xref: /qemu/bsd-user/main.c (revision bf8d4924)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include <machine/trap.h>
21 
22 #include "qapi/error.h"
23 #include "qemu.h"
24 #include "qemu/path.h"
25 #include "qemu/help_option.h"
26 /* For tb_lock */
27 #include "cpu.h"
28 #include "exec/exec-all.h"
29 #include "tcg.h"
30 #include "qemu/timer.h"
31 #include "qemu/envlist.h"
32 #include "exec/log.h"
33 
34 int singlestep;
35 unsigned long mmap_min_addr;
36 unsigned long guest_base;
37 int have_guest_base;
38 unsigned long reserved_va;
39 
40 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
41 const char *qemu_uname_release;
42 extern char **environ;
43 enum BSDType bsd_type;
44 
45 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
46    we allocate a bigger stack. Need a better solution, for example
47    by remapping the process stack directly at the right place */
48 unsigned long x86_stack_size = 512 * 1024;
49 
50 void gemu_log(const char *fmt, ...)
51 {
52     va_list ap;
53 
54     va_start(ap, fmt);
55     vfprintf(stderr, fmt, ap);
56     va_end(ap);
57 }
58 
59 #if defined(TARGET_I386)
60 int cpu_get_pic_interrupt(CPUX86State *env)
61 {
62     return -1;
63 }
64 #endif
65 
66 /* These are no-ops because we are not threadsafe.  */
67 static inline void cpu_exec_start(CPUArchState *env)
68 {
69 }
70 
71 static inline void cpu_exec_end(CPUArchState *env)
72 {
73 }
74 
75 static inline void start_exclusive(void)
76 {
77 }
78 
79 static inline void end_exclusive(void)
80 {
81 }
82 
83 void fork_start(void)
84 {
85 }
86 
87 void fork_end(int child)
88 {
89     if (child) {
90         gdbserver_fork(thread_cpu);
91     }
92 }
93 
94 void cpu_list_lock(void)
95 {
96 }
97 
98 void cpu_list_unlock(void)
99 {
100 }
101 
102 #ifdef TARGET_I386
103 /***********************************************************/
104 /* CPUX86 core interface */
105 
106 uint64_t cpu_get_tsc(CPUX86State *env)
107 {
108     return cpu_get_host_ticks();
109 }
110 
111 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
112                      int flags)
113 {
114     unsigned int e1, e2;
115     uint32_t *p;
116     e1 = (addr << 16) | (limit & 0xffff);
117     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
118     e2 |= flags;
119     p = ptr;
120     p[0] = tswap32(e1);
121     p[1] = tswap32(e2);
122 }
123 
124 static uint64_t *idt_table;
125 #ifdef TARGET_X86_64
126 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
127                        uint64_t addr, unsigned int sel)
128 {
129     uint32_t *p, e1, e2;
130     e1 = (addr & 0xffff) | (sel << 16);
131     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
132     p = ptr;
133     p[0] = tswap32(e1);
134     p[1] = tswap32(e2);
135     p[2] = tswap32(addr >> 32);
136     p[3] = 0;
137 }
138 /* only dpl matters as we do only user space emulation */
139 static void set_idt(int n, unsigned int dpl)
140 {
141     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
142 }
143 #else
144 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
145                      uint32_t addr, unsigned int sel)
146 {
147     uint32_t *p, e1, e2;
148     e1 = (addr & 0xffff) | (sel << 16);
149     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
150     p = ptr;
151     p[0] = tswap32(e1);
152     p[1] = tswap32(e2);
153 }
154 
155 /* only dpl matters as we do only user space emulation */
156 static void set_idt(int n, unsigned int dpl)
157 {
158     set_gate(idt_table + n, 0, dpl, 0, 0);
159 }
160 #endif
161 
162 void cpu_loop(CPUX86State *env)
163 {
164     X86CPU *cpu = x86_env_get_cpu(env);
165     CPUState *cs = CPU(cpu);
166     int trapnr;
167     abi_ulong pc;
168     //target_siginfo_t info;
169 
170     for(;;) {
171         trapnr = cpu_x86_exec(cs);
172         switch(trapnr) {
173         case 0x80:
174             /* syscall from int $0x80 */
175             if (bsd_type == target_freebsd) {
176                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
177                     sizeof(int32_t);
178                 int32_t syscall_nr = env->regs[R_EAX];
179                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
180 
181                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
182                     get_user_s32(syscall_nr, params);
183                     params += sizeof(int32_t);
184                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
185                     get_user_s32(syscall_nr, params);
186                     params += sizeof(int64_t);
187                 }
188                 get_user_s32(arg1, params);
189                 params += sizeof(int32_t);
190                 get_user_s32(arg2, params);
191                 params += sizeof(int32_t);
192                 get_user_s32(arg3, params);
193                 params += sizeof(int32_t);
194                 get_user_s32(arg4, params);
195                 params += sizeof(int32_t);
196                 get_user_s32(arg5, params);
197                 params += sizeof(int32_t);
198                 get_user_s32(arg6, params);
199                 params += sizeof(int32_t);
200                 get_user_s32(arg7, params);
201                 params += sizeof(int32_t);
202                 get_user_s32(arg8, params);
203                 env->regs[R_EAX] = do_freebsd_syscall(env,
204                                                       syscall_nr,
205                                                       arg1,
206                                                       arg2,
207                                                       arg3,
208                                                       arg4,
209                                                       arg5,
210                                                       arg6,
211                                                       arg7,
212                                                       arg8);
213             } else { //if (bsd_type == target_openbsd)
214                 env->regs[R_EAX] = do_openbsd_syscall(env,
215                                                       env->regs[R_EAX],
216                                                       env->regs[R_EBX],
217                                                       env->regs[R_ECX],
218                                                       env->regs[R_EDX],
219                                                       env->regs[R_ESI],
220                                                       env->regs[R_EDI],
221                                                       env->regs[R_EBP]);
222             }
223             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
224                 env->regs[R_EAX] = -env->regs[R_EAX];
225                 env->eflags |= CC_C;
226             } else {
227                 env->eflags &= ~CC_C;
228             }
229             break;
230 #ifndef TARGET_ABI32
231         case EXCP_SYSCALL:
232             /* syscall from syscall instruction */
233             if (bsd_type == target_freebsd)
234                 env->regs[R_EAX] = do_freebsd_syscall(env,
235                                                       env->regs[R_EAX],
236                                                       env->regs[R_EDI],
237                                                       env->regs[R_ESI],
238                                                       env->regs[R_EDX],
239                                                       env->regs[R_ECX],
240                                                       env->regs[8],
241                                                       env->regs[9], 0, 0);
242             else { //if (bsd_type == target_openbsd)
243                 env->regs[R_EAX] = do_openbsd_syscall(env,
244                                                       env->regs[R_EAX],
245                                                       env->regs[R_EDI],
246                                                       env->regs[R_ESI],
247                                                       env->regs[R_EDX],
248                                                       env->regs[10],
249                                                       env->regs[8],
250                                                       env->regs[9]);
251             }
252             env->eip = env->exception_next_eip;
253             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
254                 env->regs[R_EAX] = -env->regs[R_EAX];
255                 env->eflags |= CC_C;
256             } else {
257                 env->eflags &= ~CC_C;
258             }
259             break;
260 #endif
261 #if 0
262         case EXCP0B_NOSEG:
263         case EXCP0C_STACK:
264             info.si_signo = SIGBUS;
265             info.si_errno = 0;
266             info.si_code = TARGET_SI_KERNEL;
267             info._sifields._sigfault._addr = 0;
268             queue_signal(env, info.si_signo, &info);
269             break;
270         case EXCP0D_GPF:
271             /* XXX: potential problem if ABI32 */
272 #ifndef TARGET_X86_64
273             if (env->eflags & VM_MASK) {
274                 handle_vm86_fault(env);
275             } else
276 #endif
277             {
278                 info.si_signo = SIGSEGV;
279                 info.si_errno = 0;
280                 info.si_code = TARGET_SI_KERNEL;
281                 info._sifields._sigfault._addr = 0;
282                 queue_signal(env, info.si_signo, &info);
283             }
284             break;
285         case EXCP0E_PAGE:
286             info.si_signo = SIGSEGV;
287             info.si_errno = 0;
288             if (!(env->error_code & 1))
289                 info.si_code = TARGET_SEGV_MAPERR;
290             else
291                 info.si_code = TARGET_SEGV_ACCERR;
292             info._sifields._sigfault._addr = env->cr[2];
293             queue_signal(env, info.si_signo, &info);
294             break;
295         case EXCP00_DIVZ:
296 #ifndef TARGET_X86_64
297             if (env->eflags & VM_MASK) {
298                 handle_vm86_trap(env, trapnr);
299             } else
300 #endif
301             {
302                 /* division by zero */
303                 info.si_signo = SIGFPE;
304                 info.si_errno = 0;
305                 info.si_code = TARGET_FPE_INTDIV;
306                 info._sifields._sigfault._addr = env->eip;
307                 queue_signal(env, info.si_signo, &info);
308             }
309             break;
310         case EXCP01_DB:
311         case EXCP03_INT3:
312 #ifndef TARGET_X86_64
313             if (env->eflags & VM_MASK) {
314                 handle_vm86_trap(env, trapnr);
315             } else
316 #endif
317             {
318                 info.si_signo = SIGTRAP;
319                 info.si_errno = 0;
320                 if (trapnr == EXCP01_DB) {
321                     info.si_code = TARGET_TRAP_BRKPT;
322                     info._sifields._sigfault._addr = env->eip;
323                 } else {
324                     info.si_code = TARGET_SI_KERNEL;
325                     info._sifields._sigfault._addr = 0;
326                 }
327                 queue_signal(env, info.si_signo, &info);
328             }
329             break;
330         case EXCP04_INTO:
331         case EXCP05_BOUND:
332 #ifndef TARGET_X86_64
333             if (env->eflags & VM_MASK) {
334                 handle_vm86_trap(env, trapnr);
335             } else
336 #endif
337             {
338                 info.si_signo = SIGSEGV;
339                 info.si_errno = 0;
340                 info.si_code = TARGET_SI_KERNEL;
341                 info._sifields._sigfault._addr = 0;
342                 queue_signal(env, info.si_signo, &info);
343             }
344             break;
345         case EXCP06_ILLOP:
346             info.si_signo = SIGILL;
347             info.si_errno = 0;
348             info.si_code = TARGET_ILL_ILLOPN;
349             info._sifields._sigfault._addr = env->eip;
350             queue_signal(env, info.si_signo, &info);
351             break;
352 #endif
353         case EXCP_INTERRUPT:
354             /* just indicate that signals should be handled asap */
355             break;
356 #if 0
357         case EXCP_DEBUG:
358             {
359                 int sig;
360 
361                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
362                 if (sig)
363                   {
364                     info.si_signo = sig;
365                     info.si_errno = 0;
366                     info.si_code = TARGET_TRAP_BRKPT;
367                     queue_signal(env, info.si_signo, &info);
368                   }
369             }
370             break;
371 #endif
372         default:
373             pc = env->segs[R_CS].base + env->eip;
374             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
375                     (long)pc, trapnr);
376             abort();
377         }
378         process_pending_signals(env);
379     }
380 }
381 #endif
382 
383 #ifdef TARGET_SPARC
384 #define SPARC64_STACK_BIAS 2047
385 
386 //#define DEBUG_WIN
387 /* WARNING: dealing with register windows _is_ complicated. More info
388    can be found at http://www.sics.se/~psm/sparcstack.html */
389 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
390 {
391     index = (index + cwp * 16) % (16 * env->nwindows);
392     /* wrap handling : if cwp is on the last window, then we use the
393        registers 'after' the end */
394     if (index < 8 && env->cwp == env->nwindows - 1)
395         index += 16 * env->nwindows;
396     return index;
397 }
398 
399 /* save the register window 'cwp1' */
400 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
401 {
402     unsigned int i;
403     abi_ulong sp_ptr;
404 
405     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
406 #ifdef TARGET_SPARC64
407     if (sp_ptr & 3)
408         sp_ptr += SPARC64_STACK_BIAS;
409 #endif
410 #if defined(DEBUG_WIN)
411     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
412            sp_ptr, cwp1);
413 #endif
414     for(i = 0; i < 16; i++) {
415         /* FIXME - what to do if put_user() fails? */
416         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
417         sp_ptr += sizeof(abi_ulong);
418     }
419 }
420 
421 static void save_window(CPUSPARCState *env)
422 {
423 #ifndef TARGET_SPARC64
424     unsigned int new_wim;
425     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
426         ((1LL << env->nwindows) - 1);
427     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
428     env->wim = new_wim;
429 #else
430     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
431     env->cansave++;
432     env->canrestore--;
433 #endif
434 }
435 
436 static void restore_window(CPUSPARCState *env)
437 {
438 #ifndef TARGET_SPARC64
439     unsigned int new_wim;
440 #endif
441     unsigned int i, cwp1;
442     abi_ulong sp_ptr;
443 
444 #ifndef TARGET_SPARC64
445     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
446         ((1LL << env->nwindows) - 1);
447 #endif
448 
449     /* restore the invalid window */
450     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
451     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
452 #ifdef TARGET_SPARC64
453     if (sp_ptr & 3)
454         sp_ptr += SPARC64_STACK_BIAS;
455 #endif
456 #if defined(DEBUG_WIN)
457     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
458            sp_ptr, cwp1);
459 #endif
460     for(i = 0; i < 16; i++) {
461         /* FIXME - what to do if get_user() fails? */
462         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
463         sp_ptr += sizeof(abi_ulong);
464     }
465 #ifdef TARGET_SPARC64
466     env->canrestore++;
467     if (env->cleanwin < env->nwindows - 1)
468         env->cleanwin++;
469     env->cansave--;
470 #else
471     env->wim = new_wim;
472 #endif
473 }
474 
475 static void flush_windows(CPUSPARCState *env)
476 {
477     int offset, cwp1;
478 
479     offset = 1;
480     for(;;) {
481         /* if restore would invoke restore_window(), then we can stop */
482         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
483 #ifndef TARGET_SPARC64
484         if (env->wim & (1 << cwp1))
485             break;
486 #else
487         if (env->canrestore == 0)
488             break;
489         env->cansave++;
490         env->canrestore--;
491 #endif
492         save_window_offset(env, cwp1);
493         offset++;
494     }
495     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
496 #ifndef TARGET_SPARC64
497     /* set wim so that restore will reload the registers */
498     env->wim = 1 << cwp1;
499 #endif
500 #if defined(DEBUG_WIN)
501     printf("flush_windows: nb=%d\n", offset - 1);
502 #endif
503 }
504 
505 void cpu_loop(CPUSPARCState *env)
506 {
507     CPUState *cs = CPU(sparc_env_get_cpu(env));
508     int trapnr, ret, syscall_nr;
509     //target_siginfo_t info;
510 
511     while (1) {
512         trapnr = cpu_sparc_exec(cs);
513 
514         switch (trapnr) {
515 #ifndef TARGET_SPARC64
516         case 0x80:
517 #else
518         /* FreeBSD uses 0x141 for syscalls too */
519         case 0x141:
520             if (bsd_type != target_freebsd)
521                 goto badtrap;
522         case 0x100:
523 #endif
524             syscall_nr = env->gregs[1];
525             if (bsd_type == target_freebsd)
526                 ret = do_freebsd_syscall(env, syscall_nr,
527                                          env->regwptr[0], env->regwptr[1],
528                                          env->regwptr[2], env->regwptr[3],
529                                          env->regwptr[4], env->regwptr[5], 0, 0);
530             else if (bsd_type == target_netbsd)
531                 ret = do_netbsd_syscall(env, syscall_nr,
532                                         env->regwptr[0], env->regwptr[1],
533                                         env->regwptr[2], env->regwptr[3],
534                                         env->regwptr[4], env->regwptr[5]);
535             else { //if (bsd_type == target_openbsd)
536 #if defined(TARGET_SPARC64)
537                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
538                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
539 #endif
540                 ret = do_openbsd_syscall(env, syscall_nr,
541                                          env->regwptr[0], env->regwptr[1],
542                                          env->regwptr[2], env->regwptr[3],
543                                          env->regwptr[4], env->regwptr[5]);
544             }
545             if ((unsigned int)ret >= (unsigned int)(-515)) {
546                 ret = -ret;
547 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
548                 env->xcc |= PSR_CARRY;
549 #else
550                 env->psr |= PSR_CARRY;
551 #endif
552             } else {
553 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
554                 env->xcc &= ~PSR_CARRY;
555 #else
556                 env->psr &= ~PSR_CARRY;
557 #endif
558             }
559             env->regwptr[0] = ret;
560             /* next instruction */
561 #if defined(TARGET_SPARC64)
562             if (bsd_type == target_openbsd &&
563                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
564                 env->pc = env->gregs[2];
565                 env->npc = env->pc + 4;
566             } else if (bsd_type == target_openbsd &&
567                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
568                 env->pc = env->gregs[7];
569                 env->npc = env->pc + 4;
570             } else {
571                 env->pc = env->npc;
572                 env->npc = env->npc + 4;
573             }
574 #else
575             env->pc = env->npc;
576             env->npc = env->npc + 4;
577 #endif
578             break;
579         case 0x83: /* flush windows */
580 #ifdef TARGET_ABI32
581         case 0x103:
582 #endif
583             flush_windows(env);
584             /* next instruction */
585             env->pc = env->npc;
586             env->npc = env->npc + 4;
587             break;
588 #ifndef TARGET_SPARC64
589         case TT_WIN_OVF: /* window overflow */
590             save_window(env);
591             break;
592         case TT_WIN_UNF: /* window underflow */
593             restore_window(env);
594             break;
595         case TT_TFAULT:
596         case TT_DFAULT:
597 #if 0
598             {
599                 info.si_signo = SIGSEGV;
600                 info.si_errno = 0;
601                 /* XXX: check env->error_code */
602                 info.si_code = TARGET_SEGV_MAPERR;
603                 info._sifields._sigfault._addr = env->mmuregs[4];
604                 queue_signal(env, info.si_signo, &info);
605             }
606 #endif
607             break;
608 #else
609         case TT_SPILL: /* window overflow */
610             save_window(env);
611             break;
612         case TT_FILL: /* window underflow */
613             restore_window(env);
614             break;
615         case TT_TFAULT:
616         case TT_DFAULT:
617 #if 0
618             {
619                 info.si_signo = SIGSEGV;
620                 info.si_errno = 0;
621                 /* XXX: check env->error_code */
622                 info.si_code = TARGET_SEGV_MAPERR;
623                 if (trapnr == TT_DFAULT)
624                     info._sifields._sigfault._addr = env->dmmuregs[4];
625                 else
626                     info._sifields._sigfault._addr = env->tsptr->tpc;
627                 //queue_signal(env, info.si_signo, &info);
628             }
629 #endif
630             break;
631 #endif
632         case EXCP_INTERRUPT:
633             /* just indicate that signals should be handled asap */
634             break;
635         case EXCP_DEBUG:
636             {
637                 int sig;
638 
639                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
640 #if 0
641                 if (sig)
642                   {
643                     info.si_signo = sig;
644                     info.si_errno = 0;
645                     info.si_code = TARGET_TRAP_BRKPT;
646                     //queue_signal(env, info.si_signo, &info);
647                   }
648 #endif
649             }
650             break;
651         default:
652 #ifdef TARGET_SPARC64
653         badtrap:
654 #endif
655             printf ("Unhandled trap: 0x%x\n", trapnr);
656             cpu_dump_state(cs, stderr, fprintf, 0);
657             exit (1);
658         }
659         process_pending_signals (env);
660     }
661 }
662 
663 #endif
664 
665 static void usage(void)
666 {
667     printf("qemu-" TARGET_NAME " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
668            "usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
669            "BSD CPU emulator (compiled for %s emulation)\n"
670            "\n"
671            "Standard options:\n"
672            "-h                print this help\n"
673            "-g port           wait gdb connection to port\n"
674            "-L path           set the elf interpreter prefix (default=%s)\n"
675            "-s size           set the stack size in bytes (default=%ld)\n"
676            "-cpu model        select CPU (-cpu help for list)\n"
677            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
678            "-E var=value      sets/modifies targets environment variable(s)\n"
679            "-U var            unsets targets environment variable(s)\n"
680            "-B address        set guest_base address to address\n"
681            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
682            "\n"
683            "Debug options:\n"
684            "-d item1[,...]    enable logging of specified items\n"
685            "                  (use '-d help' for a list of log items)\n"
686            "-D logfile        write logs to 'logfile' (default stderr)\n"
687            "-p pagesize       set the host page size to 'pagesize'\n"
688            "-singlestep       always run in singlestep mode\n"
689            "-strace           log system calls\n"
690            "\n"
691            "Environment variables:\n"
692            "QEMU_STRACE       Print system calls and arguments similar to the\n"
693            "                  'strace' program.  Enable by setting to any value.\n"
694            "You can use -E and -U options to set/unset environment variables\n"
695            "for target process.  It is possible to provide several variables\n"
696            "by repeating the option.  For example:\n"
697            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
698            "Note that if you provide several changes to single variable\n"
699            "last change will stay in effect.\n"
700            ,
701            TARGET_NAME,
702            interp_prefix,
703            x86_stack_size);
704     exit(1);
705 }
706 
707 THREAD CPUState *thread_cpu;
708 
709 /* Assumes contents are already zeroed.  */
710 void init_task_state(TaskState *ts)
711 {
712     int i;
713 
714     ts->used = 1;
715     ts->first_free = ts->sigqueue_table;
716     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
717         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
718     }
719     ts->sigqueue_table[i].next = NULL;
720 }
721 
722 int main(int argc, char **argv)
723 {
724     const char *filename;
725     const char *cpu_model;
726     const char *log_file = NULL;
727     const char *log_mask = NULL;
728     struct target_pt_regs regs1, *regs = &regs1;
729     struct image_info info1, *info = &info1;
730     TaskState ts1, *ts = &ts1;
731     CPUArchState *env;
732     CPUState *cpu;
733     int optind;
734     const char *r;
735     int gdbstub_port = 0;
736     char **target_environ, **wrk;
737     envlist_t *envlist = NULL;
738     bsd_type = target_openbsd;
739 
740     if (argc <= 1)
741         usage();
742 
743     module_call_init(MODULE_INIT_QOM);
744 
745     if ((envlist = envlist_create()) == NULL) {
746         (void) fprintf(stderr, "Unable to allocate envlist\n");
747         exit(1);
748     }
749 
750     /* add current environment into the list */
751     for (wrk = environ; *wrk != NULL; wrk++) {
752         (void) envlist_setenv(envlist, *wrk);
753     }
754 
755     cpu_model = NULL;
756 
757     optind = 1;
758     for(;;) {
759         if (optind >= argc)
760             break;
761         r = argv[optind];
762         if (r[0] != '-')
763             break;
764         optind++;
765         r++;
766         if (!strcmp(r, "-")) {
767             break;
768         } else if (!strcmp(r, "d")) {
769             if (optind >= argc) {
770                 break;
771             }
772             log_mask = argv[optind++];
773         } else if (!strcmp(r, "D")) {
774             if (optind >= argc) {
775                 break;
776             }
777             log_file = argv[optind++];
778         } else if (!strcmp(r, "E")) {
779             r = argv[optind++];
780             if (envlist_setenv(envlist, r) != 0)
781                 usage();
782         } else if (!strcmp(r, "ignore-environment")) {
783             envlist_free(envlist);
784             if ((envlist = envlist_create()) == NULL) {
785                 (void) fprintf(stderr, "Unable to allocate envlist\n");
786                 exit(1);
787             }
788         } else if (!strcmp(r, "U")) {
789             r = argv[optind++];
790             if (envlist_unsetenv(envlist, r) != 0)
791                 usage();
792         } else if (!strcmp(r, "s")) {
793             r = argv[optind++];
794             x86_stack_size = strtol(r, (char **)&r, 0);
795             if (x86_stack_size <= 0)
796                 usage();
797             if (*r == 'M')
798                 x86_stack_size *= 1024 * 1024;
799             else if (*r == 'k' || *r == 'K')
800                 x86_stack_size *= 1024;
801         } else if (!strcmp(r, "L")) {
802             interp_prefix = argv[optind++];
803         } else if (!strcmp(r, "p")) {
804             qemu_host_page_size = atoi(argv[optind++]);
805             if (qemu_host_page_size == 0 ||
806                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
807                 fprintf(stderr, "page size must be a power of two\n");
808                 exit(1);
809             }
810         } else if (!strcmp(r, "g")) {
811             gdbstub_port = atoi(argv[optind++]);
812         } else if (!strcmp(r, "r")) {
813             qemu_uname_release = argv[optind++];
814         } else if (!strcmp(r, "cpu")) {
815             cpu_model = argv[optind++];
816             if (is_help_option(cpu_model)) {
817 /* XXX: implement xxx_cpu_list for targets that still miss it */
818 #if defined(cpu_list)
819                     cpu_list(stdout, &fprintf);
820 #endif
821                 exit(1);
822             }
823         } else if (!strcmp(r, "B")) {
824            guest_base = strtol(argv[optind++], NULL, 0);
825            have_guest_base = 1;
826         } else if (!strcmp(r, "drop-ld-preload")) {
827             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
828         } else if (!strcmp(r, "bsd")) {
829             if (!strcasecmp(argv[optind], "freebsd")) {
830                 bsd_type = target_freebsd;
831             } else if (!strcasecmp(argv[optind], "netbsd")) {
832                 bsd_type = target_netbsd;
833             } else if (!strcasecmp(argv[optind], "openbsd")) {
834                 bsd_type = target_openbsd;
835             } else {
836                 usage();
837             }
838             optind++;
839         } else if (!strcmp(r, "singlestep")) {
840             singlestep = 1;
841         } else if (!strcmp(r, "strace")) {
842             do_strace = 1;
843         } else
844         {
845             usage();
846         }
847     }
848 
849     /* init debug */
850     qemu_log_needs_buffers();
851     qemu_set_log_filename(log_file, &error_fatal);
852     if (log_mask) {
853         int mask;
854 
855         mask = qemu_str_to_log_mask(log_mask);
856         if (!mask) {
857             qemu_print_log_usage(stdout);
858             exit(1);
859         }
860         qemu_set_log(mask);
861     }
862 
863     if (optind >= argc) {
864         usage();
865     }
866     filename = argv[optind];
867 
868     /* Zero out regs */
869     memset(regs, 0, sizeof(struct target_pt_regs));
870 
871     /* Zero out image_info */
872     memset(info, 0, sizeof(struct image_info));
873 
874     /* Scan interp_prefix dir for replacement files. */
875     init_paths(interp_prefix);
876 
877     if (cpu_model == NULL) {
878 #if defined(TARGET_I386)
879 #ifdef TARGET_X86_64
880         cpu_model = "qemu64";
881 #else
882         cpu_model = "qemu32";
883 #endif
884 #elif defined(TARGET_SPARC)
885 #ifdef TARGET_SPARC64
886         cpu_model = "TI UltraSparc II";
887 #else
888         cpu_model = "Fujitsu MB86904";
889 #endif
890 #else
891         cpu_model = "any";
892 #endif
893     }
894     tcg_exec_init(0);
895     /* NOTE: we need to init the CPU at this stage to get
896        qemu_host_page_size */
897     cpu = cpu_init(cpu_model);
898     if (!cpu) {
899         fprintf(stderr, "Unable to find CPU definition\n");
900         exit(1);
901     }
902     env = cpu->env_ptr;
903 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
904     cpu_reset(cpu);
905 #endif
906     thread_cpu = cpu;
907 
908     if (getenv("QEMU_STRACE")) {
909         do_strace = 1;
910     }
911 
912     target_environ = envlist_to_environ(envlist, NULL);
913     envlist_free(envlist);
914 
915     /*
916      * Now that page sizes are configured in cpu_init() we can do
917      * proper page alignment for guest_base.
918      */
919     guest_base = HOST_PAGE_ALIGN(guest_base);
920 
921     /*
922      * Read in mmap_min_addr kernel parameter.  This value is used
923      * When loading the ELF image to determine whether guest_base
924      * is needed.
925      *
926      * When user has explicitly set the quest base, we skip this
927      * test.
928      */
929     if (!have_guest_base) {
930         FILE *fp;
931 
932         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
933             unsigned long tmp;
934             if (fscanf(fp, "%lu", &tmp) == 1) {
935                 mmap_min_addr = tmp;
936                 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
937             }
938             fclose(fp);
939         }
940     }
941 
942     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
943         printf("Error loading %s\n", filename);
944         _exit(1);
945     }
946 
947     for (wrk = target_environ; *wrk; wrk++) {
948         free(*wrk);
949     }
950 
951     free(target_environ);
952 
953     if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
954         qemu_log("guest_base  0x%lx\n", guest_base);
955         log_page_dump();
956 
957         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
958         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
959         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
960                  info->start_code);
961         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
962                  info->start_data);
963         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
964         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
965                  info->start_stack);
966         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
967         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
968     }
969 
970     target_set_brk(info->brk);
971     syscall_init();
972     signal_init();
973 
974     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
975        generating the prologue until now so that the prologue can take
976        the real value of GUEST_BASE into account.  */
977     tcg_prologue_init(&tcg_ctx);
978 
979     /* build Task State */
980     memset(ts, 0, sizeof(TaskState));
981     init_task_state(ts);
982     ts->info = info;
983     cpu->opaque = ts;
984 
985 #if defined(TARGET_I386)
986     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
987     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
988     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
989         env->cr[4] |= CR4_OSFXSR_MASK;
990         env->hflags |= HF_OSFXSR_MASK;
991     }
992 #ifndef TARGET_ABI32
993     /* enable 64 bit mode if possible */
994     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
995         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
996         exit(1);
997     }
998     env->cr[4] |= CR4_PAE_MASK;
999     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1000     env->hflags |= HF_LMA_MASK;
1001 #endif
1002 
1003     /* flags setup : we activate the IRQs by default as in user mode */
1004     env->eflags |= IF_MASK;
1005 
1006     /* linux register setup */
1007 #ifndef TARGET_ABI32
1008     env->regs[R_EAX] = regs->rax;
1009     env->regs[R_EBX] = regs->rbx;
1010     env->regs[R_ECX] = regs->rcx;
1011     env->regs[R_EDX] = regs->rdx;
1012     env->regs[R_ESI] = regs->rsi;
1013     env->regs[R_EDI] = regs->rdi;
1014     env->regs[R_EBP] = regs->rbp;
1015     env->regs[R_ESP] = regs->rsp;
1016     env->eip = regs->rip;
1017 #else
1018     env->regs[R_EAX] = regs->eax;
1019     env->regs[R_EBX] = regs->ebx;
1020     env->regs[R_ECX] = regs->ecx;
1021     env->regs[R_EDX] = regs->edx;
1022     env->regs[R_ESI] = regs->esi;
1023     env->regs[R_EDI] = regs->edi;
1024     env->regs[R_EBP] = regs->ebp;
1025     env->regs[R_ESP] = regs->esp;
1026     env->eip = regs->eip;
1027 #endif
1028 
1029     /* linux interrupt setup */
1030 #ifndef TARGET_ABI32
1031     env->idt.limit = 511;
1032 #else
1033     env->idt.limit = 255;
1034 #endif
1035     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1036                                 PROT_READ|PROT_WRITE,
1037                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1038     idt_table = g2h(env->idt.base);
1039     set_idt(0, 0);
1040     set_idt(1, 0);
1041     set_idt(2, 0);
1042     set_idt(3, 3);
1043     set_idt(4, 3);
1044     set_idt(5, 0);
1045     set_idt(6, 0);
1046     set_idt(7, 0);
1047     set_idt(8, 0);
1048     set_idt(9, 0);
1049     set_idt(10, 0);
1050     set_idt(11, 0);
1051     set_idt(12, 0);
1052     set_idt(13, 0);
1053     set_idt(14, 0);
1054     set_idt(15, 0);
1055     set_idt(16, 0);
1056     set_idt(17, 0);
1057     set_idt(18, 0);
1058     set_idt(19, 0);
1059     set_idt(0x80, 3);
1060 
1061     /* linux segment setup */
1062     {
1063         uint64_t *gdt_table;
1064         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1065                                     PROT_READ|PROT_WRITE,
1066                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1067         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1068         gdt_table = g2h(env->gdt.base);
1069 #ifdef TARGET_ABI32
1070         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1071                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1072                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1073 #else
1074         /* 64 bit code segment */
1075         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1076                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1077                  DESC_L_MASK |
1078                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1079 #endif
1080         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1081                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1082                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1083     }
1084 
1085     cpu_x86_load_seg(env, R_CS, __USER_CS);
1086     cpu_x86_load_seg(env, R_SS, __USER_DS);
1087 #ifdef TARGET_ABI32
1088     cpu_x86_load_seg(env, R_DS, __USER_DS);
1089     cpu_x86_load_seg(env, R_ES, __USER_DS);
1090     cpu_x86_load_seg(env, R_FS, __USER_DS);
1091     cpu_x86_load_seg(env, R_GS, __USER_DS);
1092     /* This hack makes Wine work... */
1093     env->segs[R_FS].selector = 0;
1094 #else
1095     cpu_x86_load_seg(env, R_DS, 0);
1096     cpu_x86_load_seg(env, R_ES, 0);
1097     cpu_x86_load_seg(env, R_FS, 0);
1098     cpu_x86_load_seg(env, R_GS, 0);
1099 #endif
1100 #elif defined(TARGET_SPARC)
1101     {
1102         int i;
1103         env->pc = regs->pc;
1104         env->npc = regs->npc;
1105         env->y = regs->y;
1106         for(i = 0; i < 8; i++)
1107             env->gregs[i] = regs->u_regs[i];
1108         for(i = 0; i < 8; i++)
1109             env->regwptr[i] = regs->u_regs[i + 8];
1110     }
1111 #else
1112 #error unsupported target CPU
1113 #endif
1114 
1115     if (gdbstub_port) {
1116         gdbserver_start (gdbstub_port);
1117         gdb_handlesig(cpu, 0);
1118     }
1119     cpu_loop(env);
1120     /* never exits */
1121     return 0;
1122 }
1123