) {
821            guest_base = strtol(argv[optind++], NULL, 0);
822            have_guest_base = 1;
823         } else if (!strcmp(r, "drop-ld-preload")) {
824             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
825         } else if (!strcmp(r, "bsd")) {
826             if (!strcasecmp(argv[optind], "freebsd")) {
827                 bsd_type = target_freebsd;
828             } else if (!strcasecmp(argv[optind], "netbsd")) {
829                 bsd_type = target_netbsd;
830             } else if (!strcasecmp(argv[optind], "openbsd")) {
831                 bsd_type = target_openbsd;
832             } else {
833                 usage();
834             }
835             optind++;
836         } else if (!strcmp(r, "singlestep")) {
837             singlestep = 1;
838         } else if (!strcmp(r, "strace")) {
839             do_strace = 1;
840         } else if (!strcmp(r, "trace")) {
841             g_free(trace_file);
842             trace_file = trace_opt_parse(optarg);
843         } else {
844             usage();
845         }
846     }
847 
848     /* init debug */
849     qemu_log_needs_buffers();
850     qemu_set_log_filename(log_file, &error_fatal);
851     if (log_mask) {
852         int mask;
853 
854         mask = qemu_str_to_log_mask(log_mask);
855         if (!mask) {
856             qemu_print_log_usage(stdout);
857             exit(1);
858         }
859         qemu_set_log(mask);
860     }
861 
862     if (optind >= argc) {
863         usage();
864     }
865     filename = argv[optind];
866 
867     if (!trace_init_backends()) {
868         exit(1);
869     }
870     trace_init_file(trace_file);
871 
872     /* Zero out regs */
873     memset(regs, 0, sizeof(struct target_pt_regs));
874 
875     /* Zero out image_info */
876     memset(info, 0, sizeof(struct image_info));
877 
878     /* Scan interp_prefix dir for replacement files. */
879     init_paths(interp_prefix);
880 
881     if (cpu_model == NULL) {
882 #if defined(TARGET_I386)
883 #ifdef TARGET_X86_64
884         cpu_model = "qemu64";
885 #else
886         cpu_model = "qemu32";
887 #endif
888 #elif defined(TARGET_SPARC)
889 #ifdef TARGET_SPARC64
890         cpu_model = "TI UltraSparc II";
891 #else
892         cpu_model = "Fujitsu MB86904";
893 #endif
894 #else
895         cpu_model = "any";
896 #endif
897     }
898     tcg_exec_init(0);
899     /* NOTE: we need to init the CPU at this stage to get
900        qemu_host_page_size */
901     cpu = cpu_init(cpu_model);
902     if (!cpu) {
903         fprintf(stderr, "Unable to find CPU definition\n");
904         exit(1);
905     }
906     env = cpu->env_ptr;
907 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
908     cpu_reset(cpu);
909 #endif
910     thread_cpu = cpu;
911 
912     if (getenv("QEMU_STRACE")) {
913         do_strace = 1;
914     }
915 
916     target_environ = envlist_to_environ(envlist, NULL);
917     envlist_free(envlist);
918 
919     /*
920      * Now that page sizes are configured in cpu_init() we can do
921      * proper page alignment for guest_base.
922      */
923     guest_base = HOST_PAGE_ALIGN(guest_base);
924 
925     /*
926      * Read in mmap_min_addr kernel parameter.  This value is used
927      * When loading the ELF image to determine whether guest_base
928      * is needed.
929      *
930      * When user has explicitly set the quest base, we skip this
931      * test.
932      */
933     if (!have_guest_base) {
934         FILE *fp;
935 
936         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
937             unsigned long tmp;
938             if (fscanf(fp, "%lu", &tmp) == 1) {
939                 mmap_min_addr = tmp;
940                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
941             }
942             fclose(fp);
943         }
944     }
945 
946     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
947         printf("Error loading %s\n", filename);
948         _exit(1);
949     }
950 
951     for (wrk = target_environ; *wrk; wrk++) {
952         g_free(*wrk);
953     }
954 
955     g_free(target_environ);
956 
957     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
958         qemu_log("guest_base  0x%lx\n", guest_base);
959         log_page_dump();
960 
961         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
962         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
963         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
964                  info->start_code);
965         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
966                  info->start_data);
967         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
968         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
969                  info->start_stack);
970         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
971         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
972     }
973 
974     target_set_brk(info->brk);
975     syscall_init();
976     signal_init();
977 
978     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
979        generating the prologue until now so that the prologue can take
980        the real value of GUEST_BASE into account.  */
981     tcg_prologue_init(&tcg_ctx);
982 
983     /* build Task State */
984     memset(ts, 0, sizeof(TaskState));
985     init_task_state(ts);
986     ts->info = info;
987     cpu->opaque = ts;
988 
989 #if defined(TARGET_I386)
990     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
991     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
992     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
993         env->cr[4] |= CR4_OSFXSR_MASK;
994         env->hflags |= HF_OSFXSR_MASK;
995     }
996 #ifndef TARGET_ABI32
997     /* enable 64 bit mode if possible */
998     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
999         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
1000         exit(1);
1001     }
1002     env->cr[4] |= CR4_PAE_MASK;
1003     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1004     env->hflags |= HF_LMA_MASK;
1005 #endif
1006 
1007     /* flags setup : we activate the IRQs by default as in user mode */
1008     env->eflags |= IF_MASK;
1009 
1010     /* linux register setup */
1011 #ifndef TARGET_ABI32
1012     env->regs[R_EAX] = regs->rax;
1013     env->regs[R_EBX] = regs->rbx;
1014     env->regs[R_ECX] = regs->rcx;
1015     env->regs[R_EDX] = regs->rdx;
1016     env->regs[R_ESI] = regs->rsi;
1017     env->regs[R_EDI] = regs->rdi;
1018     env->regs[R_EBP] = regs->rbp;
1019     env->regs[R_ESP] = regs->rsp;
1020     env->eip = regs->rip;
1021 #else
1022     env->regs[R_EAX] = regs->eax;
1023     env->regs[R_EBX] = regs->ebx;
1024     env->regs[R_ECX] = regs->ecx;
1025     env->regs[R_EDX] = regs->edx;
1026     env->regs[R_ESI] = regs->esi;
1027     env->regs[R_EDI] = regs->edi;
1028     env->regs[R_EBP] = regs->ebp;
1029     env->regs[R_ESP] = regs->esp;
1030     env->eip = regs->eip;
1031 #endif
1032 
1033     /* linux interrupt setup */
1034 #ifndef TARGET_ABI32
1035     env->idt.limit = 511;
1036 #else
1037     env->idt.limit = 255;
1038 #endif
1039     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1040                                 PROT_READ|PROT_WRITE,
1041                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1042     idt_table = g2h(env->idt.base);
1043     set_idt(0, 0);
1044     set_idt(1, 0);
1045     set_idt(2, 0);
1046     set_idt(3, 3);
1047     set_idt(4, 3);
1048     set_idt(5, 0);
1049     set_idt(6, 0);
1050     set_idt(7, 0);
1051     set_idt(8, 0);
1052     set_idt(9, 0);
1053     set_idt(10, 0);
1054     set_idt(11, 0);
1055     set_idt(12, 0);
1056     set_idt(13, 0);
1057     set_idt(14, 0);
1058     set_idt(15, 0);
1059     set_idt(16, 0);
1060     set_idt(17, 0);
1061     set_idt(18, 0);
1062     set_idt(19, 0);
1063     set_idt(0x80, 3);
1064 
1065     /* linux segment setup */
1066     {
1067         uint64_t *gdt_table;
1068         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1069                                     PROT_READ|PROT_WRITE,
1070                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1071         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1072         gdt_table = g2h(env->gdt.base);
1073 #ifdef TARGET_ABI32
1074         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1075                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1076                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1077 #else
1078         /* 64 bit code segment */
1079         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1080                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1081                  DESC_L_MASK |
1082                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1083 #endif
1084         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1085                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1086                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1087     }
1088 
1089     cpu_x86_load_seg(env, R_CS, __USER_CS);
1090     cpu_x86_load_seg(env, R_SS, __USER_DS);
1091 #ifdef TARGET_ABI32
1092     cpu_x86_load_seg(env, R_DS, __USER_DS);
1093     cpu_x86_load_seg(env, R_ES, __USER_DS);
1094     cpu_x86_load_seg(env, R_FS, __USER_DS);
1095     cpu_x86_load_seg(env, R_GS, __USER_DS);
1096     /* This hack makes Wine work... */
1097     env->segs[R_FS].selector = 0;
1098 #else
1099     cpu_x86_load_seg(env, R_DS, 0);
1100     cpu_x86_load_seg(env, R_ES, 0);
1101     cpu_x86_load_seg(env, R_FS, 0);
1102     cpu_x86_load_seg(env, R_GS, 0);
1103 #endif
1104 #elif defined(TARGET_SPARC)
1105     {
1106         int i;
1107         env->pc = regs->pc;
1108         env->npc = regs->npc;
1109         env->y = regs->y;
1110         for(i = 0; i < 8; i++)
1111             env->gregs[i] = regs->u_regs[i];
1112         for(i = 0; i < 8; i++)
1113             env->regwptr[i] = regs->u_regs[i + 8];
1114     }
1115 #else
1116 #error unsupported target CPU
1117 #endif
1118 
1119     if (gdbstub_port) {
1120         gdbserver_start (gdbstub_port);
1121         gdb_handlesig(cpu, 0);
1122     }
1123     cpu_loop(env);
1124     /* never exits */
1125     return 0;
1126 }
1127